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Abstract. We undertake a detailed study of the one-locus two-allele partial selfing selection
model. We show that a polymorphic equilibrium can exist only in the cases of overdomi-
nance and underdominance and only for a certain range of selfing rates. Furthermore, when
it exists, we show that the polymorphic equilibrium is unique. The local stability of the
polymorphic equilibrium is investigated and exact analytical conditions are presented. We
also carry out an analysis of local stability of the fixation states and then conclude that only
overdominance can maintain polymorphism in the population. When the linear local analy-
sis is inconclusive, a quadratic analysis is performed. For some sets of selective values, we
demonstrate global convergence. Finally, we compare and discuss results under the partial
selfing model and the random mating model.

1. Introduction

Previous studies on the partial selfing model with selection provided conditions for
the existence of a polymorphic equilibrium, without any real consideration about
its stability (local or global). For example, Workman and Jain (1966) determined
the values, at equilibrium, of the allelic frequencies and Wright's fixation index,
for a locus with two alleles. Jain and Workman (1967) later defined a set of partial
fixation indices in order to find the equilibrium genotypic frequencies for a locus
with multiple alleles. Weir (1970) introduced a matrix method, based on the mean
fithess of the population, that produces numerical values of these fixation indices
and genotypic frequencies at equilibrium. He also determined a necessary condition
for the existence of a polymorphic equilibrium. The stability of such an equilibrium
was briefly considered.

Kimura and Ohta (1971) first treated the stability of the polymorphic equilibri-
um in the case of overdominant alleles for a locus with two alleles. They obtained

* Research supported in part by NSERC of Canada and FCAR @lh&gu

G. Rocheleau, S. LessardDépartement de matimatiques et de statistique, Univegsite
Montréal, C.P. 6128, Succursale Centre-ville, Méatr Qiebec, Canada, H3C 3J7

** Corresponding author: E-mail: lessards@dms.umontreal.ca

Key words: Partial selfing — Selection model — Stability analysis — Global convergence —
Polymorphism



542 G. Rocheleau, S. Lessard

a necessary condition on the parameters of the model for the existence of this
equilibrium point and showed the uniqueness of this point when it exists. Next,
assuming the existence of the polymorphic equilibrium, they examined its stability
by investigating the local stability of both fixation states. But no local study of the
polymorphic equilibrium itself, by considering changes in genotypic frequencies
in the neighborhood of this point, was done.

Recently, Overath and Asmussen (1998) obtained some results when consider-
ing a more general model that includes apomixis which occurs with probadility
(production of seeds without meiosis). Letting= 0 in their equations leads to the
conclusion that “..at most one polymorphic equilibrium can exist for a given set
of fitnesses and mating system parameters and that such equilibria exist only for
overdominant and underdominant selectigkiso, they provided some analytical
conditions for local stability of the polymorphic equilibrium, but were not able to
assert the stability of this equilibrium point. They instead examined the local sta-
bility of the fixation states and the conditions that allow a protected polymorphism
(PP), that is, when both fixation states are unstable. They established tfat “...
overdominance a PP exists if and only if a valid internal equilibrium also exists ...
for underdominance both of the boundary equilibria will always be stable whenev-
er a polymorphic equilibrium exists and, therefore, a PP never exists under these
conditions. Since two adjacent equilibria are unlikely to be both stable or both
unstable, these results also suggest that (in the absence of cycling) overdominant
polymorphic equilibria will be stable whenever they exist, while underdominant
polymorphic equilibria will always be unstabldn Section 4, we confirm their
intuition by rigorously proving this last statement.

Assuming weak selection in the partial selfing model, Nagylaki (1997) present-
ed a complete dynamical analysis for two alleles. Since weak selection represents
a limit case of selection, we show in the Discussion section that the dynamical
structure in this case can be deduced from that of the general model.

In this paper, we present the most complete analysis, up to now, on the one-
locus two-allelle partial selfing selection model. In Sections 2 and 3, we examine
all possible combinations of selective values and point out some exact conditions
on the selfing rate under which a polymorphic equilibrium exists. Furthermore,
we show that at most one polymorphic equilibrium exists in each case. In Section
4, we look at the local stability of this polymorphic equilibrium when it exists
and then derive new results. In Section 5, we study local stability of both fixa-
tion states and thus complete earlier works done by Kimura and Ohta (1971). In
particular, when the linear local analysis of the fixation state is inconclusive, we
deduce new results by performing a quadratic analysis. In Section 6, some special
cases are treated and global stability is proved. Finally, in Section 7, we summa-
rize the results obtained in the preceding sections and compare them with those
known under random mating. In this manner, we can describe the effects of sel-
fing on a population that was previously practicing random mating. This can be
the case for instance of a population subject to isolation. Table 2 of Section 7 is
particularly useful in that, for a given set of selective values, one can complete-
ly determine the ultimate structure of the population for any value of the selfing
rate.
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2. Model

Consider a single locus with two alleles, say@nd Ap, in an infinite diploid pop-
ulation with non-overlapping generations. Each individual of the population can
reproduce, either by selfing with constant probabif® < 8 < 1), or by ran-
dom outcrossing with the complementary probability 8. Let P11, P12, andPo2
denote the frequencies of the genotypa®\fA A1A2, and AA», respectively, in

the population. Then the frequencies of the allelesAd A are

p:Pll‘f‘%PlZ and 6]=P22+%P12.

Moreover, let the genotypesiA1, A1Az, AsA2 have the corresponding selec-
tive valueswi1, w12, w2 > 0. Here, zygotic selection is applied through viability
differences, that is, the genotypic selective parameters are proportional to the prob-
abilities of survival from conception to maturity. It is assumed that the selective
values are not all equal. Otherwise there will not be any selection. The case of a
lethal homozygotew11 = O or wpy = 0) and the case of a lethal heterozygote
(w12 = 0) will be treated separately in Section 6. In the case of a non-lethal het-
erozygote @12 > 0), we shall assume, without loss of generality, = 1. Then,

to simplify further the notation, it will be convenient to use the coefficients

a=1—wiy1 and b=1-— woy, (1)

which cannot be both equal to 0 by assumption. There will be overdominance when
a,b > 0, underdominance when » < 0, complete dominance when= 0 or
b = 0, and directional selection when> 0 andb < 0 ora < 0 andb > 0.
Symmetric selection will correspond &o= b. Note that we always have b < 1.
The caser = 1 orb = 1 corresponds to the case of a lethal homozygote, which
will be treated separately.

If P11, P12, and P, designate the genotypic frequencies among the zygotes
in the current generation at the time of conception, then the genotypic frequencies
among the adults in the current generation, after selection but before mating, are

_ w11 P11 _ P12
Py = . b= )
w11 P11+ P12 + w22 P22 w11 P11+ P12 + w22 P22
w22 P22
Py = 2)

w11 P11+ Pio+ w2 Poo’

After mating and reproduction, the genotypic frequencies among the zygotes in the
next generation are given by the equations

2
Pl=B[Ph+3Ph|+a—p [P +ir| .
Pl/zzﬁ[%Pl*z]+2(1—/3)[Pf1+%1’1*2] [Pﬁkz"'%sz]» 3
2
P2/2=,3[P2*2+%1Pf2]+(1—ﬂ)[P2*2+%Pf2] .

Here, we assume no fertility differences between the mating types, Mendelian seg-
regation of genes and no gametic selection. It is useful to note that, under these
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assumptions, mating and reproduction do not change the allelic frequencies, that
is,
P =P+ 3P =P+ 3PH=p"
and then
q’:l—p’zl—p*=q*.
Figure 1 below summarizes the life cycle of the population and the notation used for

the genotypic and allelic frequencies. At each stage of the life cycle, the genotypic
and allelic frequencies sum up to 1.

3. Equilibrium conditions

Apart from the fixation stateg; = 1 andP»> = 1, which correspond t¢ = O and

p = 0, respectively), there may exist polymorphic equilibria (at whicly # 0).

In order to determine the conditions for such equilibria, we use the fixation index
F (Wright, 1951). The genotypic frequencies are written in the form

Pii=p?+pqF, Pio=2pq(l—F), Pxp=q’+ pqF, 4)

where—1 < F < 1. The value ofF varies from one generation to the next. Under
the assumptiom, g # 0, and using the equations (1) to (4), we have in the next
generation

P/
Fl=1- 12
2p'q’
1-F) [1—a(p2+qu) —b(q2~|—qu)]
=Bl1— : %)
2[1—-a(p+qF)][1-b(g+ pF)]

At equilibrium, we must have’ = p. But, we have already noted that = p*.
Therefore, we have’ = p if and only if

wi1P11+ %Plz

*
=p
w11P11 + P12+ w2 P2

which is equivalent, after algebraic manipulations using (4) and the assumption
p#0,1,to
[a—(@+b)pl] F=b—(a+b)p. (6)

a—(a+b)p=0,
thenp’ = p # 0, 1if and only if

b—(a+b)p=0,

which is compatible with the above condition if and onlyit= b. On the other
hand, ifa = b, then we would havg” = 1 at every polymorphic equilibrium
wherep # % But then, owing to (5), we would haw®’ = B < 1, which contra-
dicts equilibrium. Therefor% is the only admissible value fgr at a polymorphic
equilibrium in the case = b. We have proved the following.
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Result 1. ﬁ is an admissible value fop at a polymorphic equilibrium if and
only ifa = b. In this case,% is the only admissible value for at a polymorphic
equilibrium.

