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Abstract. Continuous-time, age structured, host—parasitoid models
exhibit three types of cyclic dynamics: Lotka—Volterra-like consumer-
resource cycles, discrete generation cycles, and ‘‘delayed feedback
cycles’’ that occur if the gain to the parasitoid population (defined by
the number of new female parasitoid offspring produced per host
attacked) increases with the age of the host attacked. The delayed
feedback comes about in the following way: an increase in the instan-
taneous density of searching female parasitoids increases the mortality
rate on younger hosts, which reduces the density of future older and
more productive hosts, and hence reduces the future per head recruit-
ment rate of searching female parasitoids. Delayed feedback cycles
have previously been found in studies that assume a step-function for
the gain function. Here, we formulate a general host—parasitoid model
with an arbitrary gain function, and show that stable, delayed feedback
cycles are a general phenomenon, occurring with a wide range of gain
functions, and strongest when the gain is an accelerating function of
host age. We show by examples that locally stable, delayed feedback
cycles commonly occur with parameter values that also yield a single,
locally stable equilibrium, and hence their occurrence depends on
initial conditions. A simplified model reveals that the mechanism
responsible for the delayed feedback cycles in our host—parasitoid
models is similar to that producing cycles and initial-condition-dependent
dynamics in a single species model with age-dependent cannibalism.
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1 Introduction

Parasitoids are insects that lay their eggs on or in the body of an insect
of another species (the host). The juvenile parasitoid uses the host for
food as it develops, killing the host in the process. Theoretical studies
of continuous-time, host—parasitoid systems have revealed that a wide
variety of population cycles can result when stage-structure is included
in the models. Murdoch et al. [1] took the first step towards classifying
these cycles into three types. The first are the long-period cycles that
are inherent in most consumer-resource models, for example the
Lotka—Volterra model. Murdoch et al. [2] demonstrated that if the
parasitoid attacks only juvenile hosts (as is the norm for most species),
then a relatively long-lived invulnerable adult host stage can stabilize
these long-period cycles. The second type of cycle has a period of
approximately a single host generation, and may be found if the
adult host is very short-lived, and if the consumer-resource cycles
are stabilized by some other process such as density-dependence in
the parasitoid attack rate (Godfray and Hassell [3, 4] and Gordon
et al. [5]).

The third type of cycles observed in stage-structured host—
parasitoid models are delayed feedback cycles that may occur when the
‘‘gain’’ to the searching female parasitoid increases with the age of the
juvenile host attacked (Murdoch et al. [6, 1]). Table 1 lists a variety of
parasitoid oviposition behaviors that lead to such age-dependent gain.
In all of these behaviors, the parasitoid attacks a range of host ages,
but attacks on older hosts result in a larger number of female para-
sitoid offspring than attacks on younger hosts. All of these behaviors
have the same effect on host—parasitoid population dynamics, because
they induce delayed density-dependence in the parasitoid recruitment
rate. This delayed density-dependence comes about in the following
way: an increase in the current density of searching female parasitoids
increases the mortality rate on younger hosts, which reduces the
density of future older and more productive hosts, and hence reduces
the future per head recruitment rate of searching female parasitoids. If
this delayed density-dependence is sufficiently strong, it can result in
delayed feedback cycles that have a period of one to a few host
generations.

The current paper focuses on the delayed feedback cycles, and has
two aims. First, we explore the generality and robustness of delayed
feedback cycles. Our description in the previous paragraph derives
from models studied by Murdoch et al. [6, 1] that relied on a crude
discretization of the parasitoid size-dependent response to hosts. The
juvenile host population was divided into two or more discrete stages
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Table 1. Host size dependent parasitoid behaviors. The juvenile host is usually the
only source of nutrients that the juvenile parasitoid can use for development, so larger
host individuals represent larger packets of resources for their offspring.

Host Size- Description
dependent
parasitoid behavior

Sex allocation Lay male egg in small host; lay female egg in large host
(Parasitoids can determine sex of offspring at oviposition.
unfertilized eggs"male, fertilized eggs"female)

Host feeding Host feed on small host; parasitize in large host
(Host-feeding is the behavior in which adult female
parasitoids feed on the host tissues or fluids to gain nutrients
for reproduction or maintenance, killing the host in the
process)

Clutch size Lay few eggs in small hosts; many eggs in large hosts

Juvenile survival Higher juvenile parasitoid survival in larger hosts

Juvenile development Faster parasitoid development in larger hosts

Offspring fecundity Larger hosts yield larger and more fecund female parasitoids

with fixed durations, and the response of the parasitoids differed
between the stages. This allowed the models to be formulated as
systems of delay-differential equations. In some cases, these discrete
stages can be interpreted as different host instars, between which there
may in fact be abrupt changes in properties. However, in other systems,
the response of the parasitoid may change in a more continuous
fashion as the host grows. In the current paper, we formulate a general
age-structured model in which the gain to the searching female para-
sitoid population can change continuously with host age, according to
any arbitrary function. We then ask whether the delayed feedback
cycles reported by Murdoch et al. [6, 1] are a general phenomenon or
simply an artifact of the previous discretization, and we explore the
effect of the shape of the host age-specific gain function on the observed
dynamics.

The second aim of the paper is to develop a simpler model to act as
a caricature of the general model, so that we can explore in detail the
mechanism leading to delayed feedback cycles. The study of Hastings
[7] and Hastings and Costantino [8], in a single-species stage-struc-
tured system, illustrates how developing such a ‘model of a model’ can
be useful for understanding the dynamics that occur in limiting cases of
complex models.
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2 Continuous gain model

2.1 Model formulation

We consider insect species in which births and deaths can occur
continuously, and there is the potential for all life stages to overlap.
The equations are summarized in Table 2. Let J (t, a) represent the
density of juvenile hosts of age a at time t. All juvenile hosts are subject
to mortality due to parasitism at a rate f P(t), where f is the constant
parasitoid attack rate and P(t) is the density of adult parasitoids at
time t. Mortality of juvenile hosts due to sources other than parasitism
is assumed to be constant and density-independent at a per capita rate
of d

