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Abstract. Invariance under population subdivision and the strong-migration limit are in-
vestigated for digenic samples in neutral models. The monoecious, diploid population is
subdivided into a finite number of panmictic colonies that exchange gametes. The back-
ward migration matrix is arbitrary, but time independent and ergodic (i.e., irreducible and
aperiodic). Results are derived for the distribution of the place and time of coalescence,
for the probability of identity in the model of infinitely many alleles, and for the distribu-
tion of the number of nucleotide differences in the model of infinitely many sites without
recombination.

1. Introduction

Although many, perhaps most, natural populations are distributed in space and mate
at random only locally, the genetic consequences of this spatial structure are often,
perhaps usually, undetectable. Frequently, the failure to demonstrate statistically
significant genetic differentiation in space merely reflects lack of sufficient power
to overcome sampling variation. It is also possible that the relevant evolutionary
forces are uniform in the entire habitat; e.g., the locus under consideration may
be at an overdominant equilibrium under strong, spatially uniform selection. This
paper addresses two more interesting possibilities and their interrelation. First, if
the measures or relations used to analyze the data are invariant under population
structure, then they will not exhibit its genetic effects. Second, and more likely,
if migration is sufficiently strong to dominate the other evolutionary forces, such
as selection and random drift, which can cause genetic differentiation, then the
population will appear to be panmictic.

The theoretical investigation of geographical invariance was pioneered by Maru-
yama, whose work is reviewed, discussed, and extended in Nagylaki (1982). More
recent studies have concerned the intrademe nucleotide diversity (Slatkin 1987;
Strobeck 1987; Nagylaki 1998) and the coalescence time of two genes (Herbots
1994; Nagylaki 1998; Wilkinson-Herbots 1998).

T. Nagylaki: Department of Ecology and Evolution, The University of Chicago, 1101 East
57th Street, Chicago, IL 60637-1573, USA
This work was supported by National Science Foundation grant DEB-9706912.

Key words: Migration – Random genetic drift – Coalescent – Effective population number



124 T. Nagylaki

The strong-migration limit has been analyzed by Nagylaki (1980, 1983, 1998),
Notohara (1993, 1997, 1999), Nordborg (1997), and Bahlo and Griffiths (1999). The
investigation here was suggested by the results in Nagylaki (1980) and Notohara
(1993, 1997).

In this paper, we further explore invariance under population subdivision and
the strong-migration limit for digenic samples in neutral models. Our invariance
relations are exact. We obtain a fairly easy proof of simple, explicit strong-migra-
tion limits by appealing to the separation of time scales: migration reduces genetic
differentiation rapidly, at rates of order unity, whereas mutation and random drift
act slowly, at rates of the order of the reciprocal of the effective population number.
Our invariants evolve on the slow time scale and can be evaluated explicitly in the
limit. The strong-migration limits follow directly from a lemma based on these
observations and stated and proved in the Appendix.

In Sect. 2, we examine the distribution of the place and time of coalescence and
study the corresponding probability-generating functions and moments. Sections
3 and 4 are devoted to the models of infinitely many alleles and sites, respectively;
we investigate the probability of identity in state in the former and the probability-
generating function and moments of the number of nucleotide differences in the
latter. In each of Sects. 2–4, we formulate recursion relations, deduce invariance
relations, and derive the strong-migration limit. In Section 5, we extend Sect. 3
from gametic to diploid migration, and, as a further example of invariance, show
that the conditional fixation time of a single, suitably sampled allele and the time to
the most recent common ancestor of the entire population have the same probability
distribution. In Section 6, we briefly summarize and discuss our results.

2. Coalescence probabilities and times

In Sect. 2.1, we describe our model and derive recursion relations for the joint
distribution of the place and time of coalescence and for its marginal distributions.
In Sect. 2.2, we deduce invariance relations for these distributions and for the mo-
ments of the coalescence time. We obtain a simple, explicit strong-migration limit
for the joint distribution in Sect. 2.3.

2.1. The recursion relations

Generations are discrete and nonoverlapping; the monoecious, diploid population
is subdivided into a finite number of panmictic colonies that exchange gametes in
a fixed pattern.

At the beginning of the life cycle, every one of the Ni adults in deme i produces
the same very large number of gametes, which then disperse independently. Com-
plete random union of gametes follows. Therefore, a proportion 1/Ni of the zygotes
whose gametes originate in deme i are produced by self-fertilization. Population
regulation returns the number of individuals in deme i to Ni . Thus, random genetic
drift operates through population regulation.

Before deriving our recursion relations, we introduce some essential concepts
and parameters.



Subdivided populations 125

Let mij designate the probability that a gamete in deme i after dispersion was
produced in deme j . In the absence of selection, it is reasonable to assume that the
backward migration matrix M = (mij ) is constant (Nagylaki 1992, p. 135). We
posit also that M is ergodic, i.e., irreducible and aperiodic (Gantmacher 1959, pp.
50, 80, 88). Irreducibility guarantees that the descendants of individuals in each
deme are able eventually to reach every other deme. Aperiodicity precludes patho-
logical cyclic behavior. Given irreducibility, the biologically trivial condition that
individuals have positive probability of remaining in some deme, i.e., that mii > 0
for some i, suffices for aperiodicity (Feller 1968, p. 426). Of course, M must be
stochastic: ∑

j

mij = 1 . (2.1)

Let NT and κi represent the total population number and the proportion of adults
in deme i, respectively:

