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Abstract. We undertake a detailed study of the one-locus two-allele partial selfing selection
model. We show that a polymorphic equilibrium can exist only in the cases of overdomi-
nance and underdominance and only for a certain range of selfing rates. Furthermore, when
it exists, we show that the polymorphic equilibrium is unique. The local stability of the
polymorphic equilibrium is investigated and exact analytical conditions are presented. We
also carry out an analysis of local stability of the fixation states and then conclude that only
overdominance can maintain polymorphism in the population. When the linear local analy-
sis is inconclusive, a quadratic analysis is performed. For some sets of selective values, we
demonstrate global convergence. Finally, we compare and discuss results under the partial
selfing model and the random mating model.

1. Introduction

Previous studies on the partial selfing model with selection provided conditions for
the existence of a polymorphic equilibrium, without any real consideration about
its stability (local or global). For example, Workman and Jain (1966) determined
the values, at equilibrium, of the allelic frequencies and Wright’s fixation index,
for a locus with two alleles. Jain and Workman (1967) later defined a set of partial
fixation indices in order to find the equilibrium genotypic frequencies for a locus
with multiple alleles. Weir (1970) introduced a matrix method, based on the mean
fitness of the population, that produces numerical values of these fixation indices
and genotypic frequencies at equilibrium. He also determined a necessary condition
for the existence of a polymorphic equilibrium. The stability of such an equilibrium
was briefly considered.

Kimura and Ohta (1971) first treated the stability of the polymorphic equilibri-
um in the case of overdominant alleles for a locus with two alleles. They obtained
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a necessary condition on the parameters of the model for the existence of this
equilibrium point and showed the uniqueness of this point when it exists. Next,
assuming the existence of the polymorphic equilibrium, they examined its stability
by investigating the local stability of both fixation states. But no local study of the
polymorphic equilibrium itself, by considering changes in genotypic frequencies
in the neighborhood of this point, was done.

Recently, Overath and Asmussen (1998) obtained some results when consider-
ing a more general model that includes apomixis which occurs with probabilitya
(production of seeds without meiosis). Lettinga = 0 in their equations leads to the
conclusion that “...at most one polymorphic equilibrium can exist for a given set
of fitnesses and mating system parameters and that such equilibria exist only for
overdominant and underdominant selection.” Also, they provided some analytical
conditions for local stability of the polymorphic equilibrium, but were not able to
assert the stability of this equilibrium point. They instead examined the local sta-
bility of the fixation states and the conditions that allow a protected polymorphism
(PP), that is, when both fixation states are unstable. They established that “...for
overdominance a PP exists if and only if a valid internal equilibrium also exists ...
for underdominance both of the boundary equilibria will always be stable whenev-
er a polymorphic equilibrium exists and, therefore, a PP never exists under these
conditions. Since two adjacent equilibria are unlikely to be both stable or both
unstable, these results also suggest that (in the absence of cycling) overdominant
polymorphic equilibria will be stable whenever they exist, while underdominant
polymorphic equilibria will always be unstable.” In Section 4, we confirm their
intuition by rigorously proving this last statement.

Assuming weak selection in the partial selfing model, Nagylaki (1997) present-
ed a complete dynamical analysis for two alleles. Since weak selection represents
a limit case of selection, we show in the Discussion section that the dynamical
structure in this case can be deduced from that of the general model.

In this paper, we present the most complete analysis, up to now, on the one-
locus two-allelle partial selfing selection model. In Sections 2 and 3, we examine
all possible combinations of selective values and point out some exact conditions
on the selfing rate under which a polymorphic equilibrium exists. Furthermore,
we show that at most one polymorphic equilibrium exists in each case. In Section
4, we look at the local stability of this polymorphic equilibrium when it exists
and then derive new results. In Section 5, we study local stability of both fixa-
tion states and thus complete earlier works done by Kimura and Ohta (1971). In
particular, when the linear local analysis of the fixation state is inconclusive, we
deduce new results by performing a quadratic analysis. In Section 6, some special
cases are treated and global stability is proved. Finally, in Section 7, we summa-
rize the results obtained in the preceding sections and compare them with those
known under random mating. In this manner, we can describe the effects of sel-
fing on a population that was previously practicing random mating. This can be
the case for instance of a population subject to isolation. Table 2 of Section 7 is
particularly useful in that, for a given set of selective values, one can complete-
ly determine the ultimate structure of the population for any value of the selfing
rate.
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2. Model

Consider a single locus with two alleles, say A1 and A2, in an infinite diploid pop-
ulation with non-overlapping generations. Each individual of the population can
reproduce, either by selfing with constant probabilityβ(0 < β < 1), or by ran-
dom outcrossing with the complementary probability 1− β. LetP11, P12, andP22
denote the frequencies of the genotypes A1A1, A1A2, and A2A2, respectively, in
the population. Then the frequencies of the alleles A1 and A2 are

p = P11 + 1
2P12 and q = P22 + 1

2P12.

Moreover, let the genotypes A1A1, A1A2, A2A2 have the corresponding selec-
tive valuesw11, w12, w22 ≥ 0. Here, zygotic selection is applied through viability
differences, that is, the genotypic selective parameters are proportional to the prob-
abilities of survival from conception to maturity. It is assumed that the selective
values are not all equal. Otherwise there will not be any selection. The case of a
lethal homozygote (w11 = 0 or w22 = 0) and the case of a lethal heterozygote
(w12 = 0) will be treated separately in Section 6. In the case of a non-lethal het-
erozygote (w12 > 0), we shall assume, without loss of generality,w12 = 1. Then,
to simplify further the notation, it will be convenient to use the coefficients

a = 1 − w11 and b = 1 − w22, (1)

which cannot be both equal to 0 by assumption. There will be overdominance when
a, b > 0, underdominance whena, b < 0, complete dominance whena = 0 or
b = 0, and directional selection whena > 0 andb < 0 or a < 0 andb > 0.
Symmetric selection will correspond toa = b. Note that we always havea, b ≤ 1.
The casea = 1 or b = 1 corresponds to the case of a lethal homozygote, which
will be treated separately.

If P11, P12, andP22 designate the genotypic frequencies among the zygotes
in the current generation at the time of conception, then the genotypic frequencies
among the adults in the current generation, after selection but before mating, are

P ∗
11 = w11P11

w11P11 + P12 + w22P22
, P ∗

12 = P12

w11P11 + P12 + w22P22
,

P ∗
22 = w22P22

w11P11 + P12 + w22P22
. (2)

After mating and reproduction, the genotypic frequencies among the zygotes in the
next generation are given by the equations

P ′
11 = β

[
P ∗

11 + 1
4P ∗

12

]
+ (1 − β)

[
P ∗

11 + 1
2P ∗

12

]2
,

P ′
12 = β

[
1
2P ∗

12

]
+ 2(1 − β)

[
P ∗

11 + 1
2P ∗

12

] [
P ∗

22 + 1
2P ∗

12

]
, (3)

P ′
22 = β

[
P ∗

22 + 1
4P ∗

12

]
+ (1 − β)

[
P ∗

22 + 1
2P ∗

12

]2
.

Here, we assume no fertility differences between the mating types, Mendelian seg-
regation of genes and no gametic selection. It is useful to note that, under these
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assumptions, mating and reproduction do not change the allelic frequencies, that
is,

p′ = P ′
11 + 1

2P ′
12 = P ∗

11 + 1
2P ∗

12 = p∗,
and then

q ′ = 1 − p′ = 1 − p∗ = q∗.
Figure 1 below summarizes the life cycle of the population and the notation used for
the genotypic and allelic frequencies. At each stage of the life cycle, the genotypic
and allelic frequencies sum up to 1.

3. Equilibrium conditions

Apart from the fixation states (P11 = 1 andP22 = 1, which correspond toq = 0 and
p = 0, respectively), there may exist polymorphic equilibria (at whichp, q 6= 0).
In order to determine the conditions for such equilibria, we use the fixation index
F (Wright, 1951). The genotypic frequencies are written in the form

P11 = p2 + pqF, P12 = 2pq(1 − F), P22 = q2 + pqF, (4)

where−1 ≤ F ≤ 1. The value ofF varies from one generation to the next. Under
the assumptionp, q 6= 0, and using the equations (1) to (4), we have in the next
generation

F ′ = 1 − P ′
12

2p′q ′

= β

{
1 − (1 − F)

[
1 − a

(
p2 + pqF

) − b
(
q2 + pqF

)]
2[1 − a(p + qF)] [1 − b(q + pF)]

}
. (5)

At equilibrium, we must havep′ = p. But, we have already noted thatp′ = p∗.
Therefore, we havep′ = p if and only if

p∗ = w11P11 + 1
2P12

w11P11 + P12 + w22P22
= p,

which is equivalent, after algebraic manipulations using (4) and the assumption
p 6= 0, 1, to

[a − (a + b) p] F = b − (a + b) p. (6)

If
a − (a + b) p = 0,

thenp′ = p 6= 0, 1 if and only if

b − (a + b) p = 0,

which is compatible with the above condition if and only ifa = b. On the other
hand, if a = b, then we would haveF = 1 at every polymorphic equilibrium
wherep 6= 1

2. But then, owing to (5), we would haveF ′ = β < 1, which contra-
dicts equilibrium. Therefore,12 is the only admissible value forp at a polymorphic
equilibrium in the casea = b. We have proved the following.
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Result 1. a
a+b

is an admissible value forp at a polymorphic equilibrium if and

only if a = b. In this case,12 is the only admissible value forp at a polymorphic
equilibrium.

Let us assumea 6= b, and therefore

a − (a + b) p 6= 0 and F = b − (a + b) p

a − (a + b) p

at a polymorphic equilibrium. Then the equilibrium conditionF ′ = F with F ′
given by (5) becomes

G (p) = 0,

where

G (p) = 2(a + b)(1 − β) [a(1 − b) + b(1 − a)] p2

+ {[a(1 − b) + b(1 − a)] [(3a + b) β − 2b] − 2a(a + b)(1 − b)} p

+2ab(1 − b) − β a [a(1 − b) + b(1 − a)] . (7)

The polynomialG(p) is of the quadratic formAp2+Bp+C and admits two roots:

p̂− = −B − √
B2 − 4AC

2A
and p̂+ = −B + √

B2 − 4AC

2A
,

where

A = 2 (a + b) (1 − β) K,

B = K [(3a + b) β − 2b] − 2a (a + b) (1 − b) , (8)

C = 2ab (1 − b) − β aK,

with
K = a (1 − b) + b (1 − a) .