J
. The dynamics of the juvenile host population can be described by

the McKendrick—von Foerster equation:

LJ(t, a)
Lt

#

LJ(t, a)
La

"![ f P(t)#d
J
]J (t, a) for a6¹

H
(1)

Table 2. Host age-dependent parasitoid gain model

Variables J(t, a)"density of juvenile hosts of age a at time t
A(t)"density of adult hosts at time t
R

I
(t)"recruitment rate into the immature parasitoid stage at time t

P(t)"density of adult parasitoids at time t

Parameters ¹
H
"duration of juvenile host stage

¹
P
"duration of juvenile parasitoid stage

o"host lifetime fecundity
b"per capita adult host fecundity" o

TA

d
J
"juvenile host background death rate

d
A
"adult host death rate

¹
A
"average duration of adult host stage"1dA

p
I
"juvenile parasitoid through-stage survival

d
P
"adult parasitoid death rate

f"parasitoid attack rate

Gain g(a)"number of female parasitoid offspring of age 0
function resulting from an attack on a host of age a

Equations LJ

Lt
#

LJ

La
"![ f P(t)#d

J
]J(t, a) a6¹

H

dA(t)

dt
"J(t, ¹

H
)!d

A
A(t)

dP(t)

dt
"R

I
(t!¹

P
)p

I
!d

P
P(t)

where R
I
(t)"fP(t) :TH

0
g (a)J (t, a)da

Boundary J(t, 0)"bA(t)
condition
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Juvenile hosts that survive to the age of ¹
H

enter the adult host stage
which is invulnerable to parasitism. All hosts in the adult stage have
the same fecundity and mortality, regardless of age, so we define A(t) to
be the total density of adult, with dynamics described by the ordinary
differential equation:

dA(t)
dt

"J(t, ¹
H
)!d

A
A(t) (2)

where d
A

is the constant per capita adult death rate, and the average
duration of the adult host stage is ¹

A
"1dA. The constant per capita

adult host fecundity is b, so the boundary condition specifying the
production of newborn juvenile hosts is:

J (t, 0)"bA(t) (3)

For convenience in the analysis we define o"b¹
A

as the expected total
number of offspring that an adult female host will produce during her
lifetime. By holding o constant while varying ¹

A
this allows us to

investigate the effects of changing the average duration of the adult
host stage without also changing the resultant number of offspring
produced per host [2].

We assume that adult female parasitoids attack and kill juvenile
hosts of all ages at a constant per capita rate, f, but that the gain, g (a),
to the female parasitoid population depends on the age, a, of the host
attacked. Therefore the recruitment rate, R

I
(t), into the immature

parasitoid stage is equal to the rate at which juvenile hosts are para-
sitized, weighted by their age-specific gain:

R
I
(t)"f P(t)P

TH

0

g(a)J (t, a)da (4)

Immature parasitoids have a fixed development time (of duration ¹
P
),

and only a constant, age- and density-independent death rate occurs
during the immature parasitoid stage, so the dynamics of this stage can
be subsumed into a delay in the recruitment into the adult female
parasitoid stage. The dynamics of the adult female parasitoid popula-
tion is then described by the delay-differential equation:

dP(t)
dt

"R
I
(t!¹

P
)p

I
!d

P
P(t) (5)

where p
I

is through-stage survival of immature parasitoids.
To complete the description of the model, we need only to supply

a specific function for this host age-specific gain, g(a). It is the effect of
the shape of this function that we will investigate in the Sect. 2.3.
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Our investigation of the model dynamics uses both analytic and
numerical methods. Numerical solutions for the partial differential
equations can be obtained using the Escalator Boxcar Train algorithm
(de Roos et al. [9]; de Roos [10]), however for some gain functions, the
model can be recast as a system of delay differential equations, and in
these cases numerical solutions can be obtained more efficiently using
any integration program that can handle time delays.1

2.2 Equilibria and stability analysis

In this section we give the formulae for equilibrium solutions of the
model equations, and outlines the technique used to investigate local
stability of the equilibria.

The equilibria (denoted by the * symbol) are obtained in the
standard way by setting the time rate of change to zero in the equations
in Table 2, yielding:

J*(a)"J*(0) exp M![ f P*#d
J
]aN (6)

with:
J*(0)"od

A
A* (7)

P*"
ln(o)!d

J
¹
H

f ¹
H

(8)

A*"
d
P

od
A

f p
I
U

(9)

where:

U"P
TH

0

g(a) exp M![ f P*#d
J
]aN da (10)

which can be calculated for any specific functional form of g(a)
used.

Juvenile hosts of all ages die at the same rate (due to both attacks
by the parasitoid and background causes). Therefore, the PDE describ-
ing the rate of change of the juvenile host population can be integrated
to yield an expression for the age distribution of juvenile hosts (see [11]
for a thorough review of this technique). The maturation rate of

—————
1We used the SOLVER package obtained from the University of Strathclyde:
http: //www.stams.strath.ac.uk/external/solver/.

322 C. J. Briggs et al.



juvenile hosts to the adult stage at time t is equal to J (t, ¹
H
):

J (t, ¹
H
)"od

A
A (t!¹

H
) expG!P

t

t~TH
Cf P(x)#d

JD dxH (11)

which can be substituted into Eqn. (2).
To determine if the equilibrium is locally stable, we use the stan-

dard technique of assuming that the system has been at its equilibrium
for all t60, and asking whether a small perturbation from equilibrium
increases or decays through time. If we define:

A]"A(t)!A*, PK "P(t)!P* (12)

then, we can linearize Eqns. (2) and (5) about equilibrium to give:

dA] (t)
dt

"od
A
p*
H
A] (t!¹

H
)!od

A
p*
H

fP
t

t~TH

P] (x)dx !d
A
A] (t) (13)

dP] (t)
dt

"R]
I
(t!¹

P
)p

I
!d

P
P] (t) (14)

where p*
H
"expM!( f P*#d

J
)¹

H
N, and we define:

R]
I
(t)"R

I
(t)!R*

I
(15)

The next step is to obtain an expression for R]
I
(t). In Eqn. (4) we

have already shown that:

R
I
(t)"f P(t)P

TH

0

g (a)J (t, a)da (16)