Let us assume # b, and therefore

b—(a+b)p

a—(a+b)p#0 and an—(a+b)p

at a polymorphic equilibrium. Then the equilibrium conditiéh = F with F’
given by (5) becomes
G(p) =0,

where
G(p) =2a+b)(1—-p)[a(l—->b)+b(1—a)] P2

+{laQ—-b)+bA—a)][(Ba+Db)B —2b] —2a(a+Db)(L—Db)}p
+2ab(1—b) — Bala(l—b)+b(1l—a)]. (7

The polynomialG (p) is of the quadratic form p? + Bp + C and admits two roots:

. —B—+B2-4AC . —B + v B2 —4AC
p- = and py = )
2A 2A
where
A=2(a+b)(1-pK,
B=K[(Ba+b)p—2b]—2a(a+Db)(1-b), (8)
C=2ab(1-b)—Bak,
with

K=a(l-b+b(l—a).

A priori, these two roots may correspond to polymorphic equilibria. But in order
to be admissible, they must satisfy some constraints. Of course, the first one is
0 < p < 1, wherep is a root of G(p) and represents the frequency of allelge A

at equilibrium. Then the frequency of allele At equilibrium satisfies G< ¢ =

1— p < 1. The other constraints are

Pui=p?+pGF >0, Pra=2pG (1—ﬁ) >0, Pp=34%+ pgF >0,
where ) b b
—(@+b)p
— 7, )
a—(a+b)p
which guarantee that the equilibrium genotypic frequencies are all non-negative,

and then all less than or equal to one, since they sum up to one. This will be the
case if and only if

F=

1< max<_—f7, _Aq) <F<1
q V4
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Therefore, O< p < % will be admissible if and only if

A

_p <b—(a+b)lz<
“a—(a+b)p

1 (10)

1-p
Workman and Jain (1966) have determined two conditions that must hold at equi-
librium. It can be shown that equations (7) and (9) are in fact equivalent to these
conditions.
Now, assuming

a—(a+b)p >0, (11)

the right-hand side inequality in (10) will hold if and onlydf> b, while we will
have the left-hand side inequality in (10) if and onlyifl — 2p) > 0, that is,
b > 0. Conversely, ii > b > 0, thena + b > 0, since by assumptiom andb
cannot be both equal to 0, and
a 1

= P

a+b 2

which implies the inequality (11) under the constrgink % Similarly, assuming
a—(a+b)p <0, (12)

both inequalities in (10) are true if and onlyiif< b < 0, and this condition implies
(12) under the constraint < 3. The conditions fog < p < 1 to be admissible
are, by symmetryb > a > 0orb < a < 0. Finally, note thapp = % would be
admissible if and only it > b andb > a, that is,a = b. Therefore we have
necessarilyp # % in the caser # b. We conclude as follows.

Result 2. A polymorphic equilibrium can exist only when a and b are of the same
sign @, b > 0or a, b < 0) and the more frequent allele at a polymorphic equilibri-

um, when it exists, is necessarily the one associated with the parameter a or b closer
to 0, that is, the one associated with the homozygote having the fithess closest to the
heterozygote fitness. Equality of allelic frequencies at a polymorphic equilibrium

is possible only in the case where the homozygotes have the same fitees} (

Note that this result on admissible allelic frequencies at a polymorphic equilibrium
depends only on the fitness parameters. The proportion of sglffngot involved.
Moreover, this result excludes the possibility of a polymorphic equilibrium in the
case of directional selection Gndb of opposite signs).

Now, let us look at the existence of a polymorphic equilibrium. Under the con-
dition thata andb are of the same siga (b > 0 ora, b < 0) and not both equal to
0, the quadratic polynomial¥ (p) is convex with respect tp, since the coefficient
of p? (coefficientA in (8)) is then positive. Moreover, evaluatiiy p) at p = %
yields
(a — b)?

G() ="

<0,
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with a strict inequality in the case # b. Therefore the rootg_ andp of G(p)
are real and satisfy
p-<3 and py >3,
with strict inequalities in the case+ b. Finally, we havep_ > 0 if and only if
G0)=2ab(1-b)— BaK > 0,
andp. < lifandonly if
G(1) =2ab(l—a)— B bK > 0.
Let us look at all the cases.

e Case of complete dominancea = 0 or b = 0). We haveG(0) < 0 and
G(1) < 0. Therefore we havgé_ < 0 andp; > 1, which eliminates the
possibility of a polymorphic equilibrium.
e Case of overdominance or underdominance without symmetryWithout
loss of generality, relabelling the alleles if necessary, we may assume that the
homozygote having the fitness closest to the heterozygote fitnesa js Fhen
we areinthecase @ b < aora < b < 0. In this case, we havg(0) > O if
and only if
2b(1—-0)
Sald-b+bd—a

This is the condition to have & p_ < % and therefore the existence of a
polymorphic equilibrium, which is unique, with the frequency of allelegiv-
en by p_ and the fixation index at equilibrium by equation (9). Note that the
above condition is always satisfied Whén; b < a < 1, since thergg > 1.

e Case of symmetry & = b). At a polymorphic equilibrium, we must have
p = % (Result 1) and then the equilibrium conditigi = F with F’ giv-
en by (5) becomes

B

Bo-

aF?—[2—a—-BA—a)]F+B(1—a)=0,

which admits a unique rodt in the interval 1, 1) fora < 1and 0< 8 < 1.
This determines an admissible polymorphic equilibrium, which is unique. Note
thatBg = 1 in the case = b.

In conclusion, we have:

Result 3. There exists a polymorphic equilibrium only in the case of overdomi-
nance &, b > 0) or underdominancea(, » < 0) when

2b(1—-b)
al-b+b1—-a)’

B <

ifa<b<0orO0O<b<=<a,
or
2a (1—a)
B < ,
a(l-b)+b(1—-a)
Moreovet a polymorphic equilibrium is unique when it exists.

ifb<a<OorO<a<b.



548 G. Rocheleau, S. Lessard

Result 3 has been deduced recently by Overath and Asmussen (1998) in a model
that also includes apomixis. Hence, we simply confirm the result obtained in their
so-called Standard mixed mating model without apomiixis

Table 1 summarizes the conditions for a unique polymorphic equilibrium to
exist. In the case of symmetric selectian b), the allelic frequencies at the poly-
morphic equilibrium are always the same and equ%ltor 0 < B < 1. Itremains
to study the change in the allelic frequencies at the polymorphic equilibrium, when
it exists, in non-symmetric casas £ b) with respect to a change in the proportion
of selfingp.

At such an equilibrium, the frequency of allele Adenoted byp, satisfies
G(p) = 0, whereG(p) is the polynomial given in (7). Taking the derivative with
respect t@3 yields

d . o o (dp
@G(p)— 2@+b)Kp°+4@@+b)(1 'B)Kp(dﬂ)

+(3a+b)K13+B<d—p> —aK =0.
dg
This leads to the equation

dp  —K(1-2p)[a—(a+b)p]
dp VB2 —4AC

This derivative ofp with respect tg3 is negative whelm < b <0or0O< b < a
and, by symmetry, positive whén< a < 0 or 0 < a < b. Therefore we have
proved the following result.

Result 4. The frequency of the allele associated with the fittest homozygote, at the
polymorphic equilibrium, when it exists, increasesfasicreases in the case of
overdominance but decreasesfBicreases in the case of underdominance.

In order to study the stability of the polymorphic equilibrium, we will consider
first the cases of overdominance and underdominance without symmetry in Section
4. The special cases of dominance and symmetric selection will be studied apart in
Section 6.

Table 1. Conditions for a (unique) polymorphic equilibrium to exist.

a=b#0 a<b<00rO<b<a b<a<0o0rO0O<a<b Allothercases
p=13 0<p<i 1<p<1 No polym. equil.
2b(1—b) 2a(1—a)
0<p<1 0<p< a(l—b)+b(1—a) 0<p< a(l—b)+b(1—a) 0<p<1
O<pB<1lin O<B<1lin

the particular
casel <b <a)

the particular
casel <a <b)
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4. Stability of polymorphic equilibria

In the preceding section, we have derived conditions for a polymorphic equilibri-
um to exist. In the present section, we look at conditions for local stability of such
an equilibrium. In particular, Results 5 and 6 present results that, to our knowl-
edge, have never been derived before. Suppose that a polymorphic equilibrium
with p = p andF = F exists. As proposed by Weir (1970), we apply small
perturbations on the values pfand F at equilibrium so that

p=p+§,
F=F+ n,
whereg andn are small. In the next generation, using equations (2) and (4), we get
p'=(p+5)
1-alp+e+ -8 (F+n)]
x - A
1-a(p+5§) [ﬁ+5+(@—é) (F+n)] —b(q—¢) [é—é+(ﬁ+s) <F+n)]

[ —)

Neglecting terms i§2, n2 andén, and using the identityg + bpF = ap +ag F,
derived from (6), lead to the linear approximation

. pi(a+b)(1— F bp%q — apg?
o 1 Pac A)(AA) +[ P7q - pAqA]_
l—a(p+qF) l—a(p+qgF)
Similarly, from equation (5), we get after many simplifications the linear approxi-
mation

1_a(ﬁ+qﬁ)_(a42+bﬁ2) (1_ﬁ)
2[1_a(ﬁ+c}ﬁ)]z

Using again (6), we obtain the linear approximation

HEHRIH

where the entries of the matri® take the form

i[1—b—(a—0b)p] —p(1— p)a?
B A R

+8

n.

mi1 =

3

_Bla-b?i

_ _B(@)? .
mp1 = 52 , m22_2<ﬁ> [1 a+(a b)p], (13)
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with
ut=a—(a+bp and v=a(l->b)— Kp.

