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Abstract. Mixed strategies, or variable phenotypes, can evolve in fluctuating
environments when at the time that a strategy is chosen the consequences of
that decision are relatively uncertain. In a previous paper, we have shown
several examples of explicit forms of optimal mixed strategies when an
environmental distribution and payoff function are given. In many of these
examples, the mixed strategy has a continuous distribution. In a recent study,
however, Sasaki and Ellner proved that, if the distribution of the environ-
mental parameter is modified in certain ways, the exact ESS distribution
becomes discrete rather than continuous. This forces us to take a closer look
at the robustness of optimal mixed strategies. In the current paper we prove
that such strategies are indeed robust against small perturbations of the
environmental distribution and/or the payoff function, in the sense that the
optimal strategy distribution for the perturbed system, converges weakly to the
optimal strategy distribution for the unperturbed system as the magnitude of
the perturbation goes to zero. Furthermore, we show that the fitness difference
between the two strategies converges to zero. Thus, although optimal strat-
egies in ‘ideal’ and perturbed systems can be qualitatively different, the
difference between the distributions (in a measure theoretic sense) is small.
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1 Introduction

Most organisms live in a greatly fluctuating environment. Not only physical
factors, such as temperature, rainfall, or fire, but also biological factors, such
as resource availability, predation risk, or outbreak of diseases, may vary
strongly in the course of time. These factors are often unpredictable and



usually morphological, physiological, or life history traits of organisms are
largely determined before information about their life-time environment be-
comes available.

Environmental fluctuations between generations have been shown to
affect the form of the optimal strategy, or the phenotype that is expected to
evolve (Cohen, 1966; Gillespie, 1973, 1977; Yoshimura and Clark, 1991;
Levins, 1968). Especially noticeable is that, if the magnitude of environmental
fluctuations is sufficiently large, the evolutionary outcome is a mixed strategy,
i.e. genotypes should generate different phenotypes, according to a probability
distribution. This is sometimes called a ‘bet-hedging strategy’ (Schaffer, 1974;
Slatkin, 1974; Seger and Brockman, 1988; Philippi and Seger, 1989).

In a previous paper (Haccou and Iwasa, 1995) we derived conditions for
optimal strategies to be mixed, and (for some cases analytical) methods for
finding the optimal mixture distribution. The model was formulated as fol-
lows: the expected number of offspring of an individual with phenotype
x when the environmental parameter is g is f (x, g). If the value of g is known
when the strategy x is chosen, then the solution is rather simple: the evolu-
tionarily stable population includes only a single genotype that uses the
strategy x which maximizes f (x, g) for the given value of g. In this case x is
a function of g. However, if the strategy x must be chosen before the environ-
mental state g is known, mixed strategies can evolve. This model can be used
in the case of non-overlapping generations, for annuals with overlapping
generations due to e.g. seed banks (see Sasaki and Ellner, 1995), or in the case
of overlapping generations when parents and offspring can be considered
equivalent with respect to future success after one period. In the latter case,
f (x, g) should include the contribution to the population size in the next
period due to parental survival. Furthermore, under strongly symplifying
assumptions sexual reproduction can be modelled by including only female
offspring (and female parental survival) in f (x, g). These situations are exam-
ined by Haccou and McNamara (in press).

In Haccou and Iwasa (1995), we have shown several examples in which the
optimal mixed strategy can be calculated explicitly for a given payoff function,
f (x, g), and a given distribution of the environmental parameter. One of the
examples is the case in which f (x, g) is a Gaussian function of the difference
between x and g, and where g is normally distributed. It was shown that in
that case the optimal strategy is either a degenerate or a normal distribution,
depending on the relative size of the variance of g compared to the width of
payoff function. If the variance in g is small, then the optimal strategy is to
concentrate on a single type, i.e. a pure strategy. In contrast, if the variance is
sufficiently large, the optimal strategy is mixed. The result was extended to the
case in which the organisms are given imperfect information on the environ-
mental state g at the time of their decision making (Haccou and Iwasa, 1995).
It was also extended to the case with frequency-dependent fitness and applied
to the problem of the seasonal timing of emergence for male butterflies in
relation to females (Iwasa and Haccou, 1994). McNamara et al. (1995) and
McNamara (1997) examined the case for state dependent models.
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Sasaki and Ellner (1995) proved that when the payoff function is analytic
and the distribution of the environmental parameter has bounded support,
the optimal mixed strategy distribution is discrete rather than continuous.
This implies for instance that if the payoff function is Gaussian and the
environmental parameter has a truncated normal distribution, then the opti-
mal mixed strategy is qualitatively different from the strategy that is optimal
for the unperturbed system.

