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Abstract. ‘‘Mayer waves’’ are long-period (6 to 12 seconds) oscillations
in arterial blood pressure, which have been observed and studied for
more than 100 years in the cardiovascular system of humans and other
mammals. A mathematical model of the human cardiovascular system
is presented, incorporating parameters relevant to the onset of Mayer
waves. The model is analyzed using methods of Liapunov stability and
Hopf bifurcation theory. The analysis shows that increase in the gain of
the baroreflex feedback loop controlling venous volume may lead to
the onset of oscillations, while changes in the other parameters con-
sidered do not affect stability of the equilibrium state. The results agree
with clinical observations of Mayer waves in human subjects, both in
the period of the oscillations and in the observed age-dependence of
Mayer waves. This leads to a proposed explanation of their occurrence,
namely that Mayer waves are a gain-induced oscillation.

Key words: Mayer waves — Hopf bifurcation — Cardiovascular
instability — Baroreflex control — Gain-induced oscillations

1 Introduction

The existence of fluctuations in blood pressure has been know since the
introduction of the recording manometer by C. Ludwig (see [20]).
These fluctuations, usually referred to as waves, are classified by
various methods including the name of the discoverer, the origin,
physiological cause, or the frequency or period. The term Mayer waves
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refers to periodic fluctuations in blood pressure which are slower than
respiration in animals with normal respiratory movements, and appear
to be independent of normal heartbeat and respiration. They were
reported by S. Mayer in 1876 [17], and hence the name. They are also
known as third order waves or ten second waves.

The frequencies reported by various authors for Mayer waves differ
considerably [20]. Those described by Mayer in rabbits had a fre-
quency of 6—9 min~1, while other researchers have found waves with
frequencies ranging from 7—12 min~1 in humans [20]. These frequen-
cies correspond to periods of 5—10 seconds. Hence, some researchers
have proposed to designate these waves as the ‘‘10-second-rhythm’’
[20]. The onset of Mayer waves may result in serious physiological
implications, such as fainting. Mayer waves are of interest to re-
searchers seeking to understand fully the functioning of the cardio-
vascular system.

It is generally conceded that Mayer waves appear most often when
the subjects are exposed to abnormal conditions [2]. Lack of oxygen,
the effects of severe haemorrhage, and other extreme or sudden cha-
nges in blood supply to parts of the body favour the appearance of
these slow periodic fluctuations [2]. Experiments have shown that
when the blood pressure is measured for subjects lying in a supine
position and then in a tilted position, there may exist Mayer-like
oscillations for the tilted position. A remarkable feature observed in
these experiments is that the Mayer waves occur more frequently in
younger subjects, and disappear with age [6, 12, 14, 16, 18, 19]. The
origin of Mayer waves, however, remains an unsolved problem [20].
At a conference on Mayer waves held in Prague in 1977, various
theories were proposed to explain the origin of these waves. Four main
theories, the myogenic theory, the central theory, the feedback theory,
and the resonance theory were given.

The myogenic theory states that Mayer waves are due to the
inherent property of peripheral systems, (vascular smooth muscle), to
exhibit spontaneous rhythmic activity. The central theory postulates
that cardiovascular centres in the brain stem generate the slow
rhythms in a way similar to the respiratory centre. The feedback
theory, as its name suggests, attributes the origin of Mayer waves to
delays and nonlinearities in the body’s feedback control mechanisms.
The resonance theory postulates that one or more of the above factors
enable the overall circulatory system to resonate at certain frequencies,
but this has never been substantiated. Among the four, the feedback
theory and the central theory have been considered most probable by
several authors [13, 23, 24]. However, the stability of the central oscil-
lator is questionable [23]. Thus, among the favored theories, the
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feedback theory remains the most probable explanation for the exist-
ence of Mayer waves.

It is essential, for survival, that blood pressure be controlled to stay
within a narrow, safe range. This function is performed by the body’s
feedback control mechanisms, the fastest being the baroreflex. The
baroreceptors are nonlinear stretch sensors located in the systemic
arteries which detect changes in blood pressure. The baroreflex feed-
back loops respond to baroreceptor impulses to control blood pressure
via three mechanisms: changes in heart rate, systemic capillary resist-
ance and venous volume. All three mechanisms are explored in this
work.

DeBoer et al. [5] proposed that Mayer waves are caused by a time
delay in the baroreceptor feedback loop. If this were the case, one
would expect the delay to increase with age due to a slowing of the
body’s responses. This would then cause an increase in the existence of
Mayer waves in older people, in contradiction to the experimental
evidence. It is well known that time-delays can induce oscillations in
control systems [9]; however, the actual time delays in the baroreflex
control loop are orders of magnitude smaller than the observed period.
While we do not discount the existence of a feedback delay, it does not
appear to be the main cause of Mayer waves. We hypothesize instead
that blood pressure oscillations may be attributed to a change in
feedback gain, extending the work of Wesseling et al. [23, 24]. Previous
studies of feedback-control systems in physiology (Glass and Mackey
model) [7, 15], and in engineering (Watt’s regulator model) [10, 21],
have shown that an increase in feedback gain can cause a system to
change behaviour from a steady state to an oscillating state. This
phenomenon may be called a ‘‘gain-induced oscillation’’ and it can be
studied by use of the Hopf bifurcation theorem. Since young adult
humans tend to have quicker reflexes and better muscle tone than the
elderly, they can be expected to have higher gain in the baroreceptor
loop. Thus our hypothesis that Mayer waves may be a gain-induced
instability is consistent with the observed age-related data.