A priori, these two roots may correspond to polymorphic equilibria. But in order
to be admissible, they must satisfy some constraints. Of course, the first one is
0 < p̂ < 1, wherep̂ is a root ofG(p) and represents the frequency of allele A1
at equilibrium. Then the frequency of allele A2 at equilibrium satisfies 0< q̂ =
1 − p̂ < 1. The other constraints are

P̂11 = p̂2 + p̂q̂F̂ ≥ 0, P̂12 = 2p̂q̂
(
1 − F̂

)
≥ 0, P̂22 = q̂2 + p̂q̂F̂ ≥ 0,

where

F̂ = b − (a + b) p̂

a − (a + b) p̂
, (9)

which guarantee that the equilibrium genotypic frequencies are all non-negative,
and then all less than or equal to one, since they sum up to one. This will be the
case if and only if

−1 ≤ max

(−p̂

q̂
,
−q̂

p̂

)
≤ F̂ ≤ 1.
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Therefore, 0< p̂ < 1
2 will be admissible if and only if

− p̂

1 − p̂
≤ b − (a + b) p̂

a − (a + b) p̂
≤ 1. (10)

Workman and Jain (1966) have determined two conditions that must hold at equi-
librium. It can be shown that equations (7) and (9) are in fact equivalent to these
conditions.

Now, assuming

a − (a + b) p̂ > 0, (11)

the right-hand side inequality in (10) will hold if and only ifa ≥ b, while we will
have the left-hand side inequality in (10) if and only ifb

(
1 − 2p̂

) ≥ 0, that is,
b ≥ 0. Conversely, ifa ≥ b ≥ 0, thena + b > 0, since by assumptiona andb

cannot be both equal to 0, and

a

a + b
≥ 1

2
,

which implies the inequality (11) under the constraintp̂ < 1
2. Similarly, assuming

a − (a + b) p̂ < 0, (12)

both inequalities in (10) are true if and only ifa ≤ b ≤ 0, and this condition implies
(12) under the constraint̂p < 1

2. The conditions for12 < p̂ < 1 to be admissible
are, by symmetry,b ≥ a ≥ 0 or b ≤ a ≤ 0. Finally, note thatp̂ = 1

2 would be
admissible if and only ifa ≥ b andb ≥ a, that is,a = b. Therefore we have
necessarilyp̂ 6= 1

2 in the casea 6= b. We conclude as follows.

Result 2. A polymorphic equilibrium can exist only when a and b are of the same
sign (a, b ≥ 0 or a, b ≤ 0) and the more frequent allele at a polymorphic equilibri-
um, when it exists, is necessarily the one associated with the parameter a or b closer
to 0, that is, the one associated with the homozygote having the fitness closest to the
heterozygote fitness. Equality of allelic frequencies at a polymorphic equilibrium
is possible only in the case where the homozygotes have the same fitness (a = b).

Note that this result on admissible allelic frequencies at a polymorphic equilibrium
depends only on the fitness parameters. The proportion of selfingβ is not involved.
Moreover, this result excludes the possibility of a polymorphic equilibrium in the
case of directional selection (a andb of opposite signs).

Now, let us look at the existence of a polymorphic equilibrium. Under the con-
dition thata andb are of the same sign (a, b ≥ 0 ora, b ≤ 0) and not both equal to
0, the quadratic polynomialG(p) is convex with respect top, since the coefficient
of p2 (coefficientA in (8)) is then positive. Moreover, evaluatingG(p) at p = 1

2
yields

G(1
2) = − (a − b)2

2
≤ 0,
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with a strict inequality in the casea 6= b. Therefore the rootŝp− andp̂+ of G(p)

are real and satisfy
p̂− ≤ 1

2 and p̂+ ≥ 1
2,

with strict inequalities in the casea 6= b. Finally, we havep̂− > 0 if and only if

G(0) = 2ab (1 − b) − β aK > 0,

andp̂+ < 1 if and only if

G(1) = 2ab (1 − a) − β bK > 0.

Let us look at all the cases.

• Case of complete dominance (a = 0 or b = 0). We haveG(0) ≤ 0 and
G(1) ≤ 0. Therefore we havêp− ≤ 0 andp̂+ ≥ 1, which eliminates the
possibility of a polymorphic equilibrium.

• Case of overdominance or underdominance without symmetry.Without
loss of generality, relabelling the alleles if necessary, we may assume that the
homozygote having the fitness closest to the heterozygote fitness is A2A2. Then
we are in the case 0< b < a or a < b < 0. In this case, we haveG(0) > 0 if
and only if

β <
2b (1 − b)

a (1 − b) + b (1 − a)
= β0.

This is the condition to have 0< p̂− < 1
2, and therefore the existence of a

polymorphic equilibrium, which is unique, with the frequency of allele A1 giv-
en byp̂− and the fixation index at equilibrium by equation (9). Note that the
above condition is always satisfied when1

2 ≤ b < a ≤ 1, since thenβ0 ≥ 1.
• Case of symmetry (a = b). At a polymorphic equilibrium, we must have

p = 1
2 (Result 1) and then the equilibrium conditionF ′ = F with F ′ giv-

en by (5) becomes

aF 2 − [2 − a − β (1 − a)] F + β (1 − a) = 0,

which admits a unique rootF in the interval (−1, 1) for a ≤ 1 and 0< β < 1.
This determines an admissible polymorphic equilibrium, which is unique. Note
thatβ0 = 1 in the casea = b.

In conclusion, we have:

Result 3. There exists a polymorphic equilibrium only in the case of overdomi-
nance (a, b > 0) or underdominance (a, b < 0) when

β <
2b (1 − b)

a (1 − b) + b (1 − a)
, if a ≤ b < 0 or 0 < b ≤ a,

or

β <
2a (1 − a)

a (1 − b) + b (1 − a)
, if b ≤ a < 0 or 0 < a ≤ b.

Moreover, a polymorphic equilibrium is unique when it exists.
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Result 3 has been deduced recently by Overath and Asmussen (1998) in a model
that also includes apomixis. Hence, we simply confirm the result obtained in their
so-called “standard mixed mating model without apomixis”.

Table 1 summarizes the conditions for a unique polymorphic equilibrium to
exist. In the case of symmetric selection (a = b), the allelic frequencies at the poly-
morphic equilibrium are always the same and equal to1

2 for 0 < β < 1. It remains
to study the change in the allelic frequencies at the polymorphic equilibrium, when
it exists, in non-symmetric cases (a 6= b) with respect to a change in the proportion
of selfingβ.

At such an equilibrium, the frequency of allele A1, denoted byp̂, satisfies
G(p̂) = 0, whereG(p) is the polynomial given in (7). Taking the derivative with
respect toβ yields

d

dβ
G(p̂) = −2 (a + b) Kp̂2 + 4 (a + b) (1 − β) Kp̂

(
dp̂

dβ

)

+ (3a + b) Kp̂ + B

(
dp̂

dβ

)
− aK = 0.

This leads to the equation

dp̂

dβ
= −K

(
1 − 2p̂

) [
a − (a + b) p̂

]
√

B2 − 4AC
.

This derivative ofp̂ with respect toβ is negative whena < b < 0 or 0 < b < a

and, by symmetry, positive whenb < a < 0 or 0 < a < b. Therefore we have
proved the following result.

Result 4. The frequency of the allele associated with the fittest homozygote, at the
polymorphic equilibrium, when it exists, increases asβ increases in the case of
overdominance but decreases asβ increases in the case of underdominance.

In order to study the stability of the polymorphic equilibrium, we will consider
first the cases of overdominance and underdominance without symmetry in Section
4. The special cases of dominance and symmetric selection will be studied apart in
Section 6.

Table 1.Conditions for a (unique) polymorphic equilibrium to exist.

a = b 6= 0 a < b < 0 or 0< b < a b < a < 0 or 0< a < b All other cases
p̂ = 1

2 0 < p̂ < 1
2

1
2 < p̂ < 1 No polym. equil.

0 < β < 1 0 < β < 2b(1−b)

a(1−b)+b(1−a)
0 < β < 2a(1−a)

a(1−b)+b(1−a)
0 < β < 1

(0 < β < 1 in (0 < β < 1 in
the particular the particular
case1

2 ≤ b < a) case1
2 ≤ a < b)
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4. Stability of polymorphic equilibria

In the preceding section, we have derived conditions for a polymorphic equilibri-
um to exist. In the present section, we look at conditions for local stability of such
an equilibrium. In particular, Results 5 and 6 present results that, to our knowl-
edge, have never been derived before. Suppose that a polymorphic equilibrium
with p = p̂ andF = F̂ exists. As proposed by Weir (1970), we apply small
perturbations on the values ofp andF at equilibrium so that

p = p̂ + ξ,

F = F̂ + η,

whereξ andη are small. In the next generation, using equations (2) and (4), we get

p′ = (
p̂ + ξ

)

×



1 − a
[
p̂ + ξ + (

q̂ − ξ
) (

F̂ + η
)]

1 − a
(
p̂ + ξ

) [
p̂ + ξ + (

q̂ − ξ
) (

F̂ + η
)]

− b
(
q̂ − ξ

) [
q̂ − ξ+(

p̂ + ξ
) (

F̂ + η
)]


 .

Neglecting terms inξ2, η2 andξη, and using the identitybq̂ + bp̂F̂ = ap̂ + aq̂F̂ ,
derived from (6), lead to the linear approximation

p′ ∼= p̂ +
[

1 − p̂q̂(a + b)(1 − F̂ )

1 − a(p̂ + q̂F̂ )

]
ξ +

[
bp̂2q̂ − ap̂q̂2

1 − a(p̂ + q̂F̂ )

]
η.

Similarly, from equation (5), we get after many simplifications the linear approxi-
mation

F ′ ∼= F̂ + β




(
1 − F̂

)2 (
bp̂ − aq̂

)
2

[
1 − a

(
p̂ + q̂F̂

)]2


 ξ

+ β




1 − a
(
p̂ + q̂F̂

)
− (

aq̂2 + bp̂2
) (

1 − F̂
)

2
[
1 − a

(
p̂ + q̂F̂

)]2


 η.