If S (t!a, t) is defined as the probability that a juvenile host individual
born at time t!a survives at least until time t, then:

S (t!a, t)"expG!P
t

t~a

[d
J
#f P(x)]dxH, (17)

and,
J (t, a)"od

A
A(t!a)S (t!a, t) (18)

So, R
I
(t) can be rewritten as:

R
I
(t)"fod

A
P(t)P

TH

0

g(a)A(t!a)S (t!a, t)da (19)

We can define the perturbation, W(t!a, t) such that:

S(t!a, t)"exp (!ya)W(t!a, t) (20)

Host—parasitoid system 323



where for convenience we define y"f P*#d
J
. From Eqns. (17) and

(20) and linearizing, we get:

W(t!a, t)"expG!f P
t

t~a

P] (x)dxHK1!f P
t

t~a

P] (x)dx (21)

Thus, R]
I
(t) can be written as:

R]
I
(t)"od

A
f GP*HK

1
!P*A*HK

2
#A*P] (t)P

TH

0

exp (!ya)g(a)daH (22)

where:

HK
1
"P

TH

0

exp (!ya)g(a)A] (t!a)da (23)

HK
2
"P

TH

0
P

t

t~a

exp (!ya)g(a)P] (x)dx da (24)

Taking the Laplace transformation of linearized equations (13) and
(14), and using Eqn. (22), gives us a matrix B(j), such that:

B(j)AA] (j)
PK (j)B"A00B (25)

The system is locally stable, with all small perturbations from equilib-
rium eventually decaying to zero, provided all roots of the following
characteristic equation have negative real parts:

det B(j)"0. (26)

Most of the Laplace Transforms involved in arriving at the matrix
B(j) are straight-forward, however a few tricks are necessary to derive
the transforms of HK

1
and HK

2
. If we let:

G(a)"G
exp(!ya)g(a) a6¹

H
0 a'¹

H

. (27)

then HK
1

can be written as:

HK
1
"P

t

0

G (a)A] (t!a)da t'¹
H

(28)

which is the standard form for the convolution G* A] , the Laplace
transform of which is G (j)A] (j).

If we let:

X (t)"P
t

0

P] (x)dx (29)
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then HK
2

becomes:

HK
2
"P

TH

0

exp (!ya)g(a) CX(t)!X(t!a)D da (30)

which can be rewritten as:

HK
2
"X(t)U!P

t

0

G (a)X(t!a)da t'¹
H

(31)

where U is simply a number defined in Eqn. (10) for any particular form
of function g(a). The second half of the expression is now the convolu-
tion G*X , which has Laplace transform: G(j)P] (j)/j. The character-
istic matrix, B(j) is then:

A
j#d

A
!od

A
p
H
e(~jTH) od

A
A*p

H
f G

1!e(~jTH)

j H
!od

A
f P*p

I
e(~jTP)G(j) j#d

P
!od

A
fA*p

I
e(~jTP)]

G!
P*fU

j
#

P*fG(j)
j

#UHB (32)

where p
H
"exp (!y¹

H
).

Stability boundaries in Figs. 2, 3, and 6 were calculated by setting
j"iu in Eqn. (32) and numerically solving simultaneously the two
equations:

Re[det B(j)]"0; Im[det B(j)]"0 (33)

2.3 Effects of different gain functions

In this section, we investigate the effects on the host—parasitoid
dynamics of the shape of the gain function (Fig. 1).

2.3.1 Constant gain
If the gain to the female parasitoid population is independent of the age
of the juvenile host attacked, g (a)"c for 06a6¹

H
(Fig. 1a), with

c"1 we regain the Murdoch et al. [2] model in which the female
parasitoid lays a single female egg in a juvenile host of any age that she
encounters. A typical local stability boundary for this model is shown
in Fig. 2. In this model, the units of time, host density, and parasitoid
density can be scaled such that there is no loss of generality in choosing
¹

H
"1, c"1, and f"1. Thus, in Fig. 2, and in all subsequent figures,
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Fig. 1a–f. Potential functional forms for the host age-specific parasitoid gain,
g (number of female offspring produced from attacks on host individuals of
age a).

Fig. 2. Constant gain function: typical local stability boundary showing the region of
local stability and Lotka—Volterra type cycles as a function of the duration of the
invulnerable adult host stage, ¹

A
, and the parasitoid development time, ¹

P
. In this and

all other figures, f"1, ¹
H
"1, o"33, d

P
"8, d

J
"0, and d

I
"0, except where

otherwise noted.
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all durations are scaled relative to the juvenile host development time,
¹

H
which is set equal to 1. We will use the same values for the other

parameters used by Murdoch et al. [2] as our default parameter set
(o"33, d

P
"8, d

J
"0, and p

I
"1). Figure 2 shows that the equilib-

rium is locally stable when the duration of the invulnerable adult stage
is long relative to the juvenile host stage, and when the parasitoid
development time is relatively short. Numerical simulations suggest
that in the unshaded region of Fig. 2, the equilibrium is globally stable
as well, i.e. the system returns to the same stable equilibrium, following
large perturbations as well as small ones. The magnitude of the gain,
c (the number of female eggs laid on a juvenile host of any size), affects
only the equilibrium densities and has no effect on the position of the
boundary shown in Fig. 2.

Throughout most of the unstable region, stable limit cycles with
a period of few to many host generations occur. These cycles are
similar to those observed in many consumer-resource models, and
therefore will be referred to as ‘Lotka—Volterra cycles’. Numerical
simulations show that the period of the cycles increases with ¹

P
, but

changes in ¹
A

have little effect on the cycle period. However, stable
limit cycles are not universal in this region of parameter space. Close to
the vertical axis in Fig. 2 (i.e. when the adult stage is relatively short),
two complications arise. First the amplitude of Lotka—Volterra cycles
may never stabilize, so that the observed dynamics consist of divergent
oscillations of ever increasing period. Second, also in regions of para-
meter space very close to the Y-axis, roots to the characteristic equa-
tion occur that would correspond to single host generation cycles,
similar to those observed by Godfray and Hassell [3, 4]. However,
these occur only in regions where the Lotka—Volterra cycles are un-
stable, and are never observed.