A mathematical model can be used to give greater insights into the
roles of the various mechanisms affecting Mayer waves. Thus the
primary objective of this study is to develop a dynamical model for the
mammalian circulatory system and use it to explore blood pressure
dynamics, as a function of the physiological parameters in the model.
The new dynamical model presented here is a generalization of the
steady-state model of Hoppensteadt and Peskin [11]. In addition to
incorporating temporal dynamics, this model will allow investigation
of the effects of each of the three baroreflex feedback loops, indepen-
dently of the other two. This type of experiment has been performed by
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severing nerves in animals, e.g. dogs [22], but is difficult to carry out on
live human subjects. Parameter values in the mathematical model are
chosen to correspond to a typical adult human being. The results of the
analysis show that an increase in the nonlinear gain in the barorecep-
tor feedback loop (even without introducing time delays) is sufficient to
produce oscillations which closely resemble the observed Mayer waves
in humans.

2 Modeling

While it is desirable to include the behaviour of each cardiovascular
component in a model of the circulation, certain components can be
lumped together without sacrificing the qualitative behaviour of the
system [3, 16]. This section presents the modeling assumptions and
the development of the model, first for the basic fluid flow of blood
in the cardiovascular system, then with the addition of nonlinear
baroreflex control.

2.1 Modeling assumptions

The assumptions and simplifications underlying the mathematical
model are stated in the following.

1. The cardiovascular system is a closed-looped hydrodynamic system
comprised of two heart pumps (the left and right sides of the heart),
two large arteries, two veins and two capillary networks, corres-
ponding to the systemic and pulmonary circulations respectively.
The total blood volume is constant in time.

2. The large arteries and veins and the heart are compliance vessels,
that is, volume is proportional to pressure in these vessels [11].
On the other hand, the smaller arteries and veins in the capil-
lary networks are resistance vessels, that is, flow is proportional
to pressure [11]. The unstressed volume of the blood vessels
is negligible in all parts of the circulation except for the systemic
veins.

3. Flow from the heart is continuous, that is the pulsatile nature of
blood pressure is neglected and only average pressures and volumes,
over the period of the pulse, are dealt with.

4. The pressure in the heart when relaxed, is equal to that of the veins
supplying blood to it. That is, the pressure in the right and left hearts
are those of the systemic and pulmonary veins respectively. On its
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expansion stroke (diastole) the heart receives a volume of blood
proportional to this venous pressure. The heart pumps out at each
contraction stroke (systole) the amount of blood received from the
veins on the previous diastole. This is the Frank-Starling model of
the heart [24].

5. Cardiovascular blood pressure is controlled by a baroreceptor
feedback mechanism, which acts to change systemic venous un-
stressed volume, systemic venous compliance, systemic capillary
resistance and the heart rate, in order to counteract changes in
systemic arterial pressure.

6. The baroreceptor feedback gain and its dependence on systemic
arterial pressure is modeled as being a Hill function (defined below).

7. Changes in venous volume, systemic resistance and heart rate act
independently and in parallel, on blood pressure.

8. Compliance is constant in each part of the cardiovascular system
except the systemic veins, where it may be varied by the baroreflex.

9. Resistance is constant for the capillary networks of the pulmonary
circulation, but may be varied by the baroreflex in the systemic
circulation.

2.2 Model development

A notational convention adopted throughout this model is that dy-
namic variables are represented by lower case letters, while parameters
and labels are written in upper case. We first construct a simple linear
model of the cardiovascular system, and then add the baroreflex
control system.

2.2.1 Linear cardiovascular model
The following linear relationship between volume v, pressure p, and
compliance C, in the large vessels (arteries and veins) of the circulation
[11], is the mathematical form of Assumption 2. (i.e. that these are
compliance vessels)

v"C · p (1)

There are four such equations in the model, corresponding to the
systemic arteries and veins, and the pulmonary arteries and veins, for
which the variables v, p, C are distinguished by subscripts SA, SV, PA,
PV respectively. However, Eq. (1) suggests that if p"0, then v"0,
which is not the case, especially in the systemic veins which typically
contain about 70% of the blood in a human body. A more realistic
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relation to be used for the case of the systemic veins is:

v
SV
"C

SV · pSV
#»

D
(2)

where »
D

is the unstressed volume, that is the volume of the vessel at
p
SV
"0. The unstressed volume in the systemic venous circulation is

not negligible, as over one-half of the venous volume is unstressed
volume [4]; however, we neglect unstressed volume in the other three
compliance vessels (see Assumption 2).

The flow q in the vessels of the capillary networks, modeled as in
[11] as resistance vessels, is (by Assumption 2):

q"
p
A
!p

V
R

(3)

Here p
A
, p

V
and R represent the pressure in the arteries and veins and

resistance respectively, in each of the systemic and pulmonary circula-
tion. Thus, there are two equations of the form (3), for systemic and
pulmonary capillary flows, distinguished by subscripts S and P respec-
tively on all the variables.

From the Frank-Starling Assumption 4, the following relations for
the left and right cardiac outputs, q

L
and q

R
, respectively, are obtained:

q
L
"F ·CL · pPV"K

L · pPV (4)

q
R
"F ·CR · pSV

"K
R · pSV

(5)

Here C
L

and C
R

are the compliances in the left and right hearts
respectively and F is the heart beat frequency. The subscripts A and
V represent arteries and veins respectively, while S and P stand for the
systemic and pulmonary circulations, respectively.

