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Abstract. In this paper we propose a general framework for discrete time
one-dimensional Markov population models which is based on two funda-
mental premises in population dynamics. We show that this framework
incorporates both earlier population models, like the Ricker and Hassell
models, and experimental observations concerning the structure of density
dependence. The two fundamental premises of population dynamics are
sufficient to guarantee that the model will exhibit chaotic behaviour for high
values of the natural growth and the density-dependent feedback, and this
observation is independent of the particular structure of the model. We also
study these models when the environment of the population varies stochasti-
cally and address the question under what conditions we can find an invariant
probability distribution for the population under consideration. The sufficient
conditions for this stochastic stability that we derive are of some interest, since
studying certain statistical characteristics of these stochastic population pro-
cesses may only be possible if the process converges to such an invariant
distribution.
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1 Introduction

One of the most fundamental recent discoveries in theoretical ecology is the
possibility of extremely complex dynamics in even the simplest single-species
population models [10]. The phenomena were labelled ‘chaotic’ by applied
mathematicians but since ecologists failed to observe them in natural popula-
tions [5], interest in chaotic dynamics in ecology has only recently revived.
New methods in time-series analysis and the theory of chaos itself have been
responsible for this. There is now a rather extensive theory on chaos in
population models and several tests to check whether a sample obtained from
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such a model is indeed chaotic, with the estimation of so-called Lyapunov
exponents as one of the most famous examples. For details see the excellent
overview by Hastings et al. [6]. As is correctly pointed out in their paper, one
of the most important shifts in the theoretical approach to population models
is eliminating the assumption that the processes we observe in nature are mere
transitions to stable equilibria of some underlying model, and thus insensitive
to initial population properties in the long run. In chaotic systems populations
which are ‘almost the same’ in the beginning may show very different behav-
iour in the long run and it is exactly this sensitive dependence on initial
conditions which makes them harder to study. Methods like Lyapunov
exponent estimation try to measure this sensitivity and thus provide a method
to demonstrate the existence of chaotic dynamics in a population process.

However, most of these methods simply use time-series analysis without
any underlying model structure, or just look at one particular model with one
particular set of parameter values obtained from field data. Both strategies
avoid the more fundamental question if ecological population models are
intrinsically chaotic or whether just some of the samples obtained are chaotic.
It has been observed already that the dynamic behaviour of certain time-series
models depend critically on the parameter values used in the model [13], thus
making it impossible to analyse those samples which can be modelled by a set
of parameter values which are ‘close’ in the parameter space but predict
fundamentally different behaviour. Of course, in practice all estimated param-
eter values will contain measurement errors.

This observation is particularly important since in most models some
parameters, especially the ones which describe the influence of an environ-
ment on the population, vary around a certain fixed value in a stochastic way.
This poses another, related problem since large scale stochastic simulations
have to be used to study these variations but it is not clear on beforehand (and
in some cases indeed not true) that these simulation results are valid, unless
some ‘stochastic stability’ conditions are met. While chaotic processes can be
characterised as processes which are predictable on a small time scale (since
they are deterministic) but unpredictable on a larger time scale (since they are
extremely sensitive to initial values), stochastically stable processes can be
characterised as processes which are unpredictable on every time scale, but
whose statistical properties converge to stationary values which can then be
found by appropriate measurements. Therefore certain simulation studies, as
carried out extensively by many ecologists, can only be validated when it is
rigourously proven that the underlying models are stochastically stable.
Otherwise, simulations are used to obtain constant estimates for properties
which are not constant in time at all. Some of these questions for stochastic
population models have been addressed earlier [2, 3] but stochastic stability
has not been treated there, and the results are only valid for one particular
model due to Ricker [14].

In this paper we try to show that both chaos and stochastic stability are
intrinsic characteristics of population models by providing a framework for
these models which is the most general possible considering two fundamental
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first principles of population models. This framework will be presented in
Sect. 3, after discussing some earlier population models in the next section. We
then show in Sect. 4 that every model which satisfies these two first principles
will show chaotic behaviour if the natural growth and the density-dependent
feedback are strong enough, irrespective of the particular model under consid-
eration. This proves that within our framework, chaos in discrete population
models is a consequence of the first principles in ecology and not of a certain
particular model structure or parameter value. In Sect. 5 we introduce the
stochastic extension of our framework and in Sect. 6 we then derive the
sufficient conditions for these stochastic models to be stochastically stable,
thus showing in which cases measurement and estimation of statistical prop-
erties in stochastic ecological models can be guaranteed to be possible. In
Sect. 7 we discuss the speed of convergence of the distribution functions in
stochastic models. Some numerical examples illustrating our results are given
in Sect. 8 and we end with some conclusions.

2 Earlier population models

In [4] Hassell has introduced a systematic approach to the development of
so-called density-dependent population models for a single species of the form

N+ 1 =g(Ny)

Here N, represents the population size at time ¢ and ¢ is a known function
which is usually assumed to be continuous. Hassell argued that these popula-
tion models should be based on two fundamental premises:

(P1) The population should have the potential to increase exponentially for
small populations

(P2) There should be a density-dependent feedback which reduces the actual
rate of increase as the population grows

Ecologists usually look at the ‘mortality’ as a measure of this density-
dependent feedback, which is characterised by the following density depend-
ence function:
N,
InN, - In (2.1

t+1

In experimental data [4] it is often found that there is a pronounced
density-dependence for large N, which becomes negligible as N, decreases, and
that the density-dependence for large N, is characterised either by a fixed slope
b (in so called contest models) or that this slope increases rapidly with
increasing N, (in scramble models). A simple linear contest model describing
this situation is for example

N
In——= —Inr+blnN, (2.2)

t+1
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with r > 1 and b > 1, resulting in
Nitiq =VN£1_b)

Clearly this model is not very realistic for small populations since it predicts
that

lim N,y = o©

N, -0

which means that for very small populations there is an infinite capacity to
grow. A simple correction, as proposed in [16] is:

ANE™Y N, >N,
Nt+1 = {r ' '

23
)"Nt NtéNca ( )

with 4 > 1 a constant and N, a critical population value. This means that
there is either density-dependence as before for populations which are larger
than the critical population, or exponential growth for populations which are
smaller than the critical population. However, this model is not smooth at
N, and has some other properties which are unsatisfactory from an ecological
point of view [4].

