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Abstract
Necessary and sufficient conditions are provided for a diffusion-driven instability of
a stable equilibrium of a reaction–diffusion system with n components and diagonal
diffusion matrix. These can be either Turing or wave instabilities. Known necessary
and sufficient conditions are reproduced for there to exist diffusion rates that cause
a Turing bifurcation of a stable homogeneous state in the absence of diffusion. The
method of proof here though, which is based on study of dispersion relations in the
contrasting limits inwhich thewavenumber tends to zero and to∞, gives a constructive
method for choosing diffusion constants. The results are illustrated on a 3-component
FitzHugh–Nagumo-like model proposed to study excitable wavetrains, and for two
different coupled Brusselator systems with 4-components.

Keywords Reaction–diffusion · Diffusion-driven instability · Spatio-temporal
oscillations · Turing instability · Wave instability

Mathematics Subject Classification 35K57 · 92E20 · 15A18

1 Introduction

The formation of patterns and structures in a chemically reacting medium due to
differential rates of diffusion of an otherwise stable equilibrium was first proposed
in the last published work of Turing (1952). It seems Turing was on the verge of
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explaining how this instability underlies the formation of structures in plants such as
the daisy; see Dawes (2016). The recent issue of Philosophical Transactions (Krause
et al. 2021) highlights the state of the art in how the patterns that emerge from a Turing
instability have been used to explain many phenomena in biology. There is also a
parallel literature in the wider theory of pattern formation across many different length
scales of physics from micromechanics to spatial ecology; see also the other recent
volumes (Yochelis et al. 2021; Champneys 2021) and references therein. Nevertheless,
although the conditions for having a Turing bifurcation have been generalized to
systems with n components, sometimes it remains unclear whether a system has the
opportunity to develop these spatial patterns. The most definitive results so far are due
to Satnoianu et al. (2000). They used the definition of a so-called S-stable Jacobian
matrix to determine necessary and sufficient conditions for a Turing bifurcation in
a wide class of reaction–diffusion systems with an arbitrary number of components.
Their approach, which relies on the Routh–Hurwitz criterion, does not provide precise
details on the form of the dispersion relations upon adding diffusion, nor definitive
conditions on which parameters might lead to a bifurcation.

We note also the work (Klika et al. 2012) that extended some of the results in Sat-
noianu et al. (2000) to systems that have components with zero diffusion coefficients,
and Hoang and Hwang (2013) that shows that linear instability implies a nonlin-
ear bifurcation under certain technical assumptions. Finally, we mention the work of
Kuznetsov and Polezhaev (2020) who find new ways of obtaining Turing bifurcations
by considering what happens to dispersion relations in the limit that some diffusion
coefficients tend to zero. Their results, which are mostly restricted to 3-component
systems, provide a key motivation to the method introduced in this paper.

In all of these works, though, it is implied that the critical eigenvalue at the Turing
bifurcation is real. The case of a complex critical eigenvalue, leading to a so-called
wave bifurcation (or finite wavenumber Hopf bifurcation) has received less attention.
A number of authors, e.g. Korvasová et al. (2015) have shown that such an instability
requires at least a three-species model. A notable work is that by Anma et al. (2012)
that gives sufficient conditions for such a bifurcation for 3-component systems. See
Sect. 3 below for a recapitulation of their result.

Given the recent focus on synthetic biology, several authors have sought to under-
stand the design principles of interacting chemical components necessary to achieve
Turing instability, see e.g. Diego et al. (2018), Hambric et al. (2021). Scholes et al.
(2019) have performed a comprehensive search of the linear properties of all possible
network topologies of two or three interacting chemical species to see how common
and robust Turing instability is. They sample both the functional forms of interaction
and the values of diffusion constants and other parameter values. Their conclusion
is Turing patterns are common but not robust in some sense. Note that they do not
consider conditions for bifurcations (e.g. upon increasing diffusion rates) nor the pos-
sibility of wave bifurcations.

A similar approach is taken by Haas and Goldstein (2021), except they use a sample
of values of the Jacobian matrices of linearised kinetics in reaction–diffusion systems
with n components up to n = 6. They argue that the minimum diffusion threshold
required for instability decreases with n.
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In the present paper, we develop a general approach by studying dispersion relations
of n-dimensional reaction–diffusion systems linearised around a homogeneous steady
state. We suppose that a researcher is studying a reaction–diffusion system and asks
the question whether, for the given kinetic terms, there are values of the diffusion
coefficients that lead to either a Turing or a wave bifurcation. In order to answer
this question, we take various limits, which strictly-speaking are likely to go outside
the bounds for which the model is strictly valid, for example that certain diffusion
coefficients vanish or are sufficiently large. This leads to conditions on principal sub-
matrices of the homogeneous system, for which we canmake precise statements about
the existence of either kind of bifurcation for a finite range of values of the diffusion
rates.

In what follows, we consider a system of n reaction–diffusion equations in time, t ,
and space x ∈ R

m , where each state variable ui (x, t) i = 1, . . . , n satisfies the system
of partial differential equations (PDEs)

ut = f(u) + D∇2u. (1)

Here, u = (u1, u2, . . . , un)ᵀ is a vector of variables depending on t and x,

D = diag (D1, D2, . . . , Dn)

where Di ≥ 0 is a diffusion constant, and f = ( f1, f2, . . . , fn)ᵀ is a vector field
assumed to be sufficiently smooth (at least of class C1).

Remark 1 1. For a well-posed partial differential equation, it would be necessary to
specify a domain � ⊂ R

n , subject to suitable boundary conditions. However,
in order to be general, we shall use the approach commonly taken in reaction–
diffusion systems, of considering the limit � → R

n such that solutions remain
bounded at infinity. Then, it is well known that the discrete spectrum of∇2 subject
to, say, Neumann boundary conditions, tends to a continuous spectrum. In what
follows, for definiteness, we shall assume that all domains constructed in this way
are the limits of hypercubes so that the spectrum we are interested in is spanned by
eigenfunctions of the form ui = cos(ki xi ), ki ≥ 0 of the operator ∇2 correspond-
ing to the negative eigenvalue −k2 = −|k|2 where k = (k1, k2, . . . , km)ᵀ is a
vector of wavenumbers. This enables the derivation of dispersion relations of tem-
poral eigenvalues λi (k); see for example Murray (2001). On a finite domain with
typical boundary conditions, the dispersion relation becomes discretised, and we
expect to see a sequence of symmetry-breaking bifurcations that accumulate as the
length of the domain increases to the parameter values at which an infinite-domain
Turing bifurcation occurs (see e.g. Breña-Medina and Champneys 2014).

2. The form of (1) is chosen for convenience. Under suitable additional hypothe-
ses, the results in this paper can be easily extended to a broader class of PDEs:
systems with non-diagonal diffusion matrices, different temporal timescales and
more general spatial operators. See Sect. 6 for a discussion.
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(a) (b) (c)

Fig. 1 Sketches of dispersion relations, that is the locus of the real part of an eigenvalue λ(k), for different
parameter values. Upon parameter variation we have: a absence of instability; b a bifurcation point giving
onset to instability; c unstable patterns exist for wavenumbers k1 < k < k2. For simplicity we depict only
the dispersion curve of a mode for which maxk (Re(λi (k))) is largest

Let P be a homogeneous equilibrium point of (1). That is, f(P) = 0.We will denote
the Jacobian matrix of this system at P by

Juf(P) =
(

∂ fi
∂u j

(P)

)
1≤i, j≤n

.

This implies that the linear part of the full-system at P is given by Juf(P) + D∇2.
Next, as wewant to analyze Turing andwave instabilities, thenwewill be interested

in the space of eigenfunctions of the operator∇2 with negative eigenvalues, i.e., vector
functions u that satisfy the following equation:

∇2u + |k|2 u = 0,

where k = (k1, k2, . . . , km)ᵀ. This implies that the Jacobian matrix of our system at
P, restricted to this space, is given by Juf(P) − |k|2 D.

In particular, considering |k| = k as a real number, a diffusion-driven instability
arises if P is stable in the absence of diffusion, yet becomes unstable in the presence of
a specific real wavenumber k and a diffusion matrix D. In particular, we will assume
that all eigenvalues of Juf(P) have negative real part, then we shall seek a diffusion
matrixD and wavenumber k ∈ R such that Juf(P)−k2 D has eigenvalues in the right-
half of the complex plane. In particular, let λ(k) be an eigenvalue of Juf(P) − k2 D
for which Re(λ(k)) > 0 for some k > 0. If we allow the diffusion rates (entries of
D) to act as continuous parameters, then we are interested in the transition depicted in
Fig. 1. In panel (a), we have no diffusion-driven instability since the system is stable
for every value of k. Panel (b) depicts a bifurcation point, which we define to occur
at a critical value of a parameter (either diffusion coefficient or otherwise) at which
there is a quadratic tangency of the dispersion curve Re(λ(k)) at Re(λ(k)) = 0. This
could be a Turing bifurcation or a wave one depending on whether λ (k∗) is real or
pure imaginary, respectively. Finally, panel (c) depicts that the instability patterns that
exist correspond to perturbations to P that have wavenumbers k1 < k < k2.

