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Abstract. Invariance under population subdivision and the strong-migration limit are in-
vestigated for digenic samples in neutral models. The monoecious, diploid population is
subdivided into a finite number of panmictic colonies that exchange gametes. The back-
ward migration matrix is arbitrary, but time independent and ergodic (i.e., irreducible and
aperiodic). Results are derived for the distribution of the place and time of coalescence,
for the probability of identity in the model of infinitely many alleles, and for the distribu-
tion of the number of nuclectide differences in the moddl of infinitely many sites without
recombination.

1. Introduction

Although many, perhaps most, natural populationsare distributed in space and mate
at random only locally, the genetic consequences of this spatial structure are often,
perhaps usually, undetectable. Fregquently, the failure to demonstrate statistically
significant genetic differentiation in space merely reflects lack of sufficient power
to overcome sampling variation. It is also possible that the relevant evolutionary
forces are uniform in the entire habitat; e.g, the locus under consideration may
be at an overdominant equilibrium under strong, spatially uniform selection. This
paper addresses two more interesting possibilities and their interrelation. First, if
the measures or relations used to analyze the data are invariant under population
structure, then they will not exhibit its genetic effects. Second, and more likely,
if migration is sufficiently strong to dominate the other evolutionary forces, such
as selection and random drift, which can cause genetic differentiation, then the
population will appear to be panmictic.

Thetheoretical investigation of geographical invariancewas pioneered by Maru-
yama, whose work isreviewed, discussed, and extended in Nagylaki (1982). More
recent studies have concerned the intrademe nucleotide diversity (Slatkin 1987;
Strobeck 1987; Nagylaki 1998) and the coalescence time of two genes (Herbots
1994; Nagylaki 1998; Wilkinson-Herbots 1998).
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The strong-migration limit has been analyzed by Nagylaki (1980, 1983, 1998),
Notohara(1993, 1997, 1999), Nordborg (1997), and Bahlo and Griffiths(1999). The
investigation here was suggested by the results in Nagylaki (1980) and Notohara
(1993, 1997).

In this paper, we further explore invariance under population subdivision and
the strong-migration limit for digenic samples in neutral models. Our invariance
relations are exact. We obtain afairly easy proof of simple, explicit strong-migra-
tion limits by appealing to the separation of time scales: migration reduces genetic
differentiation rapidly, at rates of order unity, whereas mutation and random drift
act slowly, at rates of the order of the reciprocal of the effective population number.
Our invariants evolve on the slow time scale and can be evaluated explicitly in the
limit. The strong-migration limits follow directly from a lemma based on these
observations and stated and proved in the Appendix.

In Sect. 2, we examinethe distribution of the place and time of coal escence and
study the corresponding probability-generating functions and moments. Sections
3 and 4 are devoted to the models of infinitely many alleles and sites, respectively;
we investigate the probability of identity in state in the former and the probability-
generating function and moments of the number of nucleotide differences in the
latter. In each of Sects. 2—4, we formulate recursion relations, deduce invariance
relations, and derive the strong-migration limit. In Section 5, we extend Sect. 3
from gametic to diploid migration, and, as a further example of invariance, show
that the conditional fixation time of asingle, suitably sampled allele and thetimeto
the most recent common ancestor of the entire popul ation have the same probability
distribution. In Section 6, we briefly summarize and discuss our resullts.

2. Coalescence probabilities and times

In Sect. 2.1, we describe our model and derive recursion relations for the joint
distribution of the place and time of coalescence and for its marginal distributions.
In Sect. 2.2, we deduce invariance relations for these distributions and for the mo-
ments of the coalescence time. We obtain asimple, explicit strong-migration limit
for the joint distribution in Sect. 2.3.

2.1. The recursion relations

Generations are discrete and nonoverlapping; the monoecious, diploid population
is subdivided into a finite number of panmictic colonies that exchange gametesin
afixed pattern.

At the beginning of thelife cycle, every one of the N; adultsin demei produces
the same very large number of gametes, which then disperse independently. Com-
plete random union of gametesfollows. Therefore, aproportion 1/ N; of thezygotes
whose gametes originate in deme i are produced by self-fertilization. Population
regulation returns the number of individualsin demei to ;. Thus, random genetic
drift operates through population regulation.