NT =
∑
i

Ni, κi = Ni/NT , (2.2a)

0 < κi < 1,
∑
i

κi = 1 . (2.2b)

By the ergodicity of the nonnegative stochastic matrix M , the eigenvalue 1 of
M is simple and exceeds all other eigenvalues in absolute value; we can choose
the left eigenvector ν corresponding to this unit eigenvalue to have only positive
components (Gantmacher 1959, Chapter 13). Thus, the conditions

0 < νi < 1,
∑
i

νi = 1, νTM = νT , (2.3)

where the superscript T signifies matrix transposition, determine ν uniquely. Note
that ν is the unique stationary distribution of the Markov chain with transition
matrix M . This implies that if a gene is sampled from the population (with any
distribution, e.g., from deme i), the probability that its ancestral gene was in deme
j t generations ago converges to νj as t → ∞. The vector ν depends only on the
relative migration rates, i.e., if we replace mij by cmij for every i and j such that
i �= j , then ν is unaltered (Nagylaki 1998).

Conservative migration patterns are those that do not change the subpopulation
numbers; in this case, and only in this case, we have ν = κ (Nagylaki 1980). Con-
servative migration has many simple intuitive properties that do not always hold for
arbitrary migration (Nagylaki 1980, 1982, 1983, 1985, 1986, 1992, pp. 135–136,
151; Nordborg 1997). In our model, the subpopulation numbers Ni refer to adults.
However, since the number of gametes in each deme before dispersion is propor-
tional to Ni , it is also true that the gametic numbers are unchanged by conservative
migration, and only by conservative migration.
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The vectors κ and ν jointly determine our most important parameter, the
migration effective population number Ne, defined by (Nagylaki 1980)

Ne = βNT, β =
(∑

i

ν2
i /κi

)−1

. (2.4)

We have β ≤ 1 and hence Ne ≤ NT, with equality if and only if migration is con-
servative (Nagylaki 1980). This effective population number replaces the actual
total population number in the strong-migration limit (Nagylaki 1980, 1983) and in
certain aspects of geographical invariance (Nagylaki 1982, 1994, 1998). Observe
that Ne is independent of the genetic model. If two distinct gametes are chosen at
random, each with probability distribution ν, then the probability that the gametes
are descended from the same parent is 1/Ne (Nordborg 1997; Nagylaki 1998).

We are now prepared for our analysis.
We first define the indicator random variable Ik,ij . If the most recent common

ancestor (MRCA) of two distinct, homologous genes chosen at random from adults
just before gametogenesis, one from deme i and the other from deme j , was in deme
k, then Ik,ij = 1; otherwise Ik,ij = 0. If Tij denotes the number of generations to
the MRCA (i.e., the coalescence time of the two genes), then

pk,ij (t) = P(Ik,ij = 1 ∩ Tij ≤ t) (2.5)

represents the joint probability that coalescence occurs in deme k and in at most t
(= 0, 1, 2, . . .) generations. Clearly,

pk,ij (0) = 0 . (2.6)

The probabilities pk,ij (t) satisfy the recursion relation

p′
k,ij =

∑
�,n:��=n

mi�mjnpk,�n +
∑
�:��=k

mi�mj�

[(
1 − 1

2N�

)
pk,�� +

(
1

2N�

)
(0)

]
+mikmjk

[(
1 − 1

2Nk

)
pk,kk +

(
1

2Nk

)
(1)

]
, (∗)

in which the prime signifies the next generation. To understand (∗), observe first
that the (�, n) term in the first sum is the joint probability that the parental genes
of the two genes sampled from demes i and j were in demes � and n, respectively
(mi�mjn), and that they coalesce in deme k in at most t generations (pk,�n). Next,
note that the � term in the second sum is the joint probability that the parental
genes were both in deme � (mi�mj�) and that they coalesce in deme k in at most t
generations; since � �= k, the second probability is pk,��(t) if the parental genes are
distinct and 0 if they coincide. The last term is the joint probability that the parental
genes were both in deme k (mikmjk) and that they coalesce in deme k in at most t
generations; the second probability is pk,kk(t) if the parental genes are distinct and
1 if they coincide. The recursion (∗) simplifies immediately to

p′
k,ij =

∑
�,n

mi�mjnpk,�n −
∑
�

(2N�)
−1mi�mj�pk,�� + (2Nk)

−1mikmjk . (2.7)
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Also of interest is the generating function (0 ≤ s < 1)

Pk,ij (s) =
∞∑
t=0

pk,ij (t)s
t . (2.8)

Summing (2.7) from t = 0 to ∞ and appealing to (2.6), we obtain

Pk,ij (s) = s

∑
�,n

mi�mjnPk,�n(s) −
∑
�

(2N�)
−1mi�mj�Pk,��(s)

+
(

1

2Nk

)
mikmjk

1 − s

]
. (2.9)

The probability that coalescence occurs in deme k is

qk,ij = P(Ik,ij = 1) = lim
t→∞pk,ij (t); (2.10)

by (2.7), this satisfies

qk,ij =
∑
�,n

mi�mjnqk,�n −
∑
�

(2N�)
−1mi�mj�qk,�� + (2Nk)

−1mikmjk . (2.11)

Since our stochastic process is a finite, absorbing Markov chain, we have P(Tij <

∞) = 1, and therefore ∑
k

qk,ij = 1 (2.12)

for every i and j , which is consistent with (2.11). Notohara (1990) derived the
equation corresponding to (2.11) for a sample of arbitrary size in a continuous-time
model.

