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Abstract. We introduce some special chiasma formation processes. First
a family of discrete chiasma formation processes is introduced and we deter-
mine the nature of higher order interference associated with those processes.
Secondly we consider a two-stage chiasma formation process, where the
associated recombination frequency between two markers depends not only
on their map distance but also on their location along the chromosomes. We
characterise under this process, in some cases, the nature of interference
between two segments.
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1 Introduction

The calculation of recombination rates among multiple markers on chromo-
somes is usually based on independence assumptions regarding the occur-
rence of recombination for all segments involved. These assumptions are
unrealistic since the occurrence of recombination between two adjacent mar-
kers generally implies a reduced chance of recombination for the next marker.
This phenomenon called interference is said to take place whenever crossover
events fail to occur at random.

The basic measure of interference is the pairwise coincidence measure due
to Haldane (1919). If A and B are two disjoint genomic regions, then the
coincidence measure, D

A,B
for A and B is defined as

D
A,B

"

r (A&B)

r (A)r (B)
(1)
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where r(A), r (B) are the recombination values associated with A and B,
respectively, and r (A&B) denotes the probability of simultaneous coccurrence
of recombination in both A and B.

When D
A,B

(1 we say that there is positive interference between A and B,
when D

A,B
'1 we say that there is negative interference, and the non-interfer-

ence case corresponds to D
A,B

"1. Most cytological data show the effects of
positive interference, but there are some suggestions that negative interference
can occur.

Karlin and Liberman (1994) have the following generalization of
Haldane’s measure. Let A"MA
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2
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two collections of mutually disjoint genomic regions and define

DA,B"
r(A

1
&A

2
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as the higher order interference measure between the two collections
A and B, where e.g. r (A

1
&A

2
& . . . &A

k
) is the probability of simultaneous

occurrence of recombination in all the genomic regions in the collection
A"MA

1
, A

2
, . . . ,A

k
N. The higher order interference between A and B is said

to be positive if DA,B(1, and negative if DA,B'1. The case of no interference
between A and B corresponds to DA,B"1.

The nature of interference between two collections of genomic regions is
determined by the chiasma formation process operating along the chromo-
some. Some analytical models for chiasma formation with no chromatidal
interference have been suggested. Among them we find the following two
models:

1. The Count-Location (C-L) Process was introduced independently by Karlin
and Liberman (1979a) and Risch and Lange (1979). Let the chromosome
under consideration have length l. The count-location (C-L) process is
determined by a discrete probability sequence c"Mc

0
, c

1
, . . . , : c

i
70,

+
i
c
i
"1N and a continuous distribution function F (x) with support [0, l],

subscribing to the following interpretations.
(a) The probability that i crossovers are formed in [0, l] is c

i
for

i"0, 1, 2, . . .
(b) Conditioned that i crossovers occur, their locations along the chromo-

some are distributed as i independent realizations from the distribution
F(x).

We refer to the probability sequence c as the count distribution and to F (x)
as the location distribution. An important feature of such processes is the
existence of a genetic map function. A map function r"M(x) expresses the
recombination frequency r between two markers as a function of their map
distance x, where x is the expected number of chiasmata between the
markers. Evans et al. (1993) show that, with no chromatidal interference,
the C-L process is the only chiasma formation point process that possesses
a map function.
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2. Discrete (nodule) Chiasma location (Karlin and Liberman, 1994). Here it is
assumed that the possible points of exchange along the chromosome,
known as nodules are predetermined. Therefore it is natural to consider
a discrete chiasma process, where the possible locations of the chiasmata
are the given nodules. Thus the discrete (nodule) chiasma formation process
is described by a sequence MX

n
: n"1, 2, . . . N of dichotomous random

variables where X
n
"1 or 0 depending whether there is a point of exchange

at the n-th nodule or not. A simple version of the discrete process is
when the sequence MX

n
N describes a Markov chain of dependent random

variables.

In this paper we consider some special discrete chiasma formation pro-
cesses and determine the nature of their associated higher order interference.
The paper is organized as follows. In Sect. 2 we review some representations
of multilocus recombination distributions and a classification of the higher
order measure of interference in terms of linkage values. In Sect. 3 we intro-
duce a family of discrete chiasma formation processes and determine the
nature of higher order interference associated with those processes. In Sect. 4
we consider a two-stage chiasma formation process, where the associated
recombination frequency between two markers depends not only on their
map distance but also on their location along the chromosome. We character-
ize under this process, in some cases, the nature of interference between two
segments.

2 Classification of higher order interference

Karlin and Liberman (1994) introduce a classification of higher order inter-
ference in terms of linkage values. The classification is based on the notions of
multilocus crosover distribution and their associated linkage values. For ready
reference we describe the notions and the main results here.

Let A be any genomic region. We associate with A an indicator random
variable X such that X"1 or X"0, depending on whether recombination
occurred or did not occur on A, respectively. We define:

Definition 2.1. Crossover distribution. ¸et A"MA
1
,A

2
, . . . , A

k
N be a collec-

tion of pairwise disjoint genomic regions. ¸et X
1
, . . . ,X

k
be the k random

variables indicating the occurrence of recombination on A
1
,A

2
, . . . , A

k
, respec-

tively. ¹he crossover distribution CA is the joint probability distribution of the
random variables X

1
, . . . , X

k
. It is determined by the 2k parameters MCA(x)N

where
CA(x)"CA(x

1
, . . . ,x

k
) x

i
"0, 1 for i"1, 2, . . . , k (3)

is the probability P (X
1
"x

1
, . . . , X

k
"x

k
). ¹he parameters MCA(x)N satisfy

06CA(x)61 for all x (4)

