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Abstract. We analyze a model of the joint population and evolution-
ary dynamics of a diploid &&island'' population that receives a recurrent
in#ux of immigrants from a hypothetical continent population. We
derive a criterion for the initial spread of a rare allele when the island
population dynamics initially are chaotic. By computing a Liapunov
exponent, we show that this criterion depends on a generalization of
the geometric mean absolute "tness of individuals heterozygous for the
rare allele. This criterion applies regardless of whether the initial
population is self-sustaining or not.
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1. Introduction

A classic problem in evolutionary biology is understanding how organ-
isms adapt to heterogeneous environments (Haldane, 1930; Endler,
1977; Slatkin, 1987). One of the "rst theoretical treatments of this
problem was the &&island model'' (Haldane, 1930; Wright, 1931),
which considers the genetic evolution of a semi-isolated island popula-
tion that receives a recurrent in#ux of immigrants from a hypo-
thetical continent population. Recently (Holt & Gomulkiewicz, 1997;



Gomulkiewicz et al., 1999), the island model has been extended to
examine local adaptation in &&sink'' populations, which are populations
of a species that would be unable to persist deterministically if isolated.
These more recent treatments consider both population and evolution-
ary dynamics, and demonstrate that the conditions for initial increase of
a rare allele on the island depend on an absolute "tness criterion if the
island population size initially is stable or #uctuates periodically. They
also show that absolute "tness criteria arise from the fundamental
requirement that persistence is necessary for evolution and are of critical
importance to the process of evolution in populations that risk extinc-
tion. Here we derive a related absolute "tness criterion for initial spread
of a rare allele when the island population dynamics initially are chaotic.
We also show that the &&sink'' assumption is not mathematically neces-
sary; the condition for spread of a rare favorable allele in a sink
population also applies when the population persists deterministically.

2. Model description

Consider a diploid discrete-breeding, random mating island popula-
tion that recurrently receives immigrants from a "xed &&continent''
population. In particular, assume evolution of the island population
has no e!ect on the continent population. We assume viability selec-
tion, immigration, and reproduction occur sequentially each genera-
tion from zygote stage to zygote stage. Viability (survival from birth to
the arrival of immigrants) on the island is determined by an autosomal
locus with two alleles A

1
and A

2
and may depend on N

t
, the popula-

tion density in generation t censused immediately after reproduction.
We likewise assume that p

t
, the frequency of allele A

1
, is censused just

after reproduction (06p
t
61). The viability of individuals with geno-

type A
i
A

j
will be denoted by <

ij
(N) which emphasizes that viability is

density dependent. Given the assumption of random mating, the size of
the population immediately before the arrival of immigrants will
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2
.

We assume, for simplicity, that post-immigration viability and per
capita fecundity are genotype independent but may depend on
N*

t
,N
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Because resident and immigrant adults mate at random, zygote
frequencies will return to Hardy}Weinberg proportions. The frequency
of A

1
among the new zygotes, p

t`1
, will be equal to the frequency of

A
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among the parents, p*
t
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The recursions (1) and (2) are identical to those derived in (Gomul-
kiewicz et al., 1999), except that here, we relax the requirement
=

22
(N)(1 for all N which was needed to ensure that the initial island

population is a sink regardless of local densities. (Note that this
derivation assumes mutation and drift are negligible compared with
other evolutionary forces. It also ignores random changes in popula-
tion size.)

3. Criteria for the spread of A1

In this section we develop a criterion for the spread of the allele
A

1
when it is rare for the model discussed in Sect. 2. This might apply,

for example, to the spread of a rare novel allele that has arisen
through mutation. Since we are assuming that A

1
is rare we are

interested in the dynamics of the system (1) and (2) near p,0. In
particular, we wish to determine conditions under which initial condi-
tions with &&small'' initial values of p (denoted p

0
) will increase from

p"0 under iteration. Note that if p
t
"0 then p

t`1
"0 and hence the

line p"0 is invariant. This suggests the use of a linear stability analysis
in determining the desired criteria. Gomulkiewicz et al., (1999) have
used this method to develop a criterion for the initial spread of allele
A

1
in the case of "xed or periodic population dynamics on p"0. Here

we generalize their result to other initial asymptotic population
dynamics.

To motivate the techniques used below we will begin by revisiting
the results presented in (Gomulkiewicz et al., 1999). Let

G
1
(N, p)"[N<M (N, p)#I]F(N, p) (3)
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G
2
(N, p)"

N
G

1
(N, p)

=M
1
(N, p)p (4)
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so that the model equations (1) and (2) become
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In what follows we assume that all functions are C1. We note in
particular that the heterozygote absolute "tness function =

12
(N) is

C1 and strictly positive.