Two famous examples exist of models which ‘smoothen’ this model. The
first one is the Hassell model [4]:

_ N
1+ N,
with r > 1 and b > 1. It is clear that for this model

Ny N, ~
Neer NP N, >0

Nt+1:

and it can thus indeed be interpreted as a smoothed version of model (2.3).
Note that the density dependence function is given by

N,

t+1

In

= —Inr+bln(1 + N,

which means that the density dependence relation (2.1) will be approximately
linear with fixed slope b for large N,. As mentioned before, we also need
scramble models in which this slope increases rapidly as the population
N, increases. An example of such a model is due to Ricker [14]:

Niti =rNye "
It satisfies
N,

t+1

In = —Inr+ be™™

so the density dependence increases exponentially when N, goes to infinity.
Remark that in all these models r represents the exponential growth factor for
very small populations, the natural growth in ideal circumstances, and b the
density-dependent feedback because of limited environmental conditions.
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3 A general deterministic population model

In order to smoothen the model (2.3) we propose a more general one:
N,
t+1

with » > 1, b > 0 and in which the function f: [0, co [ - R is called the
density function. We require it to satisfy:

In

= —Inr+bInf(N,) (3.1)

(A1) f:[0, oo [ — IR s strictly positive and continuously differentiable on its
domain.

(A2) f(0)=1

(A3) The function L: [0, co[ — IR defined by L(x) = x f"(x)/f (x) is strictly
increasing.

Condition (A1) guarantees that the transitions are indeed smooth. Condition
(A2) makes sure that the model satisfies the first fundamental assumption in
ecological models (P1): for small populations exponential growth should be
possible

N,~0 = N,,{ ~rN,

Remark that it can always be satisfied by choosing suitable r and b, as long as
r>1, b >0. The last condition (A3) represents the second fundamental
assumption in population models (P2). It guarantees that for b > 0 the density
dependence increases for increasing population size since the slope of the
density is:

dInN/Nioy _dblnf(N) _, dInf"")

dIlnN,  dIaN,  dInN,
b
zf(elan) f/(elnNL)elnN,
=b N}{ N(Z)V‘) =b L(N))
t

As mentioned in the preceding section, models with lim,_, ., L(x) < oo are
usually called contest models while models where L has no finite limit are
called scramble models. We will see that there is an important difference
between the two types when we consider stochastic perturbations of the
models.

Note that the Hassell model and the Ricker model are both special cases of
our general framework, with f(x) = 1 + x and f(x) = e* respectively. The first
one is a typical contest model and the second one a typical scramble model.
Also remark that the linear model (2.2) does not belong to our class of models
since it violates the second condition: it does not permit exponential growth
for small population sizes.
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Our general model can be rewritten in the transition form
Niyi =F.,(N):= rN, [f(Nt)]_b (3.2)

which clearly shows the capacity for exponential growth (with exponential
growth factor r > 1) and the density-dependent feedback that reduces growth
(and of which the intensity is characterised by the positive parameter b). The
model (3.1) together with the conditions on f can thus be seen as a general
population model for non overlapping generations which unifies models like
the Hassell and Ricker models, taking into account the premises of ecological
population models and the experimental observations on density-dependence
(see for example [4]).

In the following lemma some elementary but useful properties of the
functions f satisfying (A1)~(A3) and F,, are derived, that will be needed
later on.

Lemma 3.1. All f satisfying (A1)+(A3) and F., as defined in equation (3.2)

derived from these satisfy:

1. fis strictly increasing and f(x) = 1 for all x = 0.

2. There exists a b > 0 such that for all b > b, the function F, (x) has a unique
maximal value F, y(a) in x = a. The point a does not depend on r.

3. For all xo >0 and x = x,:

L(xo)
£(X) = f(x0)- <Xi> (3.3)

4. If the function L has a finite limit L = lim,_, ., L(x) then also for all xq > 0
and x = xq:

f(x) < f(%)-(j()) (3.4)
5. For all x > 0:
Inf(e*) = f(1) = 1 + xL(e¥) (3.5
6. For all xo > 0 and x > x,:
In f(e*) = In f(xq) + xL(x¢) — L(x0)In x¢ (3.6)

7. If the function L has a finite limit L = lim,_, ., L(x) then

lim x 'Inf(®) =L
Proof. 1. Since L(0) = 0 and L(x) is strictly increasing, we have L(x) > 0 for
x > 0 and since f'is strictly positive, condition (A3) implies that f” is strictly
positive. Therefore f(x) = f(0) = 1.
2. Since

F(x)=rf(x)"" |:1 — bxf’(x)

J )

] =rf(x)""[1 = bL(x)]
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a critical point a must satisfy L(a) = %, and must be a maximum. Since L is
strictly increasing because of (A3) and independent of r, taking b > 1/L(1)
gives the result.

3. & 4. We have

o e=50

for all xo > 0 by definition, and for x = x, condition (A3) implies

Xo

L(x)) = L(x) <L

so the results follow easily.
5. Since In f(0) = 0 we have

Inf(e") = f J; ((SS)) ds = f ’; ((SS)) ds + f f]’,((?) ds (3.7)

Because of the first part of the lemma we find

O g [ s — 1) — 0 — £1)
| das= | rods = =10 =11

0
and for the second integral
e¥ £/ e L X
J AU ds:J L© 4 :J L(e") dt < xL(e”) (3.8)
1 S (s) 1 S 0

where we have used condition (A3) in deriving the last inequality.

6. Follows immediately from 3. by the substitution x = ¢” after taking the
logarithm of both sides.

7. We use de I'Hospital’s rule:

lim Inf(e)/x = lim f'(e%)e*/f(e") = lim L(e)=L 0

Corollary 3.1. Every population model of the form (3.1), with b > 0 and f satisfy-
ing conditions (A1)~(A3), has a unique equilibrium population.

Proof. An equilibrium population N* satisfies N* = F(N*) or f(N*) =
'’ > 1 and since the lemma implies that fis strictly increasing with f(0) = 1
and lim,_, , f(x) = oo, this shows that there exists a unique N* satisfying this
equation. O

4 Chaos in deterministic population models

It has been established for a long time that very simple Markovian population
models can exhibit extremely complex behaviour, which is labelled chaotic by
mathematicians [10, 11]. A number of definitions are available for chaos in
dynamic systems and for many population models it has been proven that
these definitions apply. An interesting problem in the theory of population
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dynamics is therefore the question if the concept of chaos depends on the
precise details of the model under consideration, or that it represents a struc-
tural property. More precisely: if we have two population models of the form

Ni+1=g(Ny)

(with N, the population at time ¢) and the functions g have roughly the same
shape, we want them to be both chaotic or both not chaotic: we want chaos to
be an intrinsic property which does not depend on small variations in the
model. We will show that this can indeed be proven for the most popular
definition of chaos in ecology.