+
x

CA(x)"1 (5)

450 H. Manos, U. Liberman



Remark 2.1. Let A"MA
1
, . . . , A

k
N and B"MB

1
, . . . , B

l
N be two collections

of mutually disjoint genomic regions then clearly

1. r (A
1
&A

2
&. . .&A

k
)"CA(1)

2. r (B
1
&B

2
& . . .&B

l
)"CB(1)

3. r (A
1
&. . . A

k
&B

1
& . . . &B

l
)"CAXB(1)

where 1"(1, . . . , 1) is a vector with the corresponding dimension whose all
components are units. Therefore, the higher order measure of interference
DA,B is given by

DA,B"
CAXB(1)

CA(1)CA(1)
. (6)

Given A
1
, . . . ,A

k
, let A be a genomic region that is a union of some or all of

A
1
, . . . ,A

k
. Thus A"Zi3I Ai

, where I is a non-empty subset of M1, 2,2 , kN.
Let D"(D

1
, . . . ,D

k
), where D

i
"0, 1 for i"1, 2, . . . , k, be the incidence

vector of I, namely
I"I(D)"Mi :D

i
"1N . (7)

We then define:

Definition 2.2. Recombination and ¸inkage »alues. ¸et D"(D
1
, . . . ,D

k
) be an

incidence vector.
(i) ¼hen D90 r(D) is the recombination value associated with the genomic

region Zi3I(D)Ai
.

(ii) ¼hen D"0 the associated genomic region is empty and we define

r(0)"r (0, . . . , 0)"0 . (8)

¹he linkage value c (D) is the one corresponding to the recombination value r (D)
and is therefore defined as

c (D)"1!2r (D)

where accordingly c(0)"1.

Liberman and Karlin (1984) establish the following relations between the
crossover distribution and its associated linkage values.

Proposition 2.1. ¸et C be the crossover distribution associated with the genomic
regions MA

1
, . . . , A

k
N and let Mc(D)N be their associated linkage values. ¹hen for

all D"(D
1
, . . . ,D

k
)

c (D)"+
x

(!1)(x,D) C(x)

and for all x"(x
1
, . . . , x

k
)

C(D)"
1

2k
+
D

(!1)(x,D) c(D)

where (x, D)"+k
i/1

x
i
D
i
. ¹he sums extend over all possible values of x and

D respectively.
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Following the above definitions, Remark 2.1 and Proposition 2.1, we have
the following classification of higher order interference due to Karlin and
Liberman (1994).

Proposition 2.2. ¸et A"MA
1
,A

2
, . . . ,A

k
N and B"MB

1
, B

2
, . . . , B

l
N be two

collections of pairwise disjoint genomic regions. ¹hen

DA,B(1 iff CAXB(1)(CA(1)CB(1) ,

DA,B"1 iff CAXB(1)"CA(1)CB(1) , (9)

DA,B'1 iff CAXB(1)'CA(1)CB(1) .

Equivalently if Mc (D)N are the linkage values associated with CAXB, such that
D"(DA, DB ), where DA is that part of D corresponding to A and DB to B, then
DA,B is less than 1, equal to 1 or bigger than 1 iff

+
DA,DB

(!1)DD
A D#DDB D [c(DA , DB)!c (DA, 0)c(0,DB)] (10)

is negtive, zero or positive, respectively. Here Da D"a
1
#a

2
# . . .# a

m
when

a"(a
1
, a

2
, . . . , a

m
) and 0 is the zero vector with the corresponding dimension.

3 Discrete model for chiasma formation

Suppose that there is an aray of discrete positions along the chromosome
denoted by 0, 1, 2, . . . at which crossover can occur. Let P

0
be the probability

of no crossover at the 0 nodule and suppose that for any n71, if no crossover
occurs at the n!1 nodule then a crossover occurs at the n nodule with
probability 1!a

n
and if a crossover occurs at the n!1 nodule then with

probability 1!b
n
a crossover occurs at the n nodule. The transition probabil-

ity matrix from the n!1 position to the n position is thus given by:

0 1

0

1 A
a
n

b
n

1!a
n

1!b
n
B

Where ‘‘0’’ denotes no crossover and ‘‘1’’ denotes a crossover at the given
position.

We would like to determine the nature of interference associated with this
process under the assumption of no chromatidal interference.

Let P
k
be the probability that there is no crossover at the k nodule. Then

for k71

P
k
"a

k
P
k~1

#b
k
(1!P

k~1
)"b

k
#(a

k
!b

k
)P

k~1
. (11)

In the special case where a
n
"a and b

n
"b we get that for any k71

P
k
"b#(a!b)P

k~1
. (12)
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Or equivalently

P
k
"b

k~1
+
i/0

(a!b) i#(a!b)kP
0

. (13)

This gives

P
k
"

b(1!(a!b)k)

1#b!a
#P

0
(a!b)k. (14)

Therefore for the region A that consists of the n nodules s#1,
s#2, . . . , s#n

c(A)"P
s`1

an~1"G
b(1!(a!b)s`1)

1#b!a
#P

0
(a!b) s`1Han~1. (15)

This is so as c(A), under the assumption of no chromatidal interference, is the
probability that no crossover occurs in A. Once c (A) is known we can
determine the nature of interference using (10).

Consider now the general case where a
n
and b

n
depend on n. In this case it

may be difficult to find c(A). However we can give two propositions which
characterize the nature of interference between regions. Let ½

n
"1 denote the

event that crossover occurs at the n module and ½
n
"0 denote the event that

crossover does not occur at the n module. Let Pn
m
"P (½

m
"0 D½

n
"0).