Before deriving our recursion relations, we introduce some essential concepts
and parameters.
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Let m;; designate the probability that a gamete in deme i after dispersion was
produced in deme ;. In the absence of selection, it is reasonable to assume that the
backward migration matrix M = (m;;) is constant (Nagylaki 1992, p. 135). We
posit also that M isergodic, i.e., irreducible and aperiodic (Gantmacher 1959, pp.
50, 80, 88). Irreducibility guarantees that the descendants of individuals in each
deme are able eventually to reach every other deme. Aperiodicity precludes patho-
logical cyclic behavior. Given irreducibility, the biologically trivia condition that
individual s have positive probability of remaining in some deme, i.e.,that m;; > 0
for some i, suffices for aperiodicity (Feller 1968, p. 426). Of course, M must be
stochastic:

S miy=1. 1)
i

Let Nt and «; represent thetotal population number and the proportion of adults
in deme i, respectively:

Nt = ZNi, ki = Ni/Nt , (2.29)

O<ki<l Y k=1. (2.2b)
i

By the ergodicity of the nonnegative stochastic matrix M, the eigenvalue 1 of
M is simple and exceeds all other eigenvalues in absolute value; we can choose
the left eigenvector v corresponding to this unit eigenvalue to have only positive
components (Gantmacher 1959, Chapter 13). Thus, the conditions

O<v <1, Zvizl, viM =0T, (2.3)

1

where the superscript T signifies matrix transposition, determine v uniquely. Note
that v is the unique stationary distribution of the Markov chain with transition
matrix M. This implies that if a gene is sampled from the population (with any
distribution, e.g, from deme i), the probability that its ancestral gene wasin deme
Jj t generations ago convergesto v; ast — oo. The vector v depends only on the
relative migration rates, i.e.,if we replace m;; by cm;; for every i and j such that
i # j,thenv isunatered (Nagylaki 1998).

Conservative migration patterns are those that do not change the subpopul ation
numbers; in this case, and only in this case, we have v = « (Nagylaki 1980). Con-
servative migration has many simpleintuitive propertiesthat do not always hold for
arbitrary migration (Nagylaki 1980, 1982, 1983, 1985, 1986, 1992, pp. 135-136,
151; Nordborg 1997). In our model, the subpopulation numbers N; refer to adults.
However, since the number of gametes in each deme before dispersion is propor-
tional to NV, it isalso true that the gametic numbers are unchanged by conservative
migration, and only by conservative migration.
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The vectors k and v jointly determine our most important parameter, the
migration effective population number Ne, defined by (Nagylaki 1980)

-1
Ne=BN1, B= (Z vf/xi> . (2.4)

We have 8 < 1 and hence Ne < Nt, with equality if and only if migration is con-
servative (Nagylaki 1980). This effective population number replaces the actual
total population number in the strong-migration limit (Nagylaki 1980, 1983) and in
certain aspects of geographical invariance (Nagylaki 1982, 1994, 1998). Observe
that Ne isindependent of the genetic model. If two distinct gametes are chosen at
random, each with probability distribution v, then the probability that the gametes
are descended from the same parent is 1/ Ne (Nordborg 1997; Nagylaki 1998).

We are now prepared for our analysis.

We first define the indicator random variable I ;;. If the most recent common
ancestor (MRCA) of two distinct, homol ogous genes chosen at random from adults
just beforegametogenesis, onefrom deme: and the other from deme j, wasin deme
k,then I ;; = 1, otherwise I} ;; = 0. If T;; denotes the number of generations to
the MRCA (i.e., the coalescence time of the two genes), then

prijt) =2PUrij =10 Tj <1) (2.9)

represents the joint probability that coalescence occurs in deme k and in at most ¢
(=0,1,2,...) generations. Clearly,

Prij(0) =0 . (2.6)
The probabilities py ;; (t) satisfy the recursion relation

1 1
Prij = Z Mi¢M jn Pk tn + Z migm jg [(1 - 2_Nz> Pr.ee + (Z_Ne) (0)}

Cniltn Utk

1 1
+mjxm ji |:<1 - 2_Nk> DPk.kk + (Z_Nk) (1)] ) (%)

in which the prime signifies the next generation. To understand (x), observe first
that the (¢, n) term in the first sum is the joint probability that the parental genes
of the two genes sampled from demesi and j were in demes ¢ and n, respectively
(miem j,), and that they coalesce in deme & in at most ¢ generations (py ¢,). Next,
note that the ¢ term in the second sum is the joint probability that the parental
genes were both in deme £ (m;¢m j¢) and that they coalesce in demek in at most
generations; since{ # k, the second probability is pk ¢ (¢) if the parental genesare
distinct and O if they coincide. Thelast term isthejoint probability that the parental
genes were both in deme k (m;m ;i) and that they coalescein demek in at most ¢
generations; the second probability is px i« (¢) if the parental genes are distinct and
1if they coincide. The recursion (x) simplifiesimmediately to

Phij =2 miemjnpien — »_(2Ne) " tmigm je piee + @N) Tmigm i . (2.7)
ln 4
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Also of interest isthe generating function (0 < s < 1)
o0
Pyij(s) = Zpk,ij(l)S' : (2.8)
t=0