This result raises the question how robust mixed strategies are against
perturbations of the environmental distribution and/or the payoff function.
Such robustness is important for several reasons. When modelling empirical
systems, we work with ‘idealized’ functions: usually we will have to approxim-
ate payoff functions as well as environmental distributions. Robustness is also
important in evolutionary dynamics, since, if slight perturbations lead to
totally different forms of optimal strategies, stable strategies might not evolve.

Haccou and Iwasa (1995) proved that for certain types of perturbations of
the environmental distribution and/or the payoff function, the fitness differ-
ence between the optimal mixed strategy for the unperturbed system and the
real optimal strategy is negligible. In this paper we generalize this result.
However, even if fitness differences between strategies are small, there is still
the possibility that the forms of strategies may differ strongly. In this paper we
prove that under a wide range of conditions the optimal strategy for perturbed
systems converges weakly towards the optimal strategy in the idealized
system, so that, even though one of the distributions may be discrete and the
other continuous, their forms are close to each other.

2 Outline of the problem

To clarify the problem, we briefly summarize the results of Haccou and Iwasa
(1995) and Sasaki and Ellner (1995) here, in a formal notation. Please note that
our main theorem (see Sect. 3) holds for more general models than those
treated in this section.

Let R be the set of real numbers, B the Borel-sigma algebra on R, R2 the
product space R]R, B2 the corresponding Borel sigma-algebra, and let k and
j be sigma-finite measures on (R, B). H is a probability measure on (R, B), that
specifies the distribution of the environmental parameter, g, and f (x, g) is
a non-negative measurable function on (R2, B2, k]j). We will call f (x, g) the
‘payoff function’. It specifies the expected number of offspring of an individual
that uses pure strategy x when the environmental parameter is g. P is
a probability measure on (R, B) that specifies the distribution of a mixture of
strategies. Note that this distribution may be degenerate.

The long-term success (fitness) of a genotype using a strategy with distribu-
tion P is (see e.g. Haccou and Iwasa, 1995):

PR

logCPR

f (x, g) dP(x)DdH(g) (1)

Robustness of optimal mixed strategies 487



Let P* be the probability distribution that maximizes (1). Haccou and Iwasa
(1995) showed that P* is unique and, furthermore:

PR

f (y, g)

:R f (x, g)dP*(x)
dH(g)"1 P*-almost everywhere (2)

(i.e. this equality holds for all y3D, with P*(Dc)"0), whereas on sets of
P*-measure zero the function on the left-hand side is less than or equal to one.

They derived from (2) that if f (x, g) has the form:

f (x, g)"l (g)w(x, g) (3)

where l (g) is an arbitrary, measurable positive function on (R, B, H), and:

PR

w(x, g)dj(g)"1 k-almost everywhere (4)

and if there is a P such that:

PR

w(x, g)dP(x)"H(g) j-almost everywhere (5)

then P is the optimal strategy distribution. This result can be used to find
optimal mixed strategy distributions numerically and, in some cases analyti-
cally. For instance if w(x, g) is Gaussian:

w(x, g)"
1

J2np2
1

expC!
1

2A
x!g

p
1
B
2

D (6)

and g is N(q, p2
2
) distributed, then the optimal strategy has a N(q, p2

2
!p2

1
)

distribution as long as p2
2
'p2

1
. Otherwise the optimal strategy is ‘x"q’.