Lemma 3.1. ¸et A and B be any two regions along the chromosome. Assume
that the last nodule in A is labeled by r and the first nodule in B is labeled by
m"r#s#1. Namely, between the regions A and B we have the nodules
r#1, . . . r#s. ¹hen

1. c(AXB)"c(A)c(B)
P r
m

P
m

.

2. For any j7r: P r
j`1

!P
j`1

"(Pr
j
!P

j
) (a

j`1
!b

j`1
).

Proof.
1. Let B@ be the region B without its first nodule m. Then

c (B)"P
m
c(B@ D½

m
"0) (16)

where c(B@ D½
m
"0) is the conditional linkage value given ½

m
"0, namely

the probability of no crossover in B@ given that there is no chiasma
formation at the m nodule.

Also
c (B DA)"P r

m
c(B@ D½

m
"0) (17)

where c (B DA) denotes the probability of no crossover in the region B, given
that there is no crossover in the region A. Since c (AXB)"c(A)c (B DA) (16)
and (17) yield

c(AXB)"c (A)c(B)
P r
m

P
m

. (18)

2. For any j7r we have by (11)

P
j`1

"b
j`1

#P
j
(a

j`1
!b

j`1
) (19)
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and
P r
j`1

"b
j`1

#Pr
j
(a

j`1
!b

j`1
) . (20)

Hence
P r
j`1

!P
j`1

"(Pr
j
!P

j
) (a

j`1
!b

j`1
) . (21)

Conclusion 1. Let A and B be two disjoint genomic regions. Denote the last
nodule in A by r. Assume that for any j, a

j
'b

j
. Since P r

r
"1'P

r
we get from

Lemma 3.1 by induction that for any k7r, P r
k
'P

k
. Hence the lemma implies

that c (AXB)'c (A)c(B). Namely if a
j
'b

j
for all j there is negative interfer-

ence between any two genomic regions.
On the other hand if for all j, b

j
'a

j
then the differences P r

k
!P

k
have

alternating signs. In this case we cannot deduce in general the nature of
interference. The following proposition gives the nature of pairwise interfer-
ence for this case.

Proposition 3.2. ¸et A and B be two disjoint genomic regions. ¸et r denote the
last nodule in A and m"r#s#1 denote the first nodule in the region B,
namely between the regions A and B there are s nodules.

Suppose that for all n, b
n
7a

n
. ¹hen, if s is even there is positive or zero

interference between the regions A and B and if s is odd there is negative or zero
interference between the regions A and B.

Proof. Let R be defined by

R"c(AXB)!c (A)c (B) . (22)

In order to prove the proposition we have to show that if s is even then R60
and if s is odd then R70.

From (18) it is sufficient to show that for any s70, and m"r#s#1, if
s is even then Pr

m
6P

m
and if s is odd then P r

m
7P

m
.

It is clear that P r
r
"17P

r
. Hence it is sufficient to prove that the sequence

MP r
j
!P

j
N
j
has alternating signs. This follows directly from (21), since for all

n, b
n
7a

n
.

Definition 3.1. ‘‘Ordered collections’’: ¸et S"MS
1
, . . . ,S

k1
N and T"M¹

1
, . . . ,¹

k2
N

be two collections of disjoint genomic segments, where S
i
"(x

i
,x

i
#s

i
) for

16i6k
1
and ¹

j
"(y

j
, y

j
#t

j
) for 16j6k

2
. ¼e say that the two collections S

and T are ‘‘ordered collections’’ if

x
1
(x

2
( . . .(x

k1
(y

1
(y

2
( . . .(y

k2
. (23)

Namely there is no segment of the collection T between any two segments of the
collection S. Since the genomic regions are pairwise disjoint it is clear that

1. x
i
#s

i
(x

i`1
for 16i(k

1
.

2. y
i
#t

i
(y

i`1
for 16i(k

2
.

3. x
k1
#s

k1
(y

1
.

We can prove that under the conditions a
n
7b

n
the result of Conclusion 1 for

positive interference can be generalized for any pair of ‘‘ordered collections’’.
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Proposition 3.3. Suppose that for all n a
n
7b

n
. ¹hen the process involves higher

order negative or zero interference for any pair of ‘‘ordered collections’’.

Proof. Let S"MS
1
, . . . ,S

k1
N and T"M¹

1
, . . . ,¹

k2
N be two ‘‘ordered collec-

tions’’ of disjoint genomic regions. In view of (10) we have to prove that R70
where R is defined by:

R"+
D

(!1) DD D [c(DS,DT)]!c(DS, 0)c (0,DT)] . (24)

For any 16l6k
1

and 16r6k
2

we define the set E
l, r

by

E
l, r
"M(DS,DT) : For i'1 and j(r DS

i
"DT

j
"0 and DT

i
"DS

l
"1N (25)

Then we can rewrite R in the form

R"+
r, l

+
D3E

l,r

(!1)DD D [c(DS,DT)!c(DS, 0)c (0,DT)] (26)

where D"0 was omitted from the sum as c(0, 0)"1. In order to prove that
R70 it is sufficient to show that for any 16l6k

1
and 16r6k

2

+
D3E

l,r

(!1) DD D [c(DS,DT)!c(DS, 0)c(0,DT)]70 . (27)

For any D let I(D)"Mi :D
i
"1N. Consider any (DS,DT)3E

l,r
. Then the last

nodule in the region A"Zi3I(DS ) Si
is the last module of S

l
and the first nodule

in B"Zi3I (DT) ¹i
is the first nodule of ¹

r
. Let n denote the last nodule in the

region S
l
and m"n#k#1 denote the first nodule in the region ¹

r
. Then

from Lemma 1 we get that

c(DS,DT)"
Pn
m

P
m

c (DS, 0)c (0,DT) . (28)