Using again (6), we obtain the linear approximation[
p′
F ′

]
∼=

[
p̂

F̂

]
+ M

[
ξ

η

]
,

where the entries of the matrixM take the form

m11 = û
[
1 − b − (a − b) p̂

]
v̂

, m12 = −p̂
(
1 − p̂

)
û2

v̂
,

m21 = −β (a − b)2 û

2v̂2
, m22 = β

2

(
û

v̂

)2 [
1 − a + (a − b) p̂

]
, (13)
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with
û = a − (a + b)p̂ and v̂ = a(1 − b) − Kp̂.

It remains to analyse the eigenvalues ofM . We will consider separately the cases
of overdominance and underdominance, without symmetry. The case of symmetric
selection will be treated in a subsequent section.

4.1. Case of overdominance without symmetry

Let us assume, without loss of generality, 0< b < a ≤ 1. In this case, a poly-
morphic equilibrium (with 0< p̂ < 1

2) exists if and only if 0< β < min(β0, 1),
where

β0 = 2b (1 − b)

a (1 − b) + b (1 − a)
.

Let us first determine the signs of the entriesmij of the matrixM . To achieve this,
we must find the signs of̂u andv̂. We already know that̂u > 0 in the case at hand
(see (11) and Table 1). On the other hand,v̂ > 0 if and only if

p̂ <
1

1 + b(1−a)
a(1−b)

.

But, in the case at hand, this holds since

p̂ <
1

2
and 0<

b (1 − a)

a (1 − b)
< 1.

Moreover, we have

1 − b − (a − b) p̂ ≥ (a − b)
(
1 − p̂

)
> 0

and
1 − a + (a − b) p̂ ≥ (a − b) p̂ > 0.

Therefore, we have

m11 > 0, m12 < 0, m21 < 0, m22 > 0.

Now, let us examine the eigenvalues of the matrixM . The characteristic poly-
nomial ofM is

m(k) = |kI − M | = k2 − (m11 + m22)k + m11m22 − m12m21.

The polynomialm(k) is a convex parabola ink, whose roots are distinct and real,
since the discriminant1(m(k)) satisfies

1(m(k)) = (m11 − m22)
2 + 4m12m21 > 0. (14)

Note that these two roots are continuous with respect toβ, and equal to 0 and
m11 > 0 for β = 0. Moreover,m11 < 1 if and only if

(a2 − b2)p̂(1 − p̂) > 0,
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which holds in the case at hand. Therefore, to show that the greatest eigenvalue of
M in modulus is smaller than 1 in modulus, and consequently that the polymorphic
equilibrium is locally stable, it suffices to show thatm(0) > 0 andm(1) > 0, for
0 < β < min(β0, 1). In effect, by continuity of the roots ofm(k), this condition
implies that both roots lie in the interval (0, 1). Actually, we have

m(0) = β

2

(
û

v̂

)3

(1 − a) (1 − b) > 0,

and

m(1) = (a − b)p̂(1 − p̂)

v̂
H(β, p̂), (15)

where

H(β, p) = (a + b) − βK

2

[
a − (a + b)p

a(1 − b) − Kp

]2

.

It is shown in the Appendix thatH(β, p̂) > 0, and therefore thatm(1) > 0, for
0 < β < min(β0, 1). Consequently, we have the following result.

Result 5. In the case of overdominance without symmetry (0 < a < b or 0 <

b < a), the polymorphic equilibrium is locally stable when it exists.

4.2. Case of underdominance without symmetry

We assume, without loss of generality,a < b < 0. As before, we first look at the
signs of the elementsmij of the matrixM . To do so, we must determine the signs
of û andv̂. But û < 0 owing to (12) and Table 1, whilêv < 0 if and only if

p̂ <
a(1 − b)

K
,

whereK < 0. But it is trivial to verify that

a (1 − b)

K
>

1

2
.

Sincep̂ < 1
2, we obtain that̂v < 0. From that, it is easy to see that the elements

mij of the matrixM satisfy

m11 > 0, m12 > 0, m21 > 0, m22 > 0.

Moreover, we have as beforem11 < 1.
Then, we look at the characteristic polynomialm(k) of M . Because equation

(14) still holds in the casea < b < 0, we conclude thatm(k) is a convex parabola
whose roots are distinct and real. It is easy to check that (see Appendix for details)

m(0) > 0 and m(1) < 0.

For 0 < β < min(β0, 1), we deduce that the greatest root ofm(k) in modulus,
which corresponds to the greatest eigenvalue ofM in modulus, is greater than 1 in
modulus. Therefore, we have
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Result 6. In the case of underdominance without symmetry (a < b < 0 or
b < a < 0), the polymorphic equilibrium is locally unstable when it exists.

Note that Results 5 and 6 confirm what Overath and Asmussen (1998) had previ-
ously deduced intuitively in their study of a protected polymorphism.

5. Stability of the fixation states

We have determined so far the stability of the polymorphic equilibrium, when it
exists, in the vicinity of this equilibrium point. However, outside the neighborhood
of this point, this stable structure might not be preserved. Consequently, we must
examine the stability of the two fixation states: if both fixation states are locally
unstable, then the two alleles will be preserved in the population through subse-
quent generations, therefore maintaining the polymorphism in this population. To
study the stability of the fixation states, we will use the same technique as for the
stability analysis of the polymorphic equilibrium. We will evaluate the matrix of
the linear approximations of the recursive equations (3) in the neighborhood of
each fixation state. Then, we will determine if the modulus of the greatest eigen-
value of this matrix is greater or smaller than 1. In the following, we consider two
cases: overdominance without symmetry and underdominance without symmetry.
In Section 5.1, we confirm and complete the study previously performed by Kimura
and Ohta (1971) and Overath and Asmussen (1998). Section 5.2 however provides
new results, since Overath and Asmussen (1998) did not study local stability of the
fixation states when no polymorphic equilibrium exists.

5.1. Case of overdominance without symmetry

We assume, without loss of generality, 0< w11 < w22 < 1. First, we develop
the recursive equations near the fixation state of A1, that is, when the genotypic
frequencies are such thatP11 ∼= 1, P12 ∼= 0 andP22 ∼= 0. Using (2) and (3), one
can easily obtain the linear approximation

[
P ′

12
P ′

22

]
∼=

[ 2−β
2w11

2(1−β)w22
w11

β
4w11

β w22
w11

] [
P12
P22

]
.

The matrix above will be denoted byL1. For 0 < β < 1, it is clear that all the
entries ofL1 are strictly positive. The characteristic polynomial ofL1 is

m1(k) = |kI − L1| = k2 −
(

2β w22 + 2 − β

2w11

)
k + β w22

2w2
11

. (15)

This polynomial is a convex parabola ink, which admits two distinct real roots
since its discriminant satisfies

1 (m1(k)) = 1

4w2
11

{[2β w22 − (2 − β)]2 + 8β(1 − β)w22} > 0. (16)
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To determine whether the greatest eigenvalue ofL1 in absolute value is smaller
or greater than 1 in absolute value, we evaluatem1(k) and the derivative ofm1(k),
which is

ṁ1(k) = 2k −
(

2β w22 + 2 − β

2w11

)
,

atk = 0 andk = 1. One can trivially verify that

m1(0) = β w22

2w2
11

> 0 and ṁ1(0) = −2β w22 + 2 − β

2w11
< 0. (17)

By convexity ofm1(k), we deduce that both eigenvalues ofL1 are strictly positive.
We also have

m1(1) = 1

2w2
11

{−2w11(1 − w11) + β[w11 (1 − w22) + w22(1 − w11)]} (18)

and

ṁ1(1) = 1

2w11
[β (1 − 2w22) − 2 (1 − 2w11)] . (19)

For further investigation, we subdivide the general case 0< w11 < w22 < 1 into
two cases: 0< w11 < min(1

2, w22) < 1 and 1
2 ≤ w11 < w22 < 1. In both cases

however, we will show that the greatest eigenvalue ofL1 is greater than 1.
First, in both cases, it is clear thatm1(1) < 0 if and only if

β <
2w11 (1 − w11)

w11 (1 − w22) + w22 (1 − w11)
= β1. (20)

Note thatβ1 > 0, andβ1 < 1 if and only ifw11 < 1
2. Hence, in the case 0< w11 <

min(1
2, w22) < 1, we have 0< β1 < 1 whereas, in the case12 ≤ w11 < w22 < 1,

we have thatβ1 ≥ 1 and consequentlym1(1) < 0. In the latter case, regardless of
the sign ofṁ1(1), this suffices to assert that the greatest eigenvalue ofL1 is greater
than 1. In the former case however, we must examine the sign ofṁ1(1).

In the case 0< w11 < min(1
2, w22) < 1, when min(1

2, w22) = w22, it is
readily seen by (19) thaṫm1(1) < 0 if and only if

β <
2 (1 − 2w11)

1 − 2w22
= β2. (21)

But, in this restricted case, it is easy to observe thatβ2 > 2, thus leading to the
conclusion thatṁ1(1) < 0. Whenw22 = 1

2 or min(1
2, w22) = 1

2, we reach the
same conclusion directly from (19). Therefore, whatever the sign ofm1(1) is, we
deduce that the greatest eigenvalue ofL1 is greater than 1 in the case 0< w11 <

min(1
2, w22) < 1.
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Result 7. In the case of overdominance without symmetry, the fixation of the less
fit homozygote is locally unstable for0 < β < 1.

Next, we examine the recursive equations near the fixation state of A2, that is, when
the genotypic frequencies are such thatP11 ∼= 0, P12 ∼= 0 andP22 ∼= 1. By the
symmetry of equations (3), the following linear approximation is easily obtained:[

P ′
11

P ′
12

]
∼=

[ β w11
w22

β
4w22

2(1−β)w11
w22

2−β
2w22

] [
P11
P12

]
.

