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Abstract
Computational and mathematical models rely heavily on estimated parameter values
for model development. Identifiability analysis determines how well the parameters
of a model can be estimated from experimental data. Identifiability analysis is crucial
for interpreting and determining confidence in model parameter values and to pro-
vide biologically relevant predictions. Structural identifiability analysis, in which one
assumes data to be noiseless and arbitrarily fine-grained, has been extensively studied
in the context of ordinary differential equation (ODE) models, but has not yet been
widely explored for age-structured partial differential equation (PDE) models. These
models present additional difficulties due to increased number of variables and partial
derivatives as well as the presence of boundary conditions. In this work, we establish
a pipeline for structural identifiability analysis of age-structured PDE models using
a differential algebra framework and derive identifiability results for specific age-
structured models. We use epidemic models to demonstrate this framework because
of their wide-spread use in many different diseases and for the corresponding paral-
lel work previously done for ODEs. In our application of the identifiability analysis
pipeline, we focus on a Susceptible-Exposed-Infected model for which we compare
identifiability results for a PDE and corresponding ODE system and explore effects of
age-dependent parameters on identifiability.We also show how practical identifiability
analysis can be applied in this example.
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1 Introduction

Identifiability analysis addresses the question of whether the parameters of a mathe-
matical model can be uniquely identified, or otherwise, given the system observations.
There are two general types of identifiability analysis: structural (assuming data to be
noiseless and arbitrarily fine-grained) and practical (using real data). These analyses
are crucial to interpreting biologically relevant predictions from computational and
mathematical models that rely on parameter values that are estimated from experi-
mental datasets. Previous studies have shown that unidentifiable models can lead to
vastly different predictions for different parameter values that are able to produce
the same observed data (Kao and Eisenberg 2018). In the context of biological mod-
els, parameter identifiability gives increased confidence in model predictions that are
based on estimated parameters. This is particularly relevant for predictions applied to
topics such as diseases, treatment outcomes, vaccination efficacy, and future infection
dynamics. Specifically, the use of epidemiological models has become increasingly
necessary and useful for predicting disease outcomes, as we have seen in the case of
COVID-19, and these efforts should be as accurate and confident as possible to pro-
duce the most useful predictions. Thus, we focus our work in the context of epidemic
models due to their use in many diseases and to compare with corresponding parallel
work previously done for ODEs regarding structural identifiability.

Many theoretical results and algorithms for structural identifiability of linear and
non-linear ordinary differential equations (ODEs) models have been derived (Miao
et al. 2011; Audoly et al. 2001; Ljung and Glad 1994; Pohjanpalo 1978; Chappell
et al. 1990; Cobelli and DiStefano 1980; Chis et al. 2011) and have been applied to
study an array of diseases. There are models for the spread of cholera (Eisenberg et al.
2013), vector-borne diseases (Kao and Eisenberg 2018; Zhu et al. 2018; Tuncer et al.
2016), and general infectious diseases (Tuncer and Le 2018; Evans et al. 2005, 2004).
Methods for structural identifiability are often analytical in nature (e.g. the commonly
used differential algebra approach (Audoly et al. 2001; Ljung and Glad 1994)), but
may also be numerical, or some blend of the two (Jacquez and Greif 1985; Jacquez
and Perry 1990; Raue et al. 2009). Numerical approaches to structural identifiability
typically provide insight at the local, rather than global, level.

ODE models are not always sufficient for representing disease dynamics when, for
example, age is an important factor. Inmanydiseases, different agegroupsmay respond
differently to diseases or disease interventions based on differences in susceptibility
(Gardner 1980), mortality (Castillo-Chavez et al. 1991), and contact rates (Mossong
et al. 2008; Glasser et al. 2012). Age preferences have been shown to have a significant
effect on mixing patterns that drive disease spread (Valle et al. 2007). This type of
information canbe incorporated into amathematicalmodel for epidemics, for example,
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by explicitly representing age-structured distributions of the susceptible and infected
subpopulations. Age-structured models have been used to evaluate and optimize age-
targeted vaccination strategies for several diseases (Harris et al. 2019; Keeling and
White 2011; Hao et al. 2019; Castillo-Chavez and Feng 1998; Shim et al. 2006), and
it has been shown that population heterogeneity and non-random mixing can have a
substantial effect on the prediction of disease outbreaks and herd immunity (Glasser
et al. 2016; Feng et al. 2015).

In a continuous setting, age structure is introduced by creating state variables that
are functions of both age and time, and also by introducing transport terms to represent
constant aging of a population. These model formulations result in PDEs, rather than
ODEs, making them more biologically accurate; however, such models also typically
more complex to analyze. There are other PDE formulations of epidemic models such
as age of infectionmodels (Thieme and Castillo-Chavez 1993; Inaba and Sekine 2004)
or spatially explicit models (Bertuzzo et al. 2009; Wu 2008). The focus of this paper
will be specifically on age-structuredmodels.While there are alternative approaches to
incorporating age structure, such as to use compartmentalization to stratify populations
(Chow et al. 2011; Ferguson et al. 1996) or to use a stochastic discrete representation
such as an agent-based model (Ajelli et al. 2010; Bian 2004), we focus here on the
PDE formulation. Importantly, the issues of both structural and practical parameter
identifiability for these types of models still needs to be elucidated.

While structural identifiability analysis has been extensively applied in the con-
text of ODE epidemic models, it has not been widely explored for age-structured
PDE models (Evans et al. 2004, 2005). PDE models present additional difficulties
due to the increased number of variables and derivatives as well as the presence of
boundary conditions. Identifiability of age-structured PDE models was first consid-
ered by Perasso et al. (2011) for a simple SI-type model and was again considered
by Perasso and Razafison (2016) for a population dynamics model including only
birth and death. These analytical results have not yet been extended to more compre-
hensive PDE epidemic models, though some identifiability results have been shown
numerically (Tuncer et al. 2016). For these types of problems, modelers have relied
on practical identifiability analyses which are dependent on either available data or
data that has been synthesized for the purpose of analysis.

In this paper, we derive analytical identifiability results for more complex age-
structured epidemic models using a differential algebra framework that is simpler to
apply than the previous (aforementioned) previous approaches.We apply this method-
ology to a compartmental epidemic Susceptible-Exposed-Infected (SEI) model both
with and without age structure explicitly modeled, and we compare the identifiability
results under different conditions such as the presence of immigration in the system
or for age-dependent model parameters. To corroborate our structural identifiabil-
ity results, we also perform a practical identifiability analysis for one version of the
model. While we focus on age-structured models, the methods we present herein can
be applied to other PDE formulations, with certain assumptions about smoothness and
uniqueness of solutions.
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2 Methods

2.1 Identifiability framework

To consider parameter identifiability of a model, we must first define the model struc-
ture. From an identifiability or parameter estimation perspective, a model is composed
of two pieces: (1) a state model or set of state equations, which describe the underlying
system of interest, and (2) a measurement model or set of output equations, which
describe the observation or measurement of interest (i.e., the quantities of interest for
which one either has or plans to collect data). In this study, we assume the follow-
ing general first-order partial differential equation (PDE) model structure, which is
commonly used in age-structured PDE models in biology and health:

∂x
∂t

+ ∂x
∂a

= f (x, t, a,p,u)

x(0, a) = f0(x, a,p)

x(t, 0) = f1(x, t,u,p)

y = g(x, t, a,p)

(1)

where x is a vector of state variables describing the system of interest, p is the vector of
parameters, t and a are two independent variables. The model may include initial and
boundary conditions that are generic (unknown), written in terms of input parameters,
or known. In the following definitions, we assume generic initial and boundary con-
ditions. Non-generic initial conditions can be addressed as detailed in Pia Saccomani
et al. (2003), and we assume that non-generic boundary conditions can be addressed
analogously. Here we consider time and age as the independent variables, although
the approach given here will also work for more general variables, as well as for addi-
tional derivatives of further independent variables on the left hand side. Additionally,
y represents the vector of ny model outputs (measured variables) and u represents any
known inputs (e.g. forcing functions) to the system, if they exist, which are assumed
to be arbitrarily differentiable (or at least sufficiently differentiable for determining
the input-output equations, described below). Finally, f and g are rational functions
of the model variables and parameters such that the model can be written equivalently
as differential polynomials by clearing denominators.