Summing (2.7) from ¢t = 0 to oo and appealing to (2.6), we obtain

Prij(s) = | > migmjnPiin(s) — Y (2Ne)  migm jo Prgo(s)
l,n L

1 mikmjk
— . 29
- <2Nk) 1-s ] 29)

The probability that coalescence occursin demek is

Grij =Pk ij=1) = t'LFQO Di,ij (®); (2.10)
by (2.7), this satisfies
qrij = ZmizmanIk,Zn - Z(ZNZ)_lmiem,/mk.ze + N migm i . (2.12)
l,n L

Since our stochastic processis afinite, absorbing Markov chain, we have 2(T;; <
oo) = 1, and therefore

> arij=1 (2.12)
k

for every i and j, which is consistent with (2.11). Notohara (1990) derived the
equation corresponding to (2.11) for asample of arbitrary sizein acontinuous-time
model.

The probability that coalescence occurs in more than ¢ generations is

i) = 2Ty > 1) =1=Y_ pij(0) . (2.13)
k

with
rij(0)=1. (2.14)

Summing (2.7) over k gives

rij = Zmi@m/’n”in - Z(ZNe)flmizmjeru . (2.15)
l,n Vi

From either (2.9) or (2.15) we deduce that the generating function

Rij(s) =Y _rij(0)s" (2.16)
t=0
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setisfies

Rij(s) =1+s |:Z miem ju Ren(s) — Z(ZNe)lmizmj/zRez(S):| . (217

in 4

The probability-generating function of the coalescence times is (Feller 1968,
p. 265)
xij($) = 6Ty =1— (L —5)Rij(s) . (2.18)

Substituting (2.18) into (2.17), we find

Xij(s) =s lzmz'zmjnmn(S) + Z(ZNZ)_lmizij[l - Xzz(S)]} . (219

l,n 14

2.2. Invariance

Here we show that suitably defined averages and probabilities satisfy equations
whose form is independent of population subdivision.

Let the random variables &, i, and ¢ denote demes. We sample two distinct,
homol ogous genes from the entire population and from the same deme according
to the distributions

2, m =3, )] =vivj, (2.20a)
2
Plc =il =B (”—) = b . (2.20b)
Ki
Then for any variables a;; we define the averages (Nagylaki 1982)
a= (5‘7(615,,) = Zaijvivj, (221&)
iJj
50 = g(a;;) = Zaiibi . (221b)

Thevector b isnormalized by (2.4). If migrationisconservative, thenv = «, 8 = 1,
and b = «, so the sampling and averaging are according to the proportions « of the
population in each deme.
We derive our invariance formulas by averaging our recursion relations accord-
ing to (2.214). Applying (2.21a), (2.3), (2.28), (2.20b), (2.4), and (2.21b) to (2.7)
leads to 1
Ti=Tr+ =)t =7 . 2.22
Pr pk+<2Ne)( k — Pi) (2.22)
Thus, the change A, isonly of order 1/(2Ne) evenif migration is rapid. Observe
that
@) =PUren=1NTgy <1), (2.2339)
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A = Ppee =10 T <1) . (2.23b)

Either by recalling (2.8) and summing (2.22) or by averaging (2.9) we find

b

2Ne(1 — 5)Py(s) = s [1 - F,?(s)] . (2.24)
Weletr — oo in(2.22) and recall (2.10) to conclude that for two distinct genes
sampled from the same deme according to (2.20b), the probability that coalescence

occursindemek is
R=PUee =D =y . (2.25)

If migrationisconservative, thisimpliesthat for two distinct genessampled fromthe
same deme, chosen at random with probabilities «, the probability that coalescence
occursin deme k issimply «y, the proportion of adultsin deme k.

From (2.15) and (2.17) we deduce easily the relations

= _ = 1 -0
=T <_2Ne> o, (2.26)
— N —=0

Note that 7 and 7° have simple interpretations:
F(t) = P(Tgy > 1), 7o) =P(Tye > 1) . (2.28)
Of most interest is the probability-generating function (2.18) because
X(s) = 66", x%) = 6™0) (2.29)

Averaging (2.18) gives

R(s) = 1, R (s) = 1, (2.30)
and we substitute thisinto (2.27) to infer
2Ne(1—5)7(s) = s[1—%°(s)] . (2.31)

From (2.31) we can derive directly invariance relations for the moments of the
coalescence time. Differentiating (2.31) with respect to s and setting s = 1, we get
immediately (Nagylaki 1998)

6(Tyr) = 2Ne . (2.32)

For the higher moments, we use Leibniz’ formula (Abramowitz 1964, p. 12) to
differentiate (2.31) n (= 2,3,...) timesand set s = 1:

dn—l— d"70 dn—l—O

X X
FIT D +n

2Nen dsn—1 @D = dsn—1

@ . (2.33)
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But the derivativesin (2.33) are factorial moments; e.g,
d"x
ds"

Therefore, weobtain (n =2,3,...)