The rate of change of volume of an incompressible fluid in a vessel
is the difference between the flow into and the flow out of the vessel.
Hence, the following differential equations are obtained, for the change
of volume of blood in the systemic arteries, systemic veins, pulmonary
arteries and pulmonary veins respectively:

dv
SA

dt
"q

L
!q

S
(6)

dv
SV

dt
"q

S
!q

R
(7)

dv
PA

dt
"q

R
!q

P
(8)

dv
PV

dt
"q

P
!q

L
(9)
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q
L
, q

R
, q

S
and q

P
, represent blood flow through the left heart, the right

heart, the systemic capillaries and the pulmonary capillaries, respec-
tively. At this stage we have twelve equations in twelve unknowns:
eight algebraic equations (1)— (5) and four differential equations (6)— (9),
in the four volume variables v, four flow variables q and four pressure
variables p. The eight algebraic equations may be used to eliminate all
eight flow and pressure variables. The result is a system of four
differential equations in the four volume variables.

From Assumption 1 that blood is conserved, the following is
obtained

v
SA
#v

SV
#v

PA
#v

PV
"»

0
(10)

where »
0

is the total blood volume, a constant. Equation (10) indicates
that the four volume variables are not independent. As v

PA
is the

smallest, it is chosen for elimination. Then a system of three differential
equations in v

SA
, v

SV
and v

PV
is obtained. (Mathematically, any one of

the four volume variables could be eliminated.) The resulting math-
ematical model of the cardiovascular system consists of the following
system of three ordinary differential equations:

dv
SA

dt
"!

v
SA

R
S · CSA

#

v
SV

R
S · CSV

#

F ·CL · vPV
C

PV

!

»
D

R
S · CSV

(11)

dv
SV

dt
"

v
SA

R
S ·CSA

!A
1

R
S ·CSV

#

F ·CR
C

SV
BAvSV!»

DB (12)

dv
PV

dt
"

»
0
!v

SA
!v

SV
!v

PV
R

P · CPA

!A
1

R
P ·CPV

#

F · CL
C

PV
BvPV (13)

Note that this model is linear in the three volume variables, represent-
ed by lower case v’s. The system becomes nonlinear on inclusion of the
baroreflex feedback control loops.

2.2.2 Nonlinear baroreflex control
The Hill function is defined by:

y"f
n
(x)"

xn

an#xn

(14)
f
n
(x) : [0,R)P[0, 1)

where a is a constant which corresponds to the point of half the
maximum output, f

n
(a)"1/2. The graph of the Hill function resembles

a stretched-out ‘‘S’’. As n increases the graph approaches a perfect step
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function or ‘‘switch’’ at x"a. The baroreceptor response curve de-
scribed in the literature strongly resembles a Hill function, and there-
fore is modeled in this paper as:

B
n
(p

SA
)"

(p
SA

)n
(P

C
)n#(p

SA
)n

(15)

where B
n
is the total baroreceptor afferent activity, n is a measure of the

baroreflex gain, and P
C

is the critical arterial pressure. The term ‘‘gain’’
normally is used to represent a ratio of the change in output to
a change in input, for very small changes. This is essentially the
mathematical definition of a derivative. Thus, for our model, using the
Hill function for the baroreflex response, we define baroreceptor gain
by the derivative

k"
dB

n
dp

SA

(16)

that is, gain k is equal to the slope of the response function (for fixed n),
at a particular point. For simplicity we choose the value of k at the
point x"a, which is precisely

k"
n
4a

. (17)

This is a useful measure of the gain as it is close to the maximum value
of the slope (from calculus). Note that we can scale variables so that
a"1, and then k"n/4. Also, note that p

SA
is proportional to v

SA
since

C
SA

is a constant, see (1), so B
n
can be expressed in terms of v

SA
rather

than p
SA

. This yields:

B
n
(p

SA
)"B

nA
v
SA

C
SA
B"

(v
SA

)n
(»

C
)n#(v

SA
)n

(18)

where »
C

is the volume at the critical pressure. It should be noted that
other functions with a similar graph shape could be used for the
baroreceptor response function, for example the hyperbolic tangent
function.

Changes in heart rate (F) and systemic capillary resistance (R
S
)

must be in the opposite direction to a change in arterial blood pressure,
in order to restore normal pressure. Thus a simple model of the
baroreflex action on F is:

F"F
0
(1!B

n
)"

F
0
(»

C
)n

(»
C
)n#(v

SA
)n

(19)

where F
0

is a constant. Equation (19) implies that if B approaches 1
(i.e. very large pressure p

SA
), then F will be zero. However, one would
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expect that in reality F will have a non zero minimum value even when
B approaches 1. The following is a more realistic representation:

F"F
1
(1!B

n
)#F

2
"

F
1
(»

C
)n

(»
C
)n#(v

SA
)n
#F

2
(20)

where F
1

and F
2

are constants, and F
2

is the value of F when B
n
"1.

Similarly, the baroreflex action on systemic resistance R
S
is modeled as:

R
S
"R

1
(1!B

n
)#R

2
"

R
1
(»

C
)n

(»
C
)n#(v

SA
)n
#R

2
(21)

On the other hand, changes in systemic venous compliance, C
SV

,
and systemic venous unstressed volume, »

D
, act in the same direction

as a change in arterial blood pressure. Thus the action of the baroreflex
on each of »

D
and C

SV
is modeled as:

»
D
"D

1 ·B
n
#D

2
"

D
1
(v

SA
)n

(»
C
)n#(v

SA
)n
#D

2
(22)

C
SV
"C

1 ·B
n
#C

2
"

C
1
(v

SA
)n

(»
C
)n#(v

SA
)n
#C

2
(23)

Now, from the basic linear cardiovascular model (11)—(13), four
different nonlinear cardiovascular models are obtained, corresponding
to insertion of the baroreceptor feedback function into each of F, R

S
,

C
SV

and »
D
, as above. This allows independent investigations of each of

the four feedback loops, which would be difficult and dangerous to
carry out experimentally on live subjects.