The probability that coalescence occurs in more than t generations is

rij (t) = P(Tij > t) = 1 −
∑
k

pk,ij (t) , (2.13)

with

rij (0) = 1 . (2.14)

Summing (2.7) over k gives

r ′
ij =

∑
�,n

mi�mjnr�n −
∑
�

(2N�)
−1mi�mj�r�� . (2.15)

From either (2.9) or (2.15) we deduce that the generating function

Rij (s) =
∞∑
t=0

rij (t)s
t (2.16)
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satisfies

Rij (s) = 1 + s

∑
�,n

mi�mjnR�n(s) −
∑
�

(2N�)
−1mi�mj�R��(s)

 . (2.17)

The probability-generating function of the coalescence times is (Feller 1968,
p. 265)

χij (s) = E(sTij ) = 1 − (1 − s)Rij (s) . (2.18)

Substituting (2.18) into (2.17), we find

χij (s) = s

∑
�,n

mi�mjnχ�n(s) +
∑
�

(2N�)
−1mi�mj�[1 − χ��(s)]

 . (2.19)

2.2. Invariance

Here we show that suitably defined averages and probabilities satisfy equations
whose form is independent of population subdivision.

Let the random variables ξ , η, and ζ denote demes. We sample two distinct,
homologous genes from the entire population and from the same deme according
to the distributions

P [(ξ, η) = (i, j)] = νiνj , (2.20a)

P[ζ = i] = β

(
ν2
i

κi

)
≡ bi . (2.20b)

Then for any variables aij we define the averages (Nagylaki 1982)

a ≡ E(aξη) =
∑
i,j

aij νiνj , (2.21a)

a0 ≡ E(aζζ ) =
∑
i

aiibi . (2.21b)

The vector b is normalized by (2.4). If migration is conservative, then ν = κ , β = 1,
and b = κ , so the sampling and averaging are according to the proportions κ of the
population in each deme.

We derive our invariance formulas by averaging our recursion relations accord-
ing to (2.21a). Applying (2.21a), (2.3), (2.2a), (2.20b), (2.4), and (2.21b) to (2.7)
leads to

p′
k = pk +

(
1

2Ne

)
(bk − p0

k) . (2.22)

Thus, the change #pk is only of order 1/(2Ne) even if migration is rapid. Observe
that

pk(t) = P(Ik,ξη = 1 ∩ Tξη ≤ t) , (2.23a)
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p0
k(t) = P(Ik,ζ ζ = 1 ∩ Tζζ ≤ t) . (2.23b)

Either by recalling (2.8) and summing (2.22) or by averaging (2.9) we find

2Ne(1 − s)P k(s) = s

[
bk

1 − s
− P

0
k(s)

]
. (2.24)

We let t → ∞ in (2.22) and recall (2.10) to conclude that for two distinct genes
sampled from the same deme according to (2.20b), the probability that coalescence
occurs in deme k is

q0
k = P(Ik,ζ ζ = 1) = bk . (2.25)

If migration is conservative, this implies that for two distinct genes sampled from the
same deme, chosen at random with probabilities κ , the probability that coalescence
occurs in deme k is simply κk , the proportion of adults in deme k.

From (2.15) and (2.17) we deduce easily the relations

r ′ = r −
(

1

2Ne

)
r0 , (2.26)

(1 − s)R(s) = 1 −
(

s

2Ne

)
R

0
(s). (2.27)

Note that r and r0 have simple interpretations:

r(t) = P(Tξη > t), r0(t) = P(Tζζ > t) . (2.28)

Of most interest is the probability-generating function (2.18) because

χ(s) = E(sTξη ), χ0(s) = E(sTζζ ) . (2.29)

Averaging (2.18) gives

R(s) = 1 − χ(s)

1 − s
, R

0
(s) = 1 − χ0(s)

1 − s
, (2.30)

and we substitute this into (2.27) to infer

2Ne(1 − s)χ(s) = s[1 − χ0(s)] . (2.31)

From (2.31) we can derive directly invariance relations for the moments of the
coalescence time. Differentiating (2.31) with respect to s and setting s = 1, we get
immediately (Nagylaki 1998)

E(Tζζ ) = 2Ne . (2.32)

For the higher moments, we use Leibniz’ formula (Abramowitz 1964, p. 12) to
differentiate (2.31) n (= 2, 3, . . .) times and set s = 1:

2Nen
dn−1χ

dsn−1
(1) = dnχ0

dsn
(1) + n

dn−1χ0

dsn−1
(1) . (2.33)
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But the derivatives in (2.33) are factorial moments; e.g.,

dnχ

dsn
(1) = E

[
Tξη(Tξη − 1) . . . (Tξη − n + 1)

] ≡ E
[
(Tξη)n

]
. (2.34)

Therefore, we obtain (n = 2, 3, . . .)