V) =6[Tey(Ten =D ... (Tey —n+ D] = & [(Ten)n] - (2.34)

2Nené [(Tenn-1] = & [(Teo)n] +né [(Tedn-1] - (2.35)
In particular, setting n = 2 and invoking (2.32), wefind
4Ne8 (Tzy) = 2Ne(2Ne + 1) + Var(Ty;) . (2.36)

Thisiseasily checked for panmixia.

The invariance relation (2.35) simplifies considerably for large subpopulation
numbers. Suppose N; — oo for every i, withthemigration matrix M (and therefore
v) and « fixed. Then (2.32) suggests the scaling

Ti; = [2NeT;] (2.37)

where the brackets signify the greatest integer. This reduces (2.32) and (2.35) to
the asymptoticresult (n = 1,2, ...)

né(TL Y ~ 6(T)) (2.38)
as Ne — o0, which was proved by Herbots (1994, p. 132) for conservative migra-
tion at rates of order 1/ Nt. Hence, the first two moments satisfy

ETpe) ~ 1, 26(Tey) ~ 1+ Var(Tye) . (2.39)

2.3. The strong-migration limit

Hereweestablishan approximationfor py ;; () under theassumptionthat migration
dominates random drift.
From (2.2a) and (2.4) we see at once that

1 _ B
ZNK - ZNQK({ ’

We let Ne — oo with M and « fixed. Defining the small parameter ¢, the scaled
time r, and new variables ;. ;; (7) by

(2.40)

1
€ = Z—Ne, t = [2Ne‘L'], ﬂk,ij(‘r) = Pk,ij(l) (2'41)

shows that (2.7) hasthe form (A1) withA = B =0and C = D = 1. Inview of
(2.6), theinitia condition is p, (0) = 0. Therefore, Lemma A implies that

7k,ij (1) = P(Ixij =1 N Tjj < [2Net]) = br(1—e™ ") (242

as Ne — oo with T > 0 and fixed.
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Thus, in the strong-migration limit, the place and time of coalescence are mu-
tually independent, and their distributions are independent of the demes sampled.
Letting t — oo and summing over k in (2.42), we find

y(lk,ij =1 — b , (2.439)

P(Tij <[2Net]) > 1—e€" (2.43b)

as Ne — oo. Thelimit (2.43a) agreeswith (2.25); the limit (2.43b) isthe panmictic
exponential distribution on atime scale of 2N, generations.

Notohara (1993) studied samples of arbitrary size in a continuous-time model.
He established (2.433) and derived the strong-migration limit of the mean coales-
cence time.

3. Themode of infinitely many alleles

Suppose every allele mutatesto new alleles at the samerateu (0 < u < 1). Muta
tion may occur at any time between gametogenesis and popul ation regulation.

3.1. The recursion relations

Let f;;(¢) designate the probability that two distinct, homologous genes chosen
at random from adults just before gametogenesis in generation ¢, one from colo-
ny i and the other from colony j, are the same allele. These probabilities satisfy
(Malécot 1951, 1975; Nagylaki 1976, 1980, 1983; Sawyer 1976)

= |:Z miem jn fon + Y (Ne) Fmigm jo(1 — fez):| N A
l,n 4
where v = (1 — u)2.
Comparing (3.1) with (2.19) showsthat at equilibrium the probabilities of iden-
tity are given by

fij = xij) = @) (3.2)

which is probabilistically obvious. If we define 6 = 4N and let Ne — oo with
6 fixed, from (3.2) and (2.37) we get (cf. Hudson 1990; Herbots 1994; Wilkinson-
Herbots 1998; Bahlo and Griffiths 1999)

fij ~ 6Ty (33)

Although the coalescence times are more fundamental than the probabilities of
identity, the latter were introduced and investigated first. Thus, in many cases, the
probability-generating function (3.2) and the L aplace transform (3.3) of the coales-
cence times can be deduced directly from the large literature on f; ;, reviewed in
Nagylaki (1983, 1986, 1989).
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3.2. Invariance

Averaging (3.1) yields our invariance relation (Nagylaki 1982)

=0l (v ) a- 7] (34)

Note that f generally evolves slowly even if migration is rapid. At equilibrium,
this gives (Nagylaki 1982)

20 ~0
vdl-f) _1-f

F=onvaa—w~ 3

(35)

in which the approximation isvalid if 1 « 1.