2.3 Parameter determination

Many of the parameters in this model are available in the literature, as
displayed in Table 1. The remaining parameters, F

1
, F

2
, R

1
, R

2
, C

1
, C

2
,

D
1
, D

2
, C

SV
, »

C
and »

D
are not found in the literature and need to be

determined.

2.3.1 Critical volume, »
C

No value of »
C

was found in the literature. However the normal resting
value of v

SA
is known to be 1.0 litre. It is assumed that the resting and

critical states are very close, and hence »
C

is taken as 1.0 litre. Since
»

C
plays the role of a in equation (17) this has the bonus effect of

simplifying the formula (17) for the gain, to k"n/4.
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Table 1. Typical parameter values for an adult human being (Hoppen-
steadt and Peskin [11])

Parameter Normal value

Compliance in systemic arteries, C
SA

0.01 litres/mmHg
Compliance in pulmonary arteries, C

PA
0.00667 litres/mmHg

Compliance in pulmonary veins, C
PV

0.08 litres/mmHg
Systemic resistance, R

S
17.5 mmHg/(litre/min.)

Pulmonary resistance, R
P

1.79 mmHg/(litre/min.)
Compliance in right heart, C

R
0.035 litres/mmHg

Compliance in left heart, C
L

0.014 litres/mmHg
Heart rate, F 80 beats/min

2.3.2 Systemic unstressed venous volume, »
D

An exact normal value of »
D

is not found in the literature. However,
Coleman (1985), gives the value of »

D
as ‘‘over half ’’ the systemic

venous volume v
SV

. As the normal value of v
SV

is 3.5 litres, the normal
value of »

D
is taken to be 2.0 litres in this study.

2.3.3 Systemic venous compliance, C
SV

The normal systemic venous compliance is given as 1.75 litres/mm Hg
(Hoppensteadt and Peskin, 1992). This value of C

SV
does not allow for

systemic unstressed venous volume, which this study considers. Using
Eq. (2), with v

SV
"3.5 litres, »

D
"2.0 litres and p

SV
"2 mm Hg, the

corresponding value of C
SV

is computed to be 0.75 litres/mm Hg.

2.3.4 Normalized Hill function constants,
F
1
, F

2
, R

1
, R

2
, C

1
, C

2
, D

1
, and D

2
These constants are required for the use of the Hill function to model
the baroreceptor afferent activity, B

n
, acting on the systemic venous

compliance, systemic venous unstretched volume, systemic resistance
and heart rate. This current study appears to be the first time such an
approach has been taken, which is why these constants are not avail-
able. Therefore, different values of each of these constants are investi-
gated in this study, over ranges which yield baroreceptor responses
consistent with physiological observations.

3 Analysis and results

The control of the baroreflex on heart rate F, systemic capillary
resistance R

S
, systemic venous unstressed volume »

D
and systemic
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venous compliance C
SV

are investigated individually in the mathemat-
ical model. Specifically, the appropriate non-linear baroreflex response
function, from (20) to (23), is substituted in each parameter in turn to
obtain the corresponding model, which is then investigated for the
effects on cardiovascular dynamics. See the Appendixes and [1] for
more details. We analyzed each of the four models to find out if
a bifurcation occurs as the baroreceptor gain k varies, using Hopf’s
bifurcation theorem. First, the steady state solution of each model was
calculated. Then the system of equations was linearised at this steady
state. Thus the Jacobian matrix (derivative) at the steady state was
found. Since it is a real 3]3 matrix, with constant real entries, the
eigenvalues are either all three real or else one real and two complex
conjugate. The three eigenvalues of the Jacobian matrix were com-
puted symbolically (exactly). In each case there existed, for some values
of the gain k, one real and two complex eigenvalues. The real eigen-
values were always found to be negative. The real part of the pair of
complex conjugate eigenvalues was plotted as a function of k (or n) to
find out if a crossing point existed. The symbolic computation of all
eigenvalues and the plotting of the curves was done using Maple.
A value of k at which the real part of a complex eigenvalue crosses
through zero is known as a Hopf bifurcation point. At this point there
exists a pair of purely imaginary eigenvalues $iu and the steady state
is said to be nonhyperbolic. When a crossing point was found, the
imaginary part u of the complex eigenvalues was plotted to obtain its
value at the crossing point. Since the third (real) eigenvalue always
remained negative, according to the general theory of Liapunov stabil-
ity, when the real part of the complex eigenvalues crosses from negative
to positive the equilibrium state changes from asymptotically stable to
unstable. From the Hopf bifurcation theorem [8, 10], generically at
such a crossing point, a periodic solution is either created or destroyed.
Standard numerical integrations may verify the existence of a stable
limit cycle near the crossing point. The imaginary part u at the
crossing point gives a good approximation to the frequency of the
resulting oscillations.

3.1 Baroreflex control of heart rate

Models with R
S
, C

SV
and »

D
taken as constants and F given by Eq. (20)

were considered. Assuming a normal heart rate of 80 beats/min., values
of F

1
and F

2
considered were: F

1
"160 beats/min. and F

2
"0 beats/

min., F
1
"80 beats/min. and F

2
"40 beats/min., and F

1
"40 beats/

min. and F
2
"60 beats/min. All of these models exhibited a stable
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steady-state, for all values of gain k tested. No evidence of waves was
found. Details of these models are given in [1].