The rest of this paper is outlined as follows. In Sect. 2 we give some preliminary
results that are used to prove the main theorems of the paper, ending with a simple
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proof of a simple part of the main result in Satnoianu et al. (2000), which will be used
later. Section3 considers conditions for wave instabilities, confirming that theminimal
number of components for such instabilities to occur is n = 3, and gives sufficient
conditions for this case. Section4 then provides conditions for both Turing and wave
instabilities to occur in general n-component models. Section5 contains examples that
illustrate the theory developed throughout the paper and Sect. 6 contains concluding
remarks.

2 Preliminary results

In this section we introduce some general results that will form the core methodology
of this work, see specifically Lemmas 5 and 6 below. We build up these results via
some elementary lemmas that are largely already known from literature on matrix
stability, see e.g. Cross (1978), Satnoianu et al. (2000), Gantmacher (1959) but will
prove useful in establishing the setting and notation of our theory.

We begin with the following elementary result which will apply to characteristic
polynomials of matrices.

Lemma 1 Let λ1, λ2, . . . , λm ∈ C\{0} be m non-zero complex numbers, which are
roots of a polynomial equation with real coefficients. Then,

(−1)m
m∏
j=1

λ j < 0 (2)

if and only if there exists an odd number of indices q ∈ {1, 2, . . . ,m} such that λq ∈ R

and λq > 0.

Proof First, as λ1, λ2 . . . , λm are roots of a polynomial equation with real coefficients,
then all complex numbers come in complex-conjugate pairs. With this, their product
can be decomposed as

m∏
j=1

λ j =
2p∏
i=1

λi

r∏
�=2p+1

λ�

m∏
s=r+1

λs, (3)

where the first product on the right-hand side of (3) has all the complex non-real eigen-
values, whilst the second and third ones are the real positive and negative eigenvalues,
respectively.

The first two products are positive, so the sign of the whole expression is given by
the sign of the third term, which depends on the parity of positive roots, as stated. 
�

Next we shall introduce a notation for the principal submatrices and principal
minors of a square matrix A. Note that the notation used in Cross (1978) uses the
complement of the set of indices used here.
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Definition 1 For each integer 1 ≤ k ≤ n, we define a word to be a k-tuple of non-
repeating integers (i1, i2, . . . , ik) with 1 ≤ i j ≤ n for each j = 1, 2 . . . , k, and we
shall call it an increasing word if i1 < i2 < · · · < ik . For each increasing word,
we refer to the corresponding principal submatrix Si1i2...ik of Juf(P) as the k × k
matrix that takes into account only the rows and columns with indices i1, i2, . . . , ik .
We also denote by Mi1i2...ik the principal minor of Juf(P) which is the determinant
of Si1i2...ik .

With this, note that Lemma 1 can be used directly to prove the following:

Lemma 2 There exists an integer 1 ≤ k ≤ n and an increasing word (i1, i2 . . . ik)
such that (−1)kMi1i2...ik < 0 if and only if Si1i2...ik has an odd number of positive real
eigenvalues.

Proof Note that the condition (−1)kMi1i2...ik < 0 is equivalent to saying that (−1)k

times the k eigenvalues of Si1i2...ik is negative. Hence, owing to Lemma 1, this is true
if and only if there are an odd number of positive real eigenvalues of Si1i2...ik . 
�
Next, we state a result that will be implicitly assumed in what follows under the
requirement that P is a stable equilibrium point in the absence of diffusion.

Lemma 3 LetP be an equilibrium point of (1) in the absence of diffusion. IfP is stable,
then

(−1)k
∑

1≤i1<i2<...<ik≤n

Mi1i2...ik > 0,

for all k = 1, 2, . . . , n.

Proof Based on a standard result on the determinant of sums of matrices (Marcus
1990), we know that for any pair of complex-valued n × n matrices, the determinant
of A + B can be written as

det(A + B) =
n∑

r=0

∑
α,β

(−1)s(α)+s(β) det(A[α|β]) det(B(α|β)), (4)

where the inner sum is over all strictly increasing words α, β of length r ; A[α|β] is
the r × r -square submatrix of A formed of the rows in α and columns in β; B(α|β)

is the (n − r)-square submatrix of B formed of the rows complementary to α and
columns complementary to β; and s(α) (respectively, s(β)) is the sum of the integers
in α respectively, β. In particular, when r = 0 this summand is equal to det(B) and,
when r = n, it is det(A).

Next, by definition, the characteristic polynomial of Juf(P) is given by

det(Juf(P) − λI ) =
n∑

m=0

(−1)mλm
∑

1≤i1<i2<...<in−m≤n

Mi1i2...in−m
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The eigenvalues of Juf(P) are given by setting this polynomial to zero, which can be
multiplied by (−1)n to obtain

n∑
m=0

(−1)n−mλm
∑

1≤i1<i2<...<in−m≤n

Mi1i2...in−m = 0.

Now, by the Routh–Hurwitz criterion (Routh 1877; Hurwitz 1895), a necessary con-
dition for all the roots of this equation to lie in the left-half plane is

(−1)k
∑

1≤i1<i2<...<ik≤n

Mi1i2...ik > 0

for each integer 1 ≤ k ≤ n. 
�
The following result provides a useful characterisation of the characteristic poly-

nomial in the presence of diffusion.

Lemma 4 Let μ ∈ R. Then

det (Juf(P) − μD) = bnμ
n + bn−1μ

n−1 + bn−2μ
n−2 + · · · b1μ + b0, (5)

where

bm = (−1)m

⎛
⎜⎜⎝

∑
1≤i1<i2<...<in−m≤n

Mi1i2...in−m

n∏
j=1

j /∈{i1,i2,...,in−m }

Dj

⎞
⎟⎟⎠ , for 1 ≤ m < n,

b0 = det(Juf(P)), and bn = (−1)n
∏n

j=1 Dj .

Proof Let us take A = Juf(P), and B = −μD in Eq. (4). In particular, in the notation
of that equation, note that if α �= β, then a row or column of B(α|β)would be equal to
zero since B is a diagonal matrix. Thus the only non-zero contributions to the sum are
gotten when α = β. Thus, notice that for r = n − m, and β = (i1, i2, i3, . . . , in−m),
we have that

∑
α,β

(−1)s(α)+s(β) det(A[α|β]) det(B(α|β))

= (−1)2s(α)

⎛
⎜⎜⎝

∑
1≤i1<i2<...<in−m≤n

Mi1i2...in−m

n∏
j=1

j /∈{i1,i2,...,in−m }

[
(−1)Djμ

]
⎞
⎟⎟⎠

= (−1)m

⎛
⎜⎜⎝

∑
1≤i1<i2<...<in−m≤n

Mi1i2...in−m

n∏
j=1

j /∈{i1,i2,...,in−m }

Dj

⎞
⎟⎟⎠ μm,

which is exactly what is required to conclude the proof. 
�
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The above lemma, enables us to establish the following result, which is a gen-
eralisation of Theorem 1 in Satnoianu et al. (2000). Indeed, we do not require the
Jacobian matrix Juf(P) to be S-stable for this result to be true. Nevertheless, the
following Theorem states something only about Turing bifurcations, not considering
wave instabilities.

Theorem 1 Let P be a stable equilibrium point of (1) in the absence of diffusion.
If (−1)kMi1i2...ik ≥ 0 for all k = 1, 2, . . . , n − 1, and each increasing word
(i1, i2, . . . , ik), then P will not be able to undergo Turing bifurcation when we take
into account the full system (1).

Proof Note that if P is a stable equilibrium point of (1) in the absence of diffusion,
then we have (−1)n det(Juf(P)) > 0.

Then, observe that the characteristic polynomial of the Jacobian matrix of our
system after the addition of diffusion is given by

pD(λ, μ) = det(Juf(P) − μD − λI ),

where μ = |k|2 > 0.
Since we want to determine conditions in which we can see a Turing instability

pattern around P, we want to look for conditions in which there existsμ > 0 such that
the characteristic equation has a root λ = 0. That is, we want to find μ > 0 such that:

pD(0, μ) = det(Juf(P) − μD) = 0, (6)

which is a polynomial equation in μ, whose coefficients are described in Lemma 4.
Next, notice that if (−1)kMi1i2...ik ≥ 0 for all 1 ≤ k ≤ n − 1 and every increasing
word (i1, i2, . . . , ik), then all the coefficients in the polynomial (6) have the same sign.
Therefore, there cannot exist a positive real root of (6) for any choice of diffusion
constants. Thus, there is no choice of diffusion matrix D such that P admits a Turing
bifurcation. 
�
The next two lemmas will be crucial to the method we use to find conditions under
which either Turing or wave instability patterns can occur in (1).

Lemma 5 Let P be an equilibrium point of system (1) in the absence of diffusion.
Assume that D� = 0 for all � ∈ {i1, i2, . . . , ik}, for 1 ≤ k ≤ n, while all the other
diffusion rates are positive. Then, there exist k eigenvalues of Juf(P) − μD that tend
to the eigenvalues of Si1,i2,...,ik as μ → ∞, while the real part of the others tend to
−∞ as μ → ∞.