As reported in Murdoch et al. [2], other parameters have the effects
of shifting the stability boundary shown in Fig. 2 to the right or left,
and altering the period of the cycles, but do not change the qualitative
results. For example, decreasing o or increasing d

P
shifts the boundary

to the left. Increasing d
P

decreases the period of the cycles, but altering
o does not change the cycle period significantly.

2.3.2 Gain increases as a step-function
If g(a) is a step function, g (a)"cu (a!¹

Y
) for 06a6¹

H
(Fig. 1b), we

recapture the Murdoch et al. [6] model. In the above expression, and
throughout, u(a) represents the Heaviside unit step function defined as:

u (a)"G
0 if a(0
1 if a'0

(34)
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In this case, there is an abrupt transition with host age, such that
attacks on young hosts contribute nothing to the future female para-
sitoid population, but attacks on old juvenile hosts contribute c new
female parasitoid offspring. This could represent parasitoids that lay
male eggs or host-feed on young hosts, and only lay female eggs on old
hosts (as in Murdoch et al. [6]). This assumes that there are sufficient
male parasitoids present that all female parasitoids are mated, and that
eggs are not limiting to the parasitoid population. If male parasitoids
produced from small hosts are limiting, or if the rate of production of
new eggs from materials gained from host-feeding on small hosts limits
the rate of oviposition on large hosts, then there can be a significant
effective gain from attacks on small hosts. This version of the model
assumes as a first approximation that the effective gain from small
hosts is negligible.

As described in the introduction, delayed density-dependence in the
parasitoid attack rate is induced when the searching parasitoid attacks
young hosts, even though the potential gain, in terms of female off-
spring, is greater from old hosts. The strength of the delayed density-
dependence is determined in part by the duration of the young host
stage, ¹

Y
from which the gain is 0. Typical local stability boundaries

are shown in Fig. 3. If ¹
Y

is relatively short, then the delayed density
dependence is relatively weak. This weak density-dependence has
a stabilizing effect on the host—parasitoid population dynamics, as
evidenced by a shift to the left in the position of the boundary between
the regions of a local stability and Lotka—Volterra cycles (comparing
Fig. 3a in which ¹

Y
"0.1 with Fig. 2 in which ¹

Y
"0). In the unstable

region to the left of the stability boundary in Fig. 3a, the dynamics are
again dominated by Lotka—Volterra stable limit cycles.

The delayed density dependence is made stronger as ¹
Y

is in-
creased. This has the effect of further shifting the Lotka—Volterra
boundary to the left, and thus can be thought of as stabilizing the
Lotka—Volterra instability. However, it also introduces a second re-
gion of parameter space in which the equilibrium is unstable. In this
region the dynamics are characterized by shorter-period delayed feed-
back cycles, that have a period of between 1 and a few host generations.
Delayed feedback cycles can occur even when the invulnerable adult
host stage is very long-lived. They occur when the parasitoid has
a short development time relative to that of the host, and can also
occur when the parasitoid development time is slightly greater than the
host development time. For example, with ¹

Y
"0.3, there are two

regions with delayed feedback cycles (Fig. 3b).
When the delayed density-dependence is relatively strong, numer-

ical simulations show that there are multiple attractors in much of the
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Fig. 3. Step-function gain: typical local stability boundaries showing the regions of
parameter space with a locally stable equilibrium, Lotka—Volterra type cycles, and
delayed feedback cycles. In (a) The duration of the young juvenile stage for which there
is no gain to the female parasitoid population is very short, ¹

Y
"0.1. In (b) The

duration of the young juvenile stage is increased to ¹
Y
"0.3, and the points labeled

A—F are the parameter values for which the simulations are shown in Fig. 4.

parameters space marked as locally stable in Fig. 3b. In this region, the
system returns to the stable equilibrium following a small perturbation
from equilibrium, but after some larger perturbations, the system
converges instead on a stable limit cycle of the same form as the
delayed feedback cycles seen in the unstable region. The region with
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multiple attractors may extend even into the region in which local
stability analysis predicts that Lotka—Volterra cycles will occur. In this
region, perturbations from the Lotka—Volterra-like limit cycle can
result in the system settling instead on a delayed feedback limit
cycle.

Figure 4 shows the range of dynamics that can be produced from
this model, for the parameter values marked A—F in Fig. 3b. The
simulation in Fig. 4A illustrates delayed feedback cycles, in a region of
parameter space where the equilibrium is locally unstable. In B, the
local stability analysis predicts Lotka—Volterra-like cycles. Following
a small perturbation from equilibrium, the population fluctuations
initially resemble Lotka—Volterra cycles. However, when the magni-
tude of these fluctuations get somewhat large, the population traject-
ory is captured by the delayed feedback attactor. Delayed feedback
stable limit cycles result, in which the adult host density is always
above its equilibrium level. This illustrates that the region of multiple
attractors can extend into the area where Lotka—Volterra cycles are
predicted. For the parameter values in C and D, the equilibrium is
locally stable. Following a small perturbation, C, the population tra-
jectories return to their equilibrium values. Following a large perturba-
tion, D, the trajectory settles on the delayed feedback cycle attractor.
Once again, the adult host density in the delayed feedback cycles is
always above its equilibrium level. The simulation in Fig. 4E illustrates
the second region of delayed feedback cycles, with ¹

P
'1. In Fig. 4F,

both the Lotka—Volterra and delayed feedback roots have negative
real parts. The population trajectory appears as delayed feedback
cycles superimposed on Lotka—Volterra cycles. For very large values of
¹

P
, the Lotka—Volterra cycles are unstable, and diverging oscillations

result (top left of Fig. 3b, not shown in Fig. 4).
Figure 5 shows from simulations how the period of the delayed

feedback cycles varies with the parasitoid development time, ¹
P
, for

different values of the average adult host stage duration, ¹
A

(with
¹

Y
"0.3 as in Fig. 5b). Each point on the graph was obtained by

measuring the dominant period from a numerical simulation of the
model, following a large perturbation from equilibrium (after the
transients had decayed). This figure shows that there are two distinct
regions of delayed feedback cycles. The period of the cycles starts out
close to 1 host development time for ¹