3.2 Baroreflex control of systemic resistance

Models with the baroreflex affecting only systemic resistance R
S
, while

C
SV

, »
D

and F are taken as constants, are considered next. R
S
is given

Fig. 1a–d. Re(j) as a function of gain k for controlled »
D

with a D
2
"0 litres;

b D
2
"0.5 litres; c D

2
"1.0 litre; d D

2
"1.5 litres
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Fig. 1. (continued)

by Eq. (21) and a typical value of systemic resistance is 17.5 mm Hg/
(litre/min). Values of R

1
and R

2
used are: R

1
"35 mm Hg/(litre/min)

and R
2
"0 mm Hg/(litre/min), R

1
"20 mm Hg/(litre/min) and R

2
"

7.5 mm Hg/(litre/min), and R
1
"15 mm Hg/(litre/min) and R

2
"10

mm Hg/(litre/min). These models had a stable steady-state for all
values of the gain k tested, and showed no indications of waves. Details
of these models are given in [1].
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Fig. 1. (continued)

3.3 Baroreflex control of venous volume

The baroreflex may influence the systemic venous volume through
both the unstressed or ‘‘dead’’ volume, »

D
and the compliance, C

SV
.

Models with the baroreflex controlling C
SV

and »
D

separately were
considered (see the Appendix for equations). In both cases the models
exhibited unstable steady-states for gains beyond a crossing point with
pure imaginary eigenvalues. Figure 1 displays four graphs obtained for
models in which the baroreflex controls unstressed venous volume. It
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Fig. 1. (continued)

shows graphs of the real parts of the complex eigenvalues, for models
with D

2
equal to 0, 0.5, 1.0, and 1.5 litres, respectively. Note that Re(j)

crosses through zero in all cases. This implies a Hopf bifurcation,
giving birth to an oscillation (or wave).

Similarly, Fig. 2 is obtained from models with the baroreflex
controlling venous compliance only. It shows graphs of the real part of
the complex eigenvalues for three cases of models, with C

2
equal to

0, 0.25, and 0.5 litres/mm Hg, respectively. All three cases give a Hopf
bifurcation.
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Fig. 2a–c. Re(j) as a function of gain k for controlled C
SV

with a C
2
"0 litres/mmHg;

b C
2
"0.25 litres/mmHg; c C

2
"0.5 litres/mmHg

The values of the imaginary parts of the complex eigenvalues at the
crossing points give the angular frequency of the oscillations produced.
From these frequencies, the periods of oscillation of all these models
were found to be between 7 and 12 secs. Note that this is in agreement
with reported values of Mayer waves in human subjects.

Figure 3 shows phase portraits obtained by direct numerical integ-
ration, for the system with D

2
"0 and gain k equal to 10 and 20. At

k"10 (n"40), there exists no limit cycle. However, for k"20
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Fig. 2. (continued)

(n"80) a limit cycle exists, corroborating our analysis. In the phase
portraits of Fig. 3, the three state variables are those of equations
(11)—(13), namely

A"v
SA
"volume of blood in systemic arteries

V"v
SV
"volume of blood in systemic veins

P"v
PV

"volume of blood inp ulmonary veins

In all cases considered, when a crossing point existed, a limit cycle was
found to be both stable and supercritical (that is, existing for k greater
than the crossing value).
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Fig. 2. (continued)

4 Discussion

Models with only heart rate F, or systemic capillary resistance R
S
,

controlled by the baroreflex did not exhibit a Hopf bifurcation, while
the models with systemic venous compliance, C

SV
or systemic venous

unstressed volume, »
D

controlled by the baroreflex were capable of
Hopf bifurcation. Hence the effect of the baroreflex on F and R

S
,

individually, is not the cause of oscillations such as Mayer waves.
However, if the effect of the baroreflex on F and R

S
were combined in
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Fig. 3a–c. Phase portraits for controlled »
D

with D
2
"0 for a k"10 and initial point

(1.0, 3.4, 0.5); b k"20 and initial point (1.0, 3.47, 0.39); c k"20 and initial point
(1.0, 3.4, 0.5)
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Fig. 3. (continued)

models with the effects on »
D

or C
SV

, they may play a role in the
instability.

It is observed that for all models with »
D

and C
SV

individually
controlled by the baroreflex, the real part of the complex eigenvalues
increases as the gain k increases and the graph crosses the k-axis at
a positive value of k. This implies a Hopf bifurcation and the presence
of a limit cycle oscillation. The stability of this limit cycle oscillation
has been verified numerically. The similarity of the results obtained for
models with C

SV
and »

D
individually controlled by the baroreflex is to

be expected, as the two have similar effects on blood flow. The model
with the baroreflex controlling only C

SV
is more stable than that with

the baroreflex controlling only »
D
. This implies a greater sensitivity in

the baroreflex control of »
D

than of C
SV

, where gain induced instability
is concerned, but control of C

SV
can not be ignored. Remarkably, the

periods of the oscillations fall within the range of 7 to 12 secs. given by
Penaz [20].