Sasaki and Ellner (1995) showed that if w(x, g) has the form:

w (x, g)"ck(x!g) (7)

where k(z) satisfies the conditions:
(1) k(z) is analytic
(2) k(z)ea; is absolutely integrable for any a'0
(3) k(z)'0

and if the environmental distribution has bounded support then the optimal
mixed strategy is discrete. This implies, for instance that when g has a trun-
cated normal distribution that the optimal strategy for Gaussian w (x, g) (as in
(6)) is no longer continuously distributed. They also showed that for environ-
mental distributions with unbounded support in an open and dense subset of
the set of density functions on R the optimal strategy is discrete.

This result appears to indicate that small perturbations of the environ-
mental distribution can lead to qualitatively different optimal mixed strategy
distributions. However, even if the optimal distribution in the perturbed
system is discrete rather than continuous, it may still be close to the optimal
distribution in the unperturbed system. In this paper we examine whether that
is indeed the case. We will consider effects of perturbations in H as well as f.
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More specifically: we will examine whether, if there is a sequence M f
n
N converg-

ing to f and a sequence MH
n
N converging weakly to H, the sequence MP

n
N

specifying the optimal distributions for ( f
n
, H

n
) converges weakly to P*. To

clarify what this means: the following definitions of weak convergence of MP
n
N

to P* are equivalent:
(1) lim

n?=
:R f (x)dP

n
(x)":R f (x)dP*(x) for every continuous and

bounded function f
(2) lim sup

n?=
P
n
(A)6P*(A) for all closed sets A in R;

(3) lim inf
n?=

P
n
(A)7P*(A) for all open sets A in R;

(4) lim
n?=

P
n
(A)"P*(A) for every P*-continuity set A in R;

(5) let F
n
be the cumulative distribution function of P

n
and F* that of P*,

then lim
n?=

F
n
(x)"F*(x) in every point x where F* is continuous.

Weak convergence is also called convergence in distribution. The most well-
known examples of weak convergence are those based on the central limit
theorem, such as e.g. the convergence of the standardized binomial (n, p)
distribution to the normal distribution as n tends to infinity. This example also
illustrates that discrete distributions can get arbitrary close to continuous
distributions.

3 Main theorem and outline of the proof

Let MH
n
N be a sequence of probability measures on (R, B) and let M f

n
N be

a sequence of non-negative measurable functions on (R2, B2). We assume that
the following conditions hold:

(c1) As n goes to infinity, H
n
converges weakly to a probability measure

H on (R, B).
(c2) lim

n?=
f
n
(x, g)"f (x, g), uniformly on compact sets in R2, where

f (x, g) is a continuous function in x and g.
(c3) For all n: sup

x,g
f
n
(x, g)6K(R

(c4) For all compact sets E and all e3(0,1) such that H
n
(E)7(1!e) there

is a compact set A such that for all n:
(a) there is a xL 3A and s3(0, K) such that for all g3E f

n
(xL , g)7s,

(b) if g3E and x3Ac then there is a m3(0, (1!e)s) such that f
n
(x, g)(m.

We illustrate the meaning of condition (c4) with an example. Figure 1 shows
a contour plot of a Gaussian payoff function (such as given in (6)). The sets
A and E and the values of xL , s and m are indicated in the figure. Note that m can
be made arbitrarily small by increasing set A.

We denote the optimal strategy distribution corresponding to payoff
function f

n
(x, g) and environmental distribution H

n
by P

n
, and the optimal

strategy corresponding to f (x, g) and H by P*. Our main theorem is:

Theorem 1. ºnder the conditions (c1) to (c4), P
n

converges weakly to P* as
n goes to infinity.

The proof is based on the following two lemmas. Lemma 1 is proved in the
Appendix, whereas Lemma 2 is a corollary of Theorem 5.2 of Billingsley
(1968), stated here in a slightly different form.
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Fig. 1. A contourplot of a Gaussian payoff function (see e.g. Eq. (6)), to illustrate condition
(c4). The magnitude of the payoff function decreases with increased darkness of the
shading. When x"xL and g3E, the payoff function is at least s. When x 3A# and g3E,
the payoff function is at most m. Note that, by extending set A, m can be made arbitrarily
small

Lemma 1. If conditions (c1), (c3) and (c4) hold, the sequence MP
n
N is tight (i.e.

relative compact).