P
"0 and increases almost

linearly with ¹
P

up until ¹
P
"1. At this point, the period drops to

1 and again increases approximately linearly with ¹
P
, but with a small-

er slope. The duration of the invulnerable adult host stage (¹
A
) has

little effect on the period of these cycles (Fig. 5). The one exception to
this is that with a relatively short adult host stage, ¹

A
"1, the period of
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Fig. 4. Step-function gain: simulations of the model with ¹
Y
"0.3 for the points

marked A—F in Fig. 3. In all simulations, the initial conditions had the host and
juvenile parasitoid populations at to their equilibrium age distributions, and the adult
parasitoid density set to a multiple of its equilibrium density, P*. (A) ¹

A
"4, ¹

P
"0.1,

P
0
"2]P*, (B) ¹

A
"1, ¹

P
"0.55, P

0
"1.5]P*, (C) ¹

A
"4, ¹

P
"0.5, P

0
"2]P*,

(D) ¹
A
"4, ¹

P
"0.5, P

0
"10]P*, (E) ¹

A
"4, ¹

P
"1.1, P

0
"10]P*, and

(F) ¹
A
"3, ¹

P
"1.6, P

0
"2]P*.
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Fig. 5. Period of the delayed feedback cycles as a function of the parasitoid develop-
ment time, ¹

P
, measured from simulations of the model using 5 different values of the

duration of the invulnerable adult host stage, ¹
A
. The simulations were started with the

host and juvenile parasitoid at their equilibrium densities and age structure, and with
the adult parasitoid density at 100 times its equilibrium value, and with ¹

Y
"0.3.

the cycles increased approximately linearly until ¹
P
"1.2. Above this

value of ¹
P
, unstable divergent oscillations occur. Increasing the dura-

tion of the young juvenile stage, ¹
Y
, to 0.5 leads to a slight increase in

the period of the cycles for any given value of ¹
P
, but the same pattern

remains, with the period increasing almost linearly until ¹
P
"1, at

which point the period dropped to 1 and increased linearly again. In
real host—parasitoid systems, the development time of the parasitoid is
usually shorter than the development time of the host (¹

P
(1), so the

upper region of delayed feedback cycles may never be observed.
In the next sections we show that the delayed density-dependence

induced by the larger gain to the future female parasitoid population
from attacks on older hosts is not an artifact of the step-function.

2.3.3 Gain increases linearly with host age
The simplest function in which the gain to the future female parasitoid
population increases smoothly with the age of the host is the linear
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function, g(a)"ma, for a6¹
H

(Fig. 3c). A typical local stability
boundary for this case is shown in Fig. 6a. The slope of the gain
function, m, has no effect on the position of the stability boundary.
A linearly increasing gain function induces some degree of delayed-
density-dependence in the parasitoid attack rate (comparing Fig. 6a
with Fig. 3a). For our default parameters, with a linear increasing gain
the Lotka—Volterra boundary is shifted to the left compared to the
constant gain case, however the delayed density-dependence is not
strong enough to cause delayed feedback cycles. However, delayed
feedback cycles are possible with the linear gain function, if the delayed
density-dependence is made stronger through changes in the value of
other parameters in the model. For example, as the adult female
parasitoids are made shorter-lived (through increasing d

P
), delayed

feedback cycles are possible if the parasitoid also has a relatively short
development time.

2.3.4 Gain increases non-linearly with host age
Next we compare the results of the model with three different non-
linear gain functions to show that the degree of non-linearity in the
gain function affects the strength of the delayed density-dependence.
First, we look at the results when the parasitoid gain is an accelerating
function of the age of the host (e.g. g (a)"an for a6¹

H
, shown in

Fig. 1d for n"2). The stability boundaries for n"2 are shown in
Fig. 6b. The delayed density-dependence induced by the accelerating
gain is stronger than that produced by the linear case. The pattern is
the same as that seen for the step-function gain in Fig. 3b, with much of
the parameter space dominated by two large regions of delayed feed-
back cycles. Furthermore, multiple attractors occur in much of the
parameter space, with larger perturbations from equilibrium resulting
in delayed feedback cycles even when the equilibrium is locally stable,
just as in the step-function case.

If on the other hand the gain to the female parasitoid population
is a decelerating function of the age of the host attacked, then the
strength of the delayed density dependence is reduced compared to the
linear increasing gain case. For example, with g(a)"1! 1~%91 (~na)

1~%91 (~nTH)
(shown in Fig. 1e), the local stability boundaries are shown in Fig. 6c
for the case where n"1 and n"5. The stability boundary is shifted to
the left compared to the case with a constant gain function, so the gain
function has lead to some degree of delayed density-dependence. How-
ever, the boundary is still to the right of the boundary for the linear
increasing gain case. The parameter n determines how fast the gain
reaches its asymptotic value of 1, with larger n making a faster ap-
proach. Comparison of the two boundaries in Fig. 6c shows that the
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Fig. 6a–d. Typical local stability boundaries for the model with four different increas-
ing host age-specific parasitoid gain functions. In (a) the gain increases linearly with
host age. In (b) the gain is an accelerating function of host age: g (a)"a2 for a6¹

H
. In

(c) the gain is a decelerating function of host age: g (a)" 1~%91 (~na)
1~%91 (~nTH)

for a6¹
H
, with

boundaries shown for n"1, and n"5 (dotted line). In (d) the gain is the sigmoidal
function of host age: g (a)"a! K

2n sin (2na) for a6¹
H
, with trajectories shown for

K"0 (which is equivalent to a linear gain, shown with the dotted line), and K"1.

boundary becomes more like the linear increasing gain case with small
n, and more like the constant gain case with large n. As in the case with
a linear increasing gain, delayed feedback cycles do not occur for our
default parameter set, but are possible if other parameters which
increase the strength of the delayed density dependence are changed
(for example increasing d

P
).