2NenE
[
(Tξη)n−1

] = E
[
(Tζζ )n

]+ nE
[
(Tζζ )n−1

]
. (2.35)

In particular, setting n = 2 and invoking (2.32), we find

4NeE(Tξη) = 2Ne(2Ne + 1) + Var(Tζζ ) . (2.36)

This is easily checked for panmixia.
The invariance relation (2.35) simplifies considerably for large subpopulation

numbers. SupposeNi → ∞ for every i, with the migration matrixM (and therefore
ν) and κ fixed. Then (2.32) suggests the scaling

Tij = [2NeT̃ij ] , (2.37)

where the brackets signify the greatest integer. This reduces (2.32) and (2.35) to
the asymptotic result (n = 1, 2, . . .)

nE(T̃ n−1
ξη ) ∼ E(T̃ n

ζζ ) (2.38)

as Ne → ∞, which was proved by Herbots (1994, p. 132) for conservative migra-
tion at rates of order 1/NT. Hence, the first two moments satisfy

E(T̃ζ ζ ) ∼ 1, 2E(T̃ξη) ∼ 1 + Var(T̃ζ ζ ) . (2.39)

2.3. The strong-migration limit

Here we establish an approximation forpk,ij (t) under the assumption that migration
dominates random drift.

From (2.2a) and (2.4) we see at once that

1

2N�

= β

2Neκ�
. (2.40)

We let Ne → ∞ with M and κ fixed. Defining the small parameter ε, the scaled
time τ , and new variables πk,ij (τ ) by

ε = 1

2Ne
, t = [2Neτ ], πk,ij (τ ) = pk,ij (t) (2.41)

shows that (2.7) has the form (A1) with A = B = 0 and C = D = 1. In view of
(2.6), the initial condition is pk(0) = 0. Therefore, Lemma A implies that

πk,ij (τ ) = P(Ik,ij = 1 ∩ Tij ≤ [2Neτ ]) → bk(1 − e−τ ) (2.42)

as Ne → ∞ with τ > 0 and fixed.
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Thus, in the strong-migration limit, the place and time of coalescence are mu-
tually independent, and their distributions are independent of the demes sampled.
Letting τ → ∞ and summing over k in (2.42), we find

P(Ik,ij = 1) → bk , (2.43a)

P(Tij ≤ [2Neτ ]) → 1 − e−τ (2.43b)

as Ne → ∞. The limit (2.43a) agrees with (2.25); the limit (2.43b) is the panmictic
exponential distribution on a time scale of 2Ne generations.

Notohara (1993) studied samples of arbitrary size in a continuous-time model.
He established (2.43a) and derived the strong-migration limit of the mean coales-
cence time.

3. The model of infinitely many alleles

Suppose every allele mutates to new alleles at the same rate u (0 < u < 1). Muta-
tion may occur at any time between gametogenesis and population regulation.

3.1. The recursion relations

Let fij (t) designate the probability that two distinct, homologous genes chosen
at random from adults just before gametogenesis in generation t , one from colo-
ny i and the other from colony j , are the same allele. These probabilities satisfy
(Malécot 1951, 1975; Nagylaki 1976, 1980, 1983; Sawyer 1976)

f ′
ij = v

∑
�,n

mi�mjnf�n +
∑
�

(2N�)
−1mi�mj�(1 − f��)

 , (3.1)

where v = (1 − u)2.
Comparing (3.1) with (2.19) shows that at equilibrium the probabilities of iden-

tity are given by

f̂ij = χij (v) = E(vTij ) , (3.2)

which is probabilistically obvious. If we define θ = 4Neu and let Ne → ∞ with
θ fixed, from (3.2) and (2.37) we get (cf. Hudson 1990; Herbots 1994; Wilkinson-
Herbots 1998; Bahlo and Griffiths 1999)

f̂ij ∼ E(e−θT̃ij ) . (3.3)

Although the coalescence times are more fundamental than the probabilities of
identity, the latter were introduced and investigated first. Thus, in many cases, the
probability-generating function (3.2) and the Laplace transform (3.3) of the coales-
cence times can be deduced directly from the large literature on f̂ij , reviewed in
Nagylaki (1983, 1986, 1989).
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3.2. Invariance

Averaging (3.1) yields our invariance relation (Nagylaki 1982)

f
′ = v

[
f +

(
1

2Ne

)
(1 − f

0
)

]
. (3.4)

Note that f generally evolves slowly even if migration is rapid. At equilibrium,
this gives (Nagylaki 1982)

f̂ = v(1 − f̂
0
)

2Ne(1 − v)
≈ 1 − f̂

0

θ
, (3.5)

in which the approximation is valid if u � 1.

To interpretf (t) andf
0
(t)probabilistically, let the indicator variableJij (t) = 1

if the genes sampled from demes i and j in generation t are the same allele; other-
wise Jij (t) = 0. Then

f (t) = P
[
Jξη(t) = 1

]
, f

0
(t) = P[Jζζ (t) = 1] . (3.6)

3.3. The strong-migration limit

We let Ne → ∞ with M , κ , and θ fixed. Recalling (2.40) and (2.41) and setting
φij (τ ) = fij (t), we see that (3.1) has the form (A1) with A = θ , B = C = 1, and
D = 0. Therefore, Lemma A implies that

φij (τ ) → 1

1 + θ
+
[
f (0) − 1

1 + θ

]
e−(1+θ)τ (3.7)

as Ne → ∞ with τ > 0 and fixed, which is precisely the panmictic result (Malécot
1946, 1948; Kimura and Crow 1964). Note that the appropriate average must be
used for the initial condition.

This strong-migration limit was derived for τ � 1 in Nagylaki (1980) by a
perturbation argument, but the constant that multiplies the exponential was not
evaluated.

4. The model of infinitely many sites

Here we investigate a gene or DNA sequence that consists of infinitely many nu-
cleotide sites without recombination. Thus, we posit that the mutation rate per site
is so low that mutation occurs at each site at most once and then only at monomor-
phic sites. This approximation requires that the proportion of polymorphic sites be
much less than one. Let u denote the total mutation rate per gene. We assume that
mutation occurs between gametic dispersion and population regulation.