In structural identifiability analysis, it is assumed that the inputs and outputs are
known (observed) perfectly – in this case, we assume that u, and y are known for all
times and all ages and that there is no noise in the data. Similarly, the independent
variables t and a are assumed to be known. Thus, the resulting identifiability results
can be interpreted as the upper limit of what can possibly be identified with perfect
data collection methods. However, structural identifiability is a necessary condition
for identifiability in the realistic data case, making it an important first step in the
parameter estimation process.

A model such as (1) can be thought of as a map from parameter space (e.g. for
p ∈ R

n p ) to output space (the space of trajectories for y), often termed the model
map Φ : p �→ y. With this framing, the structural identifiability question becomes
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that of whether or not the model map Φ is injective. In particular, we define structural
identifiability as follows:

Definition 1 For a model of the form (1), an individual parameter p in p is uniquely
(or globally) structurally identifiable if for almost every value p∗ and almost all initial
conditions, the equation y(x, t, a,p∗) = y(x, t, a,p) implies p = p∗. A parameter p
is said to be non-uniquely (or locally) structurally identifiable if for almost any p∗ and
almost all initial conditions, the equation y(x, t, a,p∗) = y(x, t, a,p) implies that p
has a finite number of solutions.

Definition 2 Similarly, a model of the form (1) is said to be uniquely (respectively,
non-uniquely) structurally identifiable for a given choice of output y if every parameter
is uniquely (respectively, non-uniquely) structurally identifiable, i.e. for almost every
valuep∗ and almost all initial conditions, the equation y(x, t, a,p∗) = y(x, t, a,p) has
only one solution,p = p∗ (respectively, finitelymany solutions). Equivalently, amodel
is uniquely (respectively, non-uniquely) structurally identifiable for a given output if
and only if the map Φ is injective (respectively, finite-to-one) almost everywhere, i.e.
if there exists a unique set of parameter values p∗ which yields a given trajectory
y(x, t, a,p∗) almost everywhere.

Definition 3 Amodel of the form (1) is said to be structurally unidentifiable for a given
choice of output y if it is not uniquely or non-uniquely identifiable, namely if at least
one parameter is structurally unidentifiable, i.e. for a set of p∗ and initial conditions
of nonzero measure, the equation y(x, t, a,p∗) = y(x, t, a,p) has infinitely many
solutions. Equivalently, a model is structurally unidentifiable for a given output if and
only if the map Φ is infinite-to-one on a set of positive measure.

We note that because some specific parameter values or initial conditions may
render an otherwise identifiable model unidentifiable (e.g. if all parameters or initial
conditions are zero), we define structural identifiability generically, i.e., for almost
all parameter values and initial conditions (Audoly et al. 2001; Pia Saccomani et al.
2003). Because the definitions apply for almost all parameter values and initial condi-
tions, there may be some initial conditions of x, or trajectories of x (corresponding to
a measure zero set of parameters and initial conditions) for which an otherwise identi-
fiable model may be unidentifiable. We additionally note that the system’s initial and
boundary conditions may also depend on unknown parameters.

2.2 Overview of the differential algebra approach

To determine structural identifiability of a model with defined outputs, we extend
the differential algebra approach (Ljung and Glad 1994; Audoly et al. 2001) to the
age-structured PDE case. This approach relies on converting the model system into
a system of input-output equations, that is, a set of ny monic polynomial equations
in terms of the known variables y, u, and their derivatives, with rational coefficients
in the parameters p. The input-output equations represent an implicit form of the
model map, and as a set of differential equations, they are input-output equivalent to
the original system. This means that for the same inputs and parameter values, the
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equations generate the same output trajectories (Eisenberg 2019). We then consider
the map from the input parameter space to the coefficients of the resulting monic
polynomial.

A key insight of the differential algebra approach in the rational ODE case is that
injectivity of the model map can be evaluated by considering the coefficient map, i.e.
the map from parameters to coefficients of the input-output equations (Audoly et al.
2001; Ljung and Glad 1994). In the rational ODE case, the coefficient map typically
provides complete identifiability information for the model. If this map is injective,
then the model is uniquely structurally identifiable. If the model is unidentifiable,
this map determines the identifiable combinations of parameters. For example, while
some model parameters may not be independently identifiable, the product or sum
of two or more model parameters may be identifiable. This may enable the model to
be reparameterized in a way that allows the model to become structurally identifiable
(Chappell andGunn 1998; Cole et al. 2010;Meshkat et al. 2009, 2011, 2014;Meshkat
and Sullivant 2014). It should be noted that a set of identifiable combinations is not
necessarily unique – there may be many sets of parameter combinations that are
equivalent. For example, the sets of identifiable combinations {ab, bc} and {ab, a/c}
are equivalent since (ab)/(bc) = a/c.

The differential algebra approach for ODEmodels typically uses characteristic sets
to calculate the input-output equations (Audoly et al. 2001; Ljung and Glad 1994).
Characteristic sets are a differential analog of the Gröbner basis (Ritt 1950) based
on differential polynomial psuedodivision. For more details on the characteristic set
approach, the reader is referred to (Audoly et al. 2001; Ljung and Glad 1994; Pia Sac-
comani et al. 2003; Hong et al. 2020; Eisenberg 2019).

This methodology has previously been applied to ODE systems, where derivatives
are taken with respect to only one variable. In this work, we generalize this method-
ology to PDE systems of the form in (1); in particular, we consider age-structured
systems where derivatives are taken with respect to both time and age. We show that
the same framework can be applied to these systems, with the additional consider-
ation of boundary conditions. In age-structured systems, a boundary condition must
be specified at a = 0, usually in the form of a Dirichlet boundary condition. Thus,
in addition to performing identifiability analysis on the model equations, one must
also consider the equations evaluated at a = 0 to explicitly include information at
the boundary. This is analogous to methods for determining identifiability of initial
conditions in ODE systems (Pia Saccomani et al. 2003).

2.3 Extending the differential algebra approach to age structured PDEmodels

In this section, we discuss our generalization of the differential algebra approach
to the PDE case. For PDE models, the primacy of the differential ideal generated
by the model and measurement equation differential polynomials is not necessarily
guaranteed (at least, to our knowledge it has not been shown to be the case), meaning
that the characteristic set may not be unique. Thus, instead of a characteristic set based
approach, we will use a simpler, substitution-based approach based on previous work
by Eisenberg (2019) (similar to that used in Eisenberg et al. (2013)). In this approach,
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we use basic substitution (which, as long as one is careful not to divide by quantities
that could be zero, etc., does not change the underlying solutions to the system) to
eliminate the unobserved variables, resulting in amonic, reduced system of differential
equations which is input-output equivalent to the original system (Eisenberg 2019).
This input-output equivalent system has equivalent identifiability properties to the
original, allowing us to use it to evaluate identifiability of a certain class of PDE
systems.