The third non-linear gain function that we look at is the sigmoidal
function, g(a)"a!K/2n sin (2na) for a6¹

H
, 06K61 (shown in

Fig. 3f ). The parameter K controls the degree of non-linearity in this
function, with the linear increasing case being recaptured with K"0,
and the non-linearity increasing as K increases to 1. Figure 6d shows
the stability boundary for K"0 and K"1. As the function becomes
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more non-linear, it more closely resembles the step-function, and the
strength of the delayed density-dependence increases. When the de-
layed density dependence is relatively strong, delayed feedback cycles
and multiple attractors occur in much of the parameter space.

Thus, the model in which the gain to the future female parasitoid
population increases continuously with host age exhibits all of the
same dynamical features as the step-function model. The effect of an
accelerating, non-linear, gain function (of which the step-function is an
extreme example) is simply to strengthen the delayed density-depend-
ence in the parasitoid attack rate, and thereby strengthen the potential
for delayed feedback cycles.

3 Mechanism of delayed feedback cycles

In this section, we use a simplified model to investigate the mechanisms
leading to the delayed feedback cycles. Figures 3b, 6b, and 6d show
that delayed feedback cycles can occur when the adult host is long-
lived relative to the juvenile host development time (i.e. ¹

A
large). We

therefore follow the example of Hastings [7] and Hastings and Costan-
tino [8] and approximate the effects of a long-lived adult host stage by
assuming a constant input of newborns into the juvenile host stage.
This simplified model is particularly appropriate for the study of
delayed feedback cycles, as Lotka—Volterra-like consumer-resource
cycles are no longer possible, since the action of the parasitoids no
longer determines the rate of recruitment into the host population.
Delayed feedback cycles appear to result only from periodic variation
in the survival of hosts through the juvenile age class, with cyclic
recruitment into that class not being necessary. Here we explore further
how this arises.

3.1 A simplified model

In this simplified model, we ignore the adult stage, and assume that
there is a constant input, R, of newborns of age 0 into the juvenile host
stage. Guided by our previous results, we restrict our discussion to the
case of a step function representation of the host age-specific gain to
the future female parasitoid population. We previously found that the
model with a step function gain produces all of the same dynamical
features as the model with a continuously increasing gain function.

In the model, H
1

and H
2

represent the densities of young and old
juvenile hosts, respectively. Both host stages are attacked by the
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parasitoid, but attacks on H
1

contribute nothing to the future female
parasitoid population and each attack on H

2
contributes one new

female juvenile parasitoid.
As before, we assume that the adult female parasitoids attack and

kill juvenile hosts of all ages at a constant per capita rate, f, (with a
type I functional response), and that the parasitoids have a constant
development time of ¹

P
. The young juvenile host stage has a duration

of ¹
1

and the old juvenile host stage has a duration of ¹
2
, with

¹
H

" ¹
1
#¹

2
.

This model is formulated as a system of delayed-differential equa-
tions with balance equations describing the dynamics of young and old
juvenile hosts and adult parasitoids:

dH
1
(t)

dt
"R!M

1
(t)![ f P(t)#d

J
]H

1
(t) (35)

dH
2
(t)

dt
"M

1
(t)!M

2
(t)![ f P(t)#d

J
]H

2
(t) (36)

dP(t)
dt

"f P (t!¹
P
) H

2
(t!¹

P
)p

I
!d

P
P (t) (37)

where M
1
(t) and M

2
(t) are the maturation rates out of the young and

old juvenile host stages, respectively, at time t:

M
1
(t)"R expG!P

t

t~T1

[ f P(x)#d
J
]dxH (38)

M
2
(t)"M

1
(t!¹

2
) expG!P

t

t~T2

[ f P(x)#d
J
]dxH (39)

The equilibria for this model are:

H*
1
"

R[1!exp (!y¹
1
)]

y
(40)

H*
2
"

d
P

fp
I

(41)

where for convenience y"f P*#d
J
. P* can be found only by numer-

ically solving the transcendental equation (derived from Eqn. (36)):

R exp (!y¹
1
) [1!exp (!y¹

2
)]"y

d
P

fp
I

(42)
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In the absence of the parasitoid, the density of hosts in each of the
juvenile stages would reach a constant value set by the host recruit-
ment rate, the background death rate, and the durations of the two
juvenile host:

H*
2
"

R exp (!d
J
¹

1
) (1!exp (!d

J
¹

2
))

d
J

(43)

If d
J
"0, this is equivalent to:

H*
2
"R¹

2
(44)

A positive equilibrium for both the parasitoid and host occurs if the
parasitoid can suppress the density of the old juvenile stage, H

2
, below

what it would have been in the absence of the parasitoid. If d
J
"0, this

translates into:

R¹
2
'

d
P

fp
I

(45)

This simplified model reveals how the attacks by the parasitoid inter-
act with the age-structure of the host population to produce delayed
feedback cycles.

Using the technique described above, we calculated the typical
local stability boundaries shown in Fig. 7 for the simplified model with
both species present. In Fig. 7a, delayed feedback cycles occur in
regions where the young juvenile host stage takes up an intermediate

Fig. 7a, b. Typical local stability boundaries for the simplified model with a constant
recruitment rate of hosts of age 0, showing the effect of changes in the host recruitment
rate, with (a) R"50, and (b) R"100. In each case, the equilibrium is locally stable in
the unshaded region, and local stability analysis predicts delayed feedback cycles in the
shaded regions; however multiple attractors exist in the locally stable region such that
following a large perturbation from equilibrium delayed-feedback cycles can occur in
these regions as well. d

P
"8, f"1, d

J
"0, and p

I
"1.
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fraction of the total host development time. Cycles occur in two areas:
a lower region in which the parasitoid development time is short
relative to the total host development time, and an upper region in
which the parasitoid development time is greater than 1 host develop-
ment time. Delayed feedback cycles occur over a greater range of
parameters for higher values of the host recruitment rate (Fig. 7b). At
the top of Fig. 7b, it can be seen that the pattern repeats for higher
values of ¹

P
, with a third region of delayed feedback cycles extending

just below ¹
P
"2.

As in the full model, changing the values of other parameters can
shift the position of the stability boundaries in Fig. 7. Increasing the
value of the parasitoid attack rate, f, causes the parasitoid to suppress
the density of juvenile hosts further below what it would have been in
the absence of the parasitoid, and also has the effect of increasing the
region of parameter space in which delayed feedback cycles occur.