Tointerpret £ (1) and?o(t) probabilistically, lettheindicator variable J;; (r) = 1
if the genes sampled from demesi and j in generation ¢ are the same alele; other-
wise J;; (1) = 0. Then

T =2[l=1]. 70 =2[ec)=1] . (36)
3.3. The strong-migration limit

We let Ne — oo with M, «, and 6 fixed. Recalling (2.40) and (2.41) and setting
¢ij(v) = fij(t), weseethat (3.1) hastheform (A1) withA =6, B = C = 1, and
D = 0. Therefore, Lemma A implies that

1
(1)~ 15 [f( ) — ——— e~ 3HOT (3.7

1+9}

as Ne — oo witht > 0 and fixed, whichis precisely the panmictic result (Malécot
1946, 1948; Kimura and Crow 1964). Note that the appropriate average must be
used for theinitial condition.

This strong-migration limit was derived for t > 1 in Nagylaki (1980) by a
perturbation argument, but the constant that multiplies the exponential was not
evaluated.

4. Themodel of infinitely many sites

Here we investigate a gene or DNA seguence that consists of infinitely many nu-
cleotide sites without recombination. Thus, we posit that the mutation rate per site
is so low that mutation occurs at each site at most once and then only at monomor-
phic sites. This approximation requires that the proportion of polymorphic sites be
much less than one. Let u denote the total mutation rate per gene. We assume that
mutation occurs between gametic dispersion and population regulation.
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4.1. The recursion relations

Let K;; () designate the number of nucleotide differences between two distinct,
homol ogous genes chosen at random from adultsjust before gametogenesisin gen-
eration ¢, one from colony i and the other from colony j. We seek a recursion
relation for the probability-generating function

wij (s, 1) = E[s*O] (4.1)

Let K; (1) denote the number of nucleotide differences after gametic dispersion

but before mutation in generation z. The number of nuclectide differences added

in generation # by mutation, L;;(¢), has a Poisson distribution with mean 2u. The

random variables K; ij(t) and L;; (¢) are mutually stochastically independent.
Since

Kij(t +1) = Kij0) + Ly ) . (4.2)
we have
wij(s, 1 +1) = g[siij(l)]g[sLij([)]

— p2u(s=1) Z miémjng[sken([)]
C,nl#n

+ migmje [( 211V )é[ K] 4 ( ) (1)”
14

Substituting (4.1) into (4.3) and simplifying, we obtain immediately

(4.3)

wij(s,t 4+ 1) = 2D {Zmizmjnwtm (s, 1)
£,n

+ Z(ZNZ)_lmilij[l — wee(s, f)]} . (49

14

We can easily relate (4.4) to (3.1). Denoting the solution of (3.1) as f;; (v, 1)
and defining f;; (-, 0) = w;; (s, 0) for every i and j, we see at once that

wij(s, 1) = fij(e 24, 1) (4.5)
for every i, j, and ¢, i.e.,the mutation rate in (3.1) must be replaced by
1—e A9 ~y@d—v) , (4.6)

where the asymptotic form holds as u — 0. Thus, many results for (4.4) can be
deduced at once from the large literature on (3.1), reviewed in Nagylaki (1983,
1986, 1989). Recalling (3.2), at equilibrium we get

wij(s) = fij (e 207) = gy 207 = g2y o (47)
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in which the last expression follows directly from the Poisson input of mutations
(cf. Griffiths 1981; Bahlo and Griffiths 1999).

Notohara(1997) derived thedifferential equation corresponding to (4.4) and the
formula corresponding to (4.7) for a sample of arbitrary size in a continuous-time
model.

4.2. Invariance

By either averaging (4.4) or inserting (4.5) into (3.4), we obtain

1
— _ 2u(s—1) )— _ =0
w(s,t+1) =e {w(s, 1) + <_2Ne> [1—w"(s, t)]} , (4.8)

where
Wis, 1) = E[sK D], w0, 1) = &[sKee D] . (4.9)

Thus, w isthe slow dependent variable. At equilibrium, (4.8) reducesto

INe[eZ A=) _ 1Ji(s) = 1—10(s) . (4.10)

We can derive an invariance relation for the factorial moments of Kz, and K¢
by invoking Leibniz' formulato differentiate (4.10) n times and setting s = 1, as
inSection2.2. Wefind(n =1,2,..))

n

STR ] = —2Ne 3 (Z)(—zwkff[u%gn)nk] , (4.11)

k=1

inwhich (K¢,)o = 1. In particular, the mean number of nucleotide differences is
(Nagylaki 1998)
EKee) =0, (4.12)

where 0 = 4Neu. Taking n = 2, we deduce
206 (Key) = 60 — 14 2u) + Var(Ke,) (4.13)

As a check, after a change in notation we can easily verify that Li’s (1976)
results for theisland model satisfy (4.13). It isalso easy to verify that (4.13) holds
for a panmictic population.