It remains to analyse the eigenvaluedvbf We will consider separately the cases
of overdominance and underdominance, without symmetry. The case of symmetric
selection will be treated in a subsequent section.

4.1. Case of overdominance without symmetry

Let us assume, without loss of generality<Ob < a < 1. In this case, a poly-
morphic equilibrium (with O< p < %) exists if and only if 0< 8 < min(Bo, 1),
where

2b(1—b)
al-b)+bA—a)
Let us first determine the signs of the entrigg of the matrixM. To achieve this,
we must find the signs of andv. We already know that > 0 in the case at hand
(see (11) and Table 1). On the other haid; 0 if and only if

1

< —FF.
b(1l—a)
1+ 2w

Bo =

~

p

But, in the case at hand, this holds since

b(l—a)

— <1
a(l-0b)

ﬁ<§ and 0O<
Moreover, we have
1—b—(a—b)ﬁz(a—b)(1—ﬁ)>0

and
l—-a+@—-b)p>(a—>b)p>0.

Therefore, we have
m11 >0, mp2<0, mp1 <0, mo>D0.

Now, let us examine the eigenvalues of the malix The characteristic poly-
nomial ofM is

m(2) = |A = M| = 2% — (m11 + m22) A + maymaa — miamay.

The polynomiabn (1) is a convex parabola ih, whose roots are distinct and real,
since the discriminanA (m (1)) satisfies

A(m(2)) = (m11 — m22)? + 4myamag > 0. (14)

Note that these two roots are continuous with respeg@,tand equal to 0 and
m11 > 0 for 8 = 0. Moreovermi; < 1 if and only if

(@ —b»pd—p) >0,
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which holds in the case at hand. Therefore, to show that the greatest eigenvalue of
M in modulus is smaller than 1 in modulus, and consequently that the polymorphic
equilibrium is locally stable, it suffices to show that0) > 0 andm (1) > O, for

0 < B < min(Bp, 1). In effect, by continuity of the roots ofi(1), this condition
implies that both roots lie in the interval (0, 1). Actually, we have

AN 3
m(0)=§<%> (1—a)(1—b) >0,

and

(a—b)p(1—p)

m(1) = H(B, p), (15)

where

2

It is shown in the Appendix thak/ (8, p) > 0, and therefore that(1) > O, for
0 < B < min(Bop, 1). Consequently, we have the following result.

~ BK[ a—(a+b)p 12
H(/&P)—(a-l-b)——[m} .

Result 5. In the case of overdominance without symmefry(a < b or 0 <
b < a), the polymorphic equilibrium is locally stable when it exists.

4.2. Case of underdominance without symmetry

We assume, without loss of generality< b < 0. As before, we first look at the
signs of the elements;; of the matrixM. To do so, we must determine the signs
of 7 and?. Butiz < 0 owing to (12) and Table 1, whilé < 0 if and only if

. a(l—->b)
< ’
P K
whereK < 0. But itis trivial to verify that
a(l-b) 1
—_— > .
K 2

Sincep < % we obtain that < 0. From that, it is easy to see that the elements
m;; of the matrixM satisfy

mi1>0, m12>0, mo1 >0, mo>0.

Moreover, we have as befone; < 1.

Then, we look at the characteristic polynomial/) of M. Because equation
(14) still holds in the case < b < 0, we conclude that(4) is a convex parabola
whose roots are distinct and real. It is easy to check that (see Appendix for details)

m(0) >0 and m(1) <O.

For 0 < B < min(Bp, 1), we deduce that the greatest rootnof/) in modulus,
which corresponds to the greatest eigenvalud o modulus, is greater than 1 in
modulus. Therefore, we have
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Result 6. In the case of underdominance without symmetry<{ » < 0 or
b < a < 0), the polymorphic equilibrium is locally unstable when it exists.

Note that Results 5 and 6 confirm what Overath and Asmussen (1998) had previ-
ously deduced intuitively in their study of a protected polymorphism.

5. Stability of the fixation states

We have determined so far the stability of the polymorphic equilibrium, when it
exists, in the vicinity of this equilibrium point. However, outside the neighborhood
of this point, this stable structure might not be preserved. Consequently, we must
examine the stability of the two fixation states: if both fixation states are locally
unstable, then the two alleles will be preserved in the population through subse-
guent generations, therefore maintaining the polymorphism in this population. To
study the stability of the fixation states, we will use the same technique as for the
stability analysis of the polymorphic equilibrium. We will evaluate the matrix of
the linear approximations of the recursive equations (3) in the neighborhood of
each fixation state. Then, we will determine if the modulus of the greatest eigen-
value of this matrix is greater or smaller than 1. In the following, we consider two
cases: overdominance without symmetry and underdominance without symmetry.
In Section 5.1, we confirm and complete the study previously performed by Kimura
and Ohta (1971) and Overath and Asmussen (1998). Section 5.2 however provides
new results, since Overath and Asmussen (1998) did not study local stability of the
fixation states when no polymorphic equilibrium exists.

5.1. Case of overdominance without symmetry

We assume, without loss of generality,<0 w11 < w22 < 1. First, we develop
the recursive equations near the fixation state gftAat is, when the genotypic
frequencies are such th&{; = 1, P> = 0 andP22 = 0. Using (2) and (3), one
can easily obtain the linear approximation

2-f  2(1-p)

|: P1/2:| o~ |: 2w wnw22 :| |:P12:|

P~ B Bw2z P :
22 dw1 w11 22

The matrix above will be denoted ly;. For 0 < 8 < 1, itis clear that all the

entries ofL 1 are strictly positive. The characteristic polynomialafis

2,3w22+2—ﬂ)/1+ B w22
2w11 w2’

(i) = 1Al — Laf = 22 ( (15)

This polynomial is a convex parabola in which admits two distinct real roots
since its discriminant satisfies

1
A () = - ([2pwaz— 2= PI* +8B(L— Pyuze) > 0. (16)
11
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To determine whether the greatest eigenvalue;dfi absolute value is smaller
or greater than 1 in absolute value, we evaluaiél) and the derivative afi1(4),
which is

() = 21— <—2ﬁ wo2 2= ﬁ) ,

2w11

atZ = 0 and/ = 1. One can trivially verify that

2 2
mi© =L22 20 and sin©) =-LU2E22F o (7)
2w?, 2w11

By convexity ofm1(/), we deduce that both eigenvalued.gfare strictly positive.
We also have

1
m1(1) = m{—an(l —wi11) + Blwir (1 — w22) + w2l —win)]}  (18)
1

and

. 1
mi1(l) = Sos [B(1—2w) —2(1-2w11)]. (19)
w11
For further investigation, we subdivide the general case®;1 < w22 < linto
two cases: 0< w11 < min(3, w2p) < 1and3 < w11 < we < 1. In both cases
however, we will show that the greatest eigenvalue pfs greater than 1.

First, in both cases, itis clear that (1) < O if and only if

2w11 (1 — wi1) _
w11 (1 — w22) + wa2 (1 —wq1)

B1. (20)

Note thatg; > 0,andB; < 1lifandonlyifwi; < % Hence, inthe caseQ w1 <
min(3, w22) < 1, we have O< 1 < 1 whereas, in the casg< w11 < wop < 1,
we have tha; > 1 and consequentit1(1) < 0. In the latter case, regardless of
the sign ofi1 (1), this suffices to assert that the greatest eigenvalle of greater
than 1. In the former case however, we must examine the sign df.

In the case O< w11 < MiN(3, wz2) < 1, when min3, wa2) = woy, it is
readily seen by (19) that1(1) < O if and only if

2(1—-2w11)
1—2wy

B < (21)

But, in this restricted case, it is easy to observe fhat- 2, thus leading to the
conclusion thatii; (1) < 0. Whenwy, = 3 or min(3, wzz) = 3, we reach the
same conclusion directly from (19). Therefore, whatever the sigm16f) is, we
deduce that the greatest eigenvalud pfs greater than 1 in the caseOw1; <
min(%, wo2) < 1.
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Result 7. In the case of overdominance without symmetry, the fixation of the less
fit homozygote is locally unstable for< g < 1.