Definition 4.1. 4 population model N,.; = g(N,) is called chaotic if it has
periodic cycles of all integer periods:

(VkeN*)3peR") No=p = Ny=p, N;#p(1=i<k—1)

and there exists an uncountable subset M = R™* such that
1. M is invariant: N,e M = N,, e M
2. There exists a 6 > 0 such that for all Ny, Ny € M with Ny # N we have

limsup [N, — N;| =9
t— o0
liminf | N, — N;| =0
t— w0

In fact, this is only one of the many possible definitions of chaos. For
a discussion on this particular one and its advantages over other definitions
like the one by Devaney [1] when interpreted from an ecological point of
view, see [ 17, 18]. The surprising result for our class of models is that they will
always be chaotic if the parameters r and b are chosen large enough.

Theorem 4.1. For every population model of the form (3.1) with a density
1 satisfying assumptions (A1)~(A3), there exists a b > 0 such that for b > b and
r > 7 (b) the model is chaotic.

Proof. The famous result in [9] states that we only have to prove that b and
(b) exist such that for b > b and r > 7(b) there exists a point g with

F*(q) <q <F(q) < F*(q) (4.1)

Because of Lemma 3.1 we know that we can find a b such that for b > b the
function F has a unique maximal value F(a) with a independent of r. We take
b > max{1, b, 3/L(1)}. Now

F(x)=rx[ f(x)] " <rx 4.2)

because of the first part of Lemma 3.1, so the inverse F~!(x), which is
well-defined on [0, a[ since F'(x) > 0 on this interval, satisfies F ™! (x) = x/r
there. If we take r > 7 = f(a)’ we have F(a) > a and since F(0) =0 < a the
Intermediate Value Theorem guarantees that there exists a g between
0 and a such that F(q) = a. Thus, ¢ = F~'(a) and therefore a/r < q. But
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q < a= F(q) and since F(a) was the unique maximum of F, we also have
F(q) < F(a) = F*(q). Thus

%§4<F(q)<F2(q)

and we only have to prove that F*(a) < a/r since then

F*(q) = F*(a) <

=1 Q

=q
and equation (4.1) is satisfied, proving the theorem. Remark that the first and
third part of of Lemma 3.1 imply (substituting x, = 1) that
[ zx" (xz1)
so if we choose #(b) > 1/a f(a)’ then f(F(a)) = F(a)*". But then
F*(a) =rF@[ f(Fa)]™"
< r(raf(a)™")(raf(a) ") "M

a
r

A

#3-bL(1) ,—bL(1) f(a)Lu)bLb

We took b > b > 3/L(1) and since a is independent of r we can now choose

7(b) > max{f’ lf(a)b’f(a)(unbzfb>/<L(1)bf3) a(bL(l))/(buns)}
a

to make F?(a) < a/r for r > i(b). This proves the theorem. 1

We may thus conclude that our general model not only unifies the two
main principles of ecology and experimental observations, but also guarantees
that chaotic behaviour occurs in this model when natural reproduction and
environmental feedback are strong enough.

5 Population models with a stochastic environment

We have seen that the general population model (3.1) has two free parameters
once the function f'has been specified: a natural growth parameter r > 1 which
is the exponential growth factor in an ideal environment, and an environ-
mental parameter b which represents the rate of density-dependent feedback
of the environment. We now want to consider population models in which the
environment (that is, the parameter b) varies stochastically. That is, we now
take

Nt+1 :Fr,:‘ (NI): . (5.1)
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in which N, > 0 can be chosen freely and {(,|t € N} is a set of independent
identically distributed random variables with a distribution function which
satisfies some mild conditions that will be specified later on. Remark that this
implies that {N,|r € N} is a stochastic Markov process. We will denote the
probability space for this process by (2, %, P) with  the sample space, # an
appropriate o-field and P the probability measure. We use the notation
IP(4) = P({w|A(w)}) and take the symbol X ~7 to state that the stochastic
variable X has probability distribution 7. The symbol IE denotes the usual
expectation operator. The indicator function of a set A will be denoted by 1,;
it has the value one on A and the value zero outside A.

We will now address the question under what conditions there exists an
invariant distribution =, that is, a distribution satisfying

Ni~n = Nyy~7

It is easy to see that an initial distribution of this kind does not change in time
and it is therefore important when we are interested in the limiting behaviour
of our stochastic population process. The invariant distribution represents
a ’stochastic equilibrium’ and if the probability distribution of the process
converges to a stationary distribution, this distribution has to be invariant.
Moreover, studying certain statistical properties of the distribution function
of the population only makes sense if the distribution is stationary in time.

We will now state some preliminary results on discrete time Markov
processes on a continuous state space that we will need in the sequel. All
results are stated without proofs. These can be found in standard text books
about the theory of Markov processes, for example [15] or the references in
[2, 3]. We are interested in transition probabilities

P(N, € A|No = x)

for xe 10, oo[ and A a Borel-set. When the distribution of the noise
{&,|t € N} has a positive density everywhere on R *, we have

P(N,e A|[Ny = x) = J p:(t]x) dt

A

with p,(t|x) the t-step transition density which is strictly positive for all values
of x and te ]0, x/[. This implies that the process is Lebesgue-irreducible:
every set in the state space with positive Lebesgue-measure can be reached
from any initial value N,. Furthermore, we may conclude that the process is
aperiodic: there are no cyclic subsets in the state space. For g a bounded
measurable function on the state space, the mapping

g = E[g(N{)[No = x]

is called the transition probability operator of the process. Under our assump-
tions, the transition probability operator maps bounded continuous functions
to bounded continuous functions.
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An irreducible Markov process is called recurrent if the expectation of the
number of returns to A is infinite:

Y PP(N,e A|[Ng=x) =
t=1

for all sets A with positive Lebesgue-measure. Otherwise the process is called
transient. Every recurrent process has a o-finite invariant measure =, satisfying

n(A) = j IP(N,e A|N,y = x) n(dx)
[R+
for any Borel set A. If the measure 7 is finite:

j n(dx) < oo

and we can therefore make it a probability measure by normalising it, the
process is called positively recurrent, otherwise it is called null-recurrent. In the
latter case there exists at least one set A with positive Lebesgue-measure such
that

N

lim = Y P(N,e A|[Nyg=x)=0

"N =y
A further consequence is that the process returns to A so rarely that the
expectation of the first return time, defined by

T,=min {t > 0|N,e A}, (Noe€ A)

is infinite. If the process {N,|t € N} is irreducible and positively recurrent then
the invariant measure 7 is unique and n(A) > 0 for all 4 with positive
Lebesgue-measure. In this case T, has finite expectation.