The matrixL2 of linear approximation is formed of strictly positive entries for
0 < β < 1. By interchangingw11 andw22 in (15), we find that the characteristic
polynomial ofL2 is

m2(k) = k2 −
(

2β w11 + 2 − β

2w22

)
k + β w11

2w2
22

. (22)

Again, the polynomialm2(k) is a convex parabola ink, which admits two distinct
real roots since its discriminant is strictly positive. In a direct manner, one can verify
that

m2(0) > 0 and ṁ2(0) < 0,

and therefore deduce, by convexity ofm2(k), that both eigenvalues ofL2 are strictly
positive. Also, we easily compute that

m2(1) = 1

2w2
22

{−2w22 (1 − w22) + β [w11 (1 − w22) + w22 (1 − w11)]} (23)

and

ṁ2(1) = 1

2w22
[β (1 − 2w11) − 2 (1 − 2w22)] . (24)

At this point, we subdivide the general case 0< w11 < w22 < 1 into two cases:
0 < w11 < w22 ≤ 1

2 and 0 < max(1
2, w11) < w22 < 1, since they provide

different results.
From equation (23), it is trivial to verify thatm2(1) < 0 if and only if

β <
2w22 (1 − w22)

w11 (1 − w22) + w22 (1 − w11)
= β0. (25)

In Section 3, we have outlined that 0< β2 < 1 if and only if w22 > 1
2. Hence,

in the case 0< w11 < w22 ≤ 1
2, we haveβ2 ≥ 1 and consequentlym2(1) < 0.

Regardless of the sign oḟm2(1), this suffices to ensure that the greatest eigenvalue
of L2 is greater than 1 in this case. Note that a polymorphic equilibrium always
exists in this case (see Table 1).

In the case 0< max(1
2, w11) < w22 < 1, it becomes necessary to look at the

value of ṁ2(1). From equation (24), when max(1
2, w11) = w11, we obtain that

ṁ2(1) > 0 if and only if

β <
2 (1 − 2w22)

1 − 2w11
= β3. (26)
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But one can easily show thatβ3 > 2, and then conclude thaṫm2(1) > 0 in this
specific case. Whenw11 = 1

2 or max(1
2, w11) = 1

2, the same conclusion arises
directly from (24). Therefore, in the case 0< max(1

2, w11) < w22 < 1, three
situations may occur with respect to condition (25):

(i) If β < β0, thenm2(1) < 0 and consequently the greatest eigenvalue ofL2 is
greater than 1.

(ii) If β > β0, thenm2(1) > 0 and consequently the greatest eigenvalue ofL2 is
smaller than 1.

(iii) If β = β0, thenm2(1) = 0 and consequently the greatest eigenvalue ofL2
is equal to 1. This situation requires a more refined analysis of the recursive
equations (3). This analysis is performed in the Appendix.

Note that a polymorphic equilibrium exists if and only ifβ < β0 (see Table 1). We
summarize our conclusions in the result below.

Result 8. In the case of overdominance without symmetry, the fixation of the fittest
homozygote is locally unstable when a polymorphic equilibrium exists and locally
stable otherwise,even in a degenerate case corresponding to a critical value forβ.

5.2. Case of underdominance without symmetry

We assume, without loss of generality, 1< w22 < w11. The analysis of this case
proceeds almost the same way as in the case 0< w11 < w22 < 1. Near the
fixation state of A1, we have deduced earlier the matrix of linear approximation
L1 and its characteristic polynomialm1(k) given by equation (15). Since (16) and
(17) still hold, we infer that both eigenvalues ofL1 are strictly positive. Next, by
(18), we have thatm1(1) > 0 if and only if the inequality in (20) is verified, i.e.
whenβ < β1. Similarly to the case 0< w11 < w22 < 1, it is trivial to show that
β1 > 1, and therefore to conclude thatm1(1) > 0. In addition, by (19), we have
thatṁ1(1) > 0 if and only if the inequality in (21) is verified, i.e. whenβ < β2.
But, it is readily seen thatβ2 > 2, which allows us to conclude thatṁ1(1) > 0.
Hence, we can assert that the greatest eigenvalue ofL1 is smaller than 1. This leads
to the result below.

Result 9. In the case of underdominance without symmetry, the fixation of the fittest
homozygote is locally stable for0 < β < 1.

We finish this section by examining the recursive equations near the fixation
state of A2. We have previously determined the matrix of the linear approximation
L2 and its characteristic polynomialm2(k) given by (22). One can deduce that
both eigenvalues ofL2 are strictly positive. Next, by (23), we have thatm2(1) > 0
if and only if the inequality in (25) is verified, i.e. whenβ < β0. In the case
w11 > w22 > 1, we have shown that 0< β0 < 1. Also, by (24), we have that
ṁ2(1) > 0 if and only if the inequality in (26) is verified, i.e. whenβ < β3.
Therefore, three situations may occur:

(i) If β < β0, thenm2(1) > 0. Besides, it is easy to show thatβ0 < β3. Hence,
we have thatṁ2(1) > 0 and consequently that the greatest eigenvalue ofL2
is smaller than 1.
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(ii) If β > β0, thenm2(1) < 0. Consequently, whatever the sign ofṁ2(1) is, the
greatest eigenvalue ofL2 is always greater than 1.

(iii) If β = β0, thenm2(1) = 0. Consequently, the greatest eigenvalue ofL2 is
equal to 1. This represents a degenerate case which requires a more refined
analysis (see Appendix).

Result 10. In the case of underdominance without symmetry, the fixation of the
less fit homozygote is locally stable when a polymorphic equilibrium exists and
locally unstable otherwise, even in a degenerate case corresponding to a critical
value forβ.

6. Special cases

We conclude this exhaustive study of the partial selfing selection model by consid-
ering special combinations of selective values, for which the treatment will differ
from those used in the preceding sections. In fact, for some special cases, global
convergence can be obtained, thus providing new interesting results.

6.1. Case of directional selection

We assume, without loss of generality, 0< w11 < 1 < w22. We have shown
in Section 3 that there exists no polymorphic equilibrium in this case. The only
remaining equilibria are the fixation states of A1 and A2, respectivelyp = 1 and
p = 0. We will show that there is global convergence to the fixation of A2, if both
alleles are initially present in the population.

We have derived earlier thatp′ = p∗. Using equations (2), it is readily verified
thatp′ ≤ p if and only if(

w11P11 + 1
2P12

) (
1
2P12 + P22

)
≤

(
P11 + 1

2P12

) (
1
2P12 + w22P22

)
,

for w11 < 1 and 1< w22. Moreover, ifP11 + 1
2P12 = p 6= 0 and1

2P12 + P22 =
1−p 6= 0, then we have equality above if and only ifw11P11+ 1

2P12 = P11+ 1
2P12

and 1
2P12 + P22 = 1

2P12 + w22P22, that is, if and only ifP12 = 1, which implies
thatp = 1

2. But, as shown in the Appendix, the stateP12 = 1 cannot be an accu-
mulation point of the iterates of the recursive equations (3) and furthermore cannot
be maintained from one generation to the next. Therefore,p decreases to 0 from
every state for whichp 6= 1. We refer the reader to the Appendix for a rigorous
proof.

Result 11. In the case of directional selection, there is global convergence to the
fixation of the fittest homozygote for0 < β < 1.

6.2. Case of complete dominance

As a special case of directional selection, we consider complete dominance. We
assume, without loss of generality,w11 = w12 = 1. After some manipulations, one
can get

1p = p′ − p =
[

(1 − w22) (1 − P11 − P12)

(1 − w22) (P11 + P12) + w22

]
p.
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At equilibrium, we must have1p = 0. This equality is satisfied if and only if
p = 0 or P11 + P12 = 1. The first solution corresponds to the fixation of A2
whereas the second solution cannot be a set of accumulation points of the iterates
of the recursive equations (3) except forP11 = 1, which corresponds to the fixation
of A1. The latter assertion is proved in the Appendix.

The sign of1p is completely determined by the sign of the function

g(x) = (1 − w22) (1 − x)

(1 − w22) x + w22
,

wherex = P11+P12. To analyse this function, we evaluate its derivative, which is

ġ(x) = − (1 − w22)

[(1 − w22) x + w22]2
.

In the following, we distinguish two cases:

• Case of a deleterious recessive allele (w22 < 1). First, we have thatg(0) =
(1 − w22)

/
w22 > 0 andg(1) = 0. For 0< x < 1, the derivative ofg(x) is

strictly negative and theng(x) is strictly decreasing on this interval. This im-
plies that1p is strictly positive, sop increases from one generation to the next.
In fact, unlessp = 0 or p = 1, p increases to 1, that is, the system globally
converges to the fixation of A1.

• Case of a deleterious dominant allele (w22 > 1). In this case, we have that
g(0) < 0 andg(1) = 0. For 0 < x < 1, the derivative ofg(x) is strictly
positive and theng(x) is strictly increasing on this interval. This implies that
1p is strictly negative, sop decreases from one generation to the next. Unless
p = 0 orp = 1, p decreases to 0, that is, the system globally converges to the
fixation of A2.

Result 12. In the case of complete dominance, there is global convergence to the
fixation of the fittest homozygote, for all 0 < β < 1.

6.3. Case of symmetric selection

We assumew11 = w22 = w 6= 0, 1. In this symmetric case, we have shown that
there exists a unique polymorphic equilibrium withp̂ = q̂ = 1

2. Using equations
(3), it is easy to show thatP ′

11 − P ′
22 = P ∗

11 − P ∗
22. Therefore, we have

∣∣P ′
11 − P ′

22

∣∣ =
[

w

(w − 1) (P11 + P22) + 1

]
|P11 − P22| .

To obtain
∣∣P ′

11 − P ′
22

∣∣ = |P11 − P22|, eitherP11 = P22 or P11 6= P22, and then

w

(w − 1) (P11 + P22) + 1
= 1,

which is possible if and only ifP11 + P22 = 1. But this last equality can be main-
tained only at the fixation states (P11 = 1 for the fixation of A1 andP22 = 1 for
the fixation of A2). Elsewhere, the states for whichP11+P22 = 1 cannot represent
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a set of accumulation points of the iterates of the recursive equations (3). This can
be ascertained from Result A provided in the Appendix.

Next we examine the function

f (x) = w

(w − 1) x + 1
,

wherex = P11 + P22, in order to exhibit the general behavior of the system at
hand. We need the derivative off (x) with respect tox, which is simply

ḟ (x) = − w (w − 1)

[(w − 1) x + 1]2
.

In the following, we must consider the two casesw < 1 andw > 1 separately.