(28) implies that

+
D3E

l,r

(!1)DD D [c(DS,DT)!c(DS, 0)c(0,DT)]"A
Pn
m

P
m

!1B +
D3E

i,r

(!1)DD D c(DS, 0)c(0,DT)

(29)

Using the fact that for any i, a
i
!b

i
'0 and that Pn

n
"17P

n
we get by

induction from (21) that for any j7n, Pn
j
7P

j
. In particular Pn

m
7P

m
. There-

fore in order to prove (27) we have to show that for any 16l6k
1

and
16r6k

2
, M

l, r
70 where M

l,r
is defined by

M
l,r
" +

D3E
l,r

(!1)DD D c(DS, 0)c(0,DT)" +
DS3F

l

(!1)DDS D c (DS, 0) +
DT3G

r

(!1)DT c(0,DT)

(30)
where

F
l
"MDS : DS

i
"0 i'l and DS

l
"1N (31)

and
G

r
"MDT : DT

i
"0 i(r and DT

r
"1N . (32)
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To show that M
l, r
70 it is sufficient to show that for any m regions

A
1
, . . . , A

m
and 16m

0
6m

+
D3H

m0

(!1) DD D c (D)60 (33)

where H
m0

is the set of all the D of order m with D
m0
"1. We may assume

without loss of generality that m
0
"1 and show that

+
D3H

1

(!1) DD D c(D)60 (34)

where H
1

is the set of all D with D
1
"1.

Indeed let H be the set of all D of order m and H
0
be the set of all D of order

m with D
1
"0. Then

+
D3H

1

(!1) DD D c(D)" +
D3H

(!1) DD Dc (D)! +
D3H

0

(!1) DD D c(D) . (35)

Let 1j denote a vector of order j of the form (!1, 1, . . . , 1). Proposition 2.1
implies that

C(1m )"
1

2m
+

D3H

(!1) DD Dc (D) (36)

is the probability of simultaneously recombination in all the regions A
i
where

16i6m and

C(0, 1m!1 )#C(1, 1m!1 )"
1

2m~1
+

D3H
0

(!1) DD D c(D) (37)

is the probability of simultaneously recombination in all the regions A
i
where

26i6m. Equations (36) and (37) imply that

+
D3H

1

(!1) DD Dc (D)" +
D3H

(!1) DD Dc(D)! +
D3H

0

(!1) DD D c(D)

"2m~1[2C(1m )!C(0, 1m!1 )!C(1, 1m!1 )]

"2m~1[C(1m )!C(0, 1m!1 )] . (38)

Recall from Karlin and Liberman (1994) that for any x7y, C(x)6C (y), and
in particular C(1m)!C(0, 1m!1)60. Hence (34) follows from (38).

This concludes the proof.

4 Two-stage model for chiasma formation

One of the problems with the C-L process is that the amount of interference
between any pair of regions does not depend neither on the distance between
them nor on their locations along the chromosome but just on their map
lengths. On the other hand the deficiency of the discrete chiasma location
process is the assumption that the nodules are in specified locations and also
the fact that the model assumes a constant number of nodules. We describe
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now a model that combines the C-L process and the discrete chiasma location
process, which allows variable number of nodules at unspecified locations.

The model is composed of two stages. The first stage is a C-L process of
nodules formation and the second one is some process that determines in
which nodules crossover occur. More specifically,

Definition 4.1. ¹he two-stage model. In the first stage we have discrete prob-
ability sequence c"Mc

0
, c

1
, . . . , : c

i
70, +

i
c
i
"1N and a continuous distribu-

tion function F (u) with support [0, l], determining the number and location of the
nodules where

1. ¹he probability that n nodules are formed in [0, l] is c
n

for n"0, 1, 2, . . .
2. Conditioned that n nodules are formed, their locations along the chromosome

are distributed as n independent realization from the distribution F(u).

¼e refer to c as the count distribution of the nodules formation process and to
F(u) as the location distribution of nodules.

Given that there are n nodes, the second stage is a Markov discrete process
for chiasma formation, that determines in which nodules crossover occurs. ¹he
second stage given by the pair [M, P

1
], where P

1
is the probability of no

crossover in the first nodule and the transition probabiity matrix M given by

0 1

0

1 A
a

b

1!a

1!bB .

If P
1
"0 and b"0 we get that in any nodule crossover must occur. This

gives the regular C-L process determined by [c,F (x)].
Let A"[c, d] be any segment along the chromosome with map length

t":d
c
F (u)du. Let x":c

0
F (u)du be the map length of the segment from the

beginning of the chromosome to the beginning of the segment A. Namely A is
a segment of the form [x,x#t] in map units. Thus the linkage value of A is
a function of x and t. Namely c(A)"c(x, t).

Proposition 4.1. Consider a two-stage process, where the first stage is a C-¸
process of nodules, determined by [c,F (x)], and the second one is a discrete
chiasma location process determined by [M,P

1
]. ¸et f (t) be the generating

function of the count distribution c and let g(t)"f (1!t). ¹hen the linkage value
of the segment A"[x,x#t] is given by

c(x, t)"g (t)#
b

a(1#b!a)
Mg(t!at)!g(t)N

#

1

aGP
1
!

b

1#b!aH Mg (t#x[1#b!a]!at)

!g (t#x[1#b!a])N (39)
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Proof. Conditioned that n nodules are formed let B
n
(k

1
, k

2
) be the probability

that k
1

of them appear in the region [0,x], k
2

of them appear if A"[x,x#t]
and n!k

1
!k

2
of them appear in the region [x#t, 1]. Then

B
n
(k

1
, k

2
)"A

n

k
1
BA

n!k
1

k
2
Bxk1tk2 (1!x!t)n!k

1
!k

2 . (40)

For 16i6n let P
i
denote the probability of no crossover in the i nodule.