Measurements by Wesseling et al. [23] on human subjects revealed
a periodic fluctuation in heart rate which was synchronized with the
Mayer waves in blood pressure. In these experiments, the same period
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was observed for the modulation of the heart rate as for the blood
pressure waves. The present model provides a satisfactory explanation
for this heart rate modulation. Assume that Mayer waves have arisen
through the mechanism of this paper, and that all the baroreflex
feedback loops are active. Then the baroreceptors would sense a fluctu-
ating blood pressure in the systemic arteries, and would therefore exert
a fluctuating feedback control, affecting the heart rate in synchroniza-
tion with the Mayer waves, as observed in [23].

Further insights were obtained by varying two parameters in the
model simultaneously; namely, the gain parameter k together with
either one of D

2
or C

2
(the minimum unstressed systemic venous

volume or the compliance, respectively). As either of D
2

or C
2

in-
creases, the value of gain at which the graph crosses the k-axis in-
creases. This suggests that an increase in D

2
or C

2
increases the

stability of the cardiovascular system against oscillations. Changing
the value of D

2
or C

2
causes resetting of the baroreceptor curve. This

happens in an individual with a time constant of 10 hours and so is not
of importance to this investigation. However as different people may
have different D

2
and C

2
values, different people can be expected to

take different times before Mayer waves are observed, when subjected
to identical Mayer wave inducing stresses. In particular it could be
expected that young and old people will have different D

2
and

C
2
values and this may explain the difference in the incidence in Mayer

waves observed in young and old people. As we would expect larger
D

2
and C

2
values in older people, corresponding to veins which have

become stretched and less fit, our observation that stability increases
with increasing values of D

2
and C

2
is in agreement with the age-

dependence observed experimentally [6, 11, 13, 16, 18]. In Fig. 4, D
2

is
plotted against the crossing point value of gain k. The top left region
represents the parameter values for which the equilibrium state is
stable, and corresponds to older subjects, who would tend to have
smaller baroreflex gains k, and larger D

2
values. The lower right region

represents unstable equilibria, susceptible to oscillations, and here the
parameter values correspond to youths. Thus, stability depends on
both the baroreflex gain k and the venous dead volume D

2
. Young

adults, with high gain k and small D
2
, are in the unstable region where

Mayer waves appear, while older adults with the opposite character-
istics are in the stable region where there are no Mayer waves. The
same situation holds for k and C

2
.

The principal conclusion of this paper is that the existence of
Mayer waves and their disappearance with age may be explained by
means of the Hopf bifurcation theorem, as a case of gain induced
oscillations.
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Fig. 4. D
2

as a function of gain k at the crossing point, for controlled »
D

(data points
from Fig. 1)

5 Appendix A: Controlled venous volume

The mathematical model has been adapted so that the systemic venous
unstressed volume »

D
is controlled by the baroreflex, while R

S
, C

SV
and

F are assumed to remain constant. The explicit effect on »
D

of the
baroreflex is given by Eq. (22). Different choices of the constants
D

1
and D

2
in (22) were considered. The stability of the equilibrium state

was investigated by computation of the eigenvalues of the Jacobian
matrix, using Maple, in exact rational arithmetic. The results presented
here are expressed in terms of exact rational numbers, free of the
roundoff errors which would be introduced by finite decimal repres-
entations.

5.1 D
1
"4.0 litres and D

2
"0 litres

The circulation is then described by the following system of equations:

dv
SA

dt
"!A

40
7 B v

SA
#A

8
105B v

SV
#14v

PV
!A

32
105B C

(v
SA

)4k
1#(v

SA
)4kD
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dv
SV

dt
"

40
7

v
SA
!

80
21

v
SV
#A

320
21 B C

(v
SA

)4k
1#(v

SA
)4kD

dv
PV

dt
"420!84v

SA
!84v

SV
!105v

PV

The steady state values of the system are found to be: v
SA
"1.0 litres,

v
SV
"3.5 litres, and v

PV
"0.4 litres. Linearization of the model at the

steady state gives the matrix A.

A"A
!40

7
!

32k
105

8
105

14

40
7
#

320k
21

!

80
21

0

!84 !84 !105B
The eigenvalues of A are:

j
1
"º1@3!»!

2405
63

!

32k
315

j
2
"

º1@3

2
#

»

2
!

2405
63

!

32k
315

#

i
2

J3(º1@3#»)

j
3
"

º1@3

2
#

»

2
!

2405
63

!

32k
315

!

i
2

J3(º1@3#»)

where

º"

!5 103 633 725
250 047

!

3 618065 648k
416 745

#

184 832k2

416 745
!

32 768k3

31 255 875

#

8
2835

(4 488 999 170550#45 082 290 017400k

#9 458 754 238 932k2!942 218496k3#2 248 704k4)1@2

and

»"º~1@3A
!2 876953

3969
#

11552k
3969

!

1024k2

99225 B
For values of k of interest, eigenvalue j

1
is real and negative.

Eigenvalues j
2

and j
3

are complex conjugates, with real part which
crosses through zero from negative to positive as k increases, near
k"18, as shown in Fig. 1a. Phase portraits, on each side of the
crossing point, are shown in Fig. 3.
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5.2 D
1
"3.0 litres and D

2
"0.5 litres

The circulation is then described by the following system of equations:

dv
SA

dt
"!A

40
7 BvSA#A

8
105BvSV#14v

PV
!A

4
105BC

1#7(v
SA

)4k
1#(v

SA
)4k D

dv
SV

dt
"A

40
7 BvSA!A

80
21BvSV#A

40
21B C

1#7(v
SA

)4k
1#(v

SA
)4k D (24)

dv
PV

dt
"420!84v

SA
!84v

SV
!105v

PV

The steady state values of the system are found to be: v
SA
"1.0 litres,

v
SV
"3.5 litres, and v

PV
"0.4 litres. Linearization of the model at the

steady state gives the matrix A.