In thelimit Ne — oo with 6 fixed, only £ = 1 contributesto (4.11):

E[(Keo)nl ~ n081(Kenn-1] - (4.14)
We can confirm (4.14) by observing that the asymptotic form of (4.10) is
01— 5)i(s) ~ 1— 0 (s) . (4.15)

For n = 2, from (4.14) we get (4.13) without the 2u.
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4.3. The strong-migration limit

We let Ne — oo with M, «, and 6 fixed. Recalling (2.40) and (2.41) and setting
wij (s, T) = w;j(s, 1), we see that (4.4) has the form (A1) with A = 6(1 — ),
B =C =1,and D = 0. Therefore, LemmaA implies that

wij (s, T) = &(s) + [W(s, 0) — d(s)]e” /OO (4.16a)
as Ne — oo withs and 7 fixed and © > 0, where

1
1+6(1—s) "
The appropriate average must be used for the initial condition. This result can be
confirmed at once by observing that, in the strong-migration limit, the substitution
(4.6) instructsusto replaced by 6 (1—s), whichisprecisely the connection between
(3.7) and (4.16).

The panmictic equilibrium formula (4.16b) is due to Watterson (1975); we owe
the time-dependent solution for panmixia to Li (1977). Notohara (1997) derived
the strong-migration limit at equilibrium for a sample of arbitrary sizein a contin-
uous-time model.

(4.16b)

w(s) =

5. Somerelated results

The diffusion approximation has been used to establish invariance relations
(Nagylaki 1982) and the strong-migration limit (Nagylaki 1980) in some mo-
dels with finitely many alleles that include selection. Here we analyze two further
examples with the methods developed in this paper. First, we treat the model of
infinitely many alleles in the more complicated and realistic case of diploid mi-
gration. Second, we prove that the conditional fixation time of a single, suitably
sampled allele and the time to the MRCA of the entire population have the same
probability distribution.

5.1. Diploid migration

Weinvestigate the model of infinitely many alleles with diploid migration by mod-
ifying Section 3. We assume that there is no selfing.

Let I;; (¢) denote the probability that two homologous genes chosen at random
from distinct adults just before gametogenesisin generation ¢, onefrom demei and
the other from deme j, are the same allele. We designate by J; (¢) the probability
that thetwo genes of an adult chosen at random from deme ;i just before gametogen-
esisin generation ¢ are the same alele. These probabilities satisfy (Sawyer 1976;
Nagylaki 1983)

l,n l

I, =v |:Z miom julen + Y (2Ne)  migm jo(1+ Jp — 21&):| ., (519

Ji/ = Zm,’glgg . (5.1b)
4
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We average (5.14) according to (2.21):
-/ — 1 —0 —0
I =v|I+-—(1 —2I . 2
v[+2Ne(+J )} (5.2

Thus, 7 isthe slow variablein this model. The specia use of (5.2) for conservative

migration was derived in Nagylaki (1985). At equilibrium, we get
A0 0

1+J =21

= i (5.3)

Our proof of the strong-migration limit is an extension of that in the Appendix.
Welet Ne — oo with M, «, and 6 fixed; recall (2.40) and (2.41); and define

Ljm) =10, Ji(t)=Ji@) . (5.4)
Then (5.1) becomes

Ljt+e =01~ %Ge)z{zm”mﬂn”(r)
L,n
+Be ZK[lmigmjg[l + Jo(1) = 203 (7)] }, (5.58)
l

Ti@+e)=1=3002) milu() . (5.50)
12

We assume that there exist I;;.(r) and J* (), independent of ¢, such that

i) = 150, i) — JF @) | (5.68)
—1r7 ~ dT*
e I(t+¢)—I(x)] — d—(r) (5.6b)
T
ase — Owith r > O and fixed. Inthelimit e — 0, from (5.5a) we get
i) =Y mumlj,(x), ©>0. (5.7)
l,n

By the argument below (A8), weinfer that
I;j-(‘lf) =1*(), t>0, (5.8)
independent of ; and j. Wenow let e — 0in (5.5b) and appeal to (5.8):
J*(t)=1I"(r), ©v>0. (5.9

We rewrite (5.2) in the form

= 1o 27 =0 =0
I(t+e) =130 (r) +e[l—-J (v) =21 (D]} . (5.10)
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Ase — 0, weobtain from (5.10) the differential equation

*

i - _
‘;— — T 1+ 7" 21", >0, (5.11)
T
and (5.8) and (5.9) reduce (5.11) to
dr*
o = -+, t>0. (5.12)
T

It remains only to determine the initial condition for (5.12). Taking r = 0 in
(5.10), we see that

_~

(€ =1(0)+ 0(e) , (5.13)

whence

(04 =T"0+) = 1(0) = 1(0) . (5.14)
We conclude that I,](r) — I*(r) and 7(r) — I*(r) forevery i and j as
€ — Owith z > 0 and fixed, where

I*(7) = 1 [1( ) - 1 19] 40 (5.15)

This result was proved for T > 1 in Nagylaki (1983) by a perturbation argument,
but the constant that multiplies the exponential was not evaluated. The simple, ex-
plicit formula (5.15) demonstrates that only the probability of identity 7;; between
individuals affects the strong-migration limit. Since the deme sizes are very large,
the expected homozygosity J; does not enter.