Theorem 1. Suppose that there exists a periodic orbit

M(NK
0
, 0), (NK

1
, 0), . . . , (NK

T~1
, 0), (NK

0
, 0), . . . N

for (5) and that
T~1
<
t/0

=
12

(NK
t
)'1. (6)

¹hen there exists an e'0 such that for every initial condition (N
0
, p

0
)

with p
0
'0 satisfying Jp2

0
#(N

0
!NK

0
)2(e there exists an M'0

such that p
M
'e.

Proof. The stability of periodic orbits is determined by the eigenvalues
of the matrix
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Since each matrix in the above product is upper triangular, the matrix
J
T

is also upper triangular and the eigenvalues of J
T

are the entries of
this product on the main diagonal. Moreover, stability transverse to
the invariant line p"0 is determined by the eigenvalue jT

p
in the

bottom-right entry of J
T
. If DjT

p
D'1 then the periodic orbit is repelling

transverse to the line p"0 and the result follows immediately. Using
the upper-triangularity of J

T
and the periodicity assumption we get
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as desired. K

We note that <T~1
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t
)'1 if and only if

C
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Thus, in the case of periodic population dynamics, the rare allele
A

1
will initially spread if the geometric mean of the absolute "tness

of the heterozygote evaluated along the periodic orbit is greater than
one.
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Remark 1. ¹he black-hole sink models considered by Holt and Gomul-
kiewicz (1997) and Gomulkiewicz et al. (1999) assume immigrant ,tness
(=

22
(N) in this paper) is less than 1 for all N. However, this assumption is

not necessary for ¹heorem 1. ¹hus (9) is the criterion for spread regard-
less of whether the initial population is a sink or not.

We now wish to generalize this result to non-periodic population
dynamics on p"0. The standard linear stability analysis arguments
used above do not directly apply to non-periodic dynamics. Generaliz-
ing the results of Theorem 1 requires the use of Liapunov exponents.
Liapunov exponents describe the rates of contraction and expansion in
the tangent spaces of points along an arbitrary orbit generated by
iterating a function f. If f : RnPRn then there are n Liapunov expo-
nents. If the orbit is periodic, as in Theorem 1, then the i-th Liapunov
exponent is the logarithm of the absolute value of the i-th eigenvalue of
the product of the Jacobian matrices evaluated along the periodic orbit
divided by the period. The generalization to non-periodic orbits and
arbitrary functions f is somewhat technical and will not be presented
here. See Guckenheimer and Holmes (1983) or Katok and Hasselblatt
(1995) for a detailed discussion of these ideas. Ferriere and Gatto (1995)
discuss the application of these ideas in population dynamics.

In our problem the de"nition of the Liapunov exponent describing
stability transverse to the invariant line p"0 is straightforward. As in
Theorem 1, transverse stability at (N, 0) is governed by the eigenvalue

j
p
(N)"

N
G

1
(N, 0)

=M
1
(N, 0). (10)

The Liapunov exponent s
R
(NK

0
) of the orbit having initial condition
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0
, 0) is de"ned as
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if this limit exists. This de"nition and the results of Theorem 1 suggest
that

s
R
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1
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log (=
12

(NK
t
)) (12)

should determine the spread of allele A
1

when the asymptotic popula-
tion dynamics are not periodic. This is in fact the case as we will prove
below.

Ergodic theory guarantees that s
R
(NK

0
) exists and is independent of

NK
0

almost everywhere. For a more complete treatment of ergodic
theory and its applications see Ferriere & Gatto (1995); Guckenheimer
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and Holmes (1983); Katok & Hasselblatt (1995). We will brie#y present
the necessary concepts from ergodic theory as they not only justify the
use of (12) but also shed some light on the factors that in#uence
invasion.

Let f : XPX de"ne a discrete dynamical system on a metric space
X. A measure k is f-invariant if given a measurable set A, k (A)"
k( f~1(A)). A function f having this property is said to be k-preserving.
In this notation f~1(A) denotes the set of preimages of A and does not
imply that f is necessarily invertible. A measure k is a probability
measure on X if k(X)"1. An invariant measure k is ergodic if every
f-invariant set (i.e. A"f (A) ) has either measure zero or measure one.
When a function f has an ergodic measure k it is often called ergodic as
well. Every continuous function on a compact invariant metric space
has at least one ergodic invariant probability measure. We are now
ready to discuss the existence of the Liapunov exponent given in (12).