Proof First, notice that if k = n, then all diffusion rates would be equal to 0 and the
eigenvalues of Si1,i2,...,ik would be those of Juf(P) which are independent of μ, thus
making the result trivially true in this case.
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Next, if k < n, although we might not be able to find all the eigenvectors of
Juf(P)−μD, note thatwe can get all its eigenvalues by solving the following equation:

Juf(P) vm − μD vm − λmvm = 0,

where λm is an eigenvalue of Juf(P) − μD, and vm is a corresponding eigenvector,
for each m = 1, 2, . . . , n. Let us denote the elements of Juf(P) and vm as follows:

Juf(P) = (
ai j

)
1≤i, j≤n , vm = (

vm,i
)
1≤i≤n .

Therefore, the eigenvalue problem is equivalent to the following set of equations

n∑
j=1

(
ai jvm, j

) − μDivm,i = λmvm,i , (7)

for each i = 1, 2, . . . , n. In particular, notice that for each i = � ∈ {i1, i2, . . . , ik}, (7)
becomes

n∑
j=�

a� jvm, j = λmvm,�. (8)

Then, at least one of the following two possibilities occur:

1. There exists an eigenvector vp, with p ∈ {1, 2, . . . , n}, and q ∈ {i1, i2, . . . , ik}
such that lim

μ→∞ vp,q �= 0. Moreover, by continuity, vp,q �= 0 for μ sufficiently

large, in which case (8) implies we can write

λp = 1

vp,q

n∑
j=1

aq jvp, j . (9)

Also, for i /∈ {i1, i2, . . . , ik}, (7) implies that

n∑
j=1

(
ai jvp, j

) − μDivp,i = vp,i

vp,q

n∑
j=1

(
aq jvp, j

)
. (10)

Therefore, without loss of generality, by assuming ‖vp‖ = 1, then everything on
the left-hand side of (10), except possibly μ, is finite. Therefore, if we take the
limit μ → ∞, we must have that lim

μ→∞ vp,i = 0, for all i /∈ {i1, i2, . . . , ik}. With

this condition, for μ sufficiently large, we know that (8) can be simplified to

n∑
j∈{i1,i2,...,ik }

a� jvp, j = λpvp,�,
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which can be rewritten as

Si1i2...ik v̂p = λpv̂p, where v̂p = (
vp, j

)
j∈{i1,i2,...,ik } .

This means that λp tends to an eigenvalue of Si1,i2...,ik , as μ → ∞, and v̂p to
an associated eigenvector of that matrix. Note that, this gives us information only
about k eigenvalues, although due to the possibility of generalised eigenvectors,
we cannot necessarily find k independent eigenvectors via this process.

2. There exists an eigenvector vp, with p ∈ {1, 2, . . . , n}, such that lim
μ→∞vp,q = 0

for all q ∈ {i1, i2, . . . , ik}. Thus, for such p, i /∈ {i1, i2, . . . , ik} and μ sufficiently
large, we obtain the set of equations

n∑
j=1

j /∈{i1,i2,...,ik }

(
ai jvp, j

) − μDivp,i = λpvp,i .

This means that λp is an eigenvalue of the submatrix of Juf(P) − μD formed by
the rows and columns that are complementary to i1, i2, . . . , ik . Therefore, because
the diagonal elements of this matrix tend to−∞ asμ → ∞ and the other elements
are fixed, then by the Gershgorin Circle Theorem, the eigenvalue λp must tend to
−∞ as μ → ∞. Again, the number of independent eigenvectors vp that fulfill
the condition of this case depend on the number of generalized eigenvectors of the
submatrix in question.

Finally, the first (respectively, second) possibility gives us information about only k
(respectively, n − k) eigenvalues. Therefore, both possibilities must occur simultane-
ously to describe the complete set of n eigenvalues of Juf(P) − μD. 
�
Lemma 6 Let P be a stable equilibrium of system (1) in the absence of diffusion. If we
assume that Dl → ∞ for all � ∈ {i1, i2, . . . , ik}, for 1 ≤ k ≤ n, while all the other
diffusion rates are positive, but finite, then there exist k eigenvalues of Juf(P) − μD

having real parts that tend to −∞ for every μ > 0, while n − k eigenvalues of that
matrix tend to the eigenvalues of the submatrix of Juf(P) formed out of rows and
columns that are complementary to i1, i2, . . . , ik , as μ → 0+.

Proof Using the same notation as in the previous proof, we need to solve the equations
(7) for each i = 1, 2, . . . , n. Again, in this case we have two possibilities (note that
the proofs are analogous but have some key differences in the sets of indices):

1. There exists an eigenvector vp, with p ∈ {1, 2, . . . , n} and q /∈ {i1, i2, . . . , ik}
such that lim

Di1 ,...,Dik→∞ vp,q �= 0 for a fixed 0 < μ � 1 sufficiently small. In this

case, (7) implies that we can write

λp = 1

vp,q

⎛
⎝ n∑

j=1

aq jvp, j − μDqvp,q

⎞
⎠ (11)
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and, for i ∈ {i1, i2, . . . , ik},
n∑
j=1

(
ai jvp, j

) − μDivp,i = vp,i

vp,q

⎛
⎝ n∑

j=1

(
al jvp, j

) − μDqvp,q

⎞
⎠ . (12)

If we assume, without loss of generality, that ‖vp‖ = 1, then everything on the
right-hand side of (12) is finite whilst everything on the left-hand side is finite,
except possiblyμDi . Now if we let Di → ∞, whileμ, sufficiently small, remains
fixed, then we must have that lim

Di1 ,Di2 ,...,Dik→∞ vp,i = 0, for all i ∈ {i1, i2, . . . , ik},
and 0 < μ � 1 sufficiently small. With this condition, for 0 < μ � 1, we know
that, for m = p, (7) can be simplified to

n∑
j=1

j /∈{i1,i2,...,ik }

ai jvp, j = λpvp,i ,

for each i /∈ {i1, i2, . . . , ik}. As before, this means that λp tends to an eigenvalue
of the submatrix of Juf(P) that takes into account the rows and columns that are
complementary to i1, i2 . . . , ik , for 0 < μ � 1 sufficiently small. Note that this
gives us information only about n − k eigenvalues. Again, we highlight that this
does not mean that we will always be able to find n − k eigenvalues that fulfill
the condition required for this case. That depends on the number of generalized
eigenvectors of the submatrix of Juf(P) that takes into account only its rows and
columns that are complementary to i1, i2, . . . , ik .

2. There exists an eigenvector vp, with p ∈ {1, 2, . . . , n} such that lim
Di1 ,...,Dik→∞vp,q

= 0 for all q /∈ {i1, i2, . . . , ik}, and 0 < μ � 1 sufficiently small. Therefore, the
set of equations we need to solve for i ∈ {i1, i2, . . . , ik} is given by:

n∑
j=1

j∈{i1,i2,...,ik }

(
ai jvp, j

) − μDivp,i = λpvp,i .

This means that λp tends to an eigenvalue of the submatrix of Juf(P)−μD formed
out of rows and columns i1, i2, . . . , ik . Therefore, as the off-diagonal elements
of that matrix are constant, while the diagonal entries tend to −∞, then by the
Gerschgorin circle theorem, the real part of λp tends to−∞ as D� → ∞, for each
� ∈ {i1, i2, . . . , ik}, and 0 < μ � 1. Furthermore, note that as some diffusion
rates are infinitely large, then increasing the value of μ above 1 will not impede
the use of the Gerschgorin circle theorem to say that, in this case, the real part of
the eigenvalues will tend to −∞ for every μ > 0.

Finally, as the first (resp. second) possibility gives us information only about n − k
(resp., k) eigenvalues, then they both must occur in order to describe the n eigenvalues
of Juf(P) − μD. 
�
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Now we introduce a useful definition and an important general result that enables us
to find specific ratios of diffusion constants that give rise to an instability.

Definition 2 For each � ∈ Z
+, let s be the sorting function

s : V ⊂ (Z+)� → (Z+)�

( j1, j2, . . . , j�) → s ( j1, j2, . . . , j�) = (
jσ(1), jσ(2), . . . , jσ(�)

)
,

where V ⊂ [1 . . . n]l is a subset of vectors with no repeated entries, and(
jσ(1), . . . , jσ(�)

)
is an increasing word.

Lemma 7 Let ( j1, j2, . . . , jn) be a word comprising non-repeated integers between
1 and n (not necessarily increasing), such that Ms( j1, j2,..., jk ) �= 0 for each integer
1 ≤ k ≤ n. Then we can choose positive diffusion constants Di , i = 1, . . . , n such
that

sign (bk) = sign
(
(−1)kMs( j1, j2,..., jk )

)
,

for each integer 1 ≤ k ≤ n. Furthermore, this result is invariant under multiplication
of all the diffusion constants by a positive real number.