Next, we examine the recursive equations near the fixation statg tiat is, when
the genotypic frequencies are such tikat = 0, P12 = 0 and P2 = 1. By the
symmetry of equations (3), the following linear approximation is easily obtained:

B B
|: P:I/.l:| ~ |: wu;l 4wzp Py
P |~ | 20d=Bwn 2-8 P )
12 w22 2wz 12
The matrixLo of linear approximation is formed of strictly positive entries for
0 < B < 1. By interchangingu11 andws> in (15), we find that the characteristic

polynomial ofL  is

(22)

ma(i) = 72 — <2ﬂw11+2—ﬂ>)x+ pwir

2w22 2w?,
Again, the polynomialn2 (1) is a convex parabola if, which admits two distinct
real roots since its discriminant is strictly positive. In a direct manner, one can verify
that

m2(0) >0 and m2(0) <0,

and therefore deduce, by convexityof(/), that both eigenvalues bf, are strictly
positive. Also, we easily compute that

1
mao() = o5 {(—2w22 (1 — w22) + B [wi1 (1 — w22) + w22 (1 — win]} (23)
22

and

n2(1) = zi [B(1—2w11) —2(1 - 2wz2)]. (24)
w22
At this point, we subdivide the general case<Ow11 < w2 < 1 into two cases:
0 < w1 < wp < 3 and 0 < max(3, wi1) < wp < 1, since they provide
different results.
From equation (23), it is trivial to verify that,(1) < 0 if and only if

- 2w22 (1 — wp2) _
w11 (1 — w22) + w2 (1 — w11)

Po- (25)

In Section 3, we have outlined that® 8, < 1 if and only if woy > % Hence,
1

in the case O< w11 < wp2 < 3, we havef, > 1 and consequently.»(1) < 0.
Regardless of the sign af,(1), this suffices to ensure that the greatest eigenvalue
of Lo is greater than 1 in this case. Note that a polymorphic equilibrium always
exists in this case (see Table 1).

In the case O< max(%, w11) < w2 < 1, it becomes necessary to look at the
value ofmz(1). From equation (24), when meég w11) = wi1, We obtain that
m2(1) > 0 if and only if

2(1—2wz)

26
1-2w11 (26)
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But one can easily show thgg > 2, and then conclude that>(1) > 0 in this
specific case. Whemws; = 3 or max3, wi1) = 3, the same conclusion arises
directly from (24). Therefore, in the case max(%, w11) < w2 < 1, three
situations may occur with respect to condition (25):

() If B < Bo, thenmz(1) < 0 and consequently the greatest eigenvalue,as
greater than 1.
(i) If B > Bo, thenmz(1) > 0 and consequently the greatest eigenvalue,ds
smaller than 1.
(i) If B = Bo, thenm>(1) = 0 and consequently the greatest eigenvaluke 0f
is equal to 1. This situation requires a more refined analysis of the recursive
equations (3). This analysis is performed in the Appendix.

Note that a polymorphic equilibrium exists if and onhyBif< Bo (see Table 1). We
summarize our conclusions in the result below.

Result 8. In the case of overdominance without symmetry, the fixation of the fittest
homozygote is locally unstable when a polymorphic equilibrium exists and locally
stable otherwise,even in a degenerate case corresponding to a critical valge for

5.2. Case of underdominance without symmetry

We assume, without loss of generality<lw,2 < wi1. The analysis of this case
proceeds almost the same way as in the case @11 < w2 < 1. Near the
fixation state of A, we have deduced earlier the matrix of linear approximation
L 1 and its characteristic polynomiad; (1) given by equation (15). Since (16) and
(17) still hold, we infer that both eigenvalueslof are strictly positive. Next, by
(18), we have that:1(1) > 0 if and only if the inequality in (20) is verified, i.e.
wheng < B1. Similarly to the case & w11 < w2 < 1, itis trivial to show that
B1 > 1, and therefore to conclude that (1) > 0. In addition, by (19), we have
thatm1(1) > 0 if and only if the inequality in (21) is verified, i.e. wh¢h< B>.
But, it is readily seen thgg> > 2, which allows us to conclude that; (1) > 0.
Hence, we can assert that the greatest eigenvalugisfsmaller than 1. This leads
to the result below.

Result 9. Inthe case of underdominance without symmetry, the fixation of the fittest
homozygote is locally stable for< g < 1.

We finish this section by examining the recursive equations near the fixation
state of A. We have previously determined the matrix of the linear approximation
L. and its characteristic polynomiat, (1) given by (22). One can deduce that
both eigenvalues df, are strictly positive. Next, by (23), we have thag(1) > 0
if and only if the inequality in (25) is verified, i.e. whe® < Bo. In the case
w11 > w22 > 1, we have shown that & Bo < 1. Also, by (24), we have that
m2(1) > 0 if and only if the inequality in (26) is verified, i.e. wheh < Ss.
Therefore, three situations may occur:

() If B < Bo, thenm>(1) > 0. Besides, it is easy to show thgg < B3. Hence,

we have thati2(1) > 0 and consequently that the greatest eigenvalle of
is smaller than 1.
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(i) If B > Bo, thenma(l) < 0. Consequently, whatever the signif(1) is, the
greatest eigenvalue bf, is always greater than 1.

(iii) If B = Bo, thenma(1) = 0. Consequently, the greatest eigenvalué pfs
equal to 1. This represents a degenerate case which requires a more refined
analysis (see Appendix).

Result 10. In the case of underdominance without symmeting fixation of the

less fit homozygote is locally stable when a polymorphic equilibrium exists and
locally unstable otherwise, even in a degenerate case corresponding to a critical
value forg.

6. Special cases

We conclude this exhaustive study of the partial selfing selection model by consid-
ering special combinations of selective values, for which the treatment will differ
from those used in the preceding sections. In fact, for some special cases, global
convergence can be obtained, thus providing new interesting results.

6.1. Case of directional selection

We assume, without loss of generality,<0 w11 < 1 < wp2. We have shown
in Section 3 that there exists no polymorphic equilibrium in this case. The only
remaining equilibria are the fixation states of And Ap, respectivelyp = 1 and
p = 0. We will show that there is global convergence to the fixation gfitboth
alleles are initially present in the population.

We have derived earlier that = p*. Using equations (2), it is readily verified
thatp’ < pif and only if

(w11P11 + %Plz) (%Plz + P22> < (Pll + %P12> (%Plz + wzszz) ,

for wi; < 1 and 1< wpo. Moreover, if P11+ 2 P1p = p # 0 and3 Pio + P =

1— p # 0, then we have equality above if and onlyif; P11+ 3 P1o = P11+ 3 P12
and%Plz + P = %Plz + w22 P2, that is, if and only ifP12 = 1, which implies
thatp = % But, as shown in the Appendix, the stdte = 1 cannot be an accu-
mulation point of the iterates of the recursive equations (3) and furthermore cannot
be maintained from one generation to the next. Therefer@gcreases to 0 from
every state for whictp # 1. We refer the reader to the Appendix for a rigorous
proof.

Result 11. In the case of directional selectipthere is global convergence to the
fixation of the fittest homozygote o< g < 1.

6.2. Case of complete dominance

As a special case of directional selection, we consider complete dominance. We
assume, without loss of generality;1 = w12 = 1. After some manipulations, one
can get

(1—w2)(1— P11 — Pr2) }

Ap=p —p= [
(1 — w22) (P11+ P12) + w22
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At equilibrium, we must have\p = 0. This equality is satisfied if and only if
p = 0 or P11 + P12 = 1. The first solution corresponds to the fixation of A
whereas the second solution cannot be a set of accumulation points of the iterates
of the recursive equations (3) except fan = 1, which corresponds to the fixation
of A1. The latter assertion is proved in the Appendix.

The sign ofAp is completely determined by the sign of the function

_ 1-w2)(1—x)
(1— wo2)x + w22’

g(x)

wherex = P11+ P12. To analyse this function, we evaluate its derivative, which is

—(1—w2)
[(1— w2) x + wp2)?

In the following, we distinguish two cases:

g(x) =

e Case of a deleterious recessive alleleif, < 1). First, we have thag(0) =
(1 —w22) /wop > 0 andg(1) = 0. For 0< x < 1, the derivative ok(x) is
strictly negative and thep(x) is strictly decreasing on this interval. This im-
plies thatAp is strictly positive, s increases from one generation to the next.
In fact, unlessp = 0 or p = 1, p increases to 1, that is, the system globally
converges to the fixation of A

o Case of a deleterious dominant allelev,> > 1). In this case, we have that
g(0) < O0andg(l) = 0. For 0 < x < 1, the derivative ofg(x) is strictly
positive and therg(x) is strictly increasing on this interval. This implies that
Ap is strictly negative, s decreases from one generation to the next. Unless
p=0orp =1, pdecreases to 0, that is, the system globally converges to the
fixation of Ay.

Result 12. In the case of complete dominandteere is global convergence to the
fixation of the fittest homozygoter all 0 < 8 < 1.

6.3. Case of symmetric selection

We assumev1; = wop = w # 0, 1. In this symmetric case, we have shown that
there exists a unique polymorphic equilibrium with= ¢ = % Using equations
(3), it is easy to show thak;, — P,, = P;; — P5,. Therefore, we have

w
P, —p.Ll =
P~ Pz [(w — 1) (Pr1+ P +1

} | P11 — P22|.

To obtain| P}, — Pj,| = | P11 — P22l, eitherP1y = Py or P11 # Pao, and then
w J—
(w—1) (Pu1+ Px)+1

which is possible if and only iP11 + P22 = 1. But this last equality can be main-
tained only at the fixation state®y; = 1 for the fixation of A and P,, = 1 for
the fixation of A). Elsewhere, the states for whi¢hi + P»2 = 1 cannot represent

9
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a set of accumulation points of the iterates of the recursive equations (3). This can
be ascertained from Result A provided in the Appendix.