De5nition 1. ¸et f : RnPRn de,ne a discrete dynamical system and
let /: RnPR be a real-valued function. ¹he time average of / along the
trajectory of x is

lim
T?=

1
¹

T~1
+
t/0

/( f t (x)), (13)

if this limit exists. Here f t(x) denotes the n-fold composition of f applied
to x.

Theorem 2 (Birkho! Ergodic Theorem). If f : XPX is an ergodic
k-preserving transformation, k (X)"1, and /3¸

1
(X, k) then for every

x outside a set of measure zero

lim
T?=

1
¹

T~1
+
t/0

/( f t(x))"P
X

/dk. (14)

This remarkable theorem says that the time average of / along almost
every orbit is equal to the spatial average of / with respect to the
measure k. In other words, given almost any initial condition x and
a measurable set A, the orbit of x visits A with frequency k (A). This can
fail if, for example, the dynamics on X are chaotic, but x lies on
a periodic orbit in X. This explains why the equality in the Birkho!
Ergodic Theorem does not hold for a set of points of measure zero.
A property that holds everywhere except on a set of measure zero is
said to hold almost everywhere. If we apply this result to (12) we get the
following result.

Theorem 3. Suppose that there exists a compact invariant set X on the
line p"0 for equations (5). ¹hen there exists an ergodic invariant

576 T. LoFaro, R. Gomulkiewicz



probability measure k on X and the ¸iapunov exponent describing
transverse stability

s
R
(NK

0
)" lim

T?=

1
¹

T~1
+
t/0

log (=
12

(NK
t
)) (15)

exists and is constant for almost every NK
0
3X with respect to the

measure k.
Moreover, if s

R
(NK

0
)'0 then there exists e'0 such that if p

0
'0

and the distance between (N
0
, p

0
) and X is less than e then there exists an

M'0 such that the distance between p
M

and X is greater than e.

Proof. The existence of an ergodic probability measure follows from
the continuity of the model equations and the compactness assump-
tion. Let (NK

0
, 0) be an initial condition in X. As in Theorem 1, the

Liapunov exponent describing transverse stability depends only on the
product of the eigenvalues j

p
(NK

t
) of the Jacobian matrix J (NK

t
, 0) and is

given by
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By the Birkho! Ergodic Theorem,
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logAN] t`1B"P
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almost everywhere. Since the logarithm of a quotient is the di!erence of
logarithms we get that

s
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1
¹
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+
t/0

log (=
12

(NK
t
)) (18)

almost everywhere as desired. This limit exists if log(=
12

(N))3
¸
1
(X, k), a biologically inert assumption.
The second part of the proof follows immediately from the de"ni-

tion of the Liapunov exponent. K

Remark 2. An ergodic dynamical system may have multiple invariant
ergodic measures and thus the ¸iapunov exponent may be di+erent for
each of these measures. However, with only minor modi,cations to the
above proof, ¹heorem 3 can be strengthened to handle this complication.
In particular, there exists a Borel set ;LX of total probability (i.e.
k(;)"1 for every ergodic measure k with support in X) such that s

R
(NK

0
)

exists and is strictly positive for all NK
0
3; and all k. (Schreiber, 1998).

Note that if the invariant set X is a periodic orbit then Theorem 3 is
equivalent to Theorem 1. The criterion for the initial spread of allele
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A
1

given in Theorem 3 is, in some sense, a geometric mean criterion
where the geometric mean of =

12
(N) is taken over an in"nite set of

population sizes. In the next section, we examine some of the biological
consequences of this criterion.

4. Numerical results

In both Theorems 1 and 3, the initial spread of the rare allele depends
only on the absolute "tness of the heterozygote and the population
dynamics. The immigration rate and "tness of the A

2
A

2
genotype do

not directly a!ect the spread of A
1
. However, these factors do play

a role in determining population dynamics and hence indirectly a!ect
adaptation.

To illustrate the indirect dependence of the spread criterion consider
the following example. Let the absolute "tness of genotype A

i
A

j
be

given by

=
ij
(N)"

w
ij

1#Nc
, (19)

which incorporates a form of genotype-independent density depend-
ence suggested by Maynard Smith and Slatkin (1973). Note that this
form assumes scaled densities. When p"0 the population dynamics
are governed by the recursion

N
t`1

"N
t
=

22
(N

t
)#I. (20)

Let c"4.5, w
12
"3.75 and I"0.05. We will consider two di!erent

values of w
22

both of which lead to chaotic population dynamics.
However, the "rst will lead to spread of the favorable allele while the
second will not.