• Case of symmetric overdominance (w < 1). In this case,ḟ (x) > 0 for every
x on the interval [0, 1], thus ensuring that the functionf (x) is strictly increas-
ing on this interval. We also have that 0< w = f (0) < f (x) < f (1) = 1
for 0 < x < 1. Hence, we conclude that|P11 − P22| decreases to 0, unless
P11 = 1 or P22 = 1, and consequently that there is convergence to the mani-
fold P11 = P22. Next, we verify that there is convergence to the polymorphic
equilibrium on the manifoldP11 = P22. To this end, we shall employ the trans-
formation equation, from one generation to the next, for the frequency of the
genotype A1A1. LettingP11 = P22 in equations (3), one obtains

P ′
11 = 1

4
+ β

2

(
wP11

1 − 2 (1 − w) P11

)
.

We note thatP ′
11 = 1

4, whenP11 = 0, andP ′
11 = 1

4 + β
4 , whenP11 = 1

2. The
derivative ofP ′

11 with respect toP11 is such that

d

dP11
P ′

11 = β

2

{
w

[1 − 2 (1 − w) P11]2

}
> 0,

for 0 ≤ P11 ≤ 1
2. The second derivative ofP ′

11 being also strictly positive, we
deduce thatP ′

11 is strictly increasing and convex, for 0≤ P11 ≤ 1
2. Therefore,

the frequencyP11 converges to the valuêP11, which satisfiesP̂ ′
11 = P̂11 and

0 < P̂11 < 1
2, and is given by

P̂11 =
3 − w (1 + β) −

√
[3 − w (1 + β)]2 − 8(1 − w)

8(1 − w)
,

that is, there is convergence to the polymorphic equilibrium on the manifold
P11 = P22. A more rigourous proof of global convergence is presented in the
Appendix.

Result 13. In the case of symmetric overdominance, there is global convergence
to the polymorphic equilibrium, for all0 < β < 1.
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• Case of symmetric underdominance (w > 1). In this case,ḟ (x) < 0 for
everyx on the interval [0, 1], thus ensuring that the functionf (x) is strictly de-
creasing on this interval. We also have thatw = f (0) > f (x) > f (1) = 1, for
0 < x < 1. Hence, we conclude that|P11 − P22| increases to 1, ifP11 6= P22
initially. This implies convergence to one of the fixation states,P11 = 1 or
P22 = 1. If P11 > P22 initially, then the system will converge to the fixation of
A1 whereas, ifP11 < P22 initially, then the system will converge to the fixation
of A2, since these inequalities are always preserved afterwards. Consequently,
the polymorphic equilibrium is unstable. However, there will be convergence
to the polymorphic equilibrium on the manifoldP11 = P22, because the results
previously outlined in the casew < 1 remain valid except that the functionP ′

11
is now concave, for 0≤ P11 ≤ 1

2.

Result 14. In the case of symmetric underdominance, the polymorphic equilibrium
is unstable and both fixation states are stable, for all0 < β < 1.

6.4. Case of a lethal homozygote

We assume, without loss of generality,w11 = 0. The gene A1 is lethal when ho-
mozygote, that is, an individual who carries the genotype A1A1 does not survive
prior to mating and reproduction, and thus does not contribute any zygote to the
next generation. We shall consider the genotype frequencies of the adults from one
generation to the next (for better understanding, see equations (2), (3) and Figure 1):

P ∗′
11 = w11P

′
11

w11P
′
11 + P ′

12 + w22P
′
22

= 0,

P ∗′
12 = P ′

12

w11P
′
11 + P ′

12 + w22P
′
22

= P ′
12

P ′
12 + w22P

′
22

,

P ∗′
22 = w22P

′
22

w11P
′
11 + P ′

12 + w22P
′
22

= w22P
′
22

P ′
12 + w22P

′
22

.

Observing thatP ∗
12 = 1 − P ∗

22 after the very first generation, one obtains that

P ∗′
22 =

w22

[
1 + (2 + β) P ∗

22 + (1 − β) P ∗2

22

]
2

(
1 − P ∗

22

) [
1 + (1 − β) P ∗

22

] + w22

[
1 + (2 + β) P ∗

22 + (1 − β) P ∗2

22

] .

(27)

LettingP ∗′
22 = P ∗

22 in (27) provides a non-trivial value forP ∗
22 at equilibrium, which

is given by

P̂ ∗
22 =

−[2 (1−w22)−β w22]+
√

[2 (1−w22)−β w22]2+4w22 (2 − w22) (1 − β)

2 (2 − w22) (1 − β)
.

This value enables us to determine the value ofp at the polymorphic equilibrium
(when it exists), which is simply
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p̂ = P̂ ∗
11 + 1

2P̂ ∗
12 = 1

2

(
1 − P̂ ∗

22

)
.

One can verify that, whenw22 ≤ 1
2, there exists a polymorphic equilibrium for all

0 < β < 1, whereas when12 < w22 < 1, there exists a polymorphic equilibrium if
and only ifβ < 2 (1 − w22) = β0. This is effectively the value ofβ0 encountered
previously, whose termw11 equals 0. Note that these results are consistent with
Result 3.

To study the stability of the equilibrium points, we will utilize the recursive
equation ofP ∗

22, as given in (27). Generally, the derivative of this equation, calcu-
lated at these equilibrium points, suffices to indicate the stability of such points.
If the derivative is smaller than 1 in absolute value, then the equilibrium point is
stable whereas if it is greater than 1, then the equilibrium point is unstable. If the
derivative is equal to 1 in absolute value, we must look at the second derivative of
the recursive equation at this point.

After some tedious algebraic manipulations, we find that the first derivative of
equation (27) is given by

d

dP ∗
22

P ∗′
22

=
4w22

[
1 + β + 2 (1 − β) P ∗

22 + (1 − β) P ∗2

22

]
{
2

(
1−P ∗

22

) [
1+(1−β) P ∗

22

]+w22

[
1+(2+β) P ∗

22 + (1−β) P ∗2

22

]}2
> 0,

for 0 ≤ P ∗
22 ≤ 1 and 0< β < 1. Thus,P ∗′

22 is strictly increasing as a function of
P ∗

22 on the interval [0, 1]. Moreover, one can easily compute

d

dP ∗
22

P ∗′
22

∣∣∣∣
P ∗

22=0

= 4w22 (1 + β)

(2 + w22)
2

and
d

dP ∗
22

P ∗′
22

∣∣∣∣
P ∗

22=1

= 2 − β

2w22
.

It is easy to show that the derivative atP ∗
22 = 0 is always smaller than 1, whereas

the derivative atP ∗
22 = 1 is smaller than 1 if and only ifβ > 2(1 − w22) = β0.

Whenw22 > 1, no polymorphic equilibrium exists. In addition, we observe
thatP ∗′

22 = w22
/
(2 + w22) > 0 atP ∗

22 = 0. Since the derivative ofP ∗′
22 evaluated

at P ∗
22 = 1 is smaller than 1 forw22 > 1, we deduce that, unlessP ∗

22 = 1, there
is global convergence toP ∗

22 = 1 or equivalently, to the fixation of A2. The same
arguments remain valid whenw22 = 1 and also whenw22 < 1, but only ifβ ≥ β0,
since no polymorphic equilibrium exists for these specific values ofβ.

However, whenβ < β0, a polymorphic equilibrium exists. Because the de-
rivative of P ∗′

22 at P ∗
22 = 1 is greater than 1, the fixation of A2 is now unstable.

Also, sinceP ∗′
22 = w22

/
(2 + w22) > 0 atP ∗

22 = 0 andP ∗′
22 is strictly increasing on

[0, 1], the derivative ofP ∗′
22 calculated atP ∗

22 = P̂ ∗
22 must be assumed smaller than

1. This enables us to assert global convergence to the polymorphic equilibrium in
this case.
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Result 15. In the case of a lethal homozygote, there is global convergence to the
polymorphic equilibrium, when it exists,or to the fixation of the other homozygote,
when no polymorphic equilibrium exists.

6.5. Case of a lethal heterozygote

This time, an individual who carries the heterozygote genotype A1A2 does not
survive prior to mating and reproduction. Note that this case is a special case of
underdominance. We assume, without loss of generality,w12 = 0 < w22 < w11.
Similarly to the previous case, we consider the genotype frequencies of the adults
from one generation to the next. These frequencies are expressed as:

P ∗′
11 = w11P

′
11

w11P
′
11 + w22P

′
22

, P ∗′
12 = 0, P ∗′

22 = w22P
′
22

w11P
′
11 + w22P

′
22

.

Noting thatP ∗
22 = 1 − P ∗

11 after the first generation, one can write

P ∗′
11 = w11P

∗
11

[
β + (1 − β) P ∗

11

]
w11P

∗
11

[
β + (1 − β) P ∗

11

] + w22
(
1 − P ∗

11

) [
β + (1 − β)

(
1 − P ∗

11

)] .

(28)

LettingP ∗′
11 = P ∗

11 in (28) provides a non-trivial solution for the polymorphic equi-
librium, that is, with 0< P ∗

11 < 1, if and only ifβ < β0 = w22
/
w11. Thus, at the

polymorphic equilibrium, we have

P̂ ∗
11 = w22 − β w11

(1 − β) (w11 + w22)
,

and the frequency of A1 is given by

p̂ = P̂ ∗
11 + 1

2P̂ ∗
12 = P̂ ∗

11 = w22 − β w11

(1 − β) (w11 + w22)
.

To study the stability of the equilibrium points, we evaluate the derivative of the
recursive equation ofP ∗

11, as expressed in (28). Simple calculations yield
d

dP ∗
11

P ∗′
11

= w11w22
[
β + 2 (1 − β) P ∗

11

(
1 − P ∗

11

)]
{
w11P

∗
11

[
β+(1 − β) P ∗

11

] + w22
(
1 − P ∗

11

) [
β+(1−β)

(
1−P ∗

11

)]}2
> 0,

for 0 ≤ P ∗
11 ≤ 1 and 0< β < 1. Hence, the recursive equation (28) is strictly

increasing forP ∗
11 on the interval [0, 1]. We easily compute

d

dP ∗
11

P ∗′
11

∣∣∣∣
P ∗

11=0

= β w11

w22
and

d

dP ∗
11

P ∗′
11

∣∣∣∣
P ∗

11=1

= β w22

w11
.