It is clear from these results that it is interesting from a biological point of
view to know if a certain biological process is positively recurrent or not: if we
are interested in an invariant probability measure, we must first prove positive
recurrence. We will use the following theorem to obtain results for our class of
stochastic population models (see [12, 15]):

Theorem 5.1. Suppose that a Markov process {X,|te N} is Lebesgue-
irreducible and that its one step transition probability maps continuous functions
to continuous functions. If there exists a compact set K, an ¢ >0, C > 0 and
a function V such that

1. (VxeR) V(x)=0
2. (VxeK) E[VX)IXo=x]-Vx)< —e¢
3. (VxeK) E[V(X)|Xo=x]=C

then the process {X,|t € N} is positively recurrent.
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The conditions of this theorem are called mean drift conditions and they
roughly state that the process V(X,) is a supermartingale outside some
compact set, with an expectation which decreases uniformly. The function V is
often called a Stochastic Lyapunov Function. Note that the Lyapunov function
is not required to be continuous.

6 Sufficient conditions for stationarity

Using the results of the last section we will now give sufficient conditions for
the stochastic population models to have an invariant probability measure.
We will assume, as stated earlier, that the model has the form

rN,
f(N)*™

and that the following conditions are satisfied:

Nt+1= rg,( t) = (61)

(B1) Ny >0 (initial population not trivial) and r > 1 (there is natural
growth)

(B2) {{|te N} are independent identically distributed stochastic variables
with finite first and second order moments

(B3) the random variables {(,|t € N} have an absolutely continuous distri-
bution, with a probability density which is positive on the whole R *

Under these assumptions, the transition probability operator maps con-
tinuous functions to continuous functions. Indeed, if g is a bounded continu-
ous function on R* and ¢ is the distribution of the noise { then

E[g(N1)[No = x] = f g(rxf ()9 $(d0)

and this is continuous in x by Lebesgue’s dominated convergence theorem,
since f is continuous.

Our result is split into two separate theorems, one for the contest models
and one for the scramble models, since the analysis for these two cases is
different.

Theorem 6.1. Consider the stochastic process given by (6.1) satisfying conditions
(B1)+(B3) and with the function f satisfying conditions (A1) ~(A3). If

lim L(x)=L < o

and
E(1 — L), <yp) <1 (6.2)

then there exists a unique invariant probability distribution m on R™ for this
process.
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Proof. Define the process Y, = In N,, then we have that {Y,|t € N} is posi-
tively recurrent if and only if {N,|t € N} is positively recurrent, and obviously

Y, ;1 =Y, +1nr—{,Inf(e") (6.3)

Since the probability density is positive on the whole R* and Inr > 0 the
process is irreducible. We will therefore prove that the function V: IR - R™*

defined by
)y y=0
V(y)—{_ay b <0

with a >0 a suitably chosen constant that we will specify later on, is
a Lyapunov function for the process {Y,}. We introduce the functions

_y+lnr
~ Inf(@)

p(y)=P(E =B(y)=P(Y,+; 20]Y,=y)

B(y)

and

Because of Lemma 3.1 we have

lim B(y) = 1/L (6.4)

It is also easy to establish that we must have

lim p(y)=0 (6.5)

—
Evaluating the expected growth of V' in a point y we find
E[V(Y)|Yo =yl = V) =EQy +Inr—{ Infe)1 g <ppy
+E(—ay —alnr +al, In f(e")1 ¢ - gy — V (V)
Rearranging terms gives
E[V(Y)|Yo=y]—= V() = +Inr)p(y) — (B¢ < py) Infle”)
+(—ay—alnr)(l —p(y)
+a(EC Ly o pyy) Infle”) = V() (6.6)

Now for y < 0 the first term will become equal to or smaller than zero because
of (6.5), the second and the fourth term both go to zero since In f(e*) = 0 as
y —» — oo and the expectations have upper bounds which do not depend on
y. The third term is asymptotically equal to — ay — a In r and the last term is
equal to — ( — ay) = ay. Therefore we have

E[V(Yy)|Yo=)] - V() < —%alnr, (y<0) (6.7)
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For y > 0 we find, using equation (6.6) and the fact that in this case V(y) = y,
that

1 y
E[V (Y,)|Yo =] — V(y) = ay <p(y> 1+ “fy(e ) lEctl{g,>B<y»>
1 y
+ )’<P(J’) -1 n];(e ) IECtli:,<B(y)}>

+p(y)Inr—a(l —py)Inr

The last two terms have an upper bound which is independent of y. Because of
dominated convergence and Lemma 3.1 the bracketed expression in the
second term will converge as y — oo:

Inf(e”)
y

p(y) —1- EL L <m0y — B0 = LO g yp — 1

which implies, because of (6.2) that for y big enough, the second term will be
smaller than — v|y| for some v > 0. Analogously, the bracketed expression in
the first term converges according to the dominated convergence theorem:

Inf(e”)
y

p() — 1+ by =5 = P, > 1/L) + LEL Dy -1y

EC 1,
so for y sufficiently large it will become smaller than the positive value
D:= L_IEC,I,@ - 1,7}- Therefore, if we take a < % v/D, the first term will become
smaller than vy/2, and therefore we find for the total in (6.6):

E[V(Y)|Yo=y]-V() <C—3vy (6.8)

for y big enough, with C a constant which is independent of y. Taking (6.7) and
(6.8) together we see that there exist positive yq, y, such that if we take
K =[ —yy, y»] we have for ye R\K:

E[V(Y)Yo=y]l-V() < —¢
with .
e=min {3vy, — C,5alnr}
This shows that the conditions of Theorem 5.1 are satisfied since it is easy to
see, using (6.6), that for every y € K we have
E[V(YD)|Yo=y] =y, +Inr+(1+a) |E{|In f(e”) 4+ ay;:=C
The result now follows from Theorem 5.1. O

We have thus found a sufficient condition for the existence of a stationary
distribution in contest models. Remark that this condition will automatically
be satisfied if the probability density of the environment (; is taken small
enough (or even zero) for negative values since then

E((1— I:Cz)l{g,q/i}) ~ E((1 - ECt)l{ogg,gl/Z}) <1

The following example illustrates this.
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Example 6.1: contest models with Gaussian distributed environments.