For the "rst case let w
22
"3.25. We numerically approximated the

Liapunov exponent to be s
R
"0.087 using (12) with a random initial

population density and ¹"2000. Since s
R
'0 Theorem 3 implies that

A
1

will initially spread when rare. For the second case we let
w
22
"4.25 and using the same method calculated s

R
"!0.204 imply-

ing that A
1

will not spread from rarity. Figure 1 shows typical time
series data for N

t
in these two cases (case 1 in black and case 2 in gray).

Note that both appear to be chaotic and that the only discernible
di!erence in the two trends is that the time series associated with the
non-invasion case appears to take on values in a wider interval.

Since the absolute "tness function=
12

(N) is identical in these two
cases, the cause of the di!erent Liapunov exponents must be the
invariant measures associated with the two di!erent population
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Fig. 1. Plots of population density versus time (equation 1) when p"0 for two
di!erent "tnesses =

22
(N)"w

22
/(1#Nc) with c"4.5. The black time series corres-

ponds to case 1 where w
22
"3.25 and the gray time series corresponds to case 2 where

w
22
"4.25. Note that larger populations occur more frequently in case 2 than in case 1.

dynamics. Figure 2A shows an approximation of the two invariant
measures. These were computed by dividing the union of the two
invariant intervals into 60 bins, choosing a random initial population
size, iterating equation (20) 2000 times and recording the percentage
of visits to each bin. This percentage was plotted against the mid-
point of each bin. Using this data in juxtaposition with the graph of
the logarithm of the absolute "tness function =

12
(N ) shown in

Fig. 2B we can see why the Liapunov exponent is greater in case 1 than
in case 2. In case one (black in Fig. 2A), a greater percentage of iterates
fall in the region where the logarithm of absolute "tness is positive.
On the other hand, in case 2 (gray in Fig. 2A), a signi"cant percentage
of iterates lie in the region where the logarithm of absolute "tness
is negative. Since the Liapunov exponent is approximated by the
arithmetic mean of log(=

12
(N )) over any orbit, these population

trends and the form of the absolute "tness determine the value of the
Liapunov exponent. In particular, the higher percentage of large popu-
lation sizes at which the absolute "tness of the heterozygotes is small
results in a negative Liapunov exponent and no spread of the favorable
allele.
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Fig. 2A. Plot of invariant measures for case 1 (black) and case 2 (gray). Using 60 bins
and 2000 iterates we computed the frequency of visits to each bin and plotted this
frequency against the midpoint of each bin. This is an estimate of the measure of each
bin. For a given measure, the asymptotic frequency of visits to a given interval [a, b] is
approximately the area under the graph of that measure between a and b. Note that in
case 1, population size is bounded above by 2. By contrast, a signi"cant percentage of
population sizes greater than 2 appears in case 2.

Fig. 2B. The graph of log(=
12

(N ))"log(w
12

/(1#Nc)) with w
12
"3.75 and c"4.5.

Juxtaposing this graph with the numerically computed invariant measures of case 1
and 2 we see that the large population sizes that occur in case 2 correspond to log
absolute "tnesses less than zero and ultimately a negative Liapunov exponent.
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Fig. 3A. A plot of p
t
versus t for case 1 generated using the full two-dimensional model.

In this example p
0
"0.005 and we see that the frequency of allele A

1
iterates away from

zero as predicted by the positive Liapunov exponent computed for this example.

Fig. 3B. A plot of p
t
versus t for case 2 generated using the full two-dimensional

model. In this example p
0
"0.005 and we see that the frequency of allele A

1
tends to

zero as predicted by the negative Liapunov exponent computed for this example.

Figure 3 shows the time course of the frequency of A
1

in the
population (p

t
) using the full model (5) with the parameters given above

and p
0
"0.005. Figure 3A illustrates case 1 where the favorable allele

spreads and the time course of p
t
can be seen tending away from p"0.
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Figure 3B illustrates case 2 and the values of p
t
remain small and in fact

tend to zero.
One might think that a di!erent initial population size would lead

to a di!erent distribution of population sizes over the given orbit and
hence a di!erent Liapunov exponent. However, this is not the case. The
existence of an invariant measure guarantees that this distribution is
identical for almost every (in the sense of measure) initial population
and hence given almost any initial population density the Liapunov
exponent will be the same.

As the above example illustrates, the conditions for spread of the
favorable allele do not directly depend on the absolute "tness of the
homozygote A

2
A

2
or on the immigration rate I. However, these factors

do a!ect the population dynamics, thereby a!ecting the invariant
measure and ultimately the sign of the Liapunov exponent and the
eventual spread or decline of the rare allele.