As is typical in ODE systems, once we have a set of input-output equations (i.e.
monic differential polynomials only in terms of the known variables y,u and their
derivatives with respect to either independent variable and the parameters p), we assess
identifiability based on the coefficients of themonomial terms.As in theODEcase, this
requires that the input-output equations be in some senseminimal or fully reduced,with
the monomials of the input-output equations linearly independent (Ovchinnikov et al.
2021; Bearup et al. 2013). Given these reduced input output equations, we assume that
our observed trajectory contains sufficiently many algebraically independent points
that we can successfully identify the coefficients of the input-output equations. In other
words, from a given observed solution of y over age and time, we assume the observed
solution contains an arbitrary number of distinct points at which the input-output
equations can be evaluated to solve for the input-output coefficients (in particular,
more distinct points than the number of coefficients). In practice most trajectories
meet this criterion, although some care must be taken to avoid systems or measure
zero sets of initial conditions for which the solutions are at steady state, or have key
parameters equal to zero, etc. (Hong et al. 2020). With the coefficient-identifiability
assumption (Eisenberg 2019), the rest of the differential algebra approach follows as
with the ODE case, and is described below.

Procedurally, the process of performing identifiability analysis for PDEs is almost
identical to the ODE case, though substitutions may be made more complicated by
the presence of an additional derivative. To obtain input-output equations from model
equations, a typical first step is to solve the output equations for state variables and,
using substitution, eliminate these state variables and their derivatives from the model
equations. For simplicity, all nonzero terms in the model equations are moved to
the right-hand side. Remaining state variables can then be eliminated by solving one
or more of the model equations. The particular substitutions required will of course
vary depending on the model and output equations. The goal is to obtain a system
of polynomial equations in terms of the outputs and their derivatives, with all state
variables eliminated, whose coefficients are in terms of the model parameters. In the
case that square roots arise, for example, they must be eliminated by multiplying by
the conjugate.

Once input-output polynomial equations are obtained, we divide each equation
by the coefficient of its leading term to obtain a monic polynomial (see below for
details about the ranking of terms). From these monic polynomials, we obtain the set
of polynomial coefficients that defines the coefficient map. This map, as in the ODE
case, can be used to determine complete identifiability information for the model
equations.

Note that thus far,we have not considered any information about the initial or bound-
ary conditions—an important consideration of identifiability, In particular, analysis of
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the boundary conditions is a key component of identifiability analysis for PDEs that
does not occur in the ODE case. In the case of age-structured systems, there is a single
boundary condition at a = 0. Thus, we treat the boundary condition as similar to an
initial condition for ODEs (see e.g. the methods in Pia Saccomani et al. (2003) for
the ODE case). If information is known about the boundary conditions, such as val-
ues or functional forms, this information can be substituted into the model equations
evaluated at a = 0 to obtain boundary condition equations. Since the values of model
outputs are known at a = 0, the same identifiability analysis as above can be applied to
boundary condition equations. This may reveal additional identifiability information
about the model or any parameters that are present in the boundary conditions.

We note that, as in the initial condition case, if identifiability is evaluated without
considering boundary conditions, this implicitly assumes that the boundary conditions
are generic and unknown. However, there are some important aspects of the boundary
conditions which are more subtle than the ODE case of initial conditions, and may
warrant further exploration, such as that boundary conditions still may vary over time.
Exploring how different boundary condition types may affect identifiability would be
an important direction for future work.

Our procedure for performing structural identifiability analysis, which can be
applied to bothODEand age-structured PDE systems, is outlined in Fig. 1. In our struc-
tural identifiability analyses herein, we utilize Mathematica to perform the required
algebraic manipulations and evaluate map injectivity. All Mathematica notebooks are
provided in our code repository at https://github.com/epimath/age-pde-identifiability.

2.4 Practical identifiability analysis

Practical identifiability was evaluated using the Fisher Information Matrix (FIM) and
profile likelihoods (Jacquez and Perry 1990; Raue et al. 2009; Venzon andMoolgavkar
1988; Eisenberg and Hayashi 2014). Here, we follow the methodology laid out in
(Eisenberg and Hayashi 2014).

For ODE models when evaluating identifiability, the FIM is computed by F =
XT X , where X is the sensitivity matrix defined by X(i, j) = ∂ y

∂ pi
(t j ) for parameters

p1, ..., pn and time points t1, ..., tm . This form is a simplified form of the FIM for the
case of normally distributed measurement error, but it is frequently used for evaluat-
ing structural identifiability due to its easily interpretable form and clear connection
to the sensitivity matrix X (the two matrices share the same rank, and identifiable
parameter combinations can be naturally understood through the sensitivity matrix as
compensation between parameters will be reflected in dependences in the columns).
For an age structured system, we define F = XT X where the sensitivity matrix is
defined by X(i, j) = ∂ y

∂ pi
((a, t) j ) where (a, t) j for j = 1, ...,m are pairs of age and

time points that form a grid. Here, y denotes the observable model output. For multiple
model outputs (e.g., y1 and y2), the matrix X can be defined by concatenation (i.e.,
X = [X1; X2]). The rank of F indicates the number of identifiable parameters and
parameter combinations. If F is singular, the model is structurally unidentifiable; if F
is close to singular (meaning a large condition number or a determinant near zero, e.g.
below machine precision), the model may be practically unidentifiable. The FIM can
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Rewrite model equations as 
input-output equations

Write input-output equations as 
monic polynomial equations

Extract polynomial coefficients

Consider the map from parameter 
space to the polynomial 

coefficients. Is it injective?

All parameters are 
identifiable with generic 

boundary conditions the map is one-to-one. 

NoYes

*for PDE case only

If applicable, evaluate identifiability 
of initial and boundary condition 

equations

Fig. 1 Flowchart describing the methodology for identifiability analysis of ODE and age-structured PDE
models based on using a differential algebra approach

also be used to determine which parameter subsets are identifiable or unidentifiable
(Eisenberg and Hayashi 2014).

We compute profile likelihoods by fixing a particular parameter pi and fitting all
remaining parameters p j �=i to maximize a likelihood function. We define the like-
lihood by assuming constant, normally distributed measurement error with standard
deviation equal to 10% of the mean of the data, and mean equal to the model trajec-
tory. Maximizing the likelihood function is equivalent to minimizing a cost function
based on the negative log likelihood (in this case equivalent to least squares). This
is performed at many values across the range of values for pi . The profile likelihood
for pi is given by the maximum values of the likelihood function across the range of
values for pi . If the profile likelihood is flat, pi is structurally unidentifiable; if it is
sufficiently shallow, pi is practically unidentifiable. For more details on profile likeli-
hood approaches to identifiability, the reader is referred to (Raue et al. 2009; Venzon
and Moolgavkar 1988).