Proof First, let ε > 0 and, for each integer 1 ≤ k ≤ n, take Djk = εn−k > 0. Then,
for each integer 1 ≤ � ≤ n, the terms (−1)�Ms(i1i2...i�) in (5) will have coefficients

of the form ε
p
(
î1,î2,...,în−�

)
, where p

(
î1, î2, . . . , în−�

)
is the sum of the powers of

ε determined by the diffusion rates Dîq
, where îq /∈ {i1, i2, . . . , i�} for each integer

1 ≤ q ≤ n − �. Next, notice that for 1 ≤ m ≤ n, we have that

bm = (−1)m

⎛
⎜⎜⎝

∑
1≤i1<i2<...<in−m≤n

Mi1i2...in−m

n∏
j=1

j /∈{i1,i2,...,in−m }

Dj

⎞
⎟⎟⎠

= (−1)m

⎛
⎜⎜⎝

∑
1≤i1<i2<...<in−m≤n

(i1,i2,...,in−m ) �=s( j1, j2,..., jn−m )

Mi1i2...in−m ε
p
(
î1,î2,...,îm

)
⎞
⎟⎟⎠

+(−1)mε p( jn−m+1, jn−m+2,..., jn)Ms( j1, j2,..., jn−m ),

where î� /∈ (i1, i2, . . . , in−m) for every integer 1 ≤ � ≤ m.
Here, note that the lowest power of ε will be p ( jn−m+1, jn−m+2, . . . , jn). That

coefficient will be the sum of all the lowest exponents of ε. All the other terms are
multiplied by the same number of diffusion rates, but have at least a difference in one
index with the diffusion rates multiplying (−1)mMs( j1, j2,..., jn−m ). This means that the
other terms will have a higher order in terms of ε. With this, taking ε > 0 sufficiently
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small, we will have that

sign (bk) = sign
(
(−1)kMs( j1, j2,..., jk )

)
,

for every integer 1 ≤ k ≤ n.
Last but not least, note that if we pick any δ > 0 and perform the change Di → δDi

for each integer 1 ≤ i ≤ n, then

bm = (−1)m δm

⎛
⎜⎜⎝

∑
1≤i1<i2<...<in−m≤n

Mi1i2...in−m

n∏
j=1

j /∈{i1,i2,...,in−m }

Dj

⎞
⎟⎟⎠ ,

which will not change the sign of these terms. 
�
We close this section by stating an important result which is a trivial extension from

Satnoianu et al. (2000, Theorem 1)

Definition 3 The matrix Juf(P) is said to be S-stable if all its principal submatrices
have all their eigenvalues in the left half-plane.

Theorem 2 (Satnoianu et al. 2000) If Juf(P) is S-stable, then no Turing or wave insta-
bilities are possible from the homogeneous steady-state P for any choice of diffusion
constants Di ≥ 0.

Note that the statement of this theorem in Satnoianu et al. (2000) onlymentions Turing
instability, not wave instability. Nevertheless it is clear from the proof that S-stability
implies that there can be no eigenvalue of Juf(P) − μD with positive real part.

3 Wave instability for n ≤ 3

In this section, we shall try to understand theminimal ingredients for wave instabilities
to occur. Essentially, this result was originally stated in Anma et al. (2012, Th. 1.1), but
we noted that the theorem contains some slightly stricter conditions on the diffusion
constants Di and also includes a claim (result (iv) in the theorem) which is false, in
general. For example, in the notation of the present paper, the matrix

Juf(P) =
⎛
⎝ −4 −4 −4

3 2 2
1 1 −1

⎞
⎠

can easily be shown to provide a counterexample when taking D1 = 3 and D2, D3
small. Finally, the general way we state our result is easily generalisable to arbitrary
n ≥ 3, which forms the subject of the following Section.

First we state our general result.
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Proposition 1 Let P be a stable equilibrium point of (1) in the absence of diffusion.
Then the minimum number of components that the system needs to develop wave
instabilities around P is 3. Furthermore, if n = 3 and there exist 1 ≤ i1 < i2 ≤ 3 such
that Mi1 +Mi2 > 0 and Mi1i2 > 0, then we can choose diffusion rates D1, D2, D3 ≥ 0
such that (1) develops wave instability patterns around P.

Before proceeding with a proof, we establish a few useful standard lemmas.

Lemma 8 Let n = 2. Suppose that P is a stable equilibrium point of (1) in the absence
of diffusion. Then the system will not admit a wave instability pattern around P for
any diffusion matrix D.

Proof Let us label the elements of Juf(P) as follows

Juf(P) =
(

α β

γ δ

)
.

Given that all the eigenvalues of Juf(P) are in the left-half plane, then its trace must
be negative. That is α + δ < 0. To have a wave instability around P, we need to find
μ > 0 such that the eigenvalues of Juf(P) − μD are pure imaginary. We have that

tr(Juf(P) − μD) = tr(Juf(P)) − μ (D1 + D2) < 0,

det(Juf(P) − μD) = det(Juf(P)) − (D2α + D1δ) μ + D1D2μ
2

This means that the eigenvalues of Juf(P) − μD are given by

λ1,2 = tr(Juf(P)) − μ (D1 + D2) ± √
tr(Juf(P) − μD)2 − 4 det(Juf(P) − μD)

2
,

(13)

Finally, note that, in the case that λ1,2 are complex conjugate, then (13) shows that
�(λ1,2) < 0 for all μ > 0. 
�

Next, let us consider the case n = 3, and use the notation for principal minors estab-
lished in Definition 1. The following two lemmas establish a general condition for
finding non-negative diffusion rates for a wave instability, and a sufficient condition
under which it cannot occur.

Lemma 9 Let n = 3. Then the condition for the matrix Juf(P) − μD to have a pure
imaginary pair of eigenvalues for some μ > 0 can be expressed as

b3μ
3 + b2μ

2 + b1μ + b0 = 0, (14)
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where

b3 = (D1 + D2) (D1 + D3) (D2 + D3) ,

b2 = −D2
1 (M2 + M3) − D2

2 (M1 + M3) − D2
3 (M1 + M2)

− 2 (D1D2 + D1D3 + D2D3) (M1 + M2 + M3) ,

b1 = D1 ((M2 + M3) (M1 + M2 + M3) + M12 + M13)

+ D2 ((M1 + M3) (M1 + M2 + M3) + M12 + M23)

+ D3 ((M1 + M2) (M1 + M2 + M3) + M13 + M23) ,

b0 = − (M1 + M2 + M3) (M12 + M13 + M23) + det(Juf(P)).

Proof The characteristic polynomial of Juf(P) − μD can be written as

pD(λ, μ) := λ3 + a2λ
2 + a1λ + a0, (15)

where

a2 = − (M1 + M2 + M3) + (D1 + D2 + D3) μ,

a1 = M13 + M12 + M23 − (D1 (M2 + M3) + D2 (M1 + M3) + D3 (M1 + M2)) μ

+ (D1D2 + D1D3 + D2D3) μ2

a0 = − det(Juf(P) − μD).

Therefore, when we evaluate this characteristic polynomial at λ = ωi , we will have
the following expression

pD(ωi, μ) := −ω3 i − a2ω
2 + a1ω i + a0 = ω

(
−ω2 + a1

)
i +

(
−a2 ω2 + a0

)
.

Setting this expression to zero we get two expressions for ω2 that are well defined if
and only if a1 > 0, a2 �= 0 and a1a2 − a0 = 0. Upon substitution of the definitions
of a0, a1, a2 into this final equality, we arrive at the polynomial in μ given at the
statement of the result. 
�
Lemma 10 Let n = 3. If Mi1 + Mi2 ≤ 0 for all 1 ≤ i1 < i2 ≤ 3, M12 + M13 ≥ 0,
M12 + M23 ≥ 0, M13 + M23 ≥ 0, and det(Juf(P)) ≤ 0, then the system will not be
able to show a wave instability pattern around P.

Proof The proof is clear because, under the hypotheses, the coefficients in Lemma 9
b0, b1, b2, b3 will be non-negative, which means that (14) cannot have a positive real
solution for μ. 
�
Remark 2 The previous lemma says that if all 2 × 2 principal submatrices of the
linearisation around a homogeneous steady state of a 3-component system have only
eigenvalues with negative real part, then the system will not be able to undergo a wave
instability. Proposition 1 states the converse, namely that if there is an unstable 2 × 2
principal submatrix having two eigenvalues with a positive real part, then there will
exist diffusion rates for which there is a wave instability.
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Lemma 11 Let n = 3 and supposeP be a stable equilibrium point of (1) in the absence
of diffusion, then M1 + M2 + M3 < 0, M12 + M13 + M23 > 0, det(Juf(P)) < 0, and
b0 > 0.

Proof Most of the statement is a trivial consequence of Lemma 3 for the case n = 3.
The only thing that remains to be proved is that b0 > 0. Uponwriting the characteristic
polynomial of Juf(P) as p(λ) = λ3+c2λ2+c1λ+c0. Then, from the Routh–Hurwitz
criterion, P is stable if and only if c0, c1, c2 > 0 and (c2c1 − c0)/c2 > 0. But this final
condition can be rearranged to read

b0 = − (M1 + M2 + M3) (M13 + M12 + M23) + det(Juf(P)) > 0.


�
Finally, we can prove Proposition 1.

Proof of Proposition 1 Lemma 8 shows that wave instability cannot occur for n = 2.
Therefore, let n = 3. Lemma 10 shows that no wave instability can occur if Juf(P)

has only 2×2 principal submatrices with a pair of negative real-part eigenvalues. The
condition on principle submatrices stated in the Theorem is essentially to assume that
there is one principal 2 × 2 submatrix with a pair of eigenvalues with a positive real
part. Without loss of generality, let us assume that M2 + M3 > 0 and M23 > 0. Then
we can choose D2 = D3 = 0. With this, note that b3 = 0 and coefficient a1 defined
in (15) is a decreasing function on μ, which is positive when μ = 0 and it is equal to
zero when

μ = μ∗ = M13 + M12 + M23

D1 (M2 + M3)
> 0.