Then
P
i`1

"P
i
a#(1!P

i
)b"b#P

i
(a!b) . (41)

This implies that

P
i`1

"

b

1#b%a
#AP1

!

b

1#b!aB (a!b) i . (42)

Let J be any genomic region. Conditioned that n nodules are formed along the
chromosome, let M

n
(J ) be the probability of no chiasma formed in J, and

¹
n
(J ) be the probability that at least one of the nodules is in the region J, but

there are no chiasma in this region. Then M
n
(A) is given by

M
n
(A)"(1!t)n#¹

n
(A) (43)

where

¹
n
(A)"

n~1
+

k1/0

n~k1
+

k2/0

P
k1`1

ak2!1B
n
(k

1
, k

2
) . (44)

Substituting (40) in (44) yields

¹
n
(A)"

n~1
+

k1/0
A

n

k
1
B xk1

n~k1
+

k2/1
A
n!k

1
k
2
B tk2 (1!t!x)n!k

1
!k

2 ak2
P
k1`1
a

(45)

Recall that

n~k1
+

k2/1
A
n!k

1
k
2
BA

at

a!t!xB
k2
"!1#

n~k1
+

k2/0
A
n!k

1
k
2
BA

at

1!t!xB
k2

"!1#A1#
at

1!t!xB
n~k1

(46)

Or equivalently

n~k1
+

k2/1
A
n!k

1
k
2
BA

at

a!t!xB
k2
"!1#C

1!x!(1!a)t

1!t!x D
n~k1

. (47)

Substituting (47) in (45) and using the fact that for k
1
"n the right-hand side

of (47) vanishes yields that

¹
n
(A)"!

(1!t!x)n

a

n
+

k1/0
A

n

k
1
BP

k1`1A
x

1!t!xB
k1

#

[1!x!(1!a)t]n

a

n
+

k1/0
A

n

k
1
BP

k1`1C
x

1!x!(1!a)tD
k1
. (48)

458 H. Manos, U. Liberman



From (42) we get that for any ¼

n
+

k1/0
A

n

k
1
BP

k1`1
¼k1"

b

1#b!a

n
+

k1/0
A

n

k
1
B¼k1

#CP1
!

b

1#b!aD
n
+

k1/0
A

n

k
1
B [¼(a!b)]k1. (48)

Or equivalently

n
+

k1/0
A

n

k
1
BP

k1`1
¼k1"

b

1#b!a
(1#¼)n

#CP1
!

b

1#b!aD (1#(a!b)¼)n (50)

Using (50) we get from (48) that

¹
n
(A)"

b

a(1#b!a)
[(1!t#at)n!(1!t)n]#

1

a CP1
!

b

1#b!aD
][1!t!x (1#b!a)#at)n!(1!t!x (1#b!a))n] (51)

Recall that g (x)"+=
n/0

c
n
(1!s)n and for any segment A"[x,x#t]

c(A)"c (x, t)"+=
n/0

c
n
M

n
(A), we conclude by (43) and by (51) that

c(x, t)"g (t)#
b

a(1#b!a)
Mg(t!at)!g(t)N#

1

a GP1
!

b

1#b!aH
]Mg(t#x[1#b!a]!atN!g(t#x[1#b!a])N . (52)

This proves the proposition.

Nature of interference far from the centromere

It is difficult to characterize in general the natural of interference for two or
more segments since it is arduous to calculate the linkage value of the region
AXB where A and B are any two disjoint genomic region. However this is
possible in the case where the process is stationary, P

1
"

b
1#b!a and conse-

quently by (42) for any k, P
k
"P

1
. This is approximately the case when the

segments under consideration are far from the centromere.
Consider two disjoint segments A and B with map lengths t

1
and

t
2

respectively. Let D"(DS,DT )"(e
1
, e

2
) where e

i
"0, 1. Let lD"e

1
t
1
#e

2
t
2

and let lDS"e
1
t
1

and lDT"e
2
t
2
. We prove

Proposition 4.2. Consider a two-stage process such that the first stage is
determined by [c, F(x)] and the second stage by [M,P

1
] where M is the

transition probability matrix given by

0 1

0

1 A
a

b

1!a

1!bB
(53)

and P
1
" b

(1`b~a)
.
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Assume that a7b and that the C-¸ process [c,F (x)] involves negative
interference for any two disjoint genomic regions. ¹hen the two-stage process
involves negative interference for any two disjoint genomic regions.

Proof. Let A"[x
1
, x

1
#t

1
] and B"[x

1
#t

1
#x

2
, x

1
#t

1
#x

2
#t

2
] be

two disjoint genomic regions represented in map units. We have to prove that

c(A)c (B)!c (AXB)(0 . (54)

We determine first the linkage value c (AXB) of the region AXB. Conditioned
that n nodules are formed the probability of no chiasma formation in the
region AXB is given by

M
n
(AXB)"P

n
(0, 0)#P

n
(0, 1)#P

n
(1, 0)#P

n
(1, 1) (55)

where

1. P
n
(0, 0) is the conditional probability that given that n nodules are formed,

no one of them is located in the region AXB. P
n
(0, 0) is given by

P
n
(0, 0)"(1!t

1
!t

2
)n . (56)