A"A
!40

7
!

8k
35

8
105

14

40
7
#

80k
7

!

80
21

0

!84 !84 !105B
The eigenvalues of A are:

j
1
"º1@3!»!

2405
63

!

8k
105

j
2
"

º1@3

2
#

»

2
!

2405
63

!

8k
105

#

i
2
J3(º1@3#»)

j
3
"

º1@3

2
#

»

2
!

2405
63

!

8k
105

!

i
2

J3(º1@3#»)

where

º"

!5 103 633 725
250 047

!

904 516412k
138 915

#

11 552k2

46 305
!

512k3

1 157 625

#

4
2835

(17 955 996 682200#135246 870 052200k

#21 282 197 037 597k2!1 589993 712k3#2 846 016k4)1@2
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and

»"º~1@3A
!2 876 953

3969
#

2888k
1323

!

64k2

11 025B
For values of k of interest, eigenvalue j

1
is real and negative.

Eigenvalues j
2

and j
3

are complex conjugates, with real part which
crosses through zero from negative to positive as k increases, near
k"24, as shown in Fig. 1b.

5.3 D
1
"2.0 litres and D

2
"1.0 litres

The circulation is then described by the following system of equations:

dv
SA

dt
"!A

40
7 BvSA#A

8
105BvSV#14v

PV
!A

8
105B C

1#3(v
SA

)4k
1#(v

SA
)4k D

dv
SV

dt
"A

40
7 BvSA!A

80
21BvSV#A

80
21BC

1#3(v
SA

)4k
1#(v

SA
)4k D

dv
PV

dt
"420!84v

SA
!84v

SV
!105v

PV

The steady state of the system is found at: v
SA
"1.0 litres, v

SV
"3.5

litres, and v
PV
"0.4 litres. Linearization of the model at the steady

state gives the matrix A.

A"A
!40

7
!

16k
105

8
105

14

40
7

#

160k
21

!

80
21

0

!84 !84 !105B
The eigenvalues of A are:

j
1
"º1@3!»!

2405
63

!

16k
315

j
2
"

º1@3

2
#

»

2
!

2405
63

!

16k
315

#

i
2

J3(º1@3#»)

j
3
"

º1@3

2
#

»

2
!

2405
63

!

16k
315

!

i
2

J3(º1@3#»)
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where

º"

!5 103 633 725
250 047

!

1 809032 824k
416 745

#

46 208k2

416 745
!

4096k3

31 255 875

#

8
2835

(4 488 999 170550#22 541 145 008700k

#2 364 688 559733k2!117 777312k3#140 544k4)1@2

and

»"º~1@3A
!2 876 953

3969
#

5776k
3969

!

256k2

99 225B
For values of k of interest, eigenvalue j

1
is real and negative.

Eigenvalues j
2

and j
3

are complex conjugates, with real part which
crosses through zero from negative to positive as k increases, near
k"36, as shown in Fig. 1c.

5.4 D
1
"1.0 litres and D

2
"1.5 litres

The circulation is then described by the following system of equations:

dv
SA

dt
"!A

40
7 BvSA#A

8
105 BvSV#14v

PV
!A

4
105BC

3#5(v
SA

)4k
1#(v

SA
)4k D

dv
SV

dt
"A

40
7 BvSA!A

80
21BvSV#A

40
21BC

3#5(v
SA

)4k
1#(v

SA
)4k D

dv
PV

dt
"420!84v

SA
!84v

SV
!105v

PV

The steady state values of the system are found to be: v
SA
"1.0 litres,

v
SV
"3.5 litres, and v

PV
"0.4 litres. Linearization of the model at the

steady state gives the matrix A.

A"A
!40

7
!

8k
105

8
105

14

40
7
#

80k
21

!

80
21

0

!84 !84 !105B
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The eigenvalues of A are:

j
1
"º1@3!»!

2405
63

!

8k
315

j
2
"

º1@3

2
#

»

2
!

2405
63

!

8k
315

#

i
2

J3(º1@3#»)

j
3
"

º1@3

2
#

»

2
!

2405
63

!

8k
315

!

i
2

J3(º1@3#»)

where

º"

!5 103 633725
250 047

!

904 516 412k
416 745

#

11 552k2

416 745
!

512k3

31 255 875

#

4
2835

(17 955 996682 200#45 082 290017 400k

#2 364 688559 733k2!58 888 656k3#35 136k4)1@2
and

»"º~1@3A
!2 876 953

3969
#

2888k
3969

!

64k2

99 225B
For values of k of interest, eigenvalue j

1
is real and negative.

Eigenvalues j
2

and j
3

are complex conjugates, with real part which
crosses through zero from negative to positive as k increases, near
k"71, as shown in Fig. 1d.

6 Appendix B: Controlled venous compliance

A mathematical model was constructed in which the systemic venous
compliance C

SV
is controlled by the baroreflex, while R

4
, »

D
and F, are

held constant. C
SV

is given by Eq. (23). The stability of the model, for
different values of C

1
and C

2
was explored. The results of these

calculations are presented in Fig. 2.