Subdivided populations 133

4.1. The recursion relations

Let Kij (t) designate the number of nucleotide differences between two distinct,
homologous genes chosen at random from adults just before gametogenesis in gen-
eration t , one from colony i and the other from colony j . We seek a recursion
relation for the probability-generating function

wij (s, t) = E[sKij (t)] . (4.1)

Let K̃ij (t) denote the number of nucleotide differences after gametic dispersion
but before mutation in generation t . The number of nucleotide differences added
in generation t by mutation, Lij (t), has a Poisson distribution with mean 2u. The
random variables K̃ij (t) and Lij (t) are mutually stochastically independent.

Since
Kij (t + 1) = K̃ij (t) + Lij (t) , (4.2)

we have

wij (s, t + 1) = E[sK̃ij (t)]E[sLij (t)]

= e2u(s−1)

{ ∑
�,n:��=n

mi�mjnE[sK�n(t)]

+
∑
�

mi�mj�

[(
1 − 1

2N�

)
E[sK��(t)] +

(
1

2N�

)
(1)

]}
.

(4.3)

Substituting (4.1) into (4.3) and simplifying, we obtain immediately

wij (s, t + 1) = e2u(s−1)

∑
�,n

mi�mjnw�n(s, t)

+
∑
�

(2N�)
−1mi�mj�[1 − w��(s, t)]

}
. (4.4)

We can easily relate (4.4) to (3.1). Denoting the solution of (3.1) as fij (v, t)

and defining fij (·, 0) = wij (s, 0) for every i and j , we see at once that

wij (s, t) = fij (e
−2u(1−s), t) (4.5)

for every i, j , and t , i.e., the mutation rate in (3.1) must be replaced by

1 − e−u(1−s) ∼ u(1 − s) , (4.6)

where the asymptotic form holds as u → 0. Thus, many results for (4.4) can be
deduced at once from the large literature on (3.1), reviewed in Nagylaki (1983,
1986, 1989). Recalling (3.2), at equilibrium we get

ŵij (s) = f̂ij (e
−2u(1−s)) = χij (e

−2u(1−s)) = E(e−2u(1−s)Tij ) , (4.7)
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in which the last expression follows directly from the Poisson input of mutations
(cf. Griffiths 1981; Bahlo and Griffiths 1999).

Notohara (1997) derived the differential equation corresponding to (4.4) and the
formula corresponding to (4.7) for a sample of arbitrary size in a continuous-time
model.

4.2. Invariance

By either averaging (4.4) or inserting (4.5) into (3.4), we obtain

w(s, t + 1) = e2u(s−1)
{
w(s, t) +

(
1

2Ne

)
[1 − w0(s, t)]

}
, (4.8)

where
w(s, t) = E[sKξη(t)], w0(s, t) = E[sKζζ (t)] . (4.9)

Thus, w is the slow dependent variable. At equilibrium, (4.8) reduces to

2Ne[e2u(1−s) − 1]ŵ(s) = 1 − ŵ
0
(s) . (4.10)

We can derive an invariance relation for the factorial moments of K̂ξη and K̂ζζ

by invoking Leibniz’ formula to differentiate (4.10) n times and setting s = 1, as
in Section 2.2. We find (n = 1, 2, . . .)

E[K̂ζζ )n] = −2Ne

n∑
k=1

(
n

k

)
(−2u)kE[(K̂ξη)n−k] , (4.11)

in which (K̂ξη)0 = 1. In particular, the mean number of nucleotide differences is
(Nagylaki 1998)

E(K̂ζζ ) = θ , (4.12)

where θ = 4Neu. Taking n = 2, we deduce

2θE(K̂ξη) = θ(θ − 1 + 2u) + Var(K̂ζζ ) . (4.13)

As a check, after a change in notation we can easily verify that Li’s (1976)
results for the island model satisfy (4.13). It is also easy to verify that (4.13) holds
for a panmictic population.

In the limit Ne → ∞ with θ fixed, only k = 1 contributes to (4.11):

E[(K̂ζζ )n] ∼ nθE[(K̂ξη)n−1] . (4.14)

We can confirm (4.14) by observing that the asymptotic form of (4.10) is

θ(1 − s)ŵ(s) ∼ 1 − ŵ
0
(s) . (4.15)

For n = 2, from (4.14) we get (4.13) without the 2u.
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4.3. The strong-migration limit

We let Ne → ∞ with M , κ , and θ fixed. Recalling (2.40) and (2.41) and setting
ωij (s, τ ) = wij (s, t), we see that (4.4) has the form (A1) with A = θ(1 − s),
B = C = 1, and D = 0. Therefore, Lemma A implies that

ωij (s, τ ) → ω̂(s) + [w(s, 0) − ω̂(s)]e−τ/ω̂(s) (4.16a)

as Ne → ∞ with s and τ fixed and τ > 0, where

ω̂(s) = 1

1 + θ(1 − s)
. (4.16b)

The appropriate average must be used for the initial condition. This result can be
confirmed at once by observing that, in the strong-migration limit, the substitution
(4.6) instructs us to replace θ by θ(1−s), which is precisely the connection between
(3.7) and (4.16).

The panmictic equilibrium formula (4.16b) is due to Watterson (1975); we owe
the time-dependent solution for panmixia to Li (1977). Notohara (1997) derived
the strong-migration limit at equilibrium for a sample of arbitrary size in a contin-
uous-time model.