Lemma 2. If MP
n
N is a sequence of probability measures which converges weakly

to P and Mr
n
N is a sequence of functions which converges uniformly to r on

compact sets, where r is continuous, then

PrndP
n
PPrdP

Proof of Theorem 1. From Lemma 1 it follows that every infinite sequence
MP

n
N contains at least one weakly convergent subsequence. We will consider

such a subsequence MP
m
N and call its limit PK . From Lemma 2 it follows that,
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under condition (c2) and weak convergence of MP
m
N to PK :

PR

f
m
(x, g)dP

m
(x)PPR

f(x, g)dPK (x) (8)

uniformly in g, on compact sets. Furthermore, since H
n
converges weakly to

H, it follows from (8) and from Lemma 2 that:

PR

logCPR

f
m
(x, g)dP

m
(x)DdH

m
(g)PPR

logCPR

f (x, g)dPK (x)DdH(g) (9)

Since the f
n
are bounded (condition (c3)) and P* is a probability measure, it

follows from the dominated convergence theorem that, uniformly in g:

PR

f
m
(x, g)dP*(x)PPR

f (x, g)dP*(x) (10)

and, from this we can conclude (again using Lemma 2) that

PR

logCPR

f
m
(x, g)dP* (x)DdH

m
(g)PPR

logCPR

f (x, g)dP*(x)DdH(g) (11)

Furthermore, since P
m

specifies the optimal strategy for f
m

and H
m
:

PR

logCPR

f
m
(x, g)dP*(x)DdH

m
(g)6PR

logCPR

f
m

(x, g)dP
m
(x)DdH

m
(g)∀m (12)

Combining (12) with (9) and (11) gives:

PR

logCPR

f (x, g)dP* (x)DdH(g)6PR

logCPR

f (x, g)dPK (x)DdH (g) (13)

Therefore, unless P*"PK , (13) contradicts the fact that P* is the optimal
strategy for f and H. We can conclude that every weakly convergent sub-
sequence of MP

n
N converges to P*, and, therefore, since MP

n
N is a tight sequence,

P
n
converges weakly to P*.

Corollary. An immediate consequence of ¹heorem 1 is that the fitness difference
between P

n
and P* converges to zero as n tends to infinity, since:

06PR

logCPR

f
n
(x, g)dP

n
(x)DdH

n
(g)!PR

logCPR

f
n
(x, g)dP*(x)DdH

n
(g)

"GPR

logCPR

f
n
(x, g)dP

n
(x)DdH

n
(g)!PR

logCPR

f (x, g)dP* (x)DdH(g)H
!GPR

logCPR

f
n
(x, g)dP*(x)DdH

n
(g)!PR

logCPR

f (x, g)dP*(x)DdH(g)H
(14)
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and both differences on the right-hand side of the equality sign converge to
zero.

Generalizations. Condition (c2) may be weakened: f may be discontinuous in
g as long as H(D) is zero, where D is the set where f

n
(x, g

n
) does not converge

to f (x, g) for some sequence Mg
n
N converging to g. With the proper adjustment,

Lemma 2 is still valid (see Billingsley, 1968, Theorem 5.2). Thus (9) and (11)
still hold in such cases and as a consequence, inequality (13) can still be
derived. We cannot allow discontinuities of f as a function of x, however, since
then we can not ensure that convergence of f

n
to f occurs PK -almost everywhere.

Thus, (8) may not be valid in such cases.
Note that condition (c3) may be weakened, since the functions f

n
(x, g) can

be multiplied with arbitrary positive functions l
n
(g). This makes no difference

for optimal strategies nor fitness.
Condition (c4) can be weakened. The condition does not have to be

valid for all compact sets E and all e3(0,1), but only for all compact sets E such
that for all n H

n
(E)71!e with e3(0,1). (See proof of Lemma 1 in the

Appendix.)

4 Discussion

In this paper we have proved that slight modifications of the payoff function
f and/or the environmental distribution H have only minor effects on the form
of the optimal strategy. Furthermore, we proved that the difference between
the fitness realised by the exact optimum, P

n
, for a perturbed system and the

fitness when the optimal strategy for the unperturbed system, P*, is used is
very small. This implies that the examples used in Haccou and Iwasa (1995)
are robust, i.e. the optimal strategy for the ideal situation remains accurate
when the payoff function or the environmental parameter distribution is
slightly modified.