2. P
n
(1, 0) is the probability that conditioned that n nodules are formed at

least one of them appears in the region A, no one of them appears in the
region B, but there is no crossover in this region. P

n
(1, 0) is given by

P
n
(1, 0)"(1!t

2
)n¹

n
(AI ) (57)

where AI "[ x1

1~t2
, x1`t1
1~t2

], and ¹
n
(AI ) is the probability that at least one

nodule is located at AI , but there are no chiasma in this region. Since
P
1
" b

1`b~a
, (51) implies that

P
n
(1, 0)"!

b

a (1#b!a)
+
DS

(!1) DDS D (1!t
1
!t

2
#alDS )n (58)

where DS"0 or 1.
3. P

n
(0, 1) is the probability that conditioned that n nodules are formed, no

nodule appears in the region A, at least one of them appears in the region B,
but there is no crossover in this region. P

n
(0, 1) is given by

P
n
(0, 1)"(1!t

1
)n¹

n
(BI ) (59)

where BI "[x1`x2

1~t1
, x1`x2`t2

1~t1
]. (51) implies that

P
n
(0, 1)"!

b

a(1#b!a)
+
DT

(!1) DDS D (1!t
1
!t

2
#alDT)n (60)

where DT"0 or 1.

4. P
n
(1, 1) is the probability that given that n nodules are formed at least one

of them appears in B, and one of them in A, but there is no crossover in the
region AXB. Let B

n
(k

1
,k

2
, k

3
, k

4
) be the probability of k

1
nodules in the
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segment [0,x
1
], k

2
nodules in the segment A"[x

1
, x

1
#t

1
], k

3
nodules

in the segment [x
1
#t

1
, x

1
#t

1
#x

2
, k

4
nodules in the segment

B"[x
1
#t

1
#x

2
,S] and, n!k

1
!k

2
!k

3
!k

4
nodules in the segment

[S, 1], where S"x
1
#x

2
#t

1
#t

2
. Then

B
n
(k

1
, k

2
, k

3
, k

4
)"A

n

k
1
BA

n!k
1

k
2
BA

n!k
1
!k

2
k
3

BA
n!k

1
!k

2
!k

3
k
4

B
]xk1

1
tk2
1
xk3
2
tk4
2

(1!S )n!k
1
!k

2
!k

3
!k

4 (61)

and P
n
(1, 1) is given by

P
n
(1, 1)"+

K

B
n
(k

1
, k

2
, k

3
, k

4
)P

k1`1
ak

2
!1Pkk

3
#k#1a

k
4
!1 . (62)

Where k"k
1
#k

2
and K is the set

K"M(k
1
, k

2
, k

3
, k

4
); k

1
#k

2
#k

3
#k

4
6n and k

2
, k

4
71N (63)

We recall that Pkk
3
#k#1 is the probability of no crossover in the k#k

3
#1

nodule conditioned that there is no crossover in the k nodule. Equation (41)
implies that

Pkk
3
#k#1"

b

a#b!a
#

(1!a) (a!b)k3`1

1#b!a
. (64)

Substituting (61) in (62) yields,

P
n
(1, 1)"

1

a2

n
+

k1/0
A

n

k
1
BP

k1`1
xk1
1

n~k1
+

k2/1
A
n!k

1
k
2
B (at

1
)k2

n~k1!k
2

+
k3/0

Pkk
3
#k#1

]A
n!k

1
!k

2
k
3

B xk3
2

n~k1!k
2
!k

3

+
k4/1

A
n!k

1
!k

2
!k

3
k
4

B
](at

2
)k4 (1!S )n!k

1
!k

2
!k

3
!k

4 (65)

Recall that

n~k1!k
2
!k

3

+
k4/1

A
n!k

1
!k

2
!k

3
k
4

B (at
2
)k4 (1!S )n!k

1
!k

2
!k

3
!k

4"

+
DT

(!1) DDT D#1(1!S#alDT )
n!k

1
!k

2
!k

3 . (66)

We conclude that

P
n
(1, 1)"

1

a2

n
+

k1/0
A

n

k
1
BP

k1`1
xk1
1

n~k1
+

k2/1
A
n!k

1
k
2
B

](at
1
)k2

n~k1!k
2

+
k3/0

Pkk
3
#k#1A

n!k
1
!k

2
k
3

B xk3
2

+
DT

(!1) DDT D#1

](1!S#alDT )
n!k

1
!k

2
!k

3 (67)
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(64) implies that for any ¼,

m
+

k3/0
A

m

k
3
B Pkk

3
#k#1¼k3"

b

a#b!a

m
+

k3/0
A

m

k
3
B¼k3

#

(a!b)(1!a)

1#b!a

m
+

k3/0
A

m

k
3
B [¼ (a!b)]k3

"

b

1#b!a
(1#¼)m#

(1!a) (a!b)

1#b!a

][1#(a!b)¼]m. (68)

Recalling that S"x
1
#x

2
#t

1
#t

2
we conclude that

n~k1!k
2

+
k3/0

Pkk
3
#k#1 A

n!k
1
!k

2
k
3

B xk3
2

+
DT

(!1) DDT D#1 (1!S#alDT)
n!k

1
!k

2
!k

3

"!

b

1#b!a
+
DT

(!1) DDT D (1!x
1
!t

1
!t

2
#alDT)

n!k
1
!k

2

!