5. Some related results

The diffusion approximation has been used to establish invariance relations
(Nagylaki 1982) and the strong-migration limit (Nagylaki 1980) in some mo-
dels with finitely many alleles that include selection. Here we analyze two further
examples with the methods developed in this paper. First, we treat the model of
infinitely many alleles in the more complicated and realistic case of diploid mi-
gration. Second, we prove that the conditional fixation time of a single, suitably
sampled allele and the time to the MRCA of the entire population have the same
probability distribution.

5.1. Diploid migration

We investigate the model of infinitely many alleles with diploid migration by mod-
ifying Section 3. We assume that there is no selfing.

Let Iij (t) denote the probability that two homologous genes chosen at random
from distinct adults just before gametogenesis in generation t , one from deme i and
the other from deme j , are the same allele. We designate by Ji(t) the probability
that the two genes of an adult chosen at random from deme i just before gametogen-
esis in generation t are the same allele. These probabilities satisfy (Sawyer 1976;
Nagylaki 1983)

I ′
ij = v

∑
�,n

mi�mjnI�n +
∑
�

(2N�)
−1mi�mj�(1 + J� − 2I��)

 , (5.1a)

J ′
i = v

∑
�

mi�I�� . (5.1b)
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We average (5.1a) according to (2.21):

I
′ = v

[
I + 1

2Ne
(1 + J

0 − 2I
0
)

]
. (5.2)

Thus, I is the slow variable in this model. The special use of (5.2) for conservative
migration was derived in Nagylaki (1985). At equilibrium, we get

Î = 1 + Ĵ
0
− 2Î

0

2Ne(1 − v)
. (5.3)

Our proof of the strong-migration limit is an extension of that in the Appendix.
We let Ne → ∞ with M , κ , and θ fixed; recall (2.40) and (2.41); and define

Ĩij (τ ) = Iij (t), J̃i(τ ) = Ji(t) . (5.4)

Then (5.1) becomes

Ĩij (τ + ε) = (1 − 1
2θε)

2
{∑

�,n

mi�mjnĨ�n(τ )

+βε
∑
�

κ−1
� mi�mj�[1 + J̃�(τ ) − 2Ĩ��(τ )]

}
, (5.5a)

J̃i (τ + ε) = (1 − 1
2θε)

2
∑
�

mi�Ĩ��(τ ) . (5.5b)

We assume that there exist I ∗
ij (τ ) and J ∗

i (τ ), independent of ε, such that

Ĩij (τ ) → I ∗
ij (τ ), J̃i(τ ) → J ∗

i (τ ) , (5.6a)

ε−1[Ĩ (τ + ε) − Ĩ (τ )] → dI
∗

dτ
(τ ) (5.6b)

as ε → 0 with τ > 0 and fixed. In the limit ε → 0, from (5.5a) we get

I ∗
ij (τ ) =

∑
�,n

mi�mjnI
∗
�n(τ ), τ > 0 . (5.7)

By the argument below (A8), we infer that

I ∗
ij (τ ) = I ∗(τ ), τ > 0, (5.8)

independent of i and j . We now let ε → 0 in (5.5b) and appeal to (5.8):

J ∗
i (τ ) = I ∗(τ ), τ > 0 . (5.9)

We rewrite (5.2) in the form

Ĩ (τ + ε) = (1 − 1
2θε)

2{Ĩ (τ ) + ε[1 − J̃
0
(τ ) − 2Ĩ

0
(τ )]} . (5.10)
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As ε → 0, we obtain from (5.10) the differential equation

dI
∗

dτ
= −θI

∗ + 1 + J
0∗ − 2I

0∗
, τ > 0 , (5.11)

and (5.8) and (5.9) reduce (5.11) to

dI ∗

dτ
= 1 − (1 + θ)I ∗, τ > 0 . (5.12)

It remains only to determine the initial condition for (5.12). Taking τ = 0 in
(5.10), we see that

Ĩ (ε) = Ĩ (0) + O(ε) , (5.13)

whence
I ∗(0+) = I

∗
(0+) = Ĩ (0) = I (0) . (5.14)

We conclude that Ĩij (τ ) → I ∗(τ ) and J̃i (τ ) → I ∗(τ ) for every i and j as
ε → 0 with τ > 0 and fixed, where

I ∗(τ ) = 1

1 + θ
+
[
I (0) − 1

1 + θ

]
e−(1+θ)τ . (5.15)

This result was proved for τ � 1 in Nagylaki (1983) by a perturbation argument,
but the constant that multiplies the exponential was not evaluated. The simple, ex-
plicit formula (5.15) demonstrates that only the probability of identity Iij between
individuals affects the strong-migration limit. Since the deme sizes are very large,
the expected homozygosity Ji does not enter.