In our analyses herein, we solved the age-structured PDEs numerically using
Method of Lines, using a first order finite difference approximation of the spatial
derivative, and using Matlab’s ODE solver ode45.
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Fig. 2 SEI diagram and
parameter definitions for a
mathematical model of TB
epidemiology. S represents the
susceptible population, E
represents the exposed/latent
population, and I represents the
actively infectious population.
Arrows describe flow between
mutually exclusive
compartments

3 SEI model for TB epidemiology

In several case studies below, we consider a simple mathematical model of the epi-
demiology of tuberculosis (TB). TB is transmitted via the aerosolized bacterium
Mycobacterium tuberculosis from person to person via lung inhalation. TB is unique
from many infectious diseases in that most people develop a latent infection, meaning
that they present no symptoms and cannot transmit the disease, and the infection can
remain latent for an extended period of time. Thus, our model consists of three mutu-
ally exclusive compartments: Susceptible (S), Exposed/latent (E), and Infectious (I).
Through contact with infectious individuals, susceptible individuals (called suscepti-
bles) may progress to the exposed class (i.e. latent infection) or the infectious class
(i.e. primary infection). This is slightly different from the standard SEI model, in that
some individuals bypass the exposed class and immediately become infectious, but is
similar to what has been used to model tuberculosis epidemics previously (Ozcaglar
et al. 2012; Guzzetta et al. 2011; Renardy and Kirschner 2019; Vynnycky and Fine
1997). Individuals who are exposed/latent may progress to the infectious class where
they can transmit bacteria. We assume all individuals are born into the susceptible
class, and each compartment has a compartment-specific death rate.

A schematic for this model is shown in Fig. 2. This schematic can be translated
into a mathematical or computational model by representing it as a system of ordinary
or partial differential equations (as has been done by, e.g., Guzzetta et al. (2011);
Renardy and Kirschner (2019); Vynnycky and Fine (1997)), a stochastic model, or
an individual-based model (as has been done by, e.g., Guzzetta et al. (2011); Renardy
and Kirschner (2020)). Here, we will first consider the model as a system of ODEs
and then extend the results to age-structured PDEs.

4 Case study 1: density-dependent transmission

For simplicity, we first demonstrate the identifiability analysis framework on a model
with density-dependent transmission, i.e. transmission is proportional to SI rather than
S I
N . In this case, the per-individual rate of contact increases as the population density
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increases. This is not necessarily a realistic model for TB, since TB is often spread
only among close contacts, but simplifies the differential algebra for the purposes of
demonstration.

In order to perform parameter identifiability analysis, we must first define what the
outputs (i.e., the quantities for which we could obtain reliable, biologically relevant
time series data) of the specific model are. For all of the following examples, we will
assume that we can observe a fraction of the exposed individuals, i.e. yE = kE E
where kE is the reporting/detection rate. This type of data could be obtained by, for
example, contact tracing to identify individuals who have been exposed to TB disease,
or testing a proportion of the population for exposure. This is a useful practice even
in areas with a low TB burden such as the US, since detection and treatment of
latent infection is crucial for TB elimination (LoBue and Mermin 2017). Since latent
disease is asymptomatic, it is highly unlikely that all exposed/latent individuals will be
identified, and thuswe assume instead that only a fraction kE of the exposed individuals
are identified.

In addition, we may be able to observe all or some of either all active infections
(prevalence) or newactive infections (incidence). The relevant output function depends
on the reporting and surveillance data for the region of interest. For example, if all
infectious cases are monitored and reported then these data would represent total
prevalence. If not all cases are detected due to misdiagnosis, for example, then the
data would represent only a fraction of the total prevalence. If new infectious cases
are reported upon diagnosis but then lost to follow-up, then incidence is an observable
output while prevalence is not. Again, since it is possible that not all infected individ-
uals will be diagnosed, we may only be able to observe a fraction of incidence. We
present here results for observing prevalence over time, but the identifiability analysis
of model parameters for incidence would follow similarly.

We assume that yI = kI I , i.e. that we are able to obtain data for a fraction of the
total number of infections at any given time. We assume no other information about
the system parameters or initial conditions. The case of incidence is more complex
due to nonlinearities, but the methodology presented here can still be applied, and we
provide such an example in our code repository.

4.1 ODE SEI model with density-dependent transmission

Though identifiability analysis for ODE systems is well established, we include the
technical details here for completeness and for comparison when we move to the PDE
system. The model can be written as a system of ODEs:

dS

dt
= c − βSI − μS S

dE

dt
= (1 − ε)βSI − δE − μE E

d I

dt
= εβSI + δE − μI I

(2)
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We consider the case of generic (unknown) initial conditions. We do not intiially
assume a fixed population, and thus the birth rate and death rates are independent. We
begin by rewriting the system of Eq. (2) in terms of the outputs yE and yI . For ease of
notation, we adopt the notation y′ = dy

dt . Using the substitutions E = yE
kE

and I = yI
kI
,

we obtain the following equations:

S′ = c − βS
yI
kI

− μS S

y′
E

kE
= (1 − ε)βS

yI
kI

− δ
yE
kE

− μE
yE
kE

y′
I

kI
= εβS

yI
kI

+ δ
yE
kE

− μI yI .

It now remains to eliminate S from these equations so that we obtain equations in
terms of solely the model parameters and outputs. This can be done by solving for S
in the equation for dyI

dt :

S = kE (y′
I + μI yI ) − δkI yE

βkEεyI
.

We note that we divide by yI in this example for simplicity; however the same
input-output equations can be obtained without dividing, using Ritt’s pseudodivision
(Ritt 1950) (just withmore involved algebraic computations required). This expression
can then be substituted into the remaining two equations to obtain two input-output
equations that are rational equations in terms of the outputs and their derivatives. By
multiplying by a common denominator and moving terms to one side, these input-
output equations can be rewritten as the following polynomial equations.

0 = k2I δμS yE yI + (ckEkIβε − kEkIμIμS)y
2
I + kIβδyE y

2
I

− kEβμI y
3
I + k2I δyI y

′
E − k2I δyE y

′
I − kI kEμS yI y

′
I

− kEβ y2I y
′
I + kEkI y

′2
I − kEkI yI y

′′
I

0 = (−kI δ − kI εμE )yE + (kEμI − kEεμI )yI − kI εy
′
E

+ (kE − kEε)y′
I

Dividing the first equation by kEkI and the second equation by kE − kEε to form
monic polynomials, we get the following set of polynomial coefficients.

{
−1, 1,

β

kI
,−δkI

kE
,
δkI
kE

,−βδ

kE
,

kI ε

kE (ε − 1)
,
kI (δ + μEε)

kE (ε − 1)
,

βμI

kI
, μI , μS,−δkIμS

kE
, μIμS − βcε

}

We consider this set of coefficients as a function of the model parameters, and we
seek to determine whether this map is injective. If it is not, then we consider whether
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it is injective as a function of some parameter combinations. We find that μS and μI

are structurally identifiable. We then simplified the above set by removing duplicates
up to sign (e.g. δkI /kE and −δkI /kE are redundant), subtracting off known quantities
where we can (e.g. if μIμS − βcε is identifiable and μI and μS are identifiable, then
so is βcε, a simpler identifiable combination), and identifying coefficients that are
combinations of previously established known quantities (e.g. δkI /kE can be found
by dividing coefficients β/kI and βδ/kE ). Through simplification and substitution of
the above set, we find that other identifiable parameter combinations are

{
β

kI
, βcε,

βδ

kE
,
δ(−1 + ε)

ε
, μE + δ

}
.