Classical results concerning adaptation versus migration (for
example see (Nagylaki, 1992)) suggest that the key criterion for spread
of a rare allele depends on relative ,tness which in our example is
=

12
(N)/=

22
(N )"w

12
/w

22
. In particular, it was believed that if the

favorable allele did not spread at a given relative "tness then the allele
would not spread for all smaller relative "tnesses. However, this model
provides a counterexample to this idea. Fix the parameter c"0.2 and
the immigration rate I"0.05. Let w1

12
"1.43, w1

22
"1, w2

12
"2, and

w2
22
"1.5 so that the relative "tness in case 1 is w1

12
/w1

22
"1.43 and the

relative "tness in case 2 is w2
12

/w2
22

"1.33. In both examples, popula-
tion size equilibrates when p"0. In case 1 the equilibrium population
density is NK 1"0.1256 and in case 2 the equilibrium population den-
sity is NK 2"0.3083. In both cases the Liapunov exponent is given by

s
R
(NK i)"log (=

12
(NK i)) (21)

since the population dynamics approach an equilibrium when p"0.
In case 1, s

R
(NK 1)"!0.15 implying that the favorable allele does not

spread. However, in case 2, which has the smaller relative "tness,
s
R
(N] 2)"0.11 implying that the favorable allele will spread. Numerical

simulations on the full model con"rm the validity of these calculations.

5. Discussion

We have rigorously derived the conditions under which a rare allele
will spread initially in a demographically unstable, semi-isolated popu-
lation that receives a recurrent in#ux of less favorable alleles. Our
model assumes that absolute "tnesses are density dependent and
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hence, "tnesses will #uctuate with changing population sizes. In the
case of a demographically unstable population, we prove that the
criterion for a rare allele to increase in frequency is that the geometric
mean absolute "tness of individuals heterozygous for the allele exceeds
unity, otherwise the allele will be lost.

Our result extends previous analyses (Holt & Gomulkiewicz, 1997;
Gomulkiewicz et al., 1999) which considered local adaptation in de-
mographically stable or cyclic populations. Consistent with those
analyses, the criterion for spread we derived depends only indirectly
on the rate of immigration, I, and "tness of the immigrant genotype,
A

2
A

2
.

It is interesting to compare our results with classical population
genetics treatments of the island model (see for example Haldane
(1930); Wright (1931)) which ignore population dynamics and incor-
porate immigration through a gene #ow parameter, which is de"ned as
the proportion of the local population consisting of immigrants. In the
classical approach the typical criterion for spread of a rare favorable
allele (e.g., (Nagylaki, 1992)) depends on the relative "tness of hetero-
zygotes compared to the "tness of immigrant homozygotes in such
a way that an allele with higher relative heterozygote "tness will spread
under a broader range of conditions than an allele with lower hetero-
zygote "tness. In contrast, our analyses easily revealed conditions
under which a rare allele with higher relative heterozygote "tness is lost
whereas an allele with lower relative "tness will spread. Apparently,
the indirect e!ects of immigration rate and immigrant "tness on the
criterion for spread of a rare allele overlaps only partially with the
classical criterion.

Asmussen (1979) derived a geometric mean "tness criterion for the
spread of a rare allele in an isolated, cyclic population. Since our results
continue to hold when I"0, we have in essence extended Assmussen's
results to isolated, chaotic populations.

Unlike the &&black-hole sink'' scenario analyzed in (Holt and Gomul-
kiewicz, 1997) and (Gomulkiewicz et al., 1999), our analyses did not
assume that the absolute "tness of the immigrant genotype is less than
unity for all population sizes N. Thus the absolute "tness criterion for
spread is relevant for self-sustaining &&source'' populations as well as
sink populations that persist only by dint of immigration.

In essence, the absolute "tness criterion states the obvious: a rare
novel allele can spread only if it allows its possessors to persist. In the
context considered here of #uctuating, density-dependent absolute
"tnesses, we have proven that persistence of a rare allele is determined
by whether or not its geometric mean "tness in heterozygotes exceeds
unity. Persistence is generally a moot issue in standard population
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genetics, which is concerned by and large with evolution in extant
populations. However, our results also apply when considering evolu-
tion in populations that face a risk of extinction (a situation that can
arise in subdivided populations, including metapopulations, that oc-
cupy source and sink habitat). In this situation, the question of persist-
ence in local adaptation is paramount. As stated previously (Holt and
Gomulkiewicz 1997; Gomulkiewicz et al., 1999), an absolute "tness
criterion for spread implies, among other things, that adaptation in
sink environments will be limited by the appearance of alleles that
permit persistence. Such alleles are likely to arise only rarely, parti-
cularly in harsh environments. Our results indicate that the absolute
"tness barrier is a robust constraint on evolution in demographically
stable and unstable populations.
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