The derivative atP ∗
11 = 0 is smaller than 1 if and only ifβ < β0, whereas the

derivative atP ∗
11 = 1 is always smaller than 1. Therefore, the fixation of A1 is

always stable.
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Whenβ < β0, a polymorphic equilibrium exists and, since the derivative of
P ∗′

11 atP ∗
11 = 0 is smaller than 1, the fixation of A2 is stable. Because the fixation of

A1 is always stable andP ∗′
11 is strictly increasing on [0, 1], the derivative ofP ∗′

11 at
P ∗

11 = P̂ ∗
11 must be greater than 1 and consequently the polymorphic equilibrium

is unstable. IfP ∗
11 > P̂ ∗

11 initially, then the system converges to the fixation of A1,
unlessP ∗

11 = 1. If P ∗
11 < P̂ ∗

11 initially, then the system converges to the fixation of
A2, unlessP ∗

11 = 0.
Whenβ ≥ β0, no polymorphic equilibrium exists. In addition, since the deriv-

ative ofP ∗′
11 atP ∗

11 = 0 is greater than or equal to 1 in this case, the fixation of A2

is now unstable. Also, from the fact thatP ∗′
11 is strictly increasing on [0, 1] and that

the fixation of A1 is stable, we deduce that there must be global convergence to the
fixation of A1, unlessP ∗

11 = 0 orP ∗
11 = 1.

Finally, whenw11 = w22, the value ofP̂ ∗
11 at the polymorphic equilibrium

equals1
2. The derivative ofP ∗′

11 evaluated respectively atP ∗
11 = 0 andP ∗

11 = 1
equalsβ, thus ensuring that it is smaller than 1. Consequently, the fixation states
are stable and the polymorphic equilibrium unstable, for 0< β < 1.

Result 16. In the case of a lethal heterozygote, the polymorphic equilibrium is
unstable, when it exists, and both fixation states are stable; otherwise, when no
polymorphic equilibrium exists, there is global convergence to the fittest homozy-
gote.

7. Discussion

Table 2 summarizes the results derived in the present paper as well as the results
for the panmictic model (β = 0), in order to perform a comparison with the partial
selfing model. In this table, we assume that

β0 = 2w22 (w12 − w22)

w22 (w12 − w11) + w11 (w12 − w22)
, (31)

p(0) designates the initial frequency of allele A1 in the population, and(p̂R, q̂R)

designates the respective frequencies of allele A1 and A2 at the polymorphic equi-
librium under the panmictic model, where

p̂R = w22 − w12

w11 − 2w12 + w22
and q̂R = 1 − p̂R = w11 − w12

w11 − 2w12 + w22
.

Under the partial selfing model,(p̂PS, q̂PS) designates the respective frequencies of
allele A1 and A2 at the polymorphic equilibrium

p̂PS = −B − √
B2 − 4AC

2A
and q̂PS = 1 − p̂PS = 2A + B + √

B2 − 4AC

2A
,

where

A = 2 (1 − β) (2w12 − w11 − w22) [w22 (w12 − w11) + w11 (w12 − w22)] ,

B = [w22 (w12 − w11) + w11 (w12 − w22)]
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Table 2. Comparative results under the panmictic model and the partial selfing model.

Selective values Panmixia (β = 0) Partial selfing

Overdominance 0 < β < 1
0 < w11 < w22 ≤ w12

2 Global convergence to poly- Polymorphic equilibrium
morphic equilibrium(p̂R, q̂R) (p̂PS, q̂PS) locally stable

Fixation of A1 unstable Fixation of A1 locally unstable
Fixation of A2 unstable Fixation of A2 locally unstable

Overdominance 0 < β < 1
0 = w11 < w22 ≤ w12

2 Global convergence to poly- Global convergence to polymorphic
morphic equilibrium(p̂R, q̂R) equilibrium(p̂PS, q̂PS)

Fixation of A1 unstable Fixation of A1 unstable
Fixation of A2 unstable Fixation of A2 unstable

Overdominance 0 < β < β0

0 < max(w11,
w12

2 ) Global convergence to poly- Polymorphic equilibrium
< w22 < w12 morphic equilibrium(p̂R, q̂R) (p̂PS, q̂PS) locally stable

Fixation of A1 unstable Fixation of A1 locally unstable
Fixation of A2 unstable Fixation of A2 locally unstable

β0 ≤ β < 1
No polymorphic equilibrium
Fixation of A1 locally unstable
Fixation of A2 locally stable

Overdominance 0 < β < β0

0 = w11 <
w12

2 Global convergence to poly- Global convergence to polymorphic
< w22 < w12 morphic equilibrium(p̂R, q̂R) equilibrium(p̂PS, q̂PS)

Fixation of A1 unstable Fixation of A1 unstable
Fixation of A2 unstable Fixation of A2 unstable

β0 ≤ β < 1
No polymorphic equilibrium
Fixation of A1 unstable
Global convergence to fixation of A2

Overdominance 0 < β < 1
0 < w11 = w22 Global convergence to poly- Global convergence to polymorphic

< w12 morphic equilibrium(p̂R, q̂R) equilibrium(p̂PS, q̂PS)
Fixation of A1 unstable Fixation of A1 unstable
Fixation of A2 unstable Fixation of A2 unstable

Underdominance 0 < β < β0

0 < w12 < w22 Polymorphic equilibrium Polymorphic equilibrium
< w11 (p̂R, q̂R) unstable (p̂PS, q̂PS) locally unstable

If p(0) > p̂R, then convergence Fixation of A1 locally stable
to fixation of A1

If p(0) < p̂R, then convergence Fixation of A2 locally stable
to fixation of A2

β0 ≤ β < 1
No polymorphic equilibrium
Fixation of A1 locally stable
Fixation of A2 locally unstable
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Table 2. (continued)

Selective values Panmixia (β = 0) Partial selfing

Underdominance 0 < β < β0

0 = w12 < w22 Polymorphic equilibrium Polymorphic equilibrium(p̂PS, q̂PS)
< w11 (p̂R, q̂R) unstable unstable

If p(0) > p̂R, then convergence Ifp(0) > p̂PS, then convergence to
to fixation of A1 fixation of A1

If p(0) < p̂R, then convergence Ifp(0) < p̂PS, then convergence to
to fixation of A2 fixation of A2

β0 ≤ β < 1
No polymorphic equilibrium
Global convergence to fixation of A1
Fixation of A2 unstable

Underdominance 0 < β < 1
0 ≤ w12 < Polymorphic equilibrium Polymorphic equilibrium(p̂PS, q̂PS)

w11 = w22 (p̂R, q̂R) unstable unstable
If p(0) > p̂R, then convergence Ifp(0) > p̂PS, then convergence to

to fixation of A1 fixation of A1

If p(0) < p̂R, then convergence Ifp(0) < p̂PS, then convergence to
to fixation of A2 fixation of A2

Directional 0 < β < 1
0 < w11 ≤ w12 No polymorphic equilibrium No polymorphic equilibrium

< w22 or
0 < w11 < w12 Fixation of A1 unstable Fixation of A1 unstable

≤ w22 or
0 = w11 < w12 Global convergence to fixation Global convergence to fixation of A2

≤ w22 of A2

× [(2 − β) (w22 − w12) − 3β (w11 − w12)]

− 2w22 (w12 − w11) (2w12 − w11 − w22) ,

C = 2w22 (w12 − w11) (w12 − w22) − β (w12 − w11)

× [w22 (w12 − w11) + w11 (w12 − w22)] .

The comparison between the panmictic model and the partial selfing model has
some interesting implications. In effect, a population under random mating at a giv-
en locus that suddenly practices partial selfing in some proportionβ would undergo
important changes in its genic structure and its genetic variability. This explains
why our main attention will purposely be turned to those cases that guarantee the
preservation of both genes A1 and A2 in the population.

A first look at Table 2 suggests but does not prove that polymorphism in the pop-
ulation can be maintained only in the overdominant case, and this in both models.
For the panmictic model, there is global convergence to the polymorphic equilib-
rium. For the partial selfing model, however, we know only that a protected poly-
morphism exists, with both fixation states unstable, whenever a stable polymorphic
equilibrium exists and vice versa.



Stability analysis of the partial selfing selection model 565

On the one hand, when the heterozygote is strongly favored compared with
the homozygotes (0< w11 < w22 ≤ w12

/
2), referred by Overath and Asmussen

(1998) as “double overdominance”, introduction of selfing does not modify the
polymorphic structure of the population even if one of the genes is lethal for a ho-
mozygote. On the other hand, when the selective values of the homozygotes tend
to be closer to that of the heterozygote (0< max(w11, w12

/
2) < w22 < w12),

referred by Overath and Asmussen (1998) as “simple overdominance”, the poly-
morphism is preserved under the sole condition that the proportionβ of selfing is
not too large (β < β0). A larger proportion will break the polymorphic structure of
the population. Table 2 then shows what Overath and Asmussen (1998) hypothe-
sized as “...when any self-fertilization occurs, simple overdominant selection may
not be sufficient to maintain both alleles in the population.” In case of equality of
the selective values of the homozygotes, there is global convergence to the poly-
morphic equilibrium, regardless of the value ofβ. This seems intuitively sound
because of the symmetry of the recursive equations in this case.

In every other sets of selective values but the overdominant case, it appears im-
possible for a polymorphism to be maintained in the population. For instance, when
one of the genes is completely dominant (0< w11 = w12 < w22 or 0 < w22 <

w11 = w12), selection will determine the ultimate structure of the population. In
the former case, there will be eventual extinction of the gene A1, whereas in the
latter case, there will be eventual extinction of the gene A2. These results remain
valid in both models. These features were “predictable”, since the case of a gene
completely dominant is a particular case of directional selection.

As deduced by Overath and Asmussen (1998), the partial selfing model has the
same general equilibrium structure as the random mating model. They conclude
as follows: “...(1) at most one polymorphic equilibrium exists; (2) a polymorphic
equilibrium exists only with overdominance or underdominance; (3) a stable poly-
morphic equilibrium exists only when selection is overdominant; and (4) a protected
polymorphism, with both fixation states unstable, exists whenever a stable internal
equilibrium exists and vice versa.” We rigorously proved all four results above.
Furthermore, we have deduced some important qualitative features of the partial
selfing model. In most cases, when the proportionβ is not too large, it is essentially
selection that will determine the ultimate genetic structure and, if it is possible,
the preservation of the polymorphism in the population. When this proportion gets
larger, no polymorphic equilibrium exists. Selfing is thus mostly responsible for
compromising a possible polymorphism in the population. In fact, the partial sel-
fing model with selection produces a struggle between two forces, selection on the
one hand and selfing on the other.