Ifwe further assume thatμS = μE , then δ and ε alsobecome identifiablewhileβ, c, kE ,
and kI remain unidentifiable. However, the following combinations are identifiable:
{ β
kE

,
β
kI

, βc}. Consequently, if any one of β, c, kE , or kI is known, then the rest become
identifiable.

4.2 Age-structured PDEmodel with density-dependent transmission and
constant parameters

Now that identifiability results are established for the ODE representation of the SEI
model 2, we extend these results to a more complex PDEmodel that captures the same
epidemiological setting (SEI), but includes age structure.We incorporate age structure
into the model by adding a transport term to capture population aging. To simplify
the model, we assume that transmission occurs between individuals of the same age,
so that the transmission term is proportional to S(t, a)I (t, a) for any given age a and
time t . While this is a significant simplification, data has shown that people tend to
interact primarily with others in their age group (Mossong et al. 2008). The model
thus becomes

∂S

∂t
+ ∂S

∂a
= −βSI − μS S

∂E

∂t
+ ∂E

∂a
= (1 − ε)βSI − δE − μE E

∂ I

∂t
+ ∂ I

∂a
= εβSI + δE − μI I

(3)

for t > 0 and a ∈ [0,∞). Note that all state variables are now functions of both
time and age. The boundary conditions are S(t, 0) = c, E(t, 0) = I (t, 0) = 0, and
we begin by assuming initial conditions are generic. Note that the birth rate is now
incorporated into the boundary condition rather than into the differential equation for
S. We begin by assuming that model parameters are constants, independent of age.
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4.2.1 Identifiability of model equations with generic boundary conditions

We first consider identifiability of the model parameters without explicitly accounting
for the presence of boundary conditions, meaning that we assume there is no a priori
knowledge about the boundary conditions and that they cannot be observed. We call
this case generic boundary conditions. To perform the identifiability analysis, we
utilize the same framework as we did for the above ODE system analysis. That is,
we rewrite the model system as a set of polynomial equations in terms of the outputs
and their partial derivatives, and then consider the map from parameter space to the
polynomial coefficients.

We adopt the notation y(i, j) = ∂ i+ j y
∂t i ∂a j . Using the substitutions E = yE

kE
and I = yI

kI
,

as in the ODE case, we obtain the following equations:

S(1,0) + S(0,1) = −βS
yI
kI

− μS S

y(0,1)
E

kE
+ y(1,0)

E

kE
= (1 − ε)βS

yI
kI

− δ
yE
kE

− μE
yE
kE

y(0,1)
I

kI
+ y(1,0)

I

kI
= εβS

yI
kI

+ δ
yE
kE

− μI yI .

We now eliminate S to obtain equations in terms of only the model parameters and
outputs. This can be done by solving for S in the third equation:

S =
kE

(
y(0,1)
I + y(1,0)

I + μI yI
)

− δkI yE

βkEεyI
.

Weassumehere that generically yI > 0 to avoid division by zero, althoughone can also
obtain the same input-output equations without dividing by yI by solving instead for
SyI and substituting that into the equations (but this requires more extensive algebraic
calculations and multiplication by yI for the first equation). As before, this expression
can then be substituted into the remaining two equations to obtain two input-output
equations that are rational equations of the outputs and their derivatives.Bymultiplying
by a common denominator andmoving terms to one side, these input-output equations
can be rewritten as the following polynomial equations.

0 = −kEkIμS y
(0,1)
I yI − kEkIμS y

(1,0)
I yI − kEkI y

(0,2)
I yI

− 2kEkI y
(1,1)
I yI − kEkI y

(2,0)
I yI + kEkI (y

(0,1)
I )2

+ kEkI (y
(1,0)
I )2 + 2kEkI y

(0,1)
I y(1,0)

I − kEkIμIμS y
2
I

− βkE y
(0,1)
I y2I − βkE y

(1,0)
I y2I − βkEμI y

3
I

+ δk2I y
(0,1)
E yI + δk2I y

(1,0)
E yI − δk2I yE y

(0,1)
I

− δk2I yE y
(1,0)
I + δk2IμS yE yI + βδkI yE y

2
I

0 = −kEεy(0,1)
I − kEεy(1,0)

I + kE y
(0,1)
I + kE y

(1,0)
I
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+ kEμI yI − kEμI εyI − kI εy
(0,1)
E − kI εy

(1,0)
E

− δkI yE − kIμEεyE

We choose, without loss of generality, derivatives with respect to time to be higher
ranked than those with respect to age for our ranking of terms within the polynomial,
and let yI be higher ranked than yE , yielding the ranking yE < yI < y(0,1)

E < y(0,1)
I <

y(1,0)
E < y(1,0)

I < y(0,2)
E < y(0,2)

I < y(1,1)
E < y(1,1)

I < .... Dividing the first equation
by kEkI and the second equation by kE − kEε to form monic polynomials, we get the
following set of polynomial coefficients.

{
−2,−1, 1, 2,

β

kI
,−kI δ

kE
,
kI δ

kE
,

kI ε

kE (ε − 1)
,
kI (δ + μEε)

kE (ε − 1)
,

βμI

kI
, μI , μS,−δkIμS

kE
, μIμS − βδ

kE

}

We find that, as was the case for the ODE model, μS , and μI are structurally
identifiable. Through simplification and substitution, we find that other identifiable
parameter combinations are

{
β

kI
,
δkI
kE

,
δ(ε − 1)

ε
, μE + δ

}
.

If μS = μE then δ and ε become identifiable as well as the combinations
{

β
kE

,
β
kI

}
.

4.2.2 Incorporating non-generic boundary conditions

In our model, the boundary conditions are in fact not generic, but rather are known
to be S(t, 0) = c, E(t, 0) = I (t, 0) = 0, where c represents the birth rate. Here,
the boundary condition contains an unknown model parameter, c. To determine the
identifiability of the boundary condition parameter c, we perform the same analysis as
above butwith themodel equations evaluated at a = 0 (boundary condition equations).
However, to avoid reducing equations to zero, we let the boundary conditions be set
to an extremely small but assumed known quantity that should not affect the model
simulations significantly but enables us to evaluate structural identifiability in this case
(e.g. reflecting a small amount of congenital tuberculosis in the population (Cantwell
et al. 1994)). Then, noting that S(t, 0) is constant and thus ∂S

∂t (t, 0) = 0, the relevant
equations are

∂S

∂a
(t, 0) = −βcI (t, 0) − μSc

∂E

∂t
(t, 0) + ∂E

∂a
(t, 0) = (1 − ε)βcI (t, 0) − δE(t, 0) − μE E(t, 0)

∂ I

∂t
(t, 0) + ∂ I

∂a
(t, 0) = εβcI (t, 0) + δE(t, 0) − μI I (t, 0)

(4)
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By transforming the system (4) to a set of polynomial equations we obtain the
following polynomial coefficients:

{
1,−kI δ

kE
,−ckEβ − ckEβε

kI
, δ + μE , μI − cβε

}

Since μI is identifiable from the model equations, we thus find that βcε is an iden-
tifiable combination, which is consistent with the ODE model. Thus, the full set of
identifiable parameters and combinations for this model is

{
μS, μI ,

β

kI
, βcε,

δkI
kE

,
δ(ε − 1)

ε
, μE + δ

}

which is equivalent to the set of identifiable combinations for the ODE model.