In Appendix D of Haccou and Iwasa (1995), we have shown that the fitness
difference between P* and P

n
can be arbitrarily small if the perturbation is

small. However, the proof in that paper required rather restrictive conditions:
the original distribution must have a continuous probability distribution
and we only considered specific types of perturbations, not including e.g.
truncation.

The proof in the current paper is very general concerning the class of
perturbations. In addition, we do not require that the optimal mixed strategy
of the original system is continuous. Hence the robustness holds not only
when P* corresponds to a continuous distribution, but also for discrete or
even degenerate P*. This is very important because almost all optimal mixed
strategies are claimed to be discrete for a wide class of environmental distribu-
tions and payoff functions (Sasaki and Ellner, 1995).

In most practical cases, approximate payoff functions and/or environ-
mental distributions are used. Our result implies that slight misspecifications
of such functions will not lead to large errors in predicted optimal strategies.
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To give an example, concentrate on the case in which the payoff function is
a Gaussian function of the difference between the phenotype and the environ-
mental parameter (x!g), as in Eq. (6), and where g is normally distributed. In
that case, when the probability distribution of the environmental variable is
normal with a sufficiently large variance, then the optimal mixed strategy has
a normal probability distribution, i.e. a continuous distribution (Haccou and
Iwasa, 1995). Sasaki and Ellner (1995) have shown that with a slight modifica-
tion of the distribution of the environmental parameter (e.g. truncation of the
tail of distribution), the exact optimal mixture distribution becomes discrete.
Based on this result, one might expect that the exact optimal strategy is very
different from the normal distribution. However, the result in the present
paper demonstrates that when the modification of the distribution of the
environmental parameter is small this is not the case.

Sasaki and Ellner (1995) argue that discrete rather than continuous
strategy distributions will be more likely to evolve, given the fact that they are
optimal under a large variety of conditions. Our result suggests that this view
should be modified. There are combinations of payoff functions and environ-
mental distributions where the discrete optimal strategy is well approximated
by a continuous strategy. Since, furthermore, the fitness differences between
the two will be very small, continuous strategies may evolve, especially when
there are costs connected to realising a discrete strategy. In such cases, it might
be easier to generate normal distributions, since error distributions generated
by e.g. noise in developmental processes are likely to be close to normal, due
to the central limit theorem. The mean and variance of such errors can then be
adjusted to the evolutionary stable values.

Our results also have other consequences in an evolutionary context.
Firstly, they imply that adjustment to small consistent changes in the payoff
function and/or the environmental distribution does not require a large
change in strategy. Secondly, since the strategy P* corresponding to a
certain f and H, will still do well when there are slight perturbations of these
functions, small temporary changes in these functions do not imply a huge loss
in fitness. An example can be found in Haccou and Iwasa (1995), who
examined the effects of truncation of a Gaussian environmental distribution
on the fitness difference between the real optimal strategy and a Gaussian
strategy distribution (when the payoff function is as in Eq. (6)). These
facts apparently contradict the simulation example given by Sasaki and
Ellner (1995, see their Fig. 2b), where a discrete strategy rapidly replaces
a Gaussian strategy. However, whereas the payoff function in their example is
Gaussian (as in Eq. (6)), they used a uniform environmental distribution,
which is far removed from a Gaussian distribution. As a consequence the ESS
strategy in their example is dimorphic, which is very different from a Gaussian
strategy. Our results imply that if they had used for instance a slightly
truncated Gaussian environmental distribution, the replacement rate of the
Gaussian strategy by the optimal strategy would have been much lower.
Furthermore, the optimal strategy would resemble the Gaussian strategy
strongly.
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Appendix: proof of Lemma 1

To prove Lemma 1 we first prove the following:

Lemma 1@. For all compact E, all n and all probability measures Q on (R, B):

PE

:R f
n
(x, g)dP

n
(x)

:R f
n
(x, g)dQ(x)

dH
n
(g)7MH

n
(E)N2. (A1)

Proof. Let Q be a probability measure on (R, B) and define:

r
n
(g)"PR

f
n
(x, g)dP

n
(x)