Suppose we have a stochastic contest model where the {(,|t € N} are indepen-
dent Gaussian random variables with mean u and variance ¢>. Then the
process N, as defined in (6.1) has a unique invariant probability measure when

N

1
>, <M
k=1 °57L

Indeed, evaluating the conditional expectation in (6.2) gives:

1 1/L E 1/L 1
T — - 2 — =1 2
J (1 _ Lx)e 12 = wof gy < J‘ <: _ x>e 1/2((x =LY/’ gy

0/2nJ-w N L

—

Introducing a new integration variable s = 1/L — x we find that the condi-
tional expectation is smaller than

L (™ ., . oL
J se VA’ gg = — < 1

o./2nJo \/2771

which proves that there exists indeed an invariant probability measure for this
case, since the other requirements of the theorem are trivially satisfied for
Gaussian distributed random variables. O

Having established a sufficient condition for stationarity when L has
a finite limit, we now turn to the scramble models, where L diverges to infinity.
The following theorem is an extension of results in [2], where a proof is given
for the specific case of the Ricker model.

Theorem 6.2. Consider the stochastic process (6.1) satisfying conditions
(B1)«(B2) and with the function f satisfying conditions (A1)~(A3). If

lim L(x) = o

X 00

and the {(,|t e N} have a probability density function which is positive on
10, oo [, zero on] — oo, O[, but with possibly an atom at the origin satisfying

P(, = 0) < <lim sup L(rx)>1

=2 L)

(6.9)
then there exists a unique invariant probability measure m on R* for this
process.

Proof. We use the Lyapunov function

_JyLE) y=z0
V(y)—{_ay v <0

for the process Y,:=In N,. Here a > 0 will be specified later on. We have
E[V(Yy)|Yo=y] = V() = E(y + Inr — {In f(e”) L ™~ 1 gy
+ E(—ay —alnr + alIn f(e*) 1~ gy — V() (6.10)
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For y < 0 this will become smaller than — %alnr for y< — y; with y; >0
large enough, since {; 2 0, L > 0 and In f(e”) > 0 as y > — oo together imply
that the above expression is asymptotically equivalent to

(—ay—alnr)(1 —p(y) = V(y) & —ay —alnr —(—ay)
as y goes to — oo. For y > 0 we find that (6.10) is smaller than
(y +Inr) L™ ™) p(y) — a(y + Inr)(1 — p(y))
+allE¢ 1 o poy | LS(1) — 1 + yL(e*)] — yL(e”)
because of (3.5). Rearranging gives

L(re*) <1 Inr

yL(e") [p(Y) L@) + 7) - 1} +ay[p(y) =1+ L o gy [ L(7)]

+al(f(1) = DIES 1,2 oy | + Inr(py) — 1)]

Since lim,_, ,, L(x) = oo we have that lim,_,,, B(y) = 0 so

lim p(y) = lim P((, < B() = P( = 0

so for y = y,, with y, > 0 large enough we have, because of (6.9)

Y 1
ri@) | o o (148 1 | < e

for a certain positive v and choosing

v
a <<
2(1 + [IEC, 1y, - o)

gives R
E[V(Y))|Yo=y]— V() <C—3vyL(e’)

with C a constant which is independent of y. So again, if we take
K =[ — y4, y»] the conditions of Theorem 5.1 are satisfied outside K and on
K we find

E[V(Y})|Yo =yl =E(y +Inr—{Inf(e”) L™ "Y1 _ gy
—E(ay +alnr —al, Inf(e*) 1, - 5y
< (y2 + Inr)L(re”) + ay; + ay, [E{, In f(e™)
and thus the theorem has been proven. O

Remark that there is a fundamental difference between the class of
stochastic processes we use in these two results: in the second one we assume
that {, can only attain nonnegative values. Also note that all conditions given
here have been proved to be sufficient, but not necessary. However, simula-
tions results like those presented in Sect. 8 of this paper suggest that they are
indeed necessary as well. A rigorous proof of this statement is currently the
subject of further research.
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7 Stochastic stability

Now that we have found sufficient conditions for the existence of an invariant
probability measure for the stochastic population models, we will address the
question of stochastic stability. That is, we would like to know under what
conditions an arbitrary initial probability distribution on the state space
converges to this invariant probability distribution and what can be said
about the speed of convergence. This is of some importance, because if we
cannot guarantee that an arbitrary initial population will converge to a sta-
tionary random variable in time, some attempts to measure statistical proper-
ties of the population over time may be useless. Moreover, we can only
compute the invariant distribution numerically by iterating an arbitrary
initial distribution and hoping that this converges to the invariant one.

Since we want to prove a stronger result than simple pointwise conver-
gence of the distributions, we introduce the following total variation norm for
signed measures v on R ™ :

vl = sup v(4)— inf v(A)

AeBRY) AecBRY)

with 2 (R™) the Borel sets in R". If we define P to be the probability
measure of N, given the initial condition Ny = x, and 7 the stationary
probability measure, we can now state precisely the property we would like to
establish:

Definition 7.1. The Markov process {N,|t € N} with invariant probability dis-
tribution 7 is called ergodic if for every xe R™

lim | P, =0

and geometrically ergodic if there exists a p > 1 such that for every xe R*
Y PP —m < oo
t=1

Remark that the last inequality implies that the total variation norm con-
verges as o(p ). Therefore, establishing geometric ergodicity means that the
distribution function converges exponentially, in norm, to the stationary
distribution function 7. This implies that numerical computations concerning
the stationary distribution of geometrically ergodic models will be more
robust than computations involving models which are only ergodic. We will
need the following lemmas which are special cases of results proven in [12]:

Lemma 7.1. Suppose that the irreducible Markov process {N,|t € N} admits
a stationary probability distribution and is Harris recurrent, that is, it visits
every Borel set in its domain infinitely often:

=1

(VAeBMR") (VNoed) P <§ i en = oo> -

Then the process is ergodic.
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Lemma 7.2. Suppose there exists a compact set K, constants C < oo and
B e]0,1[, and a function V on R™ such that

L (Vx20) V(x)=1
2. (VxeK) E[V(N+)IN=x]-VXx)= —BV(x)
3. (VxeK) E[V(N,+y)IN,=x]=C

then the process {N,|t € N} is geometrically ergodic.