5.2. The conditional fixation time

Here we change some of the above notation. Let n designate the number of demes
and write Lk = 2Nk for the number of genes in deme k. We introduce the vector
e(�) with components e

(�)
k = δk� for each �, k = 1, 2, . . . , n, where δk� signifies

the Kronecker delta (δk� = 1 if k = �; otherwise δk� = 0).
Suppose there are ik A alleles in deme k and form the vector of gene num-

bers i = (i1, i2, . . . , in). We write the probability that t generations in the past
the ancestral gene numbers were j = (j1, j2, . . . , jn) as h

(t)
ij . Then the probability

distribution function of the time T̃ to the MRCA of the entire population is given
by

P(T̃ ≤ t) =
n∑

�=1

h
(t)

Le(�)
, (5.16)

in which L = (L1, L2, . . . , Ln).
Now we assume that initially there is exactly one copy of the A allele in the

population and it is in deme �. If Xk(t) represents the number of A alleles in deme
k t generations after A has appeared in the population, we have X(0) = e(�). The
allele A will be absorbed (i.e., fixed or lost) in finite time with probability one. Let
T and T ∗ denote the absorption and conditional fixation time of A, respectively.
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The fixation probability of A is the average of its initial frequencies with respect
to the stationary distribution ν (Nagylaki 1980, pp. 110, 113):

P[X(T ) = L | X(0) = e(�)] = ν�

L�

. (5.17)

We evaluate the probability distribution of T ∗ as follows:

P[T ∗ ≤ t | X(0) = e(�)] = P[X(t) = L | X(T ) = L and X(0) = e(�)]

= P[X(t) = L | X(0) = e(�)]

P[X(T ) = L | X(0) = e(�)]

= h
(t)

Le(�)

L�

/
ν�

L�

= h
(t)

Le(�)

ν�
. (5.18)

From (5.16) and (5.18) we infer

n∑
�=1

ν�P[T ∗ ≤ t | X(0) = e(�)] = P(T̃ ≤ t) . (5.19)

Writing T ∗
� for the conditional fixation time of a single A allele in deme � and

defining the random variable λ so that P(λ = �) = ν�, we obtain

P(T ∗
λ ≤ t) = P(T̃ ≤ t) , (5.20)

i.e., T ∗
λ and T̃ have the same probability distribution.

If migration is conservative, then ν = κ and therefore (5.20) shows that the
conditional fixation time of a new mutant (which appears in deme � with probability
κ�) and the time to the MRCA have the same distribution. Of course, (5.20) applies
directly to a panmictic population.

6. Discussion

Here we summarize and discuss our main results.
We have formulated exact models with discrete, nonoverlapping generations.

In most of the literature on coalescents in a subdivided population, a continuous-
time model is used, either directly or as a limit. This requires large deme sizes and
migration rates of the order of reciprocal deme sizes. Without large deme sizes,
the elegance and power of coalescents is lost and the investigation of samples of
more than two genes becomes too difficult. Although requiring migration rates to
be much less than one may sometimes be biologically restrictive, some analyses
may be unfeasible without this further approximation. For the strong-migration
limit, however, this approximation is conceptually unnecessary, and one hopes that
results can be derived for samples of arbitrary size without it.

The probability distribution,pk,ij (t) in (2.5), of the place and time of the MRCA
of two genes satisfies the recursion relation (2.7). From this follow the equations
(2.11) for the distribution, qk,ij in (2.10), of the place of coalescence and (2.19)
for the probability-generating function, χij (s) in (2.18), of the coalescence time
Tij .
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If suitably defined averages or probabilities satisfy an equation whose form is
independent of population subdivision, we say there is invariance. Our averages
are defined in (2.21). Note the crucial role of the stationary distribution ν of the
backward migration matrix M . If migration is conservative, the averaging is sim-
ply with respect to the proportions κ of individuals in each deme. Our general
invariance relation is (2.22), which yields the simple, explicit formula (2.25) for
the distribution of the place of coalescence of two distinct genes sampled from
the same deme according to (2.20b). The invariance relation for the probabili-
ty-generating function of the coalescence times is (2.31). This yields the invari-
ance relation (2.35) for the factorial moments; the first two moments satisfy (2.32)
and (2.36), respectively. In a large population, the moment relations reduce to
(2.38).

We say migration is strong if it dominates all the other evolutionary forces. The
probabilities pk,ij (t) have the simple, explicit strong-migration limit (2.42). The
place and time of coalescence are asymptotically independent and have the distri-
butions (2.43a) and (2.43b), respectively. The only effect of population subdivision
on (2.43b) is that the migration effective population number Ne determines the time
scale.

For the model of infinitely many alleles, the probabilities of identity in state,
fij (t), satisfy the recursion and invariance relations and strong-migration limit
(3.1), (3.4), and (3.7), respectively. Observe that in the simple, explicit result (3.7),
the appropriate average must be used for the initial condition, and population sub-
division enters only through Ne. Equations (3.2) and (3.3) permit the calculations
of the probability-generating function and the Laplace transform of the coalescence
times from the extensive literature on the equilibrium probability of identity.

In the model of infinitely many sites without recombination, the probability-
generating function of the number of nucleotide differences between two genes,
wij (s, t), satisfies the recursion and invariance relations (4.4) and (4.8), respec-
tively. According to (4.5), one can obtain wij (s, t) from the probability of identity
by a simple substitution. At equilibrium, the invariance relation reduces to (4.10),
which yields (4.11) for the factorial moments; the first two moments satisfy (4.12)
and (4.13), respectively. In a large population with weak mutation, the factorial
moments satisfy (4.14) at equilibrium. The strong-migration limit is (4.16); again,
the initial condition is the appropriate average, and population subdivision enters
only through Ne.

For the model of infinitely many alleles with diploid migration, the recursion
and invariance relations and strong-migration limit are (5.1), (5.2), and (5.15),
respectively. Note that, with the appropriate initial condition, the limit (5.15) is
identical to the limit (3.7) for gametic dispersion.

Finally, (5.20) shows that the conditional fixation time of a single, suitably
sampled allele and the time to the MRCA of the entire population have the same
probability distribution. If migration is conservative, the sampling becomes identi-
cal to the appearance of a new mutant in the population.