Therefore, using the notation of Lemma 9, if we define the function

q(μ) = b2μ
2 + b1μ + b0,

then we have that q(0) = b0 which, by Lemma 11, is strictly positive, while

q
(
μ∗) = M123 − M23 (M12 + M13 + M23)

M2 + M3
.

is strictly negative. Therefore, thanks to the Intermediate Value Theorem, there must
exist at least one solution to the equation q(μ) = 0 in the interval 0 < μ < μ∗. 
�

4 General conditions for Turing and wave bifurcations

So far, we have established sufficient conditions for the absence of a Turing instability
in a system around P (Theorem 1) along with the minimum number of components, a
sufficient condition for a wave instability to occur, and Proposition 1. In this section,
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(a) (b) (c)

Fig. 2 Illustrating themain idea of Theorem 4 via sketches of dispersion curves of a five-component system,
for three different sets of values of the diffusion rates. In a three diffusion rates (corresponding to the blue
curves) are zero, while the others are positive. In b all diffusion rates are positive and there is an interval of
k-values corresponding to a Turing instability. Panel c shows the critical situation between cases a and b,
which would correspond to a Turing bifurcation (color figure online)

we shall establish further general conditions for system (1) to be able to show a Turing
or wave instability pattern around P for any number of components, and to show
existence of Turing or wave bifurcations as parameters vary.

First, we are going to state a general standard result that gives us some conditions
in which we can have neither a Turing nor a wave instability around P.

Theorem 3 Let P be a stable equilibrium point of (1) in the absence of diffusion.
Suppose that all diffusion rates are equal, that is, there exists δ ≥ 0 such that Di = δ

for every integer 1 ≤ i ≤ n. Then (1) can admit neither a Turing nor a wave instability
around P.

Proof Under the hypothesis on equal diffusion constants, note that the eigenvalues of
Juf(P) − μD satisfy the equation

det(Juf(P) − (μδ + λ) I ) = 0,

which implies that δμ + λ is an eigenvalue of Juf(P). Therefore, because P is stable,
�(μδ + λ) < 0 implies �(λ) < 0 − μδ < 0.

Hence the eigenvalues of Juf(P) − μD cannot cross the imaginary axis for any
μ > 0. 
�
We are now ready to state our main theorem, which develops sufficient conditions for
system (1) to admit a Turing or wave instability pattern around P; see also Fig. 2 for
the main idea.

Theorem 4 Let P be a stable equilibrium point of (1) in the absence of diffusion. If
there exists an integer 1 ≤ � ≤ n − 1, and a word ( j1, j2, . . . , jn) of non-repeated
integers between 1 and n (not necessarily increasing), such that Ss( j1, j2,..., j�) has
q > 0 eigenvalues with positive real part, then if Ms( j1, j2,..., jk ) �= 0 for each integer
l ≤ k ≤ n and (−1)kMs( j1, j2,..., jk ) changes its sign p times as k increases from l to n,
then:

1. q is even if and only if p is even;
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2. If p is even (respectively, odd), then there exist a choice of non-negative diffusion
rates Di , i = 1, . . . n such that Juf(P) − μD has an even (odd) number of zero
eigenvalues, bounded above by p as μ varies from 0 to ∞;

3. Furthermore, if q > p, then Juf(P) − μD has at least
q − p

2
pairs of complex

conjugate eigenvalues with zero real part as μ varies from 0 to ∞;
4. In particular, with those diffusion rates, the number of crossings to the axis�(λ) =

0 will be at least q as μ varies from 0 to ∞.

Proof Let p > 0 and q > 0 be defined as in the statement of the theorem. Note that the
definition of p and q is independent of the value of the diffusion constants. Therefore,
we can start by setting Dm = 0 for all m = j1, j2, . . . , j�. Next, thanks to Lemma
7, we will be able to find values for the other n − � diffusion constants such that the
signs of bk are the same as (−1)kMs( j1, j2,..., jk ), for each � + 1 ≤ k ≤ n.

This implies that, at least, q eigenvalues will cross the real axis as μ → ∞. On
the other hand, as the number of complex conjugate eigenvalues that cross this axis
is even, then as the polynomial of μ in Eq. (5) changes sign p times, if we assume
that p is even (resp. odd), then we will have an even (resp. odd) number of real zeros
crossing the μ-axis, which implies that q is even (resp. odd).

Next, note that we will have only p changes of sign in the polynomial equation for
μ, which, by Descartes’ rule of signs, implies that we will have an even (resp. odd)
number of values of μ > 0 such that Juf(P) − μD has a zero eigenvalue if p is even

(resp. odd), while (if q > p) at least
q − p

2
values of μ > 0 such that Juf(P) − μD

has a pair of pure imaginary eigenvalues. Therefore, by a matter of continuity, we will
be able to increase the zero-diffusion rates by sufficiently small amounts in order to
keep the same number of positive eigenvalues and eigenvalues with a positive real
part, even though the number of crossings may increase. This concludes the proof. 
�
Remark 3 Theorem 4 effectively characterizes zeroes we can find in dispersion curves
as μ = k2 tends to ∞. Figure2 shows one of the simplest cases that can occur in the
dispersion relation of a system that has five components. In Fig. 2a, three diffusion
rates are equal to zero while the others are positive. In that graph, we can recognize
immediately that a submatrix Si1i2i3 is unstable and has two eigenvalues with a positive
real part. Furthermore, when setting Di1 = Di2 = Di3 = 0, there is an even number
of changes of sign in the polynomial equation in μ. Next, in Fig. 2b, all the diffusion
rates are positive, so the eigenvalues that were converging to a fixed value as k → ∞
are now decaying. Finally, Fig. 2c shows what happens as we keep increasing the
diffusion rates that were equal to zero up to a point in which one of the dispersion
relation curves becomes tangent to the k-axis and we find a bifurcation point. It is
worth highlighting that these are only depicting the real part of the eigenvalues and
the figure could equally well apply to a higher-component system, where some of the
dispersion curves represent complex conjugate eigenvalues. See also Fig. 3 below.

A natural consequence of Theorem 4 is its use in showing instabilities that might
not have been apparent if only looking for Turing instabilities. The following is a
straightforward consequence of the theorem.
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Corollary 1 Let P be a stable equilibrium point in the absence of diffusion. If P does
not fulfill the conditions to show Turing instability patterns, but one of the principal
submatrices Si1i2,...ik has an even number of eigenvalues with a positive real part, then
we can find non-negative diffusion rates such that P exhibits wave instability patterns.

Remark 4 To illustrate why the corollary is important, consider the following Jacobian
matrix:

Juf(P) =

⎛
⎜⎜⎝

−32 −1 −3 −2
−3 −1 −2 1
−1 0 −1 −2
5 −2 1 −0.1

⎞
⎟⎟⎠

The eigenvalues of this matrix are given by

λ1 = −31.8681, λ2 = −2.13507, λ3,4 = −0.0484039 ± 2.2506i .

Furthermore, this matrix satisfies

(−1)1 M1 = 32, (−1)1 M2 = 1, (−1)1 M3 = 1, (−1)1 M4 = 0.1,

(−1)2 M12 = 29, (−1)2 M13 = 29, (−1)2 M14 = 13.2,

(−1)2 M23 = 1, (−1)2 M24 = 2.1, (−1)2 M34 = 2.1,

(−1)3 M123 = 28, (−1)3 M124 = 93.9, (−1)3 M134 = 44.9, (−1)3 M234 = 12.1,

(−1)4M1234 = 344.8.

Thus, Theorem 1 implies the matrix Juf(P) will not be able to have a zero eigen-
value when adding the diffusion terms. Nevertheless, note that S234 has the following
eigenvalues:

λ1,2 = 0.058337 ± 2.33564i, λ3 = −2.21667.

This implies, when choosing the diffusion rates D2 = D3 = D4 = 0, there will exist
a value of μ > 0 in which the Jacobian matrix Juf(P) − μD goes unstable. Thus,
Juf(P) presents a counterexample to the conjecture stated in Wang and Li (2001, p.
144) on necessary and sufficient conditions for stability.

Remark 5 Theorem 4 provides information about the kind of transitions we can find
for the eigenvalues of Juf(P) − μD from having a negative to positive real part, as μ

ranges from 0 to ∞. If the transition occurs for a real (resp. complex) eigenvalue, we
will be able to find a Turing (resp. wave) instability pattern. Nevertheless, Lemmas
5 and 6 tell us that, even though these transitions could involve real (resp. complex)
eigenvalues, the values to which the eigenvalues of Juf(P) − μD converge when
setting some diffusion rates as zero could be complex (resp. real). Such a dispersion
relation would give rise to both kinds of patterns for the same values of parameters and
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Fig. 3 Eigenvalues with the
largest real parts of the matrix
Juf(P) − k2 D, where Juf(P) is
given by (16), and
D = diag (10, 0, 0)

diffusion rates, but for different wavenumbers. For instance, consider the following
matrix

Juf(P) =
⎛
⎝−21.3 −78.2 87

47.4 −1 1
−35 −3.1 3

⎞
⎠ , (16)

which has eigenvalues λ± = −9.50278 ± 81.3221i and λ3 = −0.29445. Moreover,
S23 has eigenvalues λ1 = 1.94868 and λ2 = 0.0513167. This implies that when
choosing D2 = D3 = 0, two eigenvalues of Juf(P) − μD will tend to λ1 and λ2
as μ → ∞. However, according to Proposition 1, the transition of the eigenvalues
from having a negative to a positive real part occurs in a complex way. Figure3 shows
what happens to the two largest real-part eigenvalues of Juf(P)− k2 D in this case. In
particular, the crossing with the k axis occurs at k ≈ 18.3146, where the eigenvalues
are λ± = ±0.827364i , and λ3 = −3373.55. Nevertheless, there is a value of k for
which two real eigenvalues get separated from this single line. This implies that, when
increasing the zero diffusion rates a bit, by continuity, we will have two kinds of
diffusion driven instability patterns for different values of k.