(a!b)(1!a)

1#b!a
+
DT

(!1) DDT D (1!S#(a!b)x
2
#alDT)

n!k
1
!k

2 . (69)

Substituting (69) in (67) and summing over k
2

imply that

P
n
(1, 1)"

1

a2

n
+

k1/1
A

n

k
1
BP

k1`1
xk1
1 G

b

1#b!a
+
D

(!1) DDT D

](1!t
1
!t

2
!x

1
#alDT)

n!k
1#

(a!b) (1!a)

1#b!a

]+
D

(!1) DD D (1!t
1
!t

2
!(1#b!a)x

2
#alDT)

n!k
1H . (70)

Using (49) and the fact that P
1
" b

1`b~a
yields that

P
n
(1, 1)"

1

a2 GA
b

1#b!aB
2

+
D

(!1) DD D (1!t
1
!t

2
#alDT)

n
#

]
(a!b)(1!a)

(1#b!a)2
+
D

(!1) DD D (1!t
1
!t

2
!(1#b!a)x

2
#alDT)

nH .

(71)
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Recall that c(AXB)"+=
n/0

c
n
M

n
(AXB) and that g (s)"+=

n/0
c
n
(1!s)n we

conclude by (55), (56), (58), (60), and (71) that for P
1
" b

1`b~a
the linkage value

of AXB is given by

c(AXB)"g (t
1
#t

2
)!

b

a (1#b!a)

]C+DS

(!1)DDS D g (t
1
#t

2
!alD)#+

DT

(!1)DDT D g(t
1
#t

2
!alD)D

#

b

a2(1#b!a)2GAb+
D

(!1)DD D g(t
1
#t

2
!alD)#(a!b)(1!a)

]+
D

(!1)DD D g (t
1
#t

2
#(1#b!a)x

2
!alDBH (72)

By Proposition 4.1 if P
1
" b

1`b~a
then c (A)c (B) is given by

c (A)c(B)"Gg (t
1
)!

b

a (1#b!a)
+
DS

(!1)DDS D g (t
1
!alDS )H

]Gg (t
2
)!

b

a (1#b!a)
+
DT

(!1)DDT D g (t
2
!alDT)H . (73)

Or equivalently

c(A)c(B)"g (t
1
)g (t

2
)#A

b

a (1#b!a)B
2

+
D

(!1)DD D g (t
1
!alDS )g(t

2
!alDT )

!

bg(t
2
)

a(1#b!a)
+
DS

(!1)DD D g (t
1
!alDS )

!

bg(t
1
)

a(1#b!a)
+
DT

(!1)DD D g (t
2
!alDT ) (74)

(72) and (74) imply that

c(A)c(B)!c (A,B)"g (t
1
)g(t

2
)!g (t

1
#t

2
)

#A
b

a (1#b!a)B
2

+
D

(!1) DD D [g(t
1
!alDS ) g(t

2
!alDT)!g(t

1
#t

2
!alD)]

#

b

a (1#b!a)
+
DS

(!1) DDS D [g(t
1
#t

2
!alDS )!g (t

2
)g (t

1
!alDS)]

#

b

a (1#b!a)
+
DT

(!1) DDT D [g(t
1
#t

2
!alDT)!g (t

1
!alDT)]

#

b (b!a)(1!a)

(1#b!a)2
+
D

(!1) DD D [g(t
1
#t

2
#(1#b!a)x

2
!alD) . (75)
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Let y"t
1
#t

2
#(1#b!a)x

2
!a(t

1
#t

2
).

+
D

(!1) DD D g (t
1
#t

2
#(1#b!a)x

2
!alD)"

[g(y)#g (y#at
1
#at

2
)]![g(y#at

2
)#g(y#at

1
)]'0 (76)

and it is positive since g@@'0. Hence if a7b the last term in the right-hand
side of (75) is non-positive and therefore by direct computation

c(A)c (B)!c (A,B)6(1!» )2[g(t
1
)g (t

2
)!g (t

1
#t

2
)]

#»(1!» )M[g(t
1
)g (t

2
!at

2
)!g (t

1
#t

2
!at

2
)]

#[g(t
2
)g (t

1
!at

1
)!g (t

1
#t

2
!at

1
)]N

#»2[g(t
1
!at

1
)g(t

2
!at

2
)!g(t

1
#t

2
!a(t

1
#t

2
))] (77)

where »" b
a(1`b~a)

.
If a7b then »" b

a(1`b~a)
61. If the C-L process [c, F(x)] involves nega-

tive interference for any two genomic regions then from Karlin and Liberman
(1994) we know that for any x, y

g (x)g(y)!g (x#y)(0 . (78)

Hence all the terms in the right-hand side of (77) are negative and this in turn
implies that

c(A)c(B)!c (AXB)(0 (79)
as desired.

Example 1: Two-stage process with Poisson count
Consider a two-stage process with Poisson count of nodules formation
namely.

c
k
"

jk

k !
e~j k"0, 1, 2, . . . (80)

It is known that the Poisson C-L processes is the only process that involve
non-interference for any configuration of loci (see Karlin and Liberman 1994).

We show that in this case the two-stage process involves positive or
negative interference depending only on the transition probability matrix
M and specifically depending whether a(b or a'b.

The generating function of the Poisson count is given by

f (s)"e!j (1!s) . (81)

Therefore g (x)"f (1!s)"e~js and Proposition 4.1 yields that

c(x, t)"e~jt (1!P#Pejat)#Q (ejat!1) e~jte~jx (1`b~a) . (82)

where P" b
a(1`b~a)

and Q"1
a
(P

1
! b

1`b~a
). The associated recombination

value is

r (x, t)"1
2
!1

2
e~jt(1!P#Pejat)!1

2
Q (ejat!1)e~jte~jx(1`b~a) . (83)

464 H. Manos, U. Liberman



Let P
1
" b

1`b~a
then (82) implies that

c(x, t)"(1!P)e~jt#Pe~j(1~a)t . (84)

Since for any x, y, g (x)g (y)!g(x#y)"0, (75) implies that

c(A)c(B)!c (AXB)"
b (b!a)(1!a)

(1#b!a)2
e!j (t

1
#t

2
#(1#b!a)x

2
) (1!eajt

2 ) (85)

Therefore if b'a then

c(A)c(B)!c (AXB)'0 (86)

and the two-stage process involves positive interference for any two disjoint
genomic regions, and if b(a then

c(A)c(B)!c (AXB)(0 (87)

and the two-stage process involves negative interference for any two disjoint
genomic regions.