(A2)

d
n
(g)"PR

f
n
(x, g)dQ(x)

Since P
n

is the optimal strategy corresponding to f
n

and H
n
, it follows

from (2) that:

PR

f
n
(y, g)

r
n
(g)

dH
n
(g)61 ∀y (A3)

from this it is easily derived that:

PR

d
n
(g)

r
n
(g)

dH
n
(g)61 (A4)

Since d
n
(g) and r

n
(g) are positive functions we can conclude that for all

compact E:

PE

d
n
(g)

r
n
(g)

dH
n
(g)61 (A5)

Define the measure:

HI
n
(g)"

H
n
(g)

H
n
(E)

(A6)

Then it follows from (A5) that

PE

d
n
(g)

r
n
(g)

dHI
n
(g)6

1

H
n
(E)

(A7)

Furthermore, from Jensen’s inequality we find:

PE

d
n
(g)

r
n
(g)

dHI
n
(g)7GPE

r
n
(g)

d
n
(g)

dHI
n
(g)H

~1
(A8)
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Combining (A7) and (A8) gives:

PE

r
n
(g)

d
n
(g)

dHI
n
(g)7H

n
(E) (A9)

Lemma 1@ follows from the combination of inequality (A9) and definitions (A2)
and (A6). Lemma 1 is now proved through contradiction. We show that, if
MP

n
N is not tight, it is possible to define a probability measure Q such that

Lemma 1@ is violated.
From condition (c1) it follows that the sequence MH

n
N must be tight, and

thus:
∀ e3(0,1), & compact E such that ∀ n:

H
n
(E)71!e

(A10)

(see e.g. Billingsley, 1968). We will now show that:

∀ d3(0,1) & e3(0,1), s.t. if 0(m((1!e)s and s(K, then:

eK
eK#(1!e)s!m

(d
(A11)

Proof. For eB0 the left-hand side of this inequality goes to zero, whereas for
eC1 it goes to K/(K!m), which is larger than one. Furthermore, it is larger
than zero for e3(0,1). Therefore, for every d3(0,1) it is always possible to find
an e3(0,1) such that inequality (A11) holds.

Now suppose that MP
n
N is not tight, then it follows from the definition of

tightness (see e.g. Billingsley, 1968), that

& 0(d(1 s.t. ∀ A compact &m s.t.
(A12)

P
m
(A)(1!d

Consider this particular value of d and fix e such that (A11) holds. Further-
more, choose a compact set E such that (A10) holds, and a compact set A as
specified in condition (c4). Let m be such that, for this A, P

m
(A)(1!d.

Furthermore, we define a probability measure Q such that:

PR

f
m
(x, g)dQ(x)"PA

f
m
(x, g)dP

m
(x)#P

m
(Ac) f

m
(xL , g) (A13)

where xL is as defined in condition (c4). Then, with r
m
(g) and d

m
(g) defined as in

(A2), it follows from (A13) and condition (c4) that:

r
m
(g)

d
m
(g)

"

:A f
m

(x, g)dP
m
(x)#:Ac fm

(x, g)dP
m
(x)

:A f
m
(x, g)dP

m
(x)#P

m
(Ac) f

m
(xL , g)

6

:A f
m

(x, g)dP
m
(x)#P

m
(Ac)m

:A f
m

(x, g)dP
m
(x)#P

m
(Ac)s

(A14)
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for all g3E. Since, furthermore, for all g3E (cf. (A12) and condition (c3)):

PA

f
m

(x, g)dP
m
(x)((1!d)K (A15)

and P
m
(A#)'d, it is easily shown that (A14) implies:

r
m
(g)

d
m
(g)

(

(1!d)K#dm
(1!d)K#ds

(A16)

Together with (A11) this gives:

r
m
(g)

d
m
(g)

(1!e ∀ g3E (A17)

and thus, using (A10):

PE

r
m
(g)

d
m
(g)

dH
m
(g)((1!e)H

m
(E)6MH

m
(E)N2 (A18)

Together with Lemma 1, this gives a contradiction. We can therefore conclude
that the sequence MP

n
N must be tight.
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