4.2.3 Identifiability of initial conditions

With generic initial conditions, we do not gain any additional identifiability results.
However, if we assume that certain information is known, such as the total population
size N at the initial time, then further model parameters can become identifiable.
Here, we assume that the initial population size as well as its derivatives with respect
to time and age are known for all ages (noting that the age-specific population could
potentially be determined from census data, and derivatives perhaps roughly estimated
frommultiple years of census data).Under these conditions,wemay solve for the initial
susceptible population S(0, a) as S(0, a) = N (0, a) − E(0, a) − I (0, a), where N
represents the total population size. Similarly, since we assume the derivatives of N
are known at t = 0, we may solve for the derivatives of S at t = 0 in terms of the
derivatives of E and I . It is thus straightforward to solve for S and its derivatives at
t = 0 in terms of the outputs yE and yI .

To determine parameter identifiability from the initial condition with this additional
knowledge, we evaluate the model equations at t = 0 and perform identifiability
analysis analogous to the previous analysis for the boundary conditions. We obtain
the following set of polynomial coefficients:

{
1,

kI
kE

,
β

kE
,

β

kI
,−δkI

kE
,−βkE (ε − 1)

k2I
,
βkE (ε − 1)

kI
,
βε

kE
,

βε

kI
,
β − βε

kI
, δ + μE , μI − βε,

kIμS

kE
, μS − β,−kI (μS + 2)

}

From these coefficients, we find that β, δ, ε, μS, μE , μI , kE , and kI are all identifi-
able. Combining this with the previously established identifiability of cβε from the
boundary equations, we find that all parameters are identifiable if the initial population
size and its derivatives are known.
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5 Case study 2: frequency-dependent transmission

While density-dependent transmission is convenient for simplicity, it is not generally
a realistic model for TB. Rather, most models for TB epidemiology use frequency-
dependent transmission models wherein the transmission term is proportional to S I

N .
In this section we present identifiability results for the SEI model with frequency-
dependent transmission, assuming that our output functions are yE = kE E and yI =
kI I . In addition to theODE and constant-parameter PDEmodels, wewill also consider
variations including immigration and age-dependent death rates. The full details of
the analysis are cumbersome and thus are not provided here, but can be found in the
code repository.

5.1 ODE SEI model with frequency-dependent transmission

For completeness, we include here identifiability results for the ODE version of the
model. This model can be written as the following system of equations:

dS

dt
= c − βS

I

N
− μS S

dE

dt
= (1 − ε)βS

I

N
− δE − μE E

d I

dt
= εβS

I

N
+ δE − μI I

(5)

where N (t) = S(t) + E(t) + I (t). We find that the set of identifiable parameters and
parameter combinations for this model is

{
β, δ, ε, μS, μE , μI , ckI ,

kE
kI

}
.

5.2 Age-structured PDE SEI model with frequency-dependent transmission and
constant parameters

∂S

∂t
+ ∂S

∂a
= −βS

I

N
− μS S

∂E

∂t
+ ∂E

∂a
= (1 − ε)βS

I

N
− δE − μE E

∂ I

∂t
+ ∂ I

∂a
= εβS

I

N
+ δE − μI I

(6)

with boundary conditions S(t, 0) = c, E(t, 0) = I (t, 0) = 0. From the model
equations, we find that the parameters and combinations {β, δ, ε, μS, μE , μI ,

kE
kI

} are
identifiable.We further find from the boundary equations that ckI is identifiable. Thus,
the full set of identifiable parameters and combinations for this modelis
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{
β, δ, ε, μS, μE , μI , ckI ,

kE
kI

}

which is consistent with the ODE model. If the initial age distribution of the total
population and its derivatives were known (as in Sect. 4.2.3 for the previous case
study), then all parameters in the model would be identifiable.

5.3 SEI model with frequency-dependent transmission and immigration

The models considered thus far have included influx of new individuals only via birth.
However, it may be necessary to also consider immigration when studying epidemics
in fluid populations. If immigration is included in the model, with the assumptions
that the immigration rate is constant over time and all immigrants are susceptible, the
ODE system becomes

dS

dt
= m + c − βS

I

N
− μS S

dE

dt
= (1 − ε)βS

I

N
− δE − μE E

d I

dt
= εβS

I

N
+ δE − μI I

(7)

where m is the immigration rate. If we assume that the age distribution θ(a) of immi-
grants is known, then the corresponding age-structured PDE system becomes

∂S

∂t
+ ∂S

∂a
= mθ(a) − βS

I

N
− μS S

∂E

∂t
+ ∂E

∂a
= (1 − ε)βS

I

N
− δE − μE E

∂ I

∂t
+ ∂ I

∂a
= εβS

I

N
+ δE − μI I

(8)

where θ(a) is some known function such that θ(0) = 0 and
∫ ∞
0 θ(a)da = 1, with

boundary conditions S(t, 0) = c and E(t, 0) = I (t, 0) = 0.
The identifiability results for the ODE system (7) remain the same as before but

with c replaced by c + m, i.e., the identifiable parameters and combinations are

{
β, δ, ε, μS, μE , μI , (c + m)kI ,

kE
kI

}
.

For the PDE system (8), we get the following identifiable parameters and combinations
from the model and boundary equations:

{
β, δ, ε, μS, μE , μI , ckI ,mkI ,

kE
kI

}
.
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Thus, in this case the identifiability results for the PDEmodel differ from those for the
ODEmodel in that the combinations ckI andmkI are both identifiable, whereas in the
ODE model only the sum (c + m)kI is identifiable. In other words, if all immigrants
are susceptible then in an age-structured model it is possible to differentiate between
birth and immigration, whereas in an ODE model it is not.

5.4 Age-structured PDE SEI model with frequency dependent transmission and
age-dependent parameters

A major benefit of age-structured models is the ability to incorporate age-dependent
parameters such as death rates, contact/transmission rates, and reactivation rates to
make the model more realistic. Here, we consider the case of age-dependent death
rates. There are several ways to introduce age dependence to the death rate: one
could assume a specific functional form (e.g., piecewise-constant, linear, exponential),
that the function belongs to a particular family (e.g., polynomials, splines), or that
the function is completely arbitrary with some conditions on smoothness. In this
section, we present identifiability results for four cases: (1) piecewise-constant death
rate functions for all three compartments, (2) a single exponential death rate function
for all compartments, (3) a single polynomial death rate function for all compartments,
and (4) a single arbitrary function for all compartments. For simplicity,wewill consider
the SEI model without immigration.

5.4.1 PDE SEI model with piecewise-constant death rates case

We first consider the case that the death rates are piecewise-constant functions of
age with discontinuities at ages {0 = a0, a1, a2, ...an = A}, i.e. μ j (a) = μi

j for
a ∈ (ai , ai+1) and j = S, E, I . This represents the case where death rates are known
independently for different age groups. Then the system (6) becomes a sequence of
PDE systems obeying the equations

∂S

∂t
+ ∂S

∂a
= −βS

I

N
− μi

S S

∂E

∂t
+ ∂E

∂a
= (1 − ε)βS

I

N
− δE − μi

E E

∂ I

∂t
+ ∂ I

∂a
= εβS

I

N
+ δE − μi

I I

for t > 0 and a ∈ (ai , ai+1), 0 ≤ i < n, with boundary conditions S(t, 0) = c,
E(t, 0) = I (t, 0) = 0 and

S(t, ai ) = lim
a→a−

i

S(t, a)

E(t, ai ) = lim
a→a−

i

E(t, a)

I (t, ai ) = lim
a→a−

i

I (t, a)

123



9 Page 20 of 30 M. Renardy et al.

for 0 < i < n. We will assume that the locations of the discontinuities a1, ..., an are
known, and that the sub-intervals are wide enough that the usual structural identifia-
bility results hold.