5.2. The conditional fixation time

Here we change some of the above notation. Let n designate the number of demes
and write L, = 2Ny for the number of genesin deme k. We introduce the vector
¢® with components e“) = & foreach £,k = 1,2,...,n, where 8§, signifies
the Kronecker delta ((Skg = 1if k = ¢; otherwise §;¢ = 0).

Suppose there are iy A aleles in deme k and form the vector of gene num-
bersi = (i1, i2, ..., i,). We write the probability that  generations in the past
the ancestral gene numberswere j = (j1, j2, ..., ju) ash}j). Then the probability
distribution function of the time T* to the MRCA of the entire population is given
by

n
2T <n=Y n", . (5.16)
=1
inwhichL = (L1, Lo, ..., Ly,).

Now we assume that initially there is exactly one copy of the A alelein the
population and it isin deme ¢. If X (¢) represents the number of A allelesin deme
k t generations after A has appeared in the population, we have X (0) = ¢©. The
alele A will be absorbed (i.e., fixed or lost) in finite time with probability one. Let
T and T* denote the absorption and conditiona fixation time of A, respectively.
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Thefixation probability of A istheaverage of itsinitial frequencieswith respect
to the stationary distribution v (Nagylaki 1980, pp. 110, 113):

PIX(T) =L | X(©O) = e®] = Zi : (5.17)
4
We evaluate the probability distribution of 7* asfollows:
PIT* <t|1XO0)=eP)1=2[X(t) =L | XT)=L and X(0)=¢"?]
_ 2[X)=L| X(0) =]
T P[X(T)=L | X(0) =e®]

() ()
Lg Lg V¢ ’ '
From (5.16) and (5.18) weinfer
n
Do Z[T* <t | X)) =P =2(T <1) . (5.19)
=1

Writing 7% for the conditional fixation time of a single A alele in deme ¢ and
defining the random variable A so that (A = ¢) = v, we obtain

2T <)=2T <1) , (5.20)

i.e, T, and T have the same probability distribution.

If migration is conservative, then v = « and therefore (5.20) shows that the
conditional fixation time of anew mutant (which appearsin deme ¢ with probability
k¢) and thetimeto the MRCA have the same distribution. Of course, (5.20) applies
directly to a panmictic population.

6. Discussion

Here we summarize and discuss our main results.

We have formulated exact models with discrete, nonoverlapping generations.
In most of the literature on coalescents in a subdivided population, a continuous-
time model is used, either directly or asalimit. Thisrequireslarge deme sizesand
migration rates of the order of reciprocal deme sizes. Without large deme sizes,
the elegance and power of coaescentsislost and the investigation of samples of
more than two genes becomes too difficult. Although requiring migration rates to
be much less than one may sometimes be biologically restrictive, some analyses
may be unfeasible without this further approximation. For the strong-migration
limit, however, this approximation is conceptually unnecessary, and one hopesthat
results can be derived for samples of arbitrary size without it.

Theprobability distribution, py ;; (t) in(2.5), of theplaceand time of theMRCA
of two genes satisfies the recursion relation (2.7). From this follow the equations
(2.11) for the distribution, gy ;; in (2.10), of the place of coalescence and (2.19)
for the probability-generating function, x;;(s) in (2.18), of the coalescence time
Ti;.
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If suitably defined averages or probabilities satisfy an equation whose form is
independent of population subdivision, we say there is invariance. Our averages
are defined in (2.21). Note the crucial role of the stationary distribution v of the
backward migration matrix M. If migration is conservative, the averaging is sim-
ply with respect to the proportions « of individuals in each deme. Our genera
invariance relation is (2.22), which yields the simple, explicit formula (2.25) for
the distribution of the place of coalescence of two distinct genes sampled from
the same deme according to (2.20b). The invariance relation for the probabili-
ty-generating function of the coalescence times is (2.31). This yields the invari-
ancerelation (2.35) for the factorial moments; the first two moments satisfy (2.32)
and (2.36), respectively. In a large population, the moment relations reduce to
(2.38).