Next we examine the function

fx) =

w
(w—Dx+1

wherex = P11 + P2p, in order to exhibit the general behavior of the system at
hand. We need the derivative ¢fx) with respect toc, which is simply

w(w—1)

T = T

In the following, we must consider the two cases< 1 andw > 1 separately.

Case of symmetric overdominancew < 1). In this casef (x) > O for every

x on the interval [0, 1], thus ensuring that the functipfx) is strictly increas-

ing on this interval. We also have that® w = f(0) < f(x) < f() =1

for 0 < x < 1. Hence, we conclude théP1; — P»o| decreases to 0, unless
P11 = 1 or P2 = 1, and consequently that there is convergence to the mani-
fold P11 = Po. Next, we verify that there is convergence to the polymorphic
equilibrium on the manifold®’;1 = P»2. To this end, we shall employ the trans-
formation equation, from one generation to the next, for the frequency of the
genotype AAj. Letting P11 = P22 in equations (3), one obtains

1 B w Py
Pli=-+5 .
1n=327"3 <1—2(1—w)P11>

We note thatP;, = 3, whenPy; = 0, andP]; = 1 + £, whenPy; = 1. The
derivative of P{, with respect taPy1 is such that

LP’ —E{ o }>0
dPiy M 2 |[1-21 - w) P1a]? ’

forO< P11 < % The second derivative dt;, being also strictly positive, we
deduce thai"i1 is strictly increasing and convex, for P11 < % Therefore,
the frequencyPy; converges to the valug; s, which satisfies?;, = P11 and
0 < P11 < 3, and is given by

o 3—w@+p) —\[B—wd+pP—8L—w)
11 = 81w ,

that is, there is convergence to the polymorphic equilibrium on the manifold
P11 = P2. A more rigourous proof of global convergence is presented in the
Appendix.

Result 13. In the case of symmetric overdominance, there is global convergence

to t

he polymorphic equilibrium, forald < g < 1.
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e Case of symmetric underdominancew > 1). In this case,f(x) < 0 for
everyx on the interval [0, 1], thus ensuring that the functibgx) is strictly de-
creasing on this interval. We also have that f(0) > f(x) > f(1) =1, for
0 < x < 1. Hence, we conclude thalki; — P2y increases to 1, iP11 # Poo
initially. This implies convergence to one of the fixation stateg, = 1 or
Py = 1. If P11 > Py initially, then the system will converge to the fixation of
A1 whereas, ifP11 < Po2initially, then the system will converge to the fixation
of A, since these inequalities are always preserved afterwards. Consequently,
the polymorphic equilibrium is unstable. However, there will be convergence
to the polymorphic equilibrium on the manifoli1 = P2, because the results
previously outlined in the case < 1 remain valid except that the functiatj,

is now concave, for & P11 < %

Result 14. Inthe case of symmetric underdominance, the polymorphic equilibrium
is unstable and both fixation states are stable, fo0a# g < 1.

6.4. Case of a lethal homozygote

We assume, without loss of generalityy; = 0. The gene Ais lethal when ho-
mozygote, that is, an individual who carries the genotyp&Adoes not survive
prior to mating and reproduction, and thus does not contribute any zygote to the
next generation. We shall consider the genotype frequencies of the adults from one
generation to the next (for better understanding, see equations (2), (3) and Figure 1):

/
P*/ _ wllPll _0
1 w11P]; + P{, + w22P), '
/ /
Ply— Prp _ Pip
Y winPl + P+ waaPy, Pl + waaPy,
/ /
P — w22P5, _ w22P5,
20 =

w11P{; + P{, + w22P),  Ply+ w22Ph,

Observing that}, = 1 — Py, after the very first generation, one obtains that
2

wa2 [1 + 24 B) PL+(1—pB) Pz*z]

2(1- PR [1+ @ - B) PR] +waa[L+ @+ B) Pip+ (1 - ) P3|
(27)

s«
Py =

Letting Pz*é = PJ,in (27) provides a non-trivial value fary;, at equilibrium, which
is given by

A

_ —[2Q-wn)-p w22]+\/[2 (1—w22) — B wao > +4wzz (2 — w2p) (1 — B)
22 22— wa) (1-B) ‘

This value enables us to determine the valug aft the polymorphic equilibrium
(when it exists), which is simply




560 G. Rocheleau, S. Lessard

A B 15 1 5
p= f1+§P1*2=§(1_P2*2)-

One can verify that, whem, < % there exists a polymorphic equilibrium for all

0 < B < 1,whereas wheé < wa2 < 1, there exists a polymorphic equilibrium if
and only if8 < 2(1 — wp2) = Bo. This is effectively the value g8y encountered
previously, whose ternw11 equals 0. Note that these results are consistent with
Result 3.

To study the stability of the equilibrium points, we will utilize the recursive
equation ofPy,, as given in (27). Generally, the derivative of this equation, calcu-
lated at these equilibrium points, suffices to indicate the stability of such points.
If the derivative is smaller than 1 in absolute value, then the equilibrium point is
stable whereas if it is greater than 1, then the equilibrium point is unstable. If the
derivative is equal to 1 in absolute value, we must look at the second derivative of
the recursive equation at this point.

After some tedious algebraic manipulations, we find that the first derivative of
equation (27) is given by

d .
qAp* 2
dpry,
Gwzo[14 B +2(1~ ) Py + (1 ) P35 .
= > s

2
{2 (1-P%) [1+(1—B) P3y]+wa2 [1+(2+ﬁ) P+ (1) Pz*zz]}

for0 < P§, < 1and O< 8 < 1. Thus,P, is strictly increasing as a function of
P3, on the interval [0, 1]. Moreover, one can easily compute

d /

*

_ 4woo (14 B) d */
dpy, 22

= and
P3=0 (2 4 wa2)? dprs;,

_2-8
2w

P3=1

It is easy to show that the derivative B, = 0 is always smaller than 1, whereas
the derivative alP;, = 1 is smaller than 1 if and only i > 2(1 — w22) = Bo.
Whenwsz > 1, no polymorphic equilibrium exists. In addition, we observe
that P, = wp2/(2+ wzp) > 0 at Py, = 0. Since the derivative aP;, evaluated
at Py, = 1is smaller than 1 fow,, > 1, we deduce that, unled¥, = 1, there
is global convergence t85, = 1 or equivalently, to the fixation of A The same
arguments remain valid whewp, = 1 and also whemwy2 < 1, butonly if 8 > Bo,
since no polymorphic equilibrium exists for these specific values. of
However, wheng < fo, a polymorphic equilibrium exists. Because the de-
rivative of Pz*é at Py, = 1 is greater than 1, the fixation of,As now unstable.
Also, sincePz*é = wzg/(Z +wp2) > 0atPy, =0 ansz*é is strictly increasing on
[0, 1], the derivative oﬂDz*é calculated ar;, = ﬁg‘z must be assumed smaller than
1. This enables us to assert global convergence to the polymorphic equilibrium in
this case.
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Result 15. In the case of a lethal homozygote, there is global convergence to the
polymorphic equilibrium, when it exists,or to the fixation of the other homozygote,
when no polymorphic equilibrium exists.

6.5. Case of a lethal heterozygote

This time, an individual who carries the heterozygote genotyp&,Adoes not
survive prior to mating and reproduction. Note that this case is a special case of
underdominance. We assume, without loss of generality,= 0 < w22 < wi1.
Similarly to the previous case, we consider the genotype frequencies of the adults
from one generation to the next. These frequencies are expressed as:

w22P5,
w11P], + w2 P),

’ w1]_P/ ’ ’
Py = —H . P,=0, Py=
w11Pyq + w22Pys

Noting thatP;, = 1 — Pj; after the first generation, one can write

P*’ _ wllpikl [,3 +@Q-8) Pf]_]
Y wn Py [+ (- B) PRl +waa (1— PR) [B+ 1 —B) (1- P)]
(28)

Letting Pfi = P in (28) provides a non-trivial solution for the polymorphic equi-
librium, that is, with O< P < 1,ifand only if g < Bo = wzz/wll. Thus, at the
polymorphic equilibrium, we have
Sk w22 — B w1l
Py =—— ’
(1-p) (w11 + w22)
and the frequency of Ais given by

w22 — B w1
1—B) (w11 +w22)’

To study the stability of the equilibrium points, we evaluate the derivative of the
recursive equation oy, as expressed in (28). Simple calculations yield

d p¥
dpit

A Dk 1px _ p*x __
p=Pp+5PHp="Py=

w11W22 [,3 +21-p) Pfl (1 — Pfl)] -
{wi1Pfy [B+Q = B) Piy] + waz (1= Py) [B+(1-B) (1_P1*1)]}2

for0 < Pf; < 1and O< B < 1. Hence, the recursive equation (28) is strictly
increasing forP;; on the interval [0, 1]. We easily compute
d / d ,
—Pr = pww and ——Pf; = )
dPyy pp=0 W22 dPyy Py=1 w11

The derivative atPy; = 0 is smaller than 1 if and only iB < o, whereas the
derivative atP;; = 1 is always smaller than 1. Therefore, the fixation afié
always stable.