Lemma 7.3. If a Markov process {N,|t € N} is geometrically ergodic, then there
exists a xk > 1 such that for every compact set H

sup E[k"|Ny =x] < «©
xeH

Since conditions (B1)-(B3) imply already that every positive Borel set will be
visited infinitely often, we immediately have from Lemma 7.1:

Corollary 7.1. All processes (6.1) satisfying conditions (B1)~(B3) and with the
function f satisfying conditions (A1)—«(A3) which admit a stationary probability
measure, are ergodic.

So in all cases where we have proven that a stationary distribution exists,
every initial population will converge to a random variable having this
distribution. That is, the population models are stochastically stable. How-
ever, the speed of convergence is not necessarily exponential. To prove this, we
need the following lemma, which is a generalisation of an earlier result in [2].
It states that if the logarithmic process Y, starts in an initial condition y which
is small enough, the number of steps to return to the origin is almost
[y]/(1 + In7) with a probability that is arbitrarily close to one:

Lemma 7.4. Let the conditions (B1) and (B2) be satisfied and define the process
Y, as in equation (6.3) with f satisfying conditions (A1) and (A2). Then for
arbitrary 9, c € 0, 1[, there exists a Q > 0 such that for all Yo =y < — Q:

]P<min{t>0|Y,>0}g(1—c)1_Ly1|nr>>1—5

Proof. Take J,ce]0,1[ and denote IE{, = u and E({, — E{,)* = ¢*. First
remark that (A1) implies that f is right-differentiable in zero, so
Infe?) _ . 1nfx)—InfO) J (%)

= lim ———————~

li =lim——=f"(0
L ) e O

and we therefore have, for y smaller than some fixed negative value — Q

0<(ylo—winfe®) <1 (7.1)
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Constructing the following sets in probability space
R K
By = () {oeQ|{(0)= —|ylo +pu} (7.2)
t=0
we find, using Chebyshev’s inequality, that
R 1 K+1
21— 1)
y

We now take K the smallest integer which is larger than (1 — ¢) |y|/(1 + In¥r).
We then have that

1\K+1 1 \2+L=alyl/1+1an
SR
y y

and since the right hand side converges to 1 as y > — oo, there existsa Q > Q
so large that R
y< —Q = PBg)>1-9 (7.3)

and we may choose this Q such that
0>(1+1Inr/c (7.4)

Conditioning on the event By and with initial condition Y, = y< —Q we
have that
Y, <y+tlnr+1) (¢=0,1,2...K)

We prove this with induction. It is clearly true for t = 0 and if it is true for
a certain time ¢t < K then we have for time ¢ + 1, since we condition on (7.2):

Yion Y, +1Inr +(Iylo —p) Inf(e) (7.5)
Because of the induction hypothesis and our choice of K we then have
Y, Sy+thar+ )2 y+(K—1D(nr+ 1) Zy+1 =0yl =cy

But since f s strictly increasing (see Lemma 3.1) this implies that f(e**) < f(e®)
and together with (7.5) and (7.1) this implies that the induction hypothesis is
true for t + 1. We may thus conclude that fort =0,1,2 ... K we have

Y, Sy+Klnr+1)=Zy+Inr+1+(1—-0¢)|y|l=cy+Inr+1
< —cQ+Inr+1<0

where we used (7.4) to obtain the last step. This shows that, conditioned on B,
we have that min {t > 0| Y, > 0} > K. The probability of the event By is larger
than 1 — § because of equation (7.3), and this proves the lemma. O

This lemma now enables us to prove that contest models may be ergodic
without being geometrically ergodic:



576 M. H. Vellekoop, G. Hognis

Theorem 7.1. Consider the stochastic process (6.1) satisfying conditions
(B1)+(B3) and with the function f satisfying conditions (A1)~(A3). If

lim L(x)=L < o

and
IP((,<0)>0

then the population process is not geometrically ergodic.

Proof. Suppose that there exists an invariant probability measure 7= and
choose an arbitrary x > 1. We will show that Ex™ = oo for the set

= [\/;’ r], and the result then follows from Lemma 7.3. For arbitrary k > 2
take 7= 1/(k + 1)€]0, 1/3[ and call p = min{L"*, ((In r)/Inf(1))}. Denote
IP({ < yp) =p, = po > 0. Let Q be such that the conclusmn of Lemma 7.4 is
satisfied for ¢ = 6 = 3, and choose a C such that

e o [T 30

Inr+lnk Inr
We take the initial condition Ny e H = [\/;, r] and condition on the event

B, = {w|{o(®). .. l—1 (@) < yp, { (w) > C}

with probability P(B,) = p%(1 — pc;,). Then we havefort =0. .. k — 1, using
f(x) £ f(1) x" and the definition of p, that

rN, rN, _
Nyt = > > VNPT T T T s 2B SR =y
t+1 f(Nt)K[ = f(l)yp NtL)p = \/— \/'

so the process does not return to H = [\/;, r] in the first k steps and since
N,y =2r'""N}!77and Ny > 1

N = =D +0=n e = yd-nt
> pd=D+ A=+ 1= (7.7)
and at time k + 1 we have, since x = 1= f(x) = f(1)x*®
Niy =N f(N) % S r Ny POCf(1)=¢
<f(1)~Cept-@@OE-HIL 0

where the last inequality follows from L(1)C — 1 >0 and (7.7). We have
()" <1so

lnNk+1<lnr[ (L(1)C —1)i }glnr[l—(L(l)C—l)ilé—Q
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and because of our choice of Q we thus have, with probability larger than
%, that the number of steps it takes to get back at H is at least

|1nNk+1| k . Inr
— 2> -1+ (L(1)C -1 1=y ) ———
20 +1nr) = +(Le )i;( D)3 )
implying
[ExTr > % p'; (1 —pey) K[—1+(L<1)c—1)2f21(1 —9)' 1-Inr/2 + Inr)
Inr-Ilnk k :
=501 —p )exp[—kllnpyl+7<—1+ c-1) 1—?)‘)}
R 2(1+1n7) P
Using (7.6) and since p, = p, > 0, we conclude that
EscTn
Inr-lnx 6|lnpo|(1 +1Inr) & .
>11— —k|l — -1+ — — )
23l pc/p)exp[ k] Ilpo|+2(1 —|—lnr)< T nrne ,; /)

k
2 3(1 = peyle I rinm/C ) exp[unm( —k+3Y (- y)ﬂ

i=1

The right hand side can be made arbitrarily large by choosing k large enough
since we took y = 1/(k + 1) and

1—(1—(1/k+1)+?
1/(k + 1)

This shows that IEx”® = oo which proves the result. O

—k+3) (1—y) = —k+3<

i=1

k— 0
— 1> ~ 2-3¢Hk—3e!