We say migrationisstrong if it dominates all the other evolutionary forces. The
probabilities py ;;(¢) have the simple, explicit strong-migration limit (2.42). The
place and time of coalescence are asymptotically independent and have the distri-
butions (2.43a) and (2.43b), respectively. The only effect of population subdivision
on (2.43b) isthat the migration effective population number N determinesthetime
scale.

For the model of infinitely many aleles, the probabilities of identity in state,
fij (1), satisfy the recursion and invariance relations and strong-migration limit
(3.2), (3.4), and (3.7), respectively. Observe that in the simple, explicit result (3.7),
the appropriate average must be used for theinitial condition, and popul ation sub-
division enters only through Ne. Equations (3.2) and (3.3) permit the calculations
of the probability-generating function and the L apl ace transform of the coalescence
times from the extensive literature on the equilibrium probability of identity.

In the model of infinitely many sites without recombination, the probability-
generating function of the number of nucleotide differences between two genes,
w;; (s, 1), satisfies the recursion and invariance relations (4.4) and (4.8), respec-
tively. According to (4.5), one can obtain w;; (s, ) from the probability of identity
by a simple substitution. At equilibrium, the invariance relation reduces to (4.10),
whichyields (4.11) for the factorial moments; the first two moments satisfy (4.12)
and (4.13), respectively. In a large population with weak mutation, the factorial
moments satisfy (4.14) at equilibrium. The strong-migration limit is (4.16); again,
the initial condition is the appropriate average, and population subdivision enters
only through Ne.

For the model of infinitely many aleles with diploid migration, the recursion
and invariance relations and strong-migration limit are (5.1), (5.2), and (5.15),
respectively. Note that, with the appropriate initial condition, the limit (5.15) is
identical to the limit (3.7) for gametic dispersion.

Finally, (5.20) shows that the conditional fixation time of a single, suitably
sampled alele and the time to the MRCA of the entire population have the same
probability distribution. If migration is conservative, the sampling becomesidenti-
cal to the appearance of a new mutant in the population.

Acknowledgementd.am very grateful to Prof. Simon Tavaréfor ahelpful discussion related
to Section 5.2.
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Appendix. The strong-migration limit

The strong-migration limits in Sections 2—4 follow immediately from the lemma
below. Note that the simple limit (A4) isindependent of i and ;.

LemmaA. Suppose the variableg ;; (1) satisfy the recursion relation

8k = (1—Ae) Zmizmjngk,m + Be ZK[lml'zmjz(B — Cgk.e0)
t,n 4
—i—DﬂeKk_lmikmjk + 0(62) (A1)

ase — 0with M and« fixed, whereA, B, C, and D are constants. Let
t=1[t/el, grijt) = yrij(1), (A2

and assume that there ex'ﬁ{‘t’ij(r), independent of, such that

Yij () = v (0, € T+ o) = Y(0)] > djjz (1) (A3)
ase — Owith r > O and fixed. Then
Vi (0 = Pk + [81(0) — prle” 4O (Ada)
in which ) B + Dby
h=—ro (A4b)
Proof. We use (2.21), (2.3), and (2.20b) to average (A1):
%= (1— AO)g, + (B — CgY + Dby) + O(€?) . (A5)

Thus, g, is our slow dependent variable. In terms of 7, the recursions (A1) and
(A5) become

Yiij (T +€) = (L= Ae) Y migm jn¥i.tn(T)

£,n
+Be ZK[lmigmjg[B = Ciee(7)]
¢

+DBer; migm ji + O(€2), (AB)
7T+ 6 = (L— Ae)7,(x) + €[B — CTY(r) + Dbi] + O(e?) . (A7)
Of course, yx,;;(t) dependsalso one.
Now let e — 0 and posit (A3). From (A6) we get
Viij(0) = Zmizmjnyk’fg,,(r), 7>0. (A8)
l,n

By the ergodicity of M, the nonnegative, stochastic Kronecker-product matrix M ®
M in (A8) has asimple maximal eigenvalue 1, and the corresponding right eigen-
vector has equal components (Gantmacher 1959, Chapter 13). Therefore,
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Vi@ =ry @, >0, (A9)

independent of i and ;.
Rearranging (A7) yields

e Uyt +€) — 74 ()] = —AT,(2) + B — CV(x) + Dby + O(€) , (A10)

whence we obtain

‘ZZ = AV +B—-Cy¥+ Db, 1>0, (A11)
and (A9) reduces thisto

dyy ‘

?z_(A+C)yk+B+Dbk, >0. (A12)

It remains only to determine the initial condition for the simple differential
equation (A12). Taking T = 0in (A7), we see that

Vi(€) =710 + 0(e), (A13)

whence
Ye (0+) =73 (0+) =7, (0) =g, (0) . (A14)

The solution of (A12) with the initial condition (A14) is precisely (A4), which
compl etes the proof.
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