Since the model equations remain essentially unchanged, structural identifiability
of the model equations has already been established in Sect. 5.2. Thus, from the model
equations we obtain that

{
β, δ, ε, μi

S, μ
i
E , μi

I ,
kE
kI

}

are identifiable for all i . From the boundary equations at a = 0 we again get that ckI
is identifiable, as in the constant parameter case. We gain no additional information
about the parameter values from the boundary conditions at a = ai for i > 0.

5.4.2 PDE SEI model with exponential death rate case

One may also wish to use a continuous function to represent age-dependent death
rates. One possibility is to use an exponential function μ(a) = μ0 exp(κa) so that
death rate increases exponentially with age. For simplicity, we assume that death rates
are the same for all three compartments. Then the model system can be written as

∂S

∂t
+ ∂S

∂a
= −βS

I

N
− μS

∂E

∂t
+ ∂E

∂a
= (1 − ε)βS

I

N
− δE − μE

∂ I

∂t
+ ∂ I

∂a
= εβS

I

N
+ δE − μI

dμ

da
= κμ

for t > 0 and a ∈ [0,∞), with boundary conditions S(t, 0) = c, E(t, 0) = I (t, 0) =
0, and μ(0) = μ0. We write the system in this way rather than directly inserting
μ(a) = μ0 exp(κa) so that we maintain a differential polynomial form.

To obtain an input-output equation from themodel equations, we use the I equation
to solve for S and the E equation to solve for μ(a) (note that these choices are
somewhat arbitrary). Then by noting that I = yI /kI and E = yE/kE and substituting
into the S and μ equations, we obtain rational equations in terms of the outputs
and their derivatives. Thus, by multiplying by a common denominator, we obtain

differential polynomials. We find that
{
β, δ, ε, κ, kE

kI

}
are the identifiable parameters

and parameter combinations.
By performing similar analysis on the boundary equations, we find that μ0 and ckI

are identifiable. Thus, the full set of identifiable parameters and combinations for this
version of the model is

{
β, δ, ε, κ, μ0, ckI ,

kE
kI

}
.
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This shows that both parameters from the exponential death rate are identifiable. The
identifiability of the remaining parameters is consistent with the results for the ODE
model in Sect. 5.1.

5.4.3 PDE SEI model with polynomial death rate

Another option for a continuous death rate is to use a polynomial, μ(a) = ∑n
i=0 κi ai .

For example, a polynomial may be fit to the available data for death rate by age group.
Then the model equations become

∂S

∂t
+ ∂S

∂a
= −βS

I

N
−

(
N∑
i=0

κi a
i

)
S

∂E

∂t
+ ∂E

∂a
= (1 − ε)βS

I

N
− δE −

(
N∑
i=0

κi a
i

)
E

∂ I

∂t
+ ∂ I

∂a
= εβS

I

N
+ δE −

(
N∑
i=0

κi a
i

)
I

for t > 0 and a ∈ [0,∞), with boundary conditions S(t, 0) = c and E(t, 0) =
I (t, 0) = 0. The age a is considered to be observable. By using the I equation to
solve for S and substituting into the remaining equations, we obtain a set of input-
output equations that are differential polynomials. We find that the corresponding
monic polynomial contains the monomial terms κi ai yI for all i = 0, ..., n. Thus, all
coefficient parameters κi in μ(a) are identifiable and μ(a) can be uniquely recovered.

We also find that
{
β, δ, ε, kE

kI

}
are identifiable from the model equations and ckI is

identifiable from the boundary equations.

5.4.4 PDE SEI model with arbitrary death rate function

The final and most general option we consider is to allow μ(a) to be an arbitrary
function of a, i.e. the model equations become

∂S

∂t
+ ∂S

∂a
= −βS

I

N
− μ(a)S

∂E

∂t
+ ∂E

∂a
= (1 − ε)βS

I

N
− δE − μ(a)E

∂ I

∂t
+ ∂ I

∂a
= εβS

I

N
+ δE − μ(a)I

for t > 0 and a ∈ [0,∞). In this case, we use the I equation to solve for S and then
use the E equation to solve for μ(a). We obtain the following expression for μ(a) in
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terms of the outputs and parameters:

μ(a) = − 1

kE (ε − 1)yI + kI εyE

(
δkI yE + kI εy

(1,0)
E

+kI εy
(0,1)
E + kE (ε − 1)y(1,0)

I + kE (ε − 1)y(0,1)
I

)

= − 1

(ε − 1)yI + kI
kE

εyE

(
δ
kI
kE

yE + kI
kE

εy(1,0)
E

+ kI
kE

εy(0,1)
E + (ε − 1)y(1,0)

I + (ε − 1)y(0,1)
I

)
(9)

By substituting (9) into the remaining equation for S and performing the identifiabil-

ity analysis, we again find that
{
β, δ, ε, kI

kE

}
are identifiable. We note that the second

derivatives of yE and yI appear in the input-output equations, and hence μ(a)must be
at least twice differentiable.We then find that the right hand side of (9) consists entirely
of observable quantities and identifiable parameter combinations; hence μ(a) is iden-
tifiable. Note that while we use the term “identifiable” here, what we actually mean
is that μ(a) can be determined from observable quantities and identifiable parameter
combinations. Further, we obtain from the boundary equations that ckI is identifiable.

Identifiability results for all cases of the ODE and age-structured PDE model sys-
tems are summarized in Table 1. We note that in the cases where the same death rate
is used for all compartments, the death rate function is always identifiable. In cases
where the compartments have different death rates, the rates for the susceptible and
infected compartments are identifiable. These results hold under the assumption that
a fraction of the total prevalence and a fraction of all exposures can be observed at
all times and ages. It has been shown previously that other output functions may lead
to non-identifiability of death rates even in simple population models (Perasso and
Razafison 2016).

5.5 Practical identifiability

The above structural analysis determines identifiable parameters and combinations
under the assumption that data are noiseless and are available for arbitrarily many
time and age points. In reality, epidemiological data are often noisy and are collected
only at discrete time points and for discrete age groups. Thus, it is also necessary to
perform practical identifiability analysis to determinewhich parameters and parameter
combinations are still identifiable givenmore realistic data. The practical identifiability
of model parameters given realistic data may differ from their structural identifiability.