562 G. Rocheleau, S. Lessard

Wheng < Bo, a polymorphic equilibrium exists and, since the derivative of
Py atPy; = 0is smaller than 1, the fixation ofAs stable. Because the fixation of
A1 is always stable anBl*i is strictly increasing on [0, 1], the derivative Hfl at
Py = ﬁfl must be greater than 1 and consequently the polymorphic equilibrium
is unstable. IfP]; > 131*1 initially, then the system converges to the fixation af A
unlesspy, = 1. If P, < Py initially, then the system converges to the fixation of
Az, unlessPy; = 0.

Wheng > Bo, no polymorphic equilibrium exists. In addition, since the deriv-
ative ofPl*i at P; = O is greater than or equal to 1 in this case, the fixation of A
is now unstable. Also, from the fact thaﬁ is strictly increasing on [0, 1] and that
the fixation of A is stable, we deduce that there must be global convergence to the
fixation of Ay, unlessPf; = 0 or Pf; = 1.

Finally, whenw11 = wop, the value of)f’f1 at the polymorphic equilibrium
equals}. The derivative ofP;; evaluated respectively &, = 0 andP}; = 1
equalsg, thus ensuring that it is smaller than 1. Consequently, the fixation states
are stable and the polymorphic equilibrium unstable, fer f < 1.

Result 16. In the case of a lethal heterozygote, the polymorphic equilibrium is
unstable, when it exists, and both fixation states are stable; otherwise, when no
polymorphic equilibrium exists, there is global convergence to the fittest homozy-
gote.

7. Discussion

Table 2 summarizes the results derived in the present paper as well as the results
for the panmictic modelq = 0), in order to perform a comparison with the partial
selfing model. In this table, we assume that

2w22 (w12 — w22)
w22 (w12 — w11) + w11 (w12 — w22)’
p©@ designates the initial frequency of allele M the population, andpg, 4r)

designates the respective frequencies of allaladd A at the polymorphic equi-
librium under the panmictic model, where

Bo = (31)

w11 — W12
w11 — 2wi2 + w2

Py = —22— T2 and gy =1- pg =
R — R— -~ FrR —
w11 — 2wio + w2

Under the partial selfing modelp,., §,5) designates the respective frequencies of
allele A; and A at the polymorphic equilibrium

—B—/BZ—4AC R . 2A+B++VB2-4AC
and gps=1— pps = ,
2A 2A

Pps =
where

A=2(1-p) 2wz — w11 — w22) [waz (w12 — w11) + w11 (w12 — w22)],
B = [w22 (w12 — w11) + w11 (w12 — w22)]
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Table 2. Comparative results under the panmictic model and the partial selfing model.

Selective values Panmixi@ (= 0) Partial selfing
Overdominance 0<B8<1
0 < w11 < wxp < %32 Global convergence to poly- Polymorphic equilibrium
morphic equilibrium(py, ¢5)  (Pps, 4ps) l0Cally stable
Fixation of A; unstable Fixation of Alocally unstable
Fixation of A, unstable Fixation of Alocally unstable
Overdominance 0<pB<1
0 = w11 < wyp < 2 Global convergence to poly- Global convergence to polymorphic
morphic equilibrium(p,, ;)  equilibrium (p,, gps)
Fixation of A; unstable Fixation of Aunstable
Fixation of A, unstable Fixation of Aunstable
Overdominance 0<B<pho
0 < max(wi, 42 Global convergence to poly- Polymorphic equilibrium
< Wy < W12 morphic equilibrium(py, ;)  (Pps, 4ps) l0Cally stable
Fixation of A; unstable Fixation of Alocally unstable
Fixation of A, unstable Fixation of Alocally unstable
Bo<B <1

No polymorphic equilibrium
Fixation of A, locally unstable
Fixation of A, locally stable

Overdominance 0<B<pho
0=wy < =P Global convergence to poly- Global convergence to polymorphic
< Wy < Wiz morphic equilibrium(py, ¢;)  equilibrium (pes, gps)
Fixation of A; unstable Fixation of Aunstable
Fixation of A, unstable Fixation of Aunstable
Bo<B <1

No polymorphic equilibrium
Fixation of A; unstable
Global convergence to fixation of,A

Overdominance 0<B<1
0<wy=wyp Global convergence to poly- Global convergence to polymorphic
< wip morphic equilibrium(py, ;)  equilibrium (p,, gps)
Fixation of A; unstable Fixation of Aunstable
Fixation of A, unstable Fixation of Aunstable
Underdominance 0<B<pBo
0 < wip < wyp Polymorphic equilibrium Polymorphic equilibrium
< wn (Pr- Gg) unstable (Pps» dps) locally unstable

If p© > p,, then convergence Fixation of,Aocally stable
to fixation of A,

If p©@ < p,, then convergence Fixation ohAocally stable
to fixation of Ay

fo<p <1

No polymorphic equilibrium
Fixation of A; locally stable
Fixation of A, locally unstable
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Table 2. (continued)

Selective values  Panmixig@ (= 0) Partial selfing
Underdominance 0<B<po
0=wp < wyy Polymorphic equilibrium Polymorphic equilibriup,, gs)
< w11 (Pr» Gr) unstable unstable
If p©@ > p,, then convergence [® > p.,, then convergence to
to fixation of A, fixation of A;
If p© < p,, then convergence @ < p,, then convergence to
to fixation of Ay fixation of A,
Po=p <1

No polymorphic equilibrium
Global convergence to fixation of;A
Fixation of A, unstable

Underdominance 0<p<1
0<wp< Polymorphic equilibrium Polymorphic equilibriup,, gps)
W11 = Woo (Pr- 4g) unstable unstable
If p©@ > p., then convergence K® > p,.., then convergence to
to fixation of A fixation of Aq
If p©@ < p,, then convergence ® < p,,, then convergence to
to fixation of Ay fixation of A,
Directional 0<B<1

0<wy <wip No polymorphic equilibrium No polymorphic equilibrium
< wypp O

0 < wy < wypo Fixation of A; unstable Fixation of Aunstable
< wy Or

0= w1 < wy Global convergence to fixation ~Global convergence to fixationof A
< w2 of A

x [(2—B) (w22 — w12) — 3B (w11 — w12)]
— 2w22 (w12 — w11) w12 — w11 — w22),

C = 2wz (w12 — w11) (w12 — w22) — B (w12 — wi1)
x [wzz (w12 — w11) + w11 (w12 — w22)] .

The comparison between the panmictic model and the partial selfing model has
some interesting implications. In effect, a population under random mating at a giv-
en locus that suddenly practices partial selfing in some propgstieould undergo
important changes in its genic structure and its genetic variability. This explains
why our main attention will purposely be turned to those cases that guarantee the
preservation of both geneg A&and A in the population.

Afirstlook at Table 2 suggests but does not prove that polymorphismin the pop-
ulation can be maintained only in the overdominant case, and this in both models.
For the panmictic model, there is global convergence to the polymorphic equilib-
rium. For the partial selfing model, however, we know only that a protected poly-
morphism exists, with both fixation states unstable, whenever a stable polymorphic
equilibrium exists and vice versa.
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On the one hand, when the heterozygote is strongly favored compared with
the homozygotes (& wi1 < wo2 < w12/2), referred by Overath and Asmussen
(1998) as tlouble overdominanéeintroduction of selfing does not modify the
polymorphic structure of the population even if one of the genes is lethal for a ho-
mozygote. On the other hand, when the selective values of the homozygotes tend
to be closer to that of the heterozygote {Omax(wi1, w12/2) < w22 < wi2),
referred by Overath and Asmussen (1998) simple overdominan&ethe poly-
morphism is preserved under the sole condition that the propgstmirselfing is
not too large § < Bo). A larger proportion will break the polymorphic structure of
the population. Table 2 then shows what Overath and Asmussen (1998) hypothe-
sized as “.when any self-fertilization occurs, simple overdominant selection may
not be sufficient to maintain both alleles in the population case of equality of
the selective values of the homozygotes, there is global convergence to the poly-
morphic equilibrium, regardless of the value @f This seems intuitively sound
because of the symmetry of the recursive equations in this case.

In every other sets of selective values but the overdominant case, it appears im-
possible for a polymorphism to be maintained in the population. For instance, when
one of the genes is completely dominant€Ow11 = w12 < w22 0r 0 < woy <
w11 = wi2), selection will determine the ultimate structure of the population. In
the former case, there will be eventual extinction of the gepewkereas in the
latter case, there will be eventual extinction of the gepeThese results remain
valid in both models. These features were “predictable”, since the case of a gene
completely dominant is a particular case of directional selection.

As deduced by Overath and Asmussen (1998), the partial selfing model has the
same general equilibrium structure as the random mating model. They conclude
as follows: “...(1) at most one polymorphic equilibrium exists; (2) a polymorphic
equilibrium exists only with overdominance or underdominance; (3) a stable poly-
morphic equilibrium exists only when selection is overdominant; and (4) a protected
polymorphism, with both fixation states unstable, exists whenever a stable internal
equilibrium exists and vice versalNe rigorously proved all four results above.
Furthermore, we have deduced some important qualitative features of the partial
selfing model. In most cases, when the proporfiasinot too large, it is essentially
selection that will determine the ultimate genetic structure and, if it is possible,
the preservation of the polymorphism in the population. When this proportion gets
larger, no polymorphic equilibrium exists. Selfing is thus mostly responsible for
compromising a possible polymorphism in the population. In fact, the partial sel-
fing model with selection produces a struggle between two forces, selection on the
one hand and selfing on the other.