6.1 C
1
"1.5 litres/mm Hg and C

2
"0 litres/mm Hg

The circulation is then described by the following system of equations:

dv
SA

dt
"!A

40
7 BvSA#A

4
105BvSVC

1#(v
SA

)4k
(v

SA
)4k D

#14v
PV

!A
8

105BC
1#(v

SA
)4k

(v
SA

)4k D
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dv
SV

dt
"A

40
7 BvSA!A

40
21BvSVC

1#(v
SA

)4k
(v

SA
)4k D#A

80
21BC

1#(v
SA

)4k
(v

SA
)4k D

dv
PV

dt
"420!84v

SA
!84v

SV
!105v

PV

The steady state of the system is found to be: v
SA
"1.0 litres,

v
SV
"3.5 litres, and v

PV
"0.4 litres. Linearization of the model at the

steady state gives the matrix A.

A"A
!40

7
!

8k
35

8
105

14

40
7
#

80k
21

!

80
21

0

!84 !84 !105B
The eigenvalues of A are:

j
1
"º1@3!»!

2405
63

!

8k
105

j
2
"

º1@3

2
#

»

2
!

2405
63

!

8k
105

#

i
2
J3(º1@3#»)

j
3
"

º1@3

2
#

»

2
!

2405
63

!

8k
105

!

i
2
J3(º1@3#»)

where

º"

!5 103 633725
250 047

!

904 516 412k
138 915

#

11 552k2

46 305
!

512k3

1 157 625

#

4
2835

(17 955 996682 200#135 246 870052 200k

#21 282 197 037 597k2!1 589 993 712k3#2 846016k4)1@2

and

»"º~1@3A
!2 876 953

3969
#

2888k
1323

!

64k2

11 025B
For values of k of interest, eigenvalue j

1
is real and negative.

Eigenvalues j
2

and j
3

are complex conjugates, with real part which
crosses through zero from negative to positive as k increases, near
k"24, as shown in Fig. 2a.
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6.2 C
1
"1.0 l/mm Hg and C

2
"0.25 l/mm Hg

The circulation is then described by the following system of equations:

dv
SA

dt
"!A

40
7 B v

SA
#A

8
35B v

SVC
1#(v

SA
)4k

1#5(v
SA

)4kD
#14v

PV
!A

16
35BC

1#(v
SA

)4k
1#5(v

SA
)4kD

dv
SV

dt
"A

40
7 B v

SA
!A

80
7 BvSVC

1#(v
SA

)4k
1#5(v

SA
)4kD#A

160
7 BC

1#(v
SA

)4k
1#5(v

SA
)4kD

dv
PV

dt
"420!84v

SA
!84v

SV
!105v

PV

The steady state values of the system are found to be: v
SA
"1.0

litres, v
SV
"3.5 litres, and v

PV
"0.4 litres. Linearization of the model at

the steady state gives the matrix A.

A"A
!40

7
!

16k
105

8
105

14

40
7
#

160k
21

!

80
21

0

!84 !84 !105B
The eigenvalues of A are:

j
1
"º1@3!»!

2405
63

!

16k
315

j
2
"

º1@3

2
#

»

2
!

2405
63

!

16k
315

#

i
2

J3(º1@3#»)

j
3
"

º1@3

2
#

»

2
!

2405
63

!

16k
315

!

i
2

J3(º1@3#»)

where

º"

!5 103 633725
250 047

!

1 809032 824k
416745

#

46208k2

416 745
!

4096k3

31 255 875

#

8
2835

(4 488 999170 550#22 541 145008 700k

#2 364 688559 733k2!117777 312k3#140 544k4)1@2
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and

»"º~1@3A
!2 876 953

3969
#

5776k
3969

!

256k2

99 225B
For values of k of interest, eigenvalue j

1
is real and negative.

Eigenvalues j
2

and j
3

are complex conjugates, with real part which
crosses through zero from negative to positive as k increases, near
k"36, as shown in Fig. 2b.

6.3 C
1
"0.5 l/mmHg and C

2
"0.5 l/mmHg

The cardiovascular circulation is then described by the following
system of equations:

dv
SA

dt
"!A

40
7 BvSA#A

4
35B v

SVC
1#(v

SA
)4k

1#2(v
SA

)4kD
#14v

PV
!A

8
35BC

1#(v
SA

)4k
1#2(v

SA
)4kD

dv
SV

dt
"A

40
7 BvSA!A

40
7 BvSVC

1#(v
SA

)4k
1#2(v

SA
)4kD#A

80
7 BC

1#(v
SA

)4k
1#2(v

SA
)4kD

dv
PV

dt
"420!84v

SA
!84v

SV
!105v

PV

The steady state of the system was found to be: v
SA
"1.0 litres,

v
SV
"3.5 litres, and v

PV
"0.4 litres. Linearization of the model at the

steady state gives the matrix A.

A"A
!40

7
!

8k
105

8
105

14

40
7
#

80k
21

!

80
21

0

!84 !84 !105B
The eigenvalues of A are:

j
1
"º1@3!»!

2405
63

!

8k
315

j
2
"

º1@3

2
#

»

2
!

2405
63

!

8k
315

#

i
2
J3(º1@3#»)

j
3
"

º1@3

2
#

»

2
!

2405
63

!

8k
315

!

i
2
J3(º1@3#»)
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where

º"

!5 103 633725
250 047

!

904 516 412k
416 745

#

11 552k2

416 745
!

512k3

31 255 875

#

4
2835

(17 955 996682 200#45 082 290017 400k

#2 364 688559 733k2!58 888 656k3#35136k4)1@2

and

»"º~1@3A
!2 876 953

3969
#

2888k
3969

!

64k2

99 225B
For values of k of interest, eigenvalue j

1
is real and negative.

Eigenvalues j
2

and j
3

are complex conjugates, with real part which
crosses through zero from negative to positive as k increases, near
k"71, as shown in Fig. 2c.
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