In this simplified model, the same pattern of change in the cycle
period with increasing ¹

P
(Fig. 8) occurs as was seen in the full model.

For the parameters used in Fig. 8, the minimum period of the delayed
feedback cycles is approximately 1 host generation (however the min-
imum period can be affected by changes in other parameters). As
¹

P
increases from 0, the period increases approximately linearly until

¹
P
"1. The period then drops to 1 and increases again at a smaller

slope. Increases in the duration of the young juvenile host stage,
¹

1
also increases the period of the cycles for any given value of ¹

P
(Fig. 8).

To understand the mechanism leading to delayed feedback cycles
and the factors determining the period of the cycles it is instructive to
look at the age structure within the juvenile host stage. Fig. 9 shows
how the densities of hosts of different ages within the juvenile stage
change over the course of a number of population cycles. Also shown
are the trajectories of the birth rate of immature parasitoids per adult
parasitoid ("f H

2
), the total birth rate of immature parasitoids

("f H
2
P), and the juvenile and adult parasitoid densities. For illustra-

tion, the juvenile host stage in Fig. 9 has been divided into 10 sub-
stages of equal duration. Each line on the graph of host density shows
the density of juvenile hosts in one of the sub-stages, with the line
marked 1 representing the density of juvenile hosts aged 0—0.1, 2 rep-
resenting hosts aged 0.1—0.2, etc. In Fig. 9, ¹

1
"0.6, so only the

4 oldest subclasses, shown with solid lines, produce new parasitoids
when attacked. Immature parasitoid take ¹

P
"0.4 time units to

develop into adults.
Examining the structure of the cycles will show that there are four

components to the delay that determines the time between successive
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Fig. 8. Period of the delayed feedback cycles in the simplified model as a function of
the parasitoid development time, ¹

P
, measured from simulations using 5 different

values of the duration of the young juvenile host stage, ¹
1
. The simulations were

started with the host and juvenile parasitoid at their equilibrium densities and age
structure, and with the adult parasitoid density at 1.1 times its equilibrium value. All
other parameters as in Fig. 7b.

peaks in adult parasitoid density (and hence determines the period of
the delayed feedback cycles).

The simulation is started with all life stages of the host and the
juvenile parasitoid at their equilibrium densities, but with the adult
parasitoid density at 10]its equilibrium. The initial high density of
adult parasitoids leads to an immediate reduction in the density of all
host stages (point A in Fig. 9). Juvenile parasitoids resulting from these
initial attacks develop into adult parasitoids at around time"0.5
(point B). However, these parasitoids become adults at a time when the
host densities have not yet recovered from the initial parasitoid attack,
so few new parasitoids (point C) result from the offspring of the first
peak. The densities of all host age classes remain suppressed until after
the adult parasitoid density decays below its equilibrium value (point
D). The time that it takes for this to occur is proportional to 1dP .

There is always a high, constant, density of newborn hosts entering
the first sub-stage. When the parasitoid density drops below equilib-
rium (point D), the young hosts have a greater than average survival
rate, and begin to progress through the age classes. These hosts can be
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Fig. 9. Simulation of the simplified model, showing the age structure within the
juvenile host stage, the per parasitoid birth rate of immature parasitoids, the total birth
rate of immature parasitoids, and the density of parasitoids. The total juvenile develop-
ment time is ¹

H
"1, with ¹

1
"0.6 and¹

2
"0.4. For illustration, in this figure we have

divided this stage into 10 sub-stages, each with a duration of 0.1, labeled 1—10 on the
graph. Sub-stage 1 shows the density of host individuals of age 0—0.1, sub-stage
2 shows ages 0.1—0.2, etc. f"1, R"100, ¹

P
"0.4, d

P
"8, d

J
"0, and p

I
"1. The

simulation is started with H
1
, H

2
, and I all at their equilibrium age distributions, and

with P"10P*. Lettered points are referred to in text.
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used for the production of new parasitoids only after they reach the old
juvenile host stage, H

2
. This takes ¹

1
time units. Thus, a greater than

average per parasitoid birth rate of immature parasitoids (point E)
results when the density of individuals in the H

2
stage gets above its

equilibrium, at approximately ¹
1

time units after point D in Fig. 9.
At point E the density of juvenile parasitoids starts to increase,

however, the adult parasitoid density is still low and decreasing, with
the first parasitoids becoming adults only after ¹

P
time units. The total

birth rate of immature parasitoids is f H
2
P, therefore, even though the

per capita parasitoid birth rate ( fH
2
) is high, there is a delay before

the total parasitoid birth rate increases above its equilibrium value
(point F). This delay is determined by the time that it takes the adult
parasitoid density to start to increase, which depends directly on the
parasitoid development time, ¹

P
. This delay depends also on the

parasitoid attack rate, f, with high values of f decreasing the delay.
(This is not true in the complete model, where the densities of H

2
and

P both scale directly with f .) The total birth rate of immature para-
sitoids, fH

2
P, reaches its peak (point G) as H

2
is decreasing and P is

increasing.
The maximum adult parasitoid density, and therefore the maximum

per capita death rate on hosts, reaches its maximum ¹
P

time units later
(point H). As with point B, this peak in adult parasitoid density occurs
at a time when the H

2
density is still suppressed, so few new parasitoid

offspring result directly from this peak, and the cycle repeats.
Thus we can see that there are four components of the lag that

determines the period of the delayed feed back cycles: (a) a term
proportional to 1dP, (b) ¹

1
, (c) a term that depends on ¹

P
along with

a number of other factors including the parasitoid attack rate and the
host recruitment rate, and (d) ¹

P
. The parasitoid development time

enters into the calculation of the cycle period twice: first it determines
the time that it takes after hosts have entered the H

2
stage for the adult

parasitoid density to start to increase, and second it determines the
time between the peak in the total birth rate of immature parasitoids
and in the subsequent peak in adult parasitoid density.