Last but not least, until now we have only considered instabilities, corresponding
to the existence of a zero real-part eigenvalue, and not bifurcation points at which a
dispersion curve first crosses the real axis.Our final results give conditions underwhich
bifurcations occur under the variation of parameters (including diffusion constants).
We start with a lemma.

Lemma 12 Let P be a stable equilibrium point of (1) in the absence of diffusion. If
for some diagonal matrix D with non-negative entries and μ > 0, Juf(P) − μD has
at least one eigenvalue with a positive real part for some μ = μ∗, then there exist a
diffusion matrix D∗ with positive diffusion rates such that P goes through a Turing or
wave bifurcation under a change of parameter that takes D to D∗.

Proof Thanks to Lemma 6, we know that if all the diffusion rates tend to ∞, then the
real parts of the eigenvalues of Juf(P) − μD tend to −∞ for all μ > 0. Therefore, as
there exist a matrix D with non-negative entries and μ > 0 such that Juf(P) has an
eigenvalue with a positive real part, then by continuity, if we increase all the diffusion
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rates sufficiently enough, we will be able to find a matrix D∗ such that Juf(P) − μD∗
has one eigenvalue that is tangent to the axis �(λ) = 0 for some μ > 0, which will
give rise to a bifurcation. 
�

In particular, this lemma is helpful when proving one last Theorem:

Theorem 5 Suppose that the function f in (1) depends on a parameter ε ∈ R. Also,
suppose thatP is a stable homogeneous steady-state for all ε sufficiently small. Assume
that there exists only one increasing word (i1, i2, . . . , ik) such that Si1i2...ik has a single
real eigenvalue (respectively, a pure imaginary pair of eigenvalues) that cross the
imaginary axis as ε increases through zero. Then, for ε > 0 sufficiently small, there
exists a positive diffusion matrix D∗ such that P goes through a Turing (respectively,
wave) bifurcation under small variation as diffusion constants are generically varied
from their values in D∗.

Proof The proof is a straightforward consequence of the ideas we have developed
up to now. First, let us choose Di1 = Di2 = · · · = Dik = 0, while leaving all the
other diffusion rates positive. This implies, thanks to Lemma 2, that the eigenvalues
of Juf(P) − μD will converge to numbers with a negative real part when ε < 0,
while some of them will converge to numbers with a positive real part when ε > 0.
Therefore, thanks to the previous lemma, we can increase the zero diffusion rates such
that we find a bifurcation. The type of bifurcation is characterized by continuity. In
fact, for a sufficiently small value of ε, one or two eigenvalues of Juf(P) − μD will
be converging to one or two eigenvalues with a positive real part, so increasing the
diffusion rates just a little will not change the type of eigenvalue we are having as
μ → ∞. 
�

Remark 6 Note that, owing to linearity and the last part of Lemma 7, only the ratios
between the diffusion ratesmatter. Thewavenumber k that corresponds to an instability
can be made arbitrarily small or large, by scaling all diffusion constants by the same
factor δ > 0.

To close the section, we can state the following result, which is a straightforward
consequence of Theorems 2 and 4.

Theorem 6 Let P be a stable homogeneous steady-state of (1). Then linear diffusion-
driven instabilities can occur around P if and only if the system is stable about P in
the absence of diffusion but there is a principal unstable subsystem. In particular,

• If Juf(P) is S-stable, then the system cannot show a Turing or wave instability
around P; or

• If a principal submatrix of Juf(P) is unstable, then there exist non-negative dif-
fusion rates such that the full system shows a Turing or wave instability around
P.

Furthermore, in the latter case, the diffusion rates can be chosen as stated in Theorem
4.
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5 Applications

We consider several different examples to illustrate the theory, in each case a model
for a biophysical process that has arisen in the literature.

The final three examples each illustrate how Theorem 4 helps classifying the cross-
ings (e: could you restate this?) of dispersion curves with the axis �(λ) = 0 as being
either real or complex. Then Lemmas 5 and 6 give an idea about the behaviour of
the eigenvalues of Juf(P) − μD as μ → ∞, when some diffusion rates are large or
equal to zero. To see the importance of those results, see Remark 5. In particular, we
highlight that there are two cases that generate wave instabilities automatically after
choosing the diffusion rates in a sensible way. These are: First, one of the principal
submatrices of Juf(P) has a complex-conjugate pair of eigenvalues with positive real
part, which generates wave instabilities for large wavenumbers, or second, the number
of eigenvalues with a positive real part grows faster than the number of changes of
sign in the terms (−1)kMs( j1, j2,..., jk ) stated in Theorem 4.

5.1 Lack of instability in amodel for host-parasyte interaction

First though, we provide an example where our theory can show the non-existence of
instability.We consider a realistic model for the spread of malaria, based on the classic
Ross–MacDonald model (see Alonso et al. 2019, and references therein). This model
treats the dynamics of the infection between humans and mosquitoes. In particular, let
H (resp. I ) be the population density of healthy (resp. infected) people. Besides, let
P be the density of population of infected mosquitoes. We set the following system
to model the dispersion of malaria:

∂t H = (bH − dH )H − cPH + r I + ∂xx H ,

∂t I = −dH I + cPH − r I + ∂xx I ,

∂t P = −dM P + b(Q − P)I + ∂xx P.

Note that healthy mosquitoes do not appear in this model. Nevertheless, they are
considered under the assumption that Q is the total mosquito population, so that
Q − P is the population of healthy mosquitoes.
To preserve the significance of this model, we explicitly state that all the variables and
parameters are non-negative, bH > dH > 0 and P ≤ Q. This system has only two
equilibria, 0 = (0, 0, 0) and P = (H∗, I ∗, P∗), where

H∗ = dHdM (dH + r)

b (dH (cQ + dH + r) − bH (dH + r))
,

I ∗ = dM (bH − dH ) (dH + r)

b (dH (cQ + dH + r) − bH (dH + r))
,

P∗ = (bH − dH ) (dH + r)

cdH
.
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Here, we assume dH (cQ + dH + r)−bH (dH + r) > 0. Note that a Turing instability
pattern around the originwill not be biologically relevant since the existence of itwould
imply that some of the variables become negative. On the other hand, the Jacobian
matrix of the system in the absence of diffusion is given by at P,

Juf
(
H∗, I ∗, P∗) =

⎛
⎜⎜⎝

r − rbH
dH

r a13
(bH−dH )(dH+r)

dH
−(dH + r) a23

0 b
(
Q − (bH−dH )(dH+r)

cdH

)
M3

⎞
⎟⎟⎠ ,

where

a13 = − cdHdM (dH + r)

b (dH (cQ + dH + r) − bH (dH + r))
,

a23 = cdHdM (dH + r)

b (dH (cQ + dH + r) − bH (dH + r))
,

M3 = − cQdHdM
dH (cQ + dH + r) − bH (dH + r)

.

Now, note that M1, M2, M3 ≤ 0. Moreover, observe that M12 = 0,

M13 = cQrdM (bH − dH )

dH (cQ + dH + r) − bH (dH + r)
> 0,

M23 = dM (bH − dH ) (dH + r) 2

dH (cQ + dH + r) − bH (dH + r)
> 0,

M123 = − (dM (bH − dH ) (dH + r)) < 0.

This implies, according to Lemma 10 and Theorem 1, that this system will not be able
to go through a Turing or wave instability.

5.2 Amodel for wavetrains in excitable media

As a next example, we consider the model proposed by Yochelis et al. (2008) based
on a generalisation of the FitzHugh–Nagumo system. The system can be written as

∂u

∂t
= u − u3 − v + D1∇2u,

∂v

∂t
= εv (u − avv − aww − a0) + D2∇2v, (17)

∂w

∂t
= εw (u − w) + D3∇2w,

where av, aw, εv, εw > 0, and D1, D2, D3 ≥ 0 are parameters. See Yochelis et al.
(2008) for a detailed interpretation of each of the variables and parameters. In that
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paper, the authors found numerical evidence for both a Turing and wave bifurcations
for particular values of the parameters.