Finally, it should be noted that Nagylaki (1997) has provided a complete analy-
sis of the partial selfing model with weak selection. As expected, our results on the
dynamical structure of the strong-selection model agree with those obtained under
weak selection. However, Nagylaki's treatment differs greatly from ours, since his
differential equation is “..the weak-selection limit of the discrete selection model
with constant inbreeding coefficient’ Thus, the dynamical analysis of the model
is reduced to the study of a one-dimensional differential equation for the allelic
frequencies. Following his notation, substitutimgy = 1 + Au;; in Bo given in
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equation (31) and then lettingtend to 0, one can show that

2 (w12 — w22)
(w12 — wi11) + (w12 — w22)

B:

is the limit, as’ goes to 0, ofp. The values can be obtained from a detailed analy-

sis of the four cases described in Nagylaki (1997). In the case of overdominance, it
can be shown thatp monotonically decreases fo This implies that strong selec-

tion is more favorable than weak selection for the preservation of a polymorphism.
This can be explained by the fact that strong selection can produce a wider range
of selective values than weak selection. Further, note that neither underdominance
nor directional weak selection can maintain polymorphism in the population.

8. Summary

We have shown that a polymorphic equilibrium can exist only in the case of over-
dominance or underdominance and for a certain range of selfing rates (see Table 1).
The existence of a polymorphic equilibrium in the case of directional selection is
thus precluded. Moreover, a polymorphic equilibrium is unique when it exists. The
results above have been first outlined by Kimura and Ohta (1971) in the case of
overdominance only, and by Overath and Asmussen (1998) in their study of the
partial selfing selection model with apomixis, and have been rigorously proved in
the present paper. Also, the most frequent allele at a polymorphic equilibrium is
the one associated with the homozygote that has the fithess closest to that of the
heterozygote. Equal allelic frequencies at a polymorphic equilibrium appear only
when the homozygotes have the same fitness. These new results have also been
mathematically proved in this paper.

An analysis of local stability at the polymorphic equilibrium has also been con-
ducted in this paper and has produced new results. In the case of overdominance,
the polymorphic equilibrium is locally stable when it exists. In the case of under-
dominance, it is locally unstable when it exists. An analysis of local stability at the
fixation states has confirmed results already known for the partial selfing model
(Kimura and Ohta, 1971, Overath and Asmussen, 1998). We took this analysis a
step further by carrying out a quadratic analysis in the degenerate case, that is, when
the leading eigenvalue of the matrix of the linear approximation is equal to one, by
applying a criterion due to Lessard and Karlin (1982). The local analysis outlined
the fact that a protected polymorphism can only exist in the case of overdominance.

Finally, we have considered some special sets of selective values for which we
can prove global convergence. In the case of directional selection and in the case of
dominance, we showed that there is global convergence to the fixation of the fittest
homozygote. In the case of symmetric overdominance, there is global convergence
to the polymorphic equilibrium, whereas in the case of symmetric underdomi-
nance, both fixation states are stable and the polymorphic equilibrium is unstable.
In the case of a lethal homozygote, there is global convergence to the polymorphic
equilibrium when it exists, or to the fixation of the other homozygote when no poly-
morphic equilibrium exists. In the case of a lethal heterozygote, the polymorphic
equilibrium is unstable when it exists and both fixation states are stable. Otherwise,
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when no polymorphic equilibrium exists, there is global convergence to the fixation
of the fittest homozygote. These new results of global convergence represent one
of our major contributions to the study of the partial selfing selection model. Some
of these results about the dynamical structure of the model have also been derived
by Nagylaki (1997) for weak selection. However, since weak selection is a limiting
case of selection, our results on strong selection provide a wider applicability.
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Appendix
A.1. Proof of Result 5

We show that (8, p) is strictly positive. We have to consider separately the cases
0<b<min(},a) <land} <b <a <1 Inthecase & b <min(3,a) <1,

we have exhibited (see Result 3) the conditior B < Bg for the existence of a
polymorphic equilibrium(p, F), where 0< p< % We first examine the limiting
valuesg = 0 andB = Bo. Wheng = 0, random mating prevails in the population.
Results for this model are well known in population genetics (see, e.g., Jacquard,
1974) and in particular, for & » < a < 1, it is known that there exists a unique
polymorphic equilibrium with the frequency ofi/Agiven by p, = b/(a +b) < %
(this result could have also been obtained by letfing: 0 in equation (7)). For
these specific values ¢f and p, we have

H(0, ps)=a+b>0, (A.1)

Wheng = Bo, we have (see Section ). = 0, i.e. the polymorphic equilibrium
degenerates to the fixation obAThese values g8 andp yield

H(Bo,0) = <1T1b> [a(1—b) —b?] > 0. (A.2)
We also find that
HO,00=a+b>0 (A.3)
and
H (Bo, pr) = [$} {@+b)[(@—b)(1-b)+b(L—a)] +a?h?}
TR (a + b — ab)?
> 0. (A.4)

In addition, the partial derivatives with respectd@nd p satisfy

0 . K[ a—(@+b)p 2
@H(ﬁ7p)__5 [m} <0 (A.5)
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and

:,BKab(a—b)[a—(a—I-b)p]

01
ad—b)—KpP

;H B, )
p
for g inthe openinterval (080) andp in the open interval0, pg). We conclude that
the functionH (8, p) is strictly positive in the whole rectangle,[Bg] x [0, pgl,
since itis strictly positive at the four corners, monotonically decreasing with respect
to 8 and monotonically increasing with respectito

In the cas% < b < a < 1, we have shown that there exists a unique poly-

morphic equilibrium(p, F), where 0< p < 3, forall 0 < g < 1. We first look

at the limiting value$s = 0 andg = 1. Wheng = 0, (A.1) remains valid. When
B = 1, the population reproduces by complete selfing. The expressigh &br
the polymorphic equilibrium is obtained by letti) = 1 in equation (7). This
expression is given by

. ab—1)
Ps = b1 +ba—1)

One can easily verify that @ pg < p; < % Then, we have
H(l ps)=a@b—1)+b(2a—1) >0.

Moreover, one can calculate and observe that

a+b a?b?
HO,py)=a+b>0 and H(,p =< )[1—1— ] 0.
( ps) a ( PR) 2 (a—|—b—ab)2 >

Also, the sign of the partial derivatives &f (8, p), given in (A.5), remains un-
changed fog in the open interval (0, 1) anglin the open intervalps, pg). Hence,
using arguments as above, we conclude that the funéfigh p) is strictly positive
in the whole rectangle [A] x [pg, prl-

A.2. Proof of Result 6

We show thatn(1) < O in the caser < b < 0. As observed in equation (15),
the sign ofmm (1) is the same as that @i (8, p). We have determined earlier (see
Result 3) the condition & B < B that allows for the existence of a polymorphic

equilibrium (p, F), where 0< p < % Using (A.1) to (A.4), one can trivially
obtain that

H(0,00<0, H(0 pg) <0, H(Bo,0) <O, H (o pg)<O.

It is also easy to verify that the partial derivativesits, p), given in (A.5), are
both strictly positive forg in the open interval (Q8p) and p in the open interval
(0, pg). Therefore, we conclude that the functifiiig, p) is strictly negative in the
whole rectangle [08g] x [0, p] and consequently thai(1) < 0.
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A.3. Proof of Result 8

In the degenerate cagk = fo, the greatest eigenvalue bb equals 1. Lessard
and Karlin (1982) exhibited a general criterion for stability-instability at fixation
states when the greatest eigenvalue of the matrix of the linear approximation is
one. Using their notation, we let the vectoe= (x1, x2) = (P11, P12) be such that
0 = (0, 0) corresponds to the fixation evet) of Ay. LetTx = (U1(X), U2(x)) =
(P14, P1,), whereT is the transformation defined by the recursive equations (3).
We have thatl'(x) = 0 if and only if x = 0 and T is smooth enough in the
neighborhood 06.

The matrixL» is an irreducible aperiodic nonnegative matrix. Hence, by the
theorem of Perron-Frobenius, the components of the left and right eigenveéctors,
andy, of L, corresponding to the eigenvalue one are strictly positive: B

Slo=E8=(61,62) >0 and Lop=n= (n1,n2) > 0.

2

Without loss of generality, we assurti€, n)) = ) &;n; = 1. Then we define the
A p=

quantity S= ((¢, 8)) as the inner product of the vectagfaindf = (61, 62), where

32U (0)

0; =
=, 9x30x,

P

mne, for i=12

The general criterion for stability-instability stipulates that the fixation evergt
stable if S< 0 and unstable if S 0.