When the parasitoid development time is long relative to the lifespan
of the adult parasitoid, i.e. in any of the upper regions of delayed
feedback cycles in Fig. 7, a slightly different scenario occurs. Figure 10
shows a simulation in which ¹

P
"1.5, starting again with the host and

juvenile parasitoids at their equilibrium densities and the adult para-
sitoid density at 10] equilibrium. As before, the high density of
parasitoids immediately drives down the density of all host age classes
(point A in Fig. 10). However in this case, these initial attacks result in
new adult parasitoids after 1.5 time units (point B). By this time, the
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Fig. 10. As in Fig. 9, except ¹
P
"1.5.

host density has recovered from the initial attacks, and a peak in the
birth rate of immature parasitoids results from the attacks by the
offspring of the initial peak (point C). Thus, the offspring resulting from
any peak in the density of parasitoids emerge as adults after the
previous parasitoid peak has decayed, and after the host density (and
in particular the density of old juvenile hosts, H

2
) has been replenished

through recruitment. The cycles seen at high values of ¹
P
, and high d

P
,

are true parasitoid generation cycles, with a period approximately
equal to ¹

P
.
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4 Connection with single-species models

There is an obvious analogy between the host-parasitoid model pre-
sented here and the single species cannibalism model presented by
Hastings [7] (see also Hastings and Costantino [8]). The Hastings
model considers an insect system such as Tribolium, that has a long-
lived adult stage, with a stage-structured juvenile stage, such that older
juveniles (larvae) cause a substantial mortality on younger juveniles
(eggs) through cannibalism. Our simplified model uses the same
approximation as Hastings, replacing the long- lived adult stage with
a constant input of juveniles.

In the cannibalism model, a large cohort of individuals entering the old
juvenile stage causes a high mortality on young juveniles, suppressing
their density. Because there is little mortality during the old juvenile
stage, the suppressing effect lasts until the large age cohort matures out
of the old juvenile stage. At that time, the youngest age cohorts can be
replenished through recruitment. This results in cycles that have a peri-
od that is approximately equal to the insect’s development time.

In our host-parasitoid model, instead of the high densities of old
juveniles directly leading to heavy mortality on young juveniles, they
lead to high densities of parasitoid after a developmental delay of ¹

P
,

which then leads to heavy mortality on young juveniles. This results in
an increase in the period of the cycles that is proportional to ¹

P
.

Another important difference between the models is that in the single-
species model, the suppressing effect of a large age cohort of old
juvenile hosts on the density of young juvenile hosts lasts ¹

2
time units,

because there is little mortality on the old juvenile stage. In the
parasitoid-host model, the old juvenile hosts suffer mortality due to the
parasitoids at the same rate as the young juvenile hosts, so the density
of the older age cohorts in the H

2
stage are suppressed substantially.

Therefore the suppressing effect on the density of the young juvenile
stage lasts as long as the adult parasitoid density remains high, i.e. for
a time inversely proportional to the parasitoid death rate, d

P
.

Another similarity between our parasitoid-host model and Hastings’
cannibalism model is the presence of multiple attractors in both
models. Hastings found that in much of the locally stable region of
parameter space in his model, limit cycles with a period of one develop-
ment time could result following a large perturbation. Hastings was
able to prove for his single species model that the bifurcation leading to
the unstable region was subcritical, using the technique of Diekmann
and van Gils [12]. This analogous calculation is prohibitively difficult
for our two-species model. However, the proof by Hastings enhances
the plausibility of our numerical findings of multiple attractors.
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5 Discussion

In this paper we developed a general model to investigate the dynam-
ical effect of a common feature of many host age-dependent parasitoid
oviposition behaviors: the gain to the parasitoid population (in terms
of the number of female offspring produced) increases with the age of
the host attacked. We find that a gain function that increases with host
age leads to delayed density-dependence in the parasitoid birth rate
which, if sufficiently strong, can induce delayed feedback cycles. These
findings confirm the results of earlier models (Murdoch et al. [6, 1]) in
which the gain increased as a step-function with host age. The range of
dynamics produced, including delayed feedback cycles and multiple
attractors, was the same for the model with a gain function that in-
creased continuously with host age as for the step-function model, and
therefore was not an artifact of the earlier step-function formulation. The
shape of the gain function determines only the strength of the density
dependence and the likelihood of observing delayed feedback cycles.

The delayed feedback cycles produced from host age-dependent
parasitoid oviposition behavior in our model can occur when the adult
hosts are very long-lived relative to their juvenile development time.
This is also true of the cycles produced from age-dependent cannibal-
ism in Hastings’ [7] single-species model. The cycles in both of these
models result from periodic variation in the survival of cohorts
through the juvenile class caused by the age-dependent processes.
Periodic variation in the recruitment into the juvenile stage is not
required. This is in sharp contrast with the mechanism that can
produce generation cycles only when the adult host stage is very short-
lived in the host-parasitoid models of Godfray and Hassell [3, 4] and
Gordon et al. [5]. The cycles in these models are produced by the
action of a parasitoid whose development time is a fraction of that of
its host. The host and parasitoid populations become synchronized in
such a way that only hosts within a dominant age cohorts each
generation are able to survive to reproduce. Apparently discrete host
generations are maintained because the adult hosts live only for a short
period of time, and most offspring are produced only within a short
pulse. Long-lived adult hosts, on the other hand, would produce their
offspring distributed over a relatively long period of time, smearing out
the generational structure. Thus, in the Godfray and Hassell and the
Gordon et al. models, periodic variation in recruitment as well as
periodic variation in host juvenile survival are required for mainten-
ance of the generation cycles.

Finally, we comment on the explanatory power of simplified ‘models
of models’ for teasing out mechanisms. Hastings’ [7] single-species
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model exemplified how this approach could be used to understand the
dynamics that occur on a time scale that is much shorter than the
duration of the adult lifespan. In the current paper, we use a similar
simplified model to investigate how host age-specific oviposition be-
havior by parasitoids can lead to delayed feedback cycles when host
recruitment is constant and therefore when classic Lotka—Volterra
consumer-resource cycles are not possible. These sharply defined
limiting cases, made possible by simplified versions of models, provide
insights that allow us to begin to understand the results of complex
models.
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