Apparently, contest models do not admit geometrical ergodicity when the
stochastic environment is not purely adversary. However, when the stochas-
tics are purely adversary and bounded, stochastic contest models may indeed
be geometrically ergodic:

Theorem 7.2. Consider the stochastic process (6.1) satisfying condition (B1),
with the function f satisfying conditions (A1)~«(A3) and lim,_, , L(x) = L < 0.
Assume that the stochastic process (, satisfies condition (B2), is absolute continu-
ous with a density which is square integrable and positive on ]0, E] for a certain
> 1/L, zeroon] — oo, 0[ U ]Z, oo [, and with possibly an atom at the origin
satisfying P({ = 0) < v~ " for a certainne N Then the process is geometrically
ergodic.

Proof. First remark that one may establish that {>1/L implies that the
process is irreducible. We can thus take the Lyapunov function

V) x ¢ 0=Zx<1
X) =
x" x=1

with ¢ > 0 to be specified later. Let f; be the probability density of {, and
define py, = IP({ = 0). Because of the condition in the theorem we can take an
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£ €10, 1] such that por" < 1 — &. Take the interval K = [0, x| where x, satis-
fies

L (lIfell2 (1 = po)r™)?
lnf‘(X()) > 27}1 <(1_g_p0r”)> , Xo > 1 (78)

1l = /T2 fe(9)7ds

and 0 > 0 will be specified later. Since around x =0

with

. . 1
AV(x):=E[V(N,;+1)|IN;=x] —V(x)~(rx) *—x ‘= <F — 1> V(x)
we can find a 6 such that for x £ 6

AV(x) < — 1 <1 —i> Vi(x)
2 re

so the geometrical ergodicity condition for V is satisfied for [0, §[ = K€. For
Ix0, o0 [ = K€ we find:

rx I* f(x)F]
4 V(x) = E[@} 1{5 <(nr + Inx)/(nfex); T IE|:W I{C > (Inr + Inx)/(In f(x)} — x"

|: (Inr + Inx)/(In f(x)) V”
< pr"+<1—p)f T fe)ds
0 0 o f(x) 4
+(1—po)f CGCLSC"fg(s)ds—I:| (7.9)
(Inr + Inx)/(In f(x))

with C, =f(1)‘fr’c, where we have used that f(x) < f(1)x" for x > 1. Now
the third term in this expression is smaller than

. { .
¥ [(1 — po) Cy x b f £09) ds} = X"[(1 — po)Cyx<H 1]
0

<x"[(1 = po) C1x™"?]
if we take
n

C< —=——
2(LE— 1)
which is possible since we demanded that L > 1. So the term inside the
bracket will converge to zero when x — oo. Since x = x, we find that the
other terms in (7.9) are smaller than

|: (Inr + Inx)/In f(x) "
x" "+ - J —— fe(s)ds — 1:|
Po ( Po) . I fg( )

o0 H

< %" [porw(l—po)f J%)mfg(s)ds—l]
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_Por + ( J s)ds — 1:|
por + l—po \/ )Zns dS \/J\OO ﬁ(s)z dS—1:|

"_por"—i—(l— /2 o f( Hfzﬂz 6]—X"§8

Using equation (7.8) and since x > 1 this gives

IA
X:

IA
><=

Il
=

1— Pot”" 1] L
P e -1
(I —po)r" | f |2 2 2

lIA

X" | por" + (1 —po)r™ [l fl2

<xX"(—30)—3¢

Therefore, if we choose § = min{3¢, 3(1 — r )} €10, 1[and x, big enough we
have that 4V (x) £ — fV(x) on K¢ and V(x) trivially bounded on K, which
proves the result. Il

We must therefore conclude that although in all cases where an invariant
distribution exists, it is stochastically stable, we can only guarantee it to be
exponentially stable for contest models with bounded environmental stochas-
tics. As mentioned earlier this means in practice that computations for some
stochastic population models may be quite sensitive to small numerical errors.
Analogous results for scramble models are not yet known, and a subject of
further research.

8 Examples of applications

We will now illustrate our results by some numerical examples.

Example 8.1: stochastic stability of a contest model.

We consider a stochastic perturbation of the Hassell model. We take the

environmental parameters identically independently distributed Gaussian ran-

dom variables with mean 3 and variance 1, and a natural growth rate r = 2:
rN,

Nt =m, r=2, {~iid. N(3,1)

For this model we have

f)=14+x = L(x)=—— = L=lim L(x)=1

X+1 X 0

So for this particular choice of the environmental random variables, condition
(6.2) for the existence of an invariant distribution becomes

— 1 1 2
lE(l—LCt)lgg,éuzFl 5 J (1—1-7)e =2 dr ~ 00084 < 1
* Y[

— o0
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and therefore the distribution of the stochastic process {N,} should converge
to a stationary distribution 7. Figure la shows the distribution of N, for
t=1,2...5 when we take the initial condition N, = 1, and Fig. 1b when
N, = 0.5. We see that the distribution converges indeed to the same station-
ary distribution in both cases. Remark that convergence seems to be geomet-
rically fast, although strictly speaking we have only proven it to be so for
models for which IP({, < 0) =0 and where the values of {, are bounded.
However, for this model we have IP({, < 0) = IP({, > 6) ~ 0.001 which explains
the ‘almost geometrically’ fast convergence.

Taking the same stochastic perturbation model but now with environ-
mental variables which have zero mean:

rN,

N - -
t+1 (1 +Nt)§‘

r=2, {~iid. N(,1)
we find

— 1 1 2
E(l — L)< 1z) = 7 J (1—1-7)e =972 4r ~ 1083 > 1
* s

— o0

so we cannot guarantee that the system is stochastically stable. We can indeed
see that it is not, looking at the distribution functions in Fig. 2. The initial
distribution ‘wanders off’ in the positive direction, and it will eventually
spread out over the entire positive axis, while converging pointwise to zero in
every single point. These two examples clearly show the importance of our
conditions for stochastic stability in the analysis of populations in stochastic
environments.