Finally, it should be noted that Nagylaki (1997) has provided a complete analy-
sis of the partial selfing model with weak selection. As expected, our results on the
dynamical structure of the strong-selection model agree with those obtained under
weak selection. However, Nagylaki’s treatment differs greatly from ours, since his
differential equation is “...the weak-selection limit of the discrete selection model
with constant inbreeding coefficient...” Thus, the dynamical analysis of the model
is reduced to the study of a one-dimensional differential equation for the allelic
frequencies. Following his notation, substitutingwij = 1 + kuij in β0 given in
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equation (31) and then lettingk tend to 0, one can show that

β̃ = 2 (w12 − w22)

(w12 − w11) + (w12 − w22)

is the limit, ask goes to 0, ofβ0. The valueβ̃ can be obtained from a detailed analy-
sis of the four cases described in Nagylaki (1997). In the case of overdominance, it
can be shown thatβ0 monotonically decreases tõβ. This implies that strong selec-
tion is more favorable than weak selection for the preservation of a polymorphism.
This can be explained by the fact that strong selection can produce a wider range
of selective values than weak selection. Further, note that neither underdominance
nor directional weak selection can maintain polymorphism in the population.

8. Summary

We have shown that a polymorphic equilibrium can exist only in the case of over-
dominance or underdominance and for a certain range of selfing rates (see Table 1).
The existence of a polymorphic equilibrium in the case of directional selection is
thus precluded. Moreover, a polymorphic equilibrium is unique when it exists. The
results above have been first outlined by Kimura and Ohta (1971) in the case of
overdominance only, and by Overath and Asmussen (1998) in their study of the
partial selfing selection model with apomixis, and have been rigorously proved in
the present paper. Also, the most frequent allele at a polymorphic equilibrium is
the one associated with the homozygote that has the fitness closest to that of the
heterozygote. Equal allelic frequencies at a polymorphic equilibrium appear only
when the homozygotes have the same fitness. These new results have also been
mathematically proved in this paper.

An analysis of local stability at the polymorphic equilibrium has also been con-
ducted in this paper and has produced new results. In the case of overdominance,
the polymorphic equilibrium is locally stable when it exists. In the case of under-
dominance, it is locally unstable when it exists. An analysis of local stability at the
fixation states has confirmed results already known for the partial selfing model
(Kimura and Ohta, 1971, Overath and Asmussen, 1998). We took this analysis a
step further by carrying out a quadratic analysis in the degenerate case, that is, when
the leading eigenvalue of the matrix of the linear approximation is equal to one, by
applying a criterion due to Lessard and Karlin (1982). The local analysis outlined
the fact that a protected polymorphism can only exist in the case of overdominance.

Finally, we have considered some special sets of selective values for which we
can prove global convergence. In the case of directional selection and in the case of
dominance, we showed that there is global convergence to the fixation of the fittest
homozygote. In the case of symmetric overdominance, there is global convergence
to the polymorphic equilibrium, whereas in the case of symmetric underdomi-
nance, both fixation states are stable and the polymorphic equilibrium is unstable.
In the case of a lethal homozygote, there is global convergence to the polymorphic
equilibrium when it exists, or to the fixation of the other homozygote when no poly-
morphic equilibrium exists. In the case of a lethal heterozygote, the polymorphic
equilibrium is unstable when it exists and both fixation states are stable. Otherwise,
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when no polymorphic equilibrium exists, there is global convergence to the fixation
of the fittest homozygote. These new results of global convergence represent one
of our major contributions to the study of the partial selfing selection model. Some
of these results about the dynamical structure of the model have also been derived
by Nagylaki (1997) for weak selection. However, since weak selection is a limiting
case of selection, our results on strong selection provide a wider applicability.
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Appendix

A.1. Proof of Result 5

We show thatH(β, p̂) is strictly positive. We have to consider separately the cases
0 < b < min(1

2, a) < 1 and1
2 ≤ b < a < 1. In the case 0< b < min(1

2, a) < 1,
we have exhibited (see Result 3) the condition 0< β < β0 for the existence of a
polymorphic equilibrium(p̂, F̂ ), where 0< p̂ < 1

2. We first examine the limiting
valuesβ = 0 andβ = β0. Whenβ = 0, random mating prevails in the population.
Results for this model are well known in population genetics (see, e.g., Jacquard,
1974) and in particular, for 0< b < a < 1, it is known that there exists a unique
polymorphic equilibrium with the frequency of A1 given byp̂R = b

/
(a + b) < 1

2
(this result could have also been obtained by lettingβ = 0 in equation (7)). For
these specific values ofβ andp, we have

H
(
0, p̂R

) = a + b > 0, (A.1)

Whenβ = β0, we have (see Section 3)p̂− = 0, i.e. the polymorphic equilibrium
degenerates to the fixation of A2. These values ofβ andp yield

H(β0, 0) =
(

1

1 − b

)
[a(1 − b) − b2] > 0. (A.2)

We also find that
H(0, 0) = a + b > 0 (A.3)

and

H
(
β0, p̂R

) =
[

a + b

(a + b − ab)2

] {
(a + b) [(a − b) (1 − b) + b (1 − a)] + a2b2}

> 0. (A.4)

In addition, the partial derivatives with respect toβ andp satisfy

∂

∂β
H (β, p) = −K

2

[
a − (a + b) p

a (1 − b) − Kp

]2

< 0 (A.5)
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and
∂

∂p
H (β, p) = β Kab (a − b) [a − (a + b) p]

[a (1 − b) − Kp]3
> 0,

for β in the open interval (0, β0) andp in the open interval(0, p̂R). We conclude that
the functionH(β, p) is strictly positive in the whole rectangle [0, β0] × [0, p̂R],
since it is strictly positive at the four corners, monotonically decreasing with respect
to β and monotonically increasing with respect top.

In the case1
2 ≤ b < a < 1, we have shown that there exists a unique poly-

morphic equilibrium(p̂, F̂ ), where 0< p̂ < 1
2, for all 0 < β < 1. We first look

at the limiting valuesβ = 0 andβ = 1. Whenβ = 0, (A.1) remains valid. When
β = 1, the population reproduces by complete selfing. The expression forp̂ at
the polymorphic equilibrium is obtained by lettingβ = 1 in equation (7). This
expression is given by

p̂S = a (2b − 1)

a (2b − 1) + b (2a − 1)
.

One can easily verify that 0< p̂S < p̂R < 1
2. Then, we have

H
(
1, p̂S

) = a (2b − 1) + b (2a − 1) > 0.

Moreover, one can calculate and observe that

H(0, p̂S) = a + b > 0 and H(1, p̂R) =
(

a + b

2

) [
1 + a2b2

(a + b − ab)2

]
> 0.

Also, the sign of the partial derivatives ofH(β, p), given in (A.5), remains un-
changed forβ in the open interval (0, 1) andp in the open interval(p̂s, p̂R). Hence,
using arguments as above, we conclude that the functionH(β, p) is strictly positive
in the whole rectangle [0, 1] × [p̂S, p̂R].

A.2. Proof of Result 6

We show thatm(1) < 0 in the casea < b < 0. As observed in equation (15),
the sign ofm(1) is the same as that ofH(β, p̂). We have determined earlier (see
Result 3) the condition 0< β < β0 that allows for the existence of a polymorphic
equilibrium (p̂, F̂ ), where 0< p̂ < 1

2. Using (A.1) to (A.4), one can trivially
obtain that

H (0, 0) < 0, H
(
0, p̂R

)
< 0, H (β0, 0) < 0, H

(
β0, p̂R

)
< 0.

It is also easy to verify that the partial derivatives ofH(β, p), given in (A.5), are
both strictly positive forβ in the open interval (0, β0) andp in the open interval
(0, p̂R). Therefore, we conclude that the functionH(β, p) is strictly negative in the
whole rectangle [0, β0] × [0, p̂R] and consequently thatm(1) < 0.
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A.3. Proof of Result 8

In the degenerate caseβ = β0, the greatest eigenvalue ofL2 equals 1. Lessard
and Karlin (1982) exhibited a general criterion for stability-instability at fixation
states when the greatest eigenvalue of the matrix of the linear approximation is
one. Using their notation, we let the vectorx = (x1, x2) = (P11, P12) be such that
0 = (0, 0) corresponds to the fixation event(F ) of A2. LetT x = (

U1(x), U2(x)
) =

(P ′
11, P

′
12), whereT is the transformation defined by the recursive equations (3).

We have thatT (x) = 0 if and only if x = 0 and T is smooth enough in the
neighborhood of0.

The matrixL2 is an irreducible aperiodic nonnegative matrix. Hence, by the
theorem of Perron-Frobenius, the components of the left and right eigenvectors,n

andg, of L2 corresponding to the eigenvalue one are strictly positive:

nL2 = n = (ξ1, ξ2) > 0 and L2g = g = (η1, η2) > 0.

Without loss of generality, we assume〈〈n, g〉〉 =
2∑

j=1
ξjηj = 1. Then we define the

quantity S= 〈〈n, h〉〉 as the inner product of the vectorsn andh = (θ1, θ2), where

θi =
2∑

k,µ=1

∂2Ui(0)

∂xk∂xµ

ηkηµ, for i = 1, 2.

The general criterion for stability-instability stipulates that the fixation eventF is
stable if S< 0 and unstable if S> 0.

Now, letb = 1−w22, c = 2w22− 1 andd = w22−w11. Note thatb, c, d > 0
in the case at hand. The matrix of the linear approximation is

L2 = 1

K

[
2w11b

b
2

2w11cd
w22

w11b+w22d
w22

]
.

The eigenvalues ofL2 are

k1 = 1 > k2 = w11b

w22K
> 0.

The left and right eigenvectors ofL2 corresponding to the eigenvalue one are

n =
(

2w11c

w22
, 1

)
> 0 and g =

(
b

2d
, 1

)
> 0.

After some rather tedious calculations, we find that

∂2U1(0)

∂x2
1

= 2w11d

w2
22K

(w11c + 2w22b) ,

∂2U2(0)

∂ x2
1

= 4w11 (d − w11) cd

w2
22K

,
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∂2U1(0)

∂x1∂x2
= 1

w2
22K

[
w11cd − 2w22b

(
w11b − 1

4d
)]

,

∂2U2(0)

∂x1∂x2
= d

w2
22K

[w22b − c (3w11 − w11c − d)] ,

∂2U1(0)

∂x2
2

= 1

2w2
22K

(
cd − 2w22b

2
)

,

∂2U2(0)

∂ x2
2

= −1

w2
22K

[
2w22b

2 + (1 + 2b) cd
]
.