System (17) has, at most, three homogeneous steady-states. We shall focus on the
one given by P := (u0, v0, w0), where

u0 = −6a2v + 6av(aw − 1) + 3
√
2Q2

3 · 22/3avQ
, w0 = −6a2v + 6av(aw − 1) + 3

√
2Q2

3 · 22/3avQ
,

v0 = 54 3
√
2a3v(aw − 1) + 54 3

√
2a2v (aw − 1)2 + 9 · 22/3av(aw − 1)Q2 − 2

√
LQ + 2Q4

54a3vQ
,

with Q =
(√

L − 27a0a
2
v

) 1
3
, L = 729a20a

4
v − 108a3v(av + aw − 1)3,

which exists provided L > 0. The Jacobian matrix of (17), evaluated at P, can be
readily computed to be

Juf(P) =
⎛
⎝1 − R2 −1 0

εv −avεv −awεv

εw 0 −εw

⎞
⎠ , where R2 =

(
6a2v + 6av (aw − 1) + 3

√
2Q2

)
2

6 3
√
2a2vQ2

,

from which the principal minors can be easily computed

M1 = 1 − R2, M2 = −avεv, M3 = −εw, M12 = εv(1 + R2 − av),

M13 = εw(R2 − 1), M23 = avεvεw, M123 = εvεw(av(1 − R2) + qw − 1).
(18)

Note that M2, M3 < 0, M23 > 0, whereas M1, M12 M13 and M123 can take either
sign, depending on the value of R2.

From Lemma 3, the solution P is stable if the following conditions are satisfied

M123 < 0, M1 + M2 + M3 < 0, (M1 + M2 + M3)(M12 + M13 + M23) < M123,

(19)

which lead to a non-open set that can readily be written in terms of the problem
parameters using (18).

From here on, we will assume that conditions (19) hold so that P is a stable equi-
librium in the absence of diffusion. Next, using the results proven in the previous
sections, we can state the following.

Proposition 2 M1 > 0 if and only if there exist non-negative diffusion rates
D1, D2, D3 such that (17) shows a Turing instability pattern around P.

Proof Note from (18) that M13 = −εwM1, so that M1 > 0 implies M13 < 0. Note
also that the sequence (−1)M1, (−1)2M13, (−1)3M132 changes its sign only once.
Furthermore, as M13 < 0, then we know that S13 has only one positive eigenvalue.
Thus, according to Theorem 4, we can find non-negative diffusion rates such that (17)
admits a Turing instability pattern around P.
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On the other hand, if M1 ≤ 0, then M12 ≥ 0 and M13 ≥ 0. This implies that
(−1)3M123, (−1)2Mi j and (−1)Mi are all strictly non-negative for each 1 < i < j <

3. Then, Theorem 1 implies that (17) will not be able to develop a Turing instability
at P for any positive diffusion constants. 
�
Proposition 3 If M1 + M2 > 0 and M12 > 0, then we can choose non-negative
diffusion rates D1, D2, D3 such that (17) admits a wave instability around P.

Proof If M1 + M2 > 0 and M12 > 0, then S12 will have two eigenvalues with a
positive real part. Furthermore, we will have no change of sign from −M123 to M12.
Then, according to Theorem 4, we will be able to find non-negative diffusion rates
such that (17) admits a wave instability pattern around P. 
�
For numerical illustration of these results, we shall consider the following parameter
values extracted from Yochelis et al. (2008):

av = 0.435, aw = 0.5, εv = 0.2 εw = 1, and a0 = −0.1. (20)

which can easily be seen to lie inside the parameter region inwhichP is stable. Further-
more, at these parameter values we have M1 = 0.151497 > 0, M2 = −0.087 < 0,
M3 = −1 < 0, M12 = 0.18682 > 0, M13 = −0.151497 < 0 M23 = 0.087 > 0 and
M123 = −0.0868198 < 0, from which we see that M1 + M2 > 0. Thus, the above
two propositions show that there must exist a set of non-negative diffusion rates such
that P undergoes a Turing bifurcation, and another set under which it undergoes a
wave bifurcation. The eigenvalues of S12 are given by 0.0322485± 0.431022i , which
have positive real part, and give conditions for a wave bifurcation. Moreover, S13 has
eigenvalues given by −1 and 0.151497 which will give rise to a Turing instability.

Consider first the wave bifurcation. Let us define a parameter δ > 0 and consider
D1 = D2 = δ and D3 = 0.1. The corresponding dispersion curves are plotted in
Fig. 4a for δ ranging from 0 to 0.01 in uniform steps. Note that when δ = 0 one of the
dispersion relation curves does indeed tend to a finite positive value (≈ 0.032249),
as μ → ∞ as shown by Lemma 5. Therefore, for δ > 0 sufficiently small, there
must exist an interval of values of k for which the dispersion curve is positive. As
δ is increased through a critical value δ∗ ≈ 2.27312 × 10−3, there is a point of
tangency between this dispersion curve and the zero axis, at a critical wavenumber
k∗ ≈ 2.43287. To check that this is indeed a wave zero, we have computed the critical
eigenvalues of Juf(P) − μD to be −1.55429 and ±0.355382i . Furthermore, Fig. 4b
shows the results of a numerical computation in one spatial dimension, which was
performed at a δ-value just beyond that at which the bifurcation occurs, which indeed
confirms the onset of a spatio-temporal instability.

To find a Turing bifurcation, let us introduce diffusion rates D2 = 5, while D1 =
D3 = δ, where again, δ is a parameter. Figure5a shows dispersion curves for this case
as δ ranges from 0 to 0.5 in uniform steps. In addition, the curve for δ ≈ 0.28684 shows
the bifurcation parameter value, for which the critical wavenumber is k ≈ 0.496617,
and the eigenvalues of Juf(P)−μD are 0 and −1.15507±0.293739i . Thus, we have
a Turing bifurcation for these parameter values.

This result is illustrated in Fig. 5 where we show both the details of the dispersion
relation in this case, and also a computation in two spatial dimensions.
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(a) (b)

Fig. 4 a Dispersion relation of model (17) at parameter values (20) (av, aw, εv, εw, a0) =
(0.435, 0.5, 0.2, 1, −0.1) and (D1, D2, D3) = (δ, δ, 0.1) as δ varies from 0 to 0.01 in uniform steps.
The red line is the dispersion curve for δ = 2.27312 × 10−3, where the wave bifurcation occurs, and the
orange line is the straight line �(λ) = 0.0322485. b Simulation of (17) on a 1D domain of length L = 1
with Neumann boundary conditions, for δ = 0.001 and an initial condition that is a perturbation of P
proportional to cos(πx) with amplitude 10−5 in all three components (color figure online)

Fig. 5 a Similar to Fig. 4a but for (D1, D2, D3) = (δ, 5, δ) and δ varying from 0 to 0.5; the distinguished
(red) curve is for δ = 0.28684, where a Turing bifurcation occurs, and the (orange) straight line is at
�(λ) = 0.151497. b, c, d variables u,v,w, respectively, at the Turing instability pattern obtained after
integrating the system in two spatial dimensions with δ = 0.03. Here we make a perturbation in all
components equally corresponding to wave numbers (kx , ky) = (3, 2) with an amplitude ε = 10−4 (color
figure online)
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5.3 Symmetrically coupled Brusselator systems

In this section, let us consider a model of two symmetrically coupled Brusselator
systems studied by Konishi and Hara (2018) on a finite domain given by

∂u

∂t
= η

(
a − (b + 1)u + u2v

)
+ c(w − u) + D1 uxx ,

∂v

∂t
= η

(
−u2v + bu

)
+ c(z − v) + D2 vxx ,

∂w

∂t
= η

(
a − (b + 1)w + w2z

)
+ c(u − w) + D3 wxx ,

∂z

∂t
= η

(
−w2z + bw

)
+ c(v − z) + D4 zxx , (21)

Here, u(x, t), v(x, t), w(x, t), and z(x, t) are scalar fields, a, b, c, η > 0 are reaction
parameters while D1, D2, D3, D4 ≥ 0 are diffusion rates. In Konishi and Hara (2018)
it is shown numerically that the symmetrically coupled system may have two distinct
Turing bifurcations. We show here how this fits with our theory.

The model has at most five homogeneous steady states. We are interested in the
simplest one

P =
(
a,

b

a
, a,

b

a

)
, (22)

the Jacobian matrix around which, in the absence of diffusion, is given by

Juf(P) =

⎛
⎜⎜⎝

(b − 1)η − c a2η c 0
−bη −a2η − c 0 c
c 0 (b − 1)η − c a2η
0 c −bη −a2η − c

⎞
⎟⎟⎠ . (23)

whose eigenvalues are given by

λ
[1]
± = η

2

(
−a2 + b − 4

c

η
− 1 ±

√(−a2 + b − 1
)2 − 4a2

)
,

λ
[2]
± = η

2

(
−a2 + b − 1 ±

√(−a2 + b − 1
)2 − 4a2

)
.

This implies that, if we have b < a2 + 1, then P is stable in the absence of diffusion.
On the other hand, note that M1 = M3 = (b − 1)η − c > 0 if and only if b > c

η
+ 1.