Example 8.2: stochastic stability of a scramble model.
We now take a look at a typical stochastic perturbation of a scramble model:

s PP ({, = 0) = po Ny .
N,y =rN,e " N&, r=2, Z,~iid. N(3,3)
A P =1Z)=1-py, " 2

For the Ricker model we have
fx)=¢* = L(x)=x

and according to Theorem 6.2 this means that a stationary distribution

exists if
L -1 B
Po < <lim sup (rx)> = <lim sup B) =-=0.5

o L(x) X0 X r

First the distributions for p, = 0.2 were calculated; after seven iterations the
distribution function showed no significant changes any more and the station-
ary distribution of Fig. 3a was obtained. Remark that peaks are found at
distances which differ by a factor r due to the atom at zero in the environment
which implies a population growth with factor r.

For p, = 0.8 we find the distribution functions of Fig. 3b. The distribution
spreads on the entire positive axis, with peaks travelling to infinity due to
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Fig. 1. Hassell model, r =2, b~N (3,1).a Ny =1.0,b Ny =0.5
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0.8

0.6

0.4

0.2

0

0 . 0.5 1 15 2 2.5 3
Fig. 2. Hassell model, r =2, b~N(0, 1), Ny = 0.5

multiplication by r in every iteration, while the distribution converges to zero
in every single point. We thus see how the conditions of Theorem 6.2 can be
used in scramble models that allow pure natural growth.

Example 8.3: chaos in scramble and contest models.

As shown in Sect. 6, contest and scramble models may show very different
behaviour when perturbed stochastically. However, we already mentioned in
the introduction that two models may be very ‘close’ while showing funda-
mentally different dynamic behaviour. In fact, a scramble model can be very
similar to a contest models and still show very different dynamics in the
deterministic case. Consider the following two models:

{N,H =2223N,(1 + 028 N,)"2° {M,H = 20M, e SM:

8.1
Ny, = 0.5990 N, =0.5990 ®1)

One may easily show that these models have the same unstable equilibrium in
N* = M* ~ 0.59915 and that the one step dynamics are very close, as shown
in Fig. 4a. It is clear that even very accurate data obtained from field studies
cannot be expected to discriminate significantly between the two models.

But the long term dynamics of this process will differ considerably, as can
be seen in Fig. 4b. Remark that we use the same initial condition for both
processes, which is very close to the unstable equilibrium. After some time, the
process N, will spend more time around the equilibrium value than M,, which
oscillates more evenly between high and low values, as can clearly be seen
after t = 100. This example shows that even very accurate field data may not
be precise enough to verify statements about the dynamics.



Discrete population models

(a)

t=1 t=
15 15
10 10
5 5
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0 0.5 1 1.5 2 0 0.5 1 1.5 2
t= t=
15 15
10 10
5 5
0 /\/\A 0
0 0.5 1 1.5 2 0 0.5 1 1.5 2

(b)

Fig. 3. Distributions for Ricker model, r =2.a py =02 <+,t= o0, b po =08 >+
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Fig. 4. The processes N, and M,. a Transition functions, b Dynamics
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Fig. 5. Bifurcation diagrams in r. a N, (b =20), b M, (b =5)
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However, according to Theorem 4.1 we can guarantee, assuming that the
growth and environmental parameters are big enough, that both models will
be chaotic, without having to analyse in detail their dynamic behaviour. In
Figs. 5a, b the bifurcation diagrams in r for both models are shown. We see
that for small values of » both models admit stable cycles with periods that are
a power of 2, and that for higher values of r chaos occurs after a rapid series of
period-doubling bifurcations. Note that the precise structures in the bifurca-
tion diagrams are quite different, but this is unimportant: for the particular
values we use above, r = 22.2 and r = 20 respectively, we are well in the
chaotic regions in both cases, enabling us to conclude that the dynamics may
be different, but equally complex.

9 Conclusions

In this paper we have addressed two important questions in the study of single
species discrete population models. The first one was the question under
which conditions a population model may exhibit chaotic behaviour. We have
introduced very general population models which take into account the two
fundamental premises of population dynamics, and shown that these models
will always show chaotic behaviour if both the natural growth and environ-
mental feedback are strong enough. This result depends only on the two
premises and not on the particular structure of the population model under
consideration. We then studied a stochastic perturbation of these models by
allowing the environmental parameter to vary stochastically. A sufficient
condition was given for the existence and stochastic stability of a stationary
probability measure for the resulting stochastic population process. This
condition turned out to be satisfied in all cases where the environmental
influence was purely adversary, but also if there was a limited possibility of
favourable environments.

The most surprising aspect of the results presented here is their very
general nature. The two intuitively appealing premises stated in the first
paragraph apparently contain sufficient information about the ‘nature’ of the
dynamics to prove both chaos in the deterministic models and stability in the
stochastic ones. It is interesting to see how the crucial observation in the proof
of chaos is the fact that the critical point a of the dynamics does not dependent
of the natural growth parameter r but is determined uniquely by the function
L and the environmental parameter b. It is exactly this separation of natural
and environmental influences in the population which enables us to prove
that the dynamics will become sufficiently complex. In the stochastic contest
models we have something similar. Since for large values of N, we have,
if L < oo, i

Nygy=rNf(N) ™ ~ rf(1) 8 N{ 7t

we see again that the growth of N, can be separated in a multiplicative term
and a power term 1 — L{, and condition (6.2) for stochastic stability is
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therefore a rather natural one. Again, the natural growth is merely a scaling
factor and the real nature of the dynamics is determined only by the upper and
lower bounds on the dynamics which are provided by the function L. The
existence of these bounds is a direct consequence of the second premise of
population dynamics, as shown in Lemma 3.1.

Therefore one may state that both the occurrence of chaos in discrete
deterministic population models and the possibility of a stable stationary
probability distribution in their stochastic perturbations, are a consequence of
the ecological principles behind population models, and not of the details of
a particular model. Since it is impossible in practice to describe any popula-
tion exactly with one particular model, this should be a reassuring point for
those who use population models to fit experimental data. If it would be
possible to show that a small perturbation of a deterministic model could
destroy its capacity for chaotic behaviour, then one could never conclude from
a particular set of field data that a certain population process might be
chaotic. Likewise, if the stability of a stationary distribution of a stochastic
population model can be proven for a particular model, but not for a model
which is ’close’ to this one, then the calculation of mean, variance and other
statistical characteristics would be useless from a mathematical point of view.
In this way the framework provided here can be used not only as a theoretically
interesting generalisation, but also as a rigorous justification for the use of
population models to obtain theoretical statements about experimental data.
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