Acknowledgements.I am very grateful to Prof. Simon Tavaré for a helpful discussion related
to Section 5.2.
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Appendix. The strong-migration limit

The strong-migration limits in Sections 2–4 follow immediately from the lemma
below. Note that the simple limit (A4) is independent of i and j .

Lemma A. Suppose the variablesgk,ij (t) satisfy the recursion relation

g′
k,ij = (1 − Aε)

∑
�,n

mi�mjngk,�n + βε
∑
�

κ−1
� mi�mj�(B − Cgk,��)

+Dβεκ−1
k mikmjk + O(ε2) (A1)

asε → 0 with M andκ fixed, whereA, B, C, andD are constants. Let

t = [τ/ε], gk,ij (t) = γk,ij (τ ), (A2)

and assume that there existγ ∗
k,ij (τ ), independent ofε, such that

γk,ij (τ ) → γ ∗
k,ij (τ ), ε−1[γ k(τ + ε) − γ k(τ )] → dγ ∗

k

dτ
(τ ) (A3)

asε → 0 with τ > 0 and fixed. Then

γ ∗
k,ij (τ ) = γ̂k + [gk(0) − γ̂k]e−(A+C)τ , (A4a)

in which

γ̂k = B + Dbk

A + C
. (A4b)

Proof.We use (2.21), (2.3), and (2.20b) to average (A1):

g′
k = (1 − Aε)gk + ε(B − Cg0

k + Dbk) + O(ε2) . (A5)

Thus, gk is our slow dependent variable. In terms of τ , the recursions (A1) and
(A5) become

γk,ij (τ + ε) = (1 − Aε)
∑
�,n

mi�mjnγk,�n(τ )

+βε
∑
�

κ−1
� mi�mj�[B − Cγk,��(τ )]

+Dβεκ−1
k mikmjk + O(ε2), (A6)

γ k(τ + ε) = (1 − Aε)γ k(τ ) + ε[B − Cγ 0
k(τ ) + Dbk] + O(ε2) . (A7)

Of course, γk,ij (τ ) depends also on ε.
Now let ε → 0 and posit (A3). From (A6) we get

γ ∗
k,ij (τ ) =

∑
�,n

mi�mjnγ
∗
k,�n(τ ), τ > 0 . (A8)

By the ergodicity of M , the nonnegative, stochastic Kronecker-product matrix M⊗
M in (A8) has a simple maximal eigenvalue 1, and the corresponding right eigen-
vector has equal components (Gantmacher 1959, Chapter 13). Therefore,
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γ ∗
k,ij (τ ) = γ ∗

k (τ ), τ > 0 , (A9)

independent of i and j .
Rearranging (A7) yields

ε−1[γ k(τ + ε) − γ k(τ )] = −Aγ k(τ) + B − Cγ 0
k(τ ) + Dbk + O(ε) , (A10)

whence we obtain

dγ ∗
k

dτ
= −Aγ ∗

k + B − Cγ 0∗
k + Dbk, τ > 0 , (A11)

and (A9) reduces this to

dγ ∗
k

dτ
= −(A + C)γ ∗

k + B + Dbk, τ > 0 . (A12)

It remains only to determine the initial condition for the simple differential
equation (A12). Taking τ = 0 in (A7), we see that

γ k(ε) = γ k(0) + O(ε), (A13)

whence
γ ∗
k (0+) = γ ∗

k(0+) = γ k(0) = gk(0) . (A14)

The solution of (A12) with the initial condition (A14) is precisely (A4), which
completes the proof.
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Nagylaki, T.: Gustave Malécot and the transition from classical to modern population

genetics. Genetics 122, 253–268 (1989)
Nagylaki, T.: Introduction to Theoretical Population Genetics (Biomathematics, vol. 21)

Berlin: Springer 1992
Nagylaki, T.: Geographical variation in a quantitative character. Genetics 136, 361–381

(1994)
Nagylaki, T.: The expected number of heterozygous sites in a subdivided population.

Genetics 149, 1599–1604 (1998)
Nordborg, M.: Structured coalescent processes on different time scales. Genetics 146,

1501–1514 (1997)
Notohara, M.: The coalescent and the genealogical process in geographically structured

population. J. Math. Biol. 29, 59–75 (1990)
Notohara, M.: The strong-migration limit for the genealogical process in geographically

structured populations. J. Math. Biol. 31, 115–122 (1993)
Notohara, M.: The number of segregating sites in a sample of DNA sequences from a

geographically structured population. J. Math. Biol. 36, 188–200 (1997)
Notohara, M.: A perturbation method for the genealogical process in a geographically

structured population with strong migration. Submitted for publication (1999)
Sawyer, S.: Results for the stepping-stone model for migration in population genetics. Ann.

Prob. 4, 699–728 (1976)
Slatkin, M.: The average number of sites separating DNA sequences drawn from a sub-

divided population. Theor. Pop. Biol. 32, 42–49 (1987)
Strobeck, C.: Average number of nucleotide differences in a sample from a single sub-

population: a test for population subdivision. Genetics 117, 149–153 (1987)
Watterson, G.A.: On the number of segregating sites in genetical models without recombi-

nation. Theor. Pop. Biol. 7, 256–276 (1975)
Wilkinson-Herbots, H.M.: Genealogy and subpopulation differentiation under various mo-

dels of population structure. J. Math. Biol. 37, 535–585 (1998)