These inequalities immediately imply that, if c
η
+1 < a2 +1, then we can find a value

of b > 0 such that c
η

+ 1 < b < a2 + 1 and, according to Theorem 4, there will exist
non-negative diffusion rates such that system (21) exhibits a Turing instability.
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(a) (b)

Fig. 6 a Dispersion relation of system (21) when (a, b, c, η) = (3, 6, 2, 1), and (D1, D2, D3, D4) =
(δ, 1.8, 0.2, 1.0), as δ ranges from 0 to 0.6 in discrete steps of size 0.06. The blue lines are these dispersion
relation curves, while the red line is the dispersion relation when δ = 0.4425461, where the Turing
bifurcation occurs, and the green line is the straight line �(λ) = 3. b Dispersion relation of system (21)
when (a, b, c, η) = (3, 6, 2, 1), and (D1, D2, D3, D4) = (δ, 1.8, δ, 1), as δ ranges from 0 to 0.6 in discrete
steps of size 0.06. The blue lines are these dispersion relation curves, while the red line is the dispersion
relation when δ = 0.3256691, where the Turing bifurcation occurs, and the green line is the straight line
� (λ) = 5 (color figure online)

Next, note that

S13 =
(

(b − 1)η − c c
c (b − 1)η − c

)
.

Therefore, tr (S13) > 0 if and only if b > c
η

+ 1, and det (S13) > 0 if and only if

b > 2 c
η

+ 1. Thus, if 2 c
η

+ 1 < a2 + 1, there will exist b > 0 such that 2 c
η

+ 1 < b <

a2 + 1, making S13 have two eigenvalues with a positive real part, while P remains
stable in the absence of diffusion.

Furthermore, note that M123 = M134 and

m(a) := (−1)3M123 = −η2((b − 2)c + (b − 1)η) a2 − (b − 1)c η (−bη + 2c + η)

is a parabola in a that has a negative leading coefficient, since if b > 2 c
η

+ 1, then

(b− 2)c+ (b− 1)η > 2 c2
η

> 0. Therefore, m(a) attains its maximum value at a = 0,
which is−(b−1)c η (−bη + 2c + η) < 0. Thus,m(a) is negative definite. With this,
we have (−1)4M1234 > 0, (−1)3M123 = (−1)3M134 < 0, and (−1)2M13 > 0. This
implies that we have two changes of sign in the characteristic polynomial equation
when choosing D1 = D3 = 0, and, by Lemma 5, we must have two eigenvalues of
Juf(P) − μD with positive real part in the limit as μ → ∞.

Figure6 illustrates dispersion curves for each of the two Turing bifurcations. First,
in panel (a), we choose diffusion rates (D1, D2, D3, D4) = (δ, 1.8, 0.2, 1.0), and let
δ range from 0 to 0.6 in discrete steps of size 0.06. Using bisection, we find that the
Turing bifurcation occurs for δ = 0.442546.
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Fig. 7 Graphs of a normalized eigenvector of Juf(P) + D ∂xx . Here (D1, D2, D3, D4) is equal to; a
(δ, 1.8, 0.2, 1.0) (with k = 2.15296), and b (δ, 1.8, δ, 1.0) (with k = 2.0924)

On the other hand, when choosing (D1, D2, D3, D4) = (δ, 1.8, δ, 0.1), as δ ranges
from0 to 0.6wefind the dispersion curves in panel (b), forwhich theTuring bifurcation
occurs when δ ≈ 0.325669.

To show that these really are independent Turing bifurcations, we can find the
critical eigenvector of the operators Juf(P) + D ∂xx in each case; see Fig. 7.

5.4 Asymmetrically coupled Brusselator systems

As a final example, we shall show how a small change to the previous example,
breaking the symmetry of the coupling, can lead to the existence of a wave bifurcation.
In particular, let us consider model (21) with the addition of a term −2c

(
v − b

a

)
to

the right-hand side of the z-equation, so that it becomes:

∂z

∂t
= η

(
−w2z + bw

)
+ c(v − z) − 2c

(
v − b

a

)
+ D4 zxx . (24)

We assume, again, that a, b, c > 0 and D1, D2, D3, D4 ≥ 0, but now η may take
either sign.

This model has at most nine homogeneous steady states but, again, we focus only
on the simplest one (22), the Jacobian matrix about which is the same as (23) except
a switch in the sign of the (4, 2) entry.

Note now that the matrix

S24 =
(−a2η − c c

−c −a2η − c

)

has the property that when tr (S24) = 0, M24 = c2 > 0. Thus, this submatrix has a
pair of complex conjugate eigenvalues that cross the imaginary axis when η = − c

a2
.

Therefore, if the steady state is stable then, according to Theorem 5, we can find
positive diffusion rates such that the modified system goes through a wave instability
when η < − c

a2
.
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(a) (b)

Fig. 8 a Similar to Fig. 4a but for the system (21)with the final equation replaced by (24), at parameter values
(25) and (D1, D2, D3, D4) = (10, δ, 10, δ) as δ ranges from 0 to 0.025 in equal steps. The distinguished
(red) curve is for δ = 0.016939, and the (orange) horizontal line is at�(λ) = 0.546. bNumerical integration
of the system for δ = 0.005, with initial conditions that represent a perturbation to P of 10−5 cos(2πx) in
each component (color figure online)

In particular, choosing the parameter values

(a, b, c, η) = (0.9, 1.3, 4.8,−6.6) , (25)

we find the eigenvalues of Juf(P) to be approximately −5.42567 ± 1.1069i , and
−0.808327±8.62189i , whichmeans thatP is a stable homogeneous steady state. Fur-
thermore, we find that S24 has eigenvalues that are approximately 0.546 ±4.8i , which
means that this matrix is unstable, while (−1)3M124 ≈ 151.552 and (−1)3M234 =
151.552 are both positive. This implies that (−1)4M1234 > 0, (−1)3M124 > 0,
(−1)3M234 > 0 and (−1)2M24 > 0. Therefore, we have an unstable submatrix of
the Jacobian matrix of the system and, upon setting D2 = D4 = 0, there is a change
of sign in the polynomial (5) as μ varies from 0 to ∞. Thus, Theorem 4 shows the
existence of wave instabilities for non-zero values of D2 and D4 in this case.

Explicit parameter values for the wave bifurcation can be found if we choose
(D1, D2, D3, D4) = (10, δ, 10, δ). Figure8a shows dispersion curves for different
δ-values ranging from 0 to 0.025 in equal steps. The figure also shows that a wave
bifurcation occurs at δ = 0.016939.

In particular, when δ = 0.016939, we find that the critical wavenumber is k =
3.97209, and the eigenvalues of the Jacobian matrix are, approximately, −169.084,
−159.468, and±4.80815i , confirming that the system indeed undergoes a wave bifur-
cation. Finally, Fig. 8b shows the result of numerical simulation for a δ-value within
the wave unstable parameter region, which indeed indicates the presence of a spatio-
temporal instability.
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6 Discussion

This paper has established general conditions for the existence of both Turing andwave
instabilities for reaction–diffusion systems with an arbitrary number of components,
generalising and improving earlier partial results in the literature. Even though the
fact that a Turing instability pattern is a special case of a wave, there were no previous
studies mixing both of these phenomena in systems with n components and they need
to be considered together in order to be able to find and characterize diffusion-driven
instabilities you might find in this kind of system. Note that all our results were stated
for reaction–diffusion systems with diagonal diffusion matrices. In principle, though,
the results can readily be extended to the case that D is not diagonal, that is, where
there are cross-diffusion terms.

One simple way to extend the theory to the case that the off-diagonal diffusion
coefficients are small, is to first set them to zero. Then one can use the results developed
in this paper to establish conditions for Turing and wave bifurcations. Next, one can
use a homotopy parameter to increase the off-diagonal diffusion rates, and the theory
will still hold provided no eigenvalues with positive real part cross the imaginary axis
during the homotopy.

An alternative way to treat cases with cross-diffusion, assuming that D is posi-
tive semi-definite and has n distinct real eigenvectors, could be to undertake a linear
change of co-ordinates of the dependent variables to diagonalize D. Further changes
of parametrisation may be necessary to avoid diffusion constants appearing in the
expressions for the local reaction terms f .

At a more general level, everything we developed throughout the paper was done
assuming that we are working with a reaction–diffusion system in R

m . However, all
of the theory can in principle be generalized, up to a few technical assumptions, to the
case of a system

∂tu = f(u) + DL(u),

where L is a linear self-adjoint operator in u with negative eigenvalues, and boundary
conditions accepting homogeneous steady states. In that case, the instabilities around
those states we have described would spatially be described by eigenfunctions of that
operator, rather than simple sinusoidal functions. An obvious example would be to
consider L(u) to be a constant matrix times the Laplacian, defined on a disk or sphere,
see e.g.Madzvamuse et al. (2015).We shall leave the details of all such generalizations
to future work.

As a final comment, we note that the existence of a Turing bifurcation does not nec-
essarily imply the onset of a stable periodic pattern. It seems inmany reaction–diffusion
systems the bifurcation may be subcritical, which means the periodic patterned states
are unstable. Instead, in such systems, particularly on long domains, stable spatially
localised patterns are typically observed; see e.g. Al Saadi et al. (2021), Champneys
et al. (2021) and references therein. The determination of whether a Turing (or wave)
bifurcation is super- or sub-critical requires the computation of certain cubic coeffi-
cients that arise as part of the normal form. This can also help understanding the type
of wave that persists after a wave bifurcation since, depending on boundary conditions,
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there may be two types of waves that arise when a homogeneous steady-state goes
through that bifurcation, namely the traveling wave and the standing wave (see Takada
et al. 2022; Cuiñas et al. 2008; Kaminaga et al. 2005, and references therein). Such
nonlinear analysis is beyond the scope of this paper, which has focused exclusively on
linear calculations, but it will form the subject of future work by the present authors.
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