Now, leth = 1 — woyo, ¢ = 2wy — 1 andd = wo2 — wy1. Note that, ¢, d > 0
in the case at hand. The matrix of the linear approximation is

b
L _ i 2w11b 2
2= K 2wi1cd wi1b+wood | -
w22 w22
The eigenvalues df, are
i w11b
)v1:1>/L2: 11 > 0.
w2 K

The left and right eigenvectors bf corresponding to the eigenvalue one are

2
E= wllc,l >0 and 5= i,l > 0.
= w2 - 2d

After some rather tedious calculations, we find that

32U1(0) _ 2wiid
axf N w%zK

02U2(0) _ 4wi1(d — wy) ed
Bx% N w%zl(

(w11c + 2w22b) ,

’
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92U1(0) 1 1
D _ d — 2woob b—-d)],
3x10%s wgzK [wnc w2 (wll 3
82U>(0 d
2© = [wazb — ¢ (Bw11 — wi1c — d)],
0x10x2 w%zK
92U1(0) 1
=y (cd — 2wpb?),
0x35 2w22K
92U>(0 -1
20 _ [2w20b? + 1+ 20) cd].
d x5 u)22K

With some algebra, one finally obtains

S— K [b2 —2w22 (1 — w]_]_)] . (AG)
whd (S, 1)

In the case at hand, itis trivial to show thatS0 and consequently that the fixation
of Az is stable.

A.4. Proof of Result 10

This proof is very similar to the above proof of Result 8. In this case, however,
we haveb,d < 0 andc > 0. Equation (A.6) clearly shows that S 0, and
consequently that the fixation of,As unstable.

A.5. Proof of Result 11

We first present an interesting result which will be useful in the subsequent proofs.
Let K be acompact set 6f" and letT: K — K be a continuous function. Let

v Q" — N be a continuous function such thaiT'x) < v(x), for every vector

x € K. We define the sequen¢&”x} _ for everyx e K. By the compactness of

K, v is bounded below and therefore the sequgn¢&”x)},>0 converges, that is

lim v(T"X) = 0.
n— oo

Let X be an accumulation point dff”"x},>0. Then there exists a subsequence
{T"x}k>0 Which converges tg, that is

Jim {T"x} = X.
Then, the following inequalities hold:
u(T™4H%) < v(T™HY) < v(T7X).
By the continuity ofv,

lim v(T™+1x) = lim v(T™Xx) = v(X) = D.
k—o00 k—o00
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Also, by the continuity ob andT,

lim v(T™%*1x) = lim o(T o T™X) = v(TX).
k—o00 k—00

Hence, we conclude that
v(TX) = v(X) = 0.
More generally, for every > 1, we obtain the following inequalities:
(T"HX) < o(T™ ) < v(T"X).
Using the same arguments as before, we obtain
lim v(T"™+X) = lim v(T™X) =vX) =0
k— o0 k— 00

and also
lim v(T™*'x) = lim o(T! o T"x) = v(T'R).
k— o0 k—o00

Hence, for every > 1, we conclude that
v(T'8) = v(®) = 9.

Result A. Every accumulation point dff"x},>0 must be invariant with respect
tov.

Note that this result remains valid for a continuous functicuch that (7x) >
v(X), for every vectox € K.

We shall now demonstrate hereupon that the state for whjgh= 1 cannot
be a point of accumulation of the iterates of the transformafiafefined by the
recursive equations (3) from any starting point (P11, P12, P22) in the case of
directional selectiorf0 < W11 < 1 < Wap). Letv(X) = p = P11+ %P12, for
everyx = (P11, P12, P22). Apply the transformatiof toX = (0, 1, 0), which cor-
responds taPy, = 1. Trivial computations give's = (3, 3, 3) andv(TX) = 1.
Applying once again the transformati@h one obtains that

1 1
W11+ 7 1

W(T?R) = < —.
%wn—i— % + %wzz 2

But this contradicts Result A above.

A.6. Proof of Result 12

We demonstrate that the states for whigh + P12 = 1, with P11 # 0, 1, cannot
represent a set of accumulation points of the iterates of the recursive equations (3)
from any starting poink = (P11, P12, P22) in the case of complete dominance
(W11 = Wiz = 1). Letv(x) = p = P11 + 3 Pr2and& = (P11, 1 — P11, 0). Then,
applying the transformatiofi to X, one easily obtains(TX) = P11+ % (1— P11).
Applying once again the transformati@h one calculates that

P+ 31— P1y) .
1- 70 —w) (- P)[1—1-p) Pi]

thus contradicting Result A.

w(T%R) = X,
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A.7. Proof of Results 13 and 14

First, for any valuav # 0, 1, we demonstrate that the states for whigh -+ Py =

1, with P13 # O, % or 1, cannot represent a set of accumulation points of the iterates
of the recursive equations (3) from any starting point (P11, P12, P22) in the

case of symmetric selectigi1y = Woo = W £ 0and 1). Leb(X) = | P11 — P22l

andX = (P11, 0, 1 — P171). Applying the transformatioff to X, one easily obtains
v(TX) = |2P11 — 1|. Applying once again the transformati@n one can calculate
that

w
w+20-w)(1—-p)Puu(d1— P11

v(T?%) = [ } 12P11 — 1] # v(R),
thus contradicting Result A.

At this point, we distinguish the cases< 1 andw > 1. In the casev < 1,
posit againv(x) = | P11 — P22|. From Section 6.3, we know tha{Tx) < v(X),
for every vectox € K. Letv = 0 andX = (P11, 1—2P11, P11). By induction, itis
easy to verify that Result A holds. The vectg&iscated on the manifolé 1 = P2,
represent a set of accumulation points of the iterates of the recursive equations (3)
for the case at hand.

In the casew > 1, with v(X) = | P11 — P»2|, we know by Section 6.3 that
v(Tx) > v(x), for every vectox € K. Two distinct cases must be considered:

(i) If P11 > P2y, thenletv =1 andx = (1,0, 0).
(i) If P11 < Ppo, thenletv = 1andk = (0,0, 1).

In both cases, it is trivial to verify that Result A holds.

In the casav < 1, we have shown that the solution of the system of recursive
equations (3) converges, except from the fixation states, to the manifpld P»o.
We shall prove convergence to the polymorphic equilibrium located on this man-
ifold. In effect, if the sequencs{zT’X}l>0 converges t@ (here the polymorphic
equilibrium) for X on the manifoldP;; = P», and2 is locally stable, then the
sequencéT’g}bo will converge toz for anyx in a certain neighborhood &fby
the continuity of7. This will be the case for any, takingX as an accumulation
point of {T’x}l>0 which must be on the manifol@t;; = Pys. In Section 6.3, we
have shown that the sequer{ciélx}l>0 converges to the polymorphic equilibrium
2. The last step is to show that the polymorphic equilibrium is locally stable. In this
purpose, we employ the method exposed in Section 4.

We develop the linear part of the recursive equations (3) in the vicinity of
the polymorphic equilibrium(p, F). The matrix of the linear approximation is
expressed as

2w 0
2—(1—w)(1+ﬁ)
M — [mn le] _

ma1 mz2 0 /3{ } ’
[2-@-w)(2+F)]
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using the still valid entries given in (13) and recalling thiat= ¢ = % Since
—1 < F < 1, all the entries o are found positive. The characteristic polynomial
of M simply reads as

m(4) = (A —m11) (A — m22),

with strictly positive eigenvalues. Note that these two eigenvalues are continuous
with respect to8 and equal to 0 angky1 > O for 8 = 0. Moreover,ni; < 1 if

and only ifw < 1, which always holds in the case at hand. Thus, using arguments
as in the proof of Result 5, it suffices to show thai0) > 0 andm(1) > 0, for

0 < B < 1, to prove that the greatest eigenvaludvbfs smaller than 1. We have

m(0) = mq1mo2 > 0

1—w) (1—#)

m(1) = sH(B, F),

[2-@-w (1+F)]

HB,F)=[2—1—w) 1+ F)]*>-28w.

The sign ofin (1) depends upon the sign 8f(8, F). We must divide the subsequent
analysis in two cases,Q w < % and% < w < 1, even though they shall lead to
the same result.

Before going any further, we have to outline an essential fact that concerns the
value of F at equilibrium, that is,

and

where

1+w@-p) —B-w@d+p-8L—w)

F=4P;—1=
1 2(1—w)

For fixedw > 0, the value off increases ag increases over the interval (0, 1).
This is deduced by taking the derivative Bfwith respect tg3, expressed as

diﬁ ’ (l i F) > 0. (A7)
JB-w@+ AR -8 —w

Let us now return to the functioH (8, F).Inthe case &< w < E,Whenﬂ 0, the

classical result asserts thét= 0, since no inbreeding is generated by the panmic-
tic model. Wherg = 1, the value ofF at equilibrium become$ = w/(l w)
(this value follows from Nagylaki, 1977). Easy computations yield

H@O,F)=1+w)?>0 and H(, F)=1-2w > 0.

Using (A.7), one can trivially verify that the derivative &f(8, F) is such that

%H(,B )= —2w—2(1-w) [2— 1—w) (1+ F)] (%F) <0. (A8)
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The sign of this derivative ensures thdtgs, F)>0,forall0 <p < 1. Therefore,

we conclude that:(1) > 0 in the case 6< w < 3.
In the case% < w < 1, wheng = 0, the above conclusions remain valid.

However, wherg = 1, the value off at equilibrium isF' = 1. Direct calculations

yield

HO,1)=A+w)?>0 and H( 1) =2ww—1) > 0.

Using (A.8), we conclude thai (8, F) > 0, forall 0 < B < 1 and consequent-

ly thatm (1) > O in the cas<=?1 < w < 1. Therefore, we have proved that the
greatest eigenvalue & is smaller than 1 and consequently that the polymorphic
equilibrium (p, F) is locally stable in the case < 1.
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