Example 2: Two-stage process with Binomial count
In Proposition 4.2 we show that at the stationary case where P

1
" b

1`b~a
, if

a7b and the C-L process [c,F (x)] involves negative interference for any two
genomic regions, then also the corresponding two-stage process involves
negative interference for any two genomic regions.

Consider the case where b7a and the C-L process [c, F(x)] involves
positive interference for any two genomic regions. Unlike Proposition 4.2 we
cannot characterize the nature of interference at the stationary case. Although
when b7a the last term in (75) is nonnegative and we get an opposite
inequality in (77), in this case »" b

a(1`b~a)
71 and this implies that the second

term in the right-hand side of (77) is negative. Hence we cannot use (77)
directly to show that c (A)c (B)!c(AXB)'0.

However we show that in the special case where c is a bionomial count and
b7a then the corresponding two-stage process involves (at the stationary
state) positive interference for any two genomic regions. It is known from
Liberman and Manos (1995) that C-L process with Binomial count involves
higher order positive interference

The bionomial count distribution c is given by

c
k
"GA

n

kB pk(1!p)n~k

0

06k6n

k'n
(88)

The generating function of the Binomial count is given by f (s)"(1!p#ps)n.
We prove
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Proposition 4.3. Consider a two-stage process such that the first stage is
determined by [c, F (x)] where c is a Binomial count and the second stage is
specified by [M,P

1
] where M is the transition probability matrix given by

0 1

0

1 A
a

b

1!a

1!bB (89)

and P" b
(1`b~a)

.
Assume that a6b. ¹hen the two-stage process involves positive interference

for any two disjoint genomic regions.

Proof. Let s
1

and s
2

be the map lengths of the two genomic regions A and
B respectively. Since b7a the last term in the right-hand side of (75) is
nonnegative and using g(s)"f (1!s)"(1!ps)n, we conclude that

c(A)c(B)!c (A,B)

7(»!1)2[(1!t
1
)n(1!t

2
)n!(1!t

1
!t

2
)n]

!» (»!1)[(1!t
1
)n(1!t

2
#at

2
)n!(1!t

1
!t

2
#at

2
)n

#(1!t
2
)n (1!t

1
#at

1
)n!(1!t

1
!t

2
#at

1
)n]

#»2[(1!t
1
#at

1
)n (1!t

2
#at

2
)n!(1!t

1
!t

2
#at

1
#at

2
)n] (90)

where t
1
"ps

1
and t

2
"ps

2
and »" b

a(1`b~a)
71. Let X"1!t

1
!t

2
and

½"1!t
1
!t

2
#t

1
t
2
. Then (90) yields

c(A)c(B)!c(A,B)7(»!1)2t
1
t
2
t

n
+
k/1

½k~1Xn~k

!»[(»!1)(1!a)t
1
t
2

n
+
k/1

(½#at
1
!at

1
t
2
)k~1(X#at

1
)n~k

#(½#at
2
1!at

1
t
2
)k~1(X#at

2
)n~k#»2(1!a)2t

1
t
2

]
n
+
k/1

(½#at
1
#at

2
!a(2!a)t

1
t
2
)k~1(X#at

1
#at

2
)n~k. (91)

Let h
1
"at

1
(1!t

2
) and h

2
"at

2
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). In order to prove that

c(A)c(B)!c (A,B)'0 it is sufficient to prove that for any m, r
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Recall that
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We conclude using (92) that
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By direct computation
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Hence (94) implies that
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Recall that
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We conclude using (97) and (98) that

½mX r#(½#h
1
#h

2
)m (X#at

1
#at

2
)r7(½#h

1
#h

2
)m(X#at

1
)r

#½m (X#at
2
)r . (99)

Hence (96) coupled with (99) implies that
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Since t
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we conclude that
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It is clear that
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and »" b
a(1`b~a)

71 as b7a, and (101) implies that ¸70. We conclude that
c(A)c(B)!c (AXB)'0. Hence the process involves positive interference for
any two genomic regions.

5 Discussion

Recombination does not occur uniformly across chromosomes in most spe-
cies. In some chromosomal areas, chiasmata are rarely seen. It is important,
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therefore, in modelling the process of recombination, and especially in inter-
preting data with such models, that this lack of uniformity be considered. The
count-location process, while a first step in the modelling, entails that inter-
ference does not depend on the distance between chromosomal regions or
their location. By superposition of the second stage of our model, namely
a process that determines in which nodules crossovers occur, we generalize the
possibilities for interference considerably.

Our second stage is a discrete Markov process for chiasma formation
specified by the simple matrix M. We have seen in Proposition 4.2 and
Examples 1 and 2 that if a'b in (53) negative interference is generated.
Examples 1 and 2 demonstrate that b'a produces positive interference. In
light of the rarity of observed negative interference, this suggests that biolo-
gically reasonable versions of M would have b7a. It would, of couse, be
interesting to estimate these parameters from observed pairs of chromosomal
regions assuming Poisson or Binomial counts. This would allow eventual
comparison of observed and expected levels of interference.
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