With some algebra, one finally obtains

S = K
[
b2 − w22 (1 − w11)

]
w2

22d〈〈n, g〉〉 . (A.6)

In the case at hand, it is trivial to show that S< 0 and consequently that the fixation
of A2 is stable.

A.4. Proof of Result 10

This proof is very similar to the above proof of Result 8. In this case, however,
we haveb, d < 0 andc > 0. Equation (A.6) clearly shows that S> 0, and
consequently that the fixation of A2 is unstable.

A.5. Proof of Result 11

We first present an interesting result which will be useful in the subsequent proofs.
Let K be a compact set of<n and letT : K → K be a continuous function. Let

v : <n → < be a continuous function such thatv(T x) ≤ v(x), for every vector
x ∈ K. We define the sequence

{
T nx

}
n≥0 for everyx ∈ K. By the compactness of

K, v is bounded below and therefore the sequence{v(T nx)}n≥0 converges, that is

lim
n→∞ v(T nx) = v̂.

Let x̂ be an accumulation point of{T nx}n≥0. Then there exists a subsequence
{T nk x}k≥0 which converges tôx, that is

lim
k→∞

{T nk x} = x̂.

Then, the following inequalities hold:

v(T nk+1x) ≤ v(T nk+1x) ≤ v(T nk x).

By the continuity ofv,

lim
k→∞

v(T nk+1x) = lim
k→∞

v(T nk x) = v(x̂) = v̂.
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Also, by the continuity ofv andT ,

lim
k→∞

v(T nk+1x) = lim
k→∞

v(T ◦ T nk x) = v(T x̂).

Hence, we conclude that
v(T x̂) = v(x̂) = v̂.

More generally, for everyl ≥ 1, we obtain the following inequalities:

v(T nk+l x) ≤ v(T nk+lx) ≤ v(T nk x).

Using the same arguments as before, we obtain

lim
k→∞

v(T nk+l x) = lim
k→∞

v(T nk x) = v(x̂) = v̂

and also
lim

k→∞
v(T nk+lx) = lim

k→∞
v(T l ◦ T nk x) = v(T l x̂).

Hence, for everyl ≥ 1, we conclude that

v(T l x̂) = v(x̂) = v̂.

Result A. Every accumulation point of{T nx}n≥0 must be invariant with respect
to v.

Note that this result remains valid for a continuous functionv such thatv(T x) ≥
v(x), for every vectorx ∈ K.

We shall now demonstrate hereupon that the state for whichP12 = 1 cannot
be a point of accumulation of the iterates of the transformationT defined by the
recursive equations (3) from any starting pointx = (P11, P12, P22) in the case of
directional selection(0 < W11 < 1 < W22). Let v(x) = p = P11 + 1

2P12, for
everyx = (P11, P12, P22). Apply the transformationT to x̂ = (0, 1, 0), which cor-
responds toP12 = 1. Trivial computations giveT x̂ = (1

4, 1
2, 1

4) andv(T x̂) = 1
2.

Applying once again the transformationT , one obtains that

v(T 2x̂) =
1
4w11 + 1

4
1
4w11 + 1

2 + 1
4w22

<
1

2
.

But this contradicts Result A above.

A.6. Proof of Result 12

We demonstrate that the states for whichP11 + P12 = 1, with P11 6= 0, 1, cannot
represent a set of accumulation points of the iterates of the recursive equations (3)
from any starting pointx = (P11, P12, P22) in the case of complete dominance
(W11 = W12 = 1). Let v(x) = p = P11 + 1

2P12 andx̂ = (P11, 1 − P11, 0). Then,
applying the transformationT to x̂, one easily obtainsv(T x̂) = P11+ 1

2 (1 − P11).
Applying once again the transformationT , one calculates that

v(T 2x̂) = P11 + 1
2 (1 − P11)

1 − 1
4 (1 − w22) (1 − P11) [1 − (1 − β) P11]

6= v(x̂),

thus contradicting Result A.
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A.7. Proof of Results 13 and 14

First, for any valuew 6= 0, 1, we demonstrate that the states for whichP11+P22 =
1, withP11 6= 0, 1

2 or 1, cannot represent a set of accumulation points of the iterates
of the recursive equations (3) from any starting pointx = (P11, P12, P22) in the
case of symmetric selection(W11 = W22 = W 6= 0 and 1). Letv(x) = |P11 − P22|
andx̂ = (P11, 0, 1 − P11). Applying the transformationT to x̂, one easily obtains
v(T x̂) = |2P11 − 1|. Applying once again the transformationT , one can calculate
that

v(T 2x̂) =
[

w

w + 2 (1 − w) (1 − β) P11 (1 − P11)

]
|2P11 − 1| 6= v(x̂),

thus contradicting Result A.
At this point, we distinguish the casesw < 1 andw > 1. In the casew < 1,

posit againv(x) = |P11 − P22|. From Section 6.3, we know thatv(T x) ≤ v(x),
for every vectorx ∈ K. Let v̂ = 0 andx̂ = (P11, 1−2P11, P11). By induction, it is
easy to verify that Result A holds. The vectorsx̂ located on the manifoldP11 = P22
represent a set of accumulation points of the iterates of the recursive equations (3)
for the case at hand.

In the casew > 1, with v(x) = |P11 − P22|, we know by Section 6.3 that
v(T x) ≥ v(x), for every vectorx ∈ K. Two distinct cases must be considered:

(i) If P11 > P22, then letv̂ = 1 andx̂ = (1, 0, 0).
(ii) If P11 < P22, then letv̂ = 1 andx̂ = (0, 0, 1).

In both cases, it is trivial to verify that Result A holds.
In the casew < 1, we have shown that the solution of the system of recursive

equations (3) converges, except from the fixation states, to the manifoldP11 = P22.
We shall prove convergence to the polymorphic equilibrium located on this man-
ifold. In effect, if the sequence

{
T l x̂

}
l≥0 converges tôz (here the polymorphic

equilibrium) for x̂ on the manifoldP11 = P22 and ẑ is locally stable, then the
sequence

{
T lx

}
l≥0 will converge toẑ for anyx in a certain neighborhood ofx̂ by

the continuity ofT . This will be the case for anyx, taking x̂ as an accumulation
point of

{
T lx

}
l≥0 which must be on the manifoldP11 = P22. In Section 6.3, we

have shown that the sequence
{
T l x̂

}
l≥0 converges to the polymorphic equilibrium

ẑ. The last step is to show that the polymorphic equilibrium is locally stable. In this
purpose, we employ the method exposed in Section 4.

We develop the linear part of the recursive equations (3) in the vicinity of
the polymorphic equilibrium(p̂, F̂ ). The matrix of the linear approximation is
expressed as

M =
[

m11 m12
m21 m22

]
=




2w

2−(1−w)
(
1+F̂

) 0

0 β

{
2w[

2−(1−w)
(
1+F̂

)]2

}

 ,



Stability analysis of the partial selfing selection model 573

using the still valid entries given in (13) and recalling thatp̂ = q̂ = 1
2. Since

−1 < F̂ < 1, all the entries ofM are found positive. The characteristic polynomial
of M simply reads as

m(k) = (k − m11)(k − m22),

with strictly positive eigenvalues. Note that these two eigenvalues are continuous
with respect toβ and equal to 0 andm11 > 0 for β = 0. Moreover,m11 < 1 if
and only ifw < 1, which always holds in the case at hand. Thus, using arguments
as in the proof of Result 5, it suffices to show thatm(0) > 0 andm(1) > 0, for
0 < β < 1, to prove that the greatest eigenvalue ofM is smaller than 1. We have

m(0) = m11m22 > 0

and

m(1) =
(1 − w)

(
1 − F̂

)
[
2 − (1 − w)

(
1 + F̂

)]3
H(β, F̂ ),

where
H(β, F ) = [2 − (1 − w) (1 + F)]2 − 2β w.

The sign ofm(1) depends upon the sign ofH(β, F̂ ). We must divide the subsequent
analysis in two cases, 0< w < 1

2 and 1
2 ≤ w < 1, even though they shall lead to

the same result.
Before going any further, we have to outline an essential fact that concerns the

value ofF at equilibrium, that is,

F̂ = 4P̂11 − 1 =
1 + w (1 − β) −

√
[3 − w (1 + β)]2 − 8(1 − w)

2 (1 − w)
.

For fixedw > 0, the value ofF̂ increases asβ increases over the interval (0, 1).
This is deduced by taking the derivative ofF̂ with respect toβ, expressed as

d

dβ
F̂ =

w
(
1 + F̂

)
√

[3 − w (1 + β)]2 − 8(1 − w)

> 0. (A.7)

Let us now return to the functionH(β, F̂ ). In the case 0< w < 1
2, whenβ = 0, the

classical result asserts thatF̂ = 0, since no inbreeding is generated by the panmic-
tic model. Whenβ = 1, the value ofF at equilibrium becomeŝF = w

/
(1 − w)

(this value follows from Nagylaki, 1977). Easy computations yield

H(0, F̂ ) = (1 + w)2 > 0 and H(1, F̂ ) = 1 − 2w > 0.

Using (A.7), one can trivially verify that the derivative ofH(β, F̂ ) is such that

d

dβ
H(β, F̂ ) = −2w − 2 (1 − w)

[
2 − (1 − w)

(
1 + F̂

)] (
d

dβ
F̂

)
< 0. (A.8)
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The sign of this derivative ensures thatH(β, F̂ ) > 0, for all 0 <β < 1. Therefore,
we conclude thatm(1) > 0 in the case 0< w < 1

2.
In the case1

2 ≤ w < 1, whenβ = 0, the above conclusions remain valid.

However, whenβ = 1, the value ofF at equilibrium isF̂ = 1. Direct calculations
yield

H(0, 1) = (1 + w)2 > 0 and H(1, 1) = 2w(2w − 1) ≥ 0.

Using (A.8), we conclude thatH(β, F̂ ) > 0, for all 0 < β < 1 and consequent-
ly that m(1) > 0 in the case1

2 ≤ w < 1. Therefore, we have proved that the
greatest eigenvalue ofM is smaller than 1 and consequently that the polymorphic
equilibrium(p̂, F̂ ) is locally stable in the casew < 1.
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