As a proof of concept, we explore the practical identifiability of the constant-
parameter model from Sect. 5.2 using profile likelihoods. We assume that data are
collected monthly for 5-year age groups from age 0 to 100 over a span of 20 years.
We synthetically generate data by choosing a baseline parameter set, simulating the
model, and adding noise that is normally distributed with a standard deviation of 5%.
Using these synthetic data, we performparameter estimation using theMatlab function
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Table 1 Summary of identifiable parameters and combinations for theODEand age-structuredPDEsystems
where the output functions are yE = kE E and yI = kI I

Case Identifiable parameters and combinations

Density-dependent ODE (Sect. 4.1)

{
μS , μI ,

β

kI
, βcε,

δkI
kE

,
δ(ε − 1)

ε
, μE + δ

}

Density-dependent PDE with
constant parameters (Sect. 4.2)

{
μS , μI ,

β

kI
, βcε,

δkI
kE

,
δ(ε − 1)

ε
, μE + δ

}

Frequency-dependent ODE
(Sect. 5.1)

{
β, δ, ε, μS , μE , μI , ckI ,

kE
kI

}

Frequency-dependent PDE with
constant parameters (Sect. 5.2)

{
β, δ, ε, μS , μE , μI , ckI ,

kE
kI

}

Frequency-dependent ODE with
immigration (Sect. 5.3)

{
β, δ, ε, μS , μE , μI , (c + m)kI ,

kE
kI

}

Frequency-dependent PDE with
immigration (Sect. 5.3)

{
β, δ, ε, μS , μE , μI , ckI ,mkI ,

kE
kI

}

Frequency-dependent PDE with
piecewise-constant death rates
(Sect. 5.4.1)

{
β, δ, ε, ckI ,

kE
kI

}
∪

⎛
⎝n−1⋃

i=0

{μi
S , μi

I , μ
i
E }

⎞
⎠

Frequency-dependent PDE with
exponential death rate (Sect. 5.4.2)

{
β, δ, ε, κ, μ0, ckI ,

kE
kI

}

Frequency-dependent PDE with
polynomial death rate (Sect. 5.4.3)

{
β, δ, ε, ckI ,

kE
kI

}
∪

⎛
⎝ n⋃
i=0

{κi }
⎞
⎠

Frequency-dependent PDE with
arbitrary death rate function
(Sect. 5.4.4)

{
β, δ, ε, ckI ,

kE
kI

, μ(a)

}

fminsearch, and evaluate practical identifiability of the model parameters as detailed
in Sect. 2.4.

We compute the Fisher InformationMatrix (FIM) using the outputs yE and yI at the
above-specified ages and time points. We find that for a wide variety of parameter sets
within reasonable ranges, the rank of the FIM is eight, implying that there should be
eight identifiable parameters and parameter combinations. This is consistent with our
structural identifiability analysis performed in Sect. 5.2, which revealed a set of eight
identifiable parameters and combinations. From the structural analysis, we see that
all parameters except c, kI , and kE are structurally identifiable. However, from profile
likelihoods we observe that the practical identifiability of these parameters does vary
across the parameter space. Here, we demonstrate two baseline parameter sets that
lead to qualitatively different identifiability profiles (Fig. 3). Practical identifiability
varies across the parameter space, from clear minimum consistent with the structural
identifiability results, to practical unidentifiability as the likelihood surface flattens
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Fig. 3 Practical identifiability of the constant-parameter model from Sect. 5.2. Cost functions (black lines)
based on likelihoods are shown for two sets of parameter values, P1 = {c = 100, β = 1, ε = 0.1, δ =
0.05, μS = 0.005, μE = 0.005, μI = 0.01, kE = 0.5, kI = 0.5} (panel A) and P2 = {c = 100, β =
1, ε = 0.1, δ = 0.05, μS = 0.005, μE = 0.075, μI = 0.01, kE = 0.75, kI = 1} (panel B). Practical
identifiability varies across the parameter space, from clear minimum consistent with the structural identi-
fiability results, to practical unidentifiability. Note that all model parameters are naturally bounded below
by zero, and thus a lower bound on the confidence interval is only meaningful if it is greater than zero. The
x axes in the plots above extend to zero for all parameters that do not have such a lower bound. Red dashed
lines denote 95% confidence thresholds, and red dots denote local minima (corresponding to maximum
likelihoods). See Sect. 2.4 for more details of the analysis
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out around the best-fit value. For both parameter sets, c, kE , and kI are not practically
identifiable.

Using the parameter set P1 = {c = 100, β = 1, ε = 0.1, δ = 0.05, μS =
0.005, μE = 0.005, μI = 0.01, kE = 0.5, kI = 0.5}, we find that certain structurally
identifiable parameters are only practically identifiable on one side, that is, we can
establish a reasonable lower or upper bound but not both. While the profile likelihoods
do have a unique minimum, the profiles are flat and confidence intervals for these
parameters are thus wide. In particular, the transmission rate β cannot be reasonably
bounded from above, and ε, δ, μS, and μE cannot be distinguished from zero.

Using a slightly different parameter set P2 = {c = 100, β = 1, ε = 0.1, δ =
0.05, μS = 0.005, μE = 0.075, μI = 0.01, kE = 0.75, kI = 1}, in which reporting
rates anddeath among the exposedpopulation are increased,wefind that all structurally
identifiable parameters are also practically identifiable. While this parameter set is not
necessarily biologically realistic (sinceμE > μI , for example), this demonstrates that
there are regions in the parameter space where these parameters can be well estimated.

6 Summary and discussion

Creating mathematical and computational models can greatly impact the biological
community through predictions that can be used and tested. Parameterization of mod-
els is a key factor in connecting them to the biology, and thus identifying parameters
accurately is an important step of model development. Parameters are typically esti-
mated from data; however, data may be sparse and noisy, and even perfect data does
not guarantee unique estimability of parameters. Understanding if model parameters
are identifiable lends credibility to the model system. If parameters are not identifi-
able, then the applicability of those models becomes more theoretical. While this may
add value to understanding, it limits the potential for predictions to be translated in
a meaningful way toward impacting the biological system. To this end, we focus on
parameter identifiability in both ODE and PDEmodels.While there is a solid literature
on structural identifiability analysis for ODE models, there is not a unified frame-
work for studying identifiability in PDEs. Here, we have presented a methodology
for performing structural identifiability analysis on age-structured epidemic models
using a differential algebra framework. We have applied this methodology to explore
the structural identifiability of a simple age-structured Susceptible-Exposed-Infected
(SEI) epidemic model under various assumptions.

We found that when the age-structured model uses constant parameters and does
not include immigration, then the identifiability results are identical to those for the
corresponding ODE model. In the presence of immigration, however, differences in
identifiability arise: the rates for birth and immigration appear only as a sum in the
identifiable combinations of the ODE model, while they appear separately in those
for the age-structured PDE model formulation. Further, we found that age-dependent
death parameters in the PDE model are able to be uniquely recovered in at least the
following three cases: piecewise-constant death rates, a single exponential death rate
for all compartments, and a single polynomial death rate for all compartments.
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These findings imply that identifiability results for corresponding ODE and PDE
models are likely equivalent when parameters are constant, but that additional infor-
mation can be gained from PDE models when parameters vary with the non-temporal
variable(s). Rigorous derivation of necessary and sufficient conditions for different
models to have identical identifiability results remains to be done, however based on
our results herein, we conjecture that identifiability for the ODE and PDE forms of an
age-structured model should be equivalent when there are not age-dependent param-
eters present in the model. Assuming data is available for all time and age points,
we also expect age-dependent parameters to be identifiable in the PDE model if the
corresponding constant parameters are identifiable in the ODE model. Additionally,
future work to investigate how discretization of the PDE (e.g. converting age dynam-
ics into linear ‘chains’ of compartments for age groups (Hurtado and Kirosingh 2019;
Hurtado and Richards 2020)) impacts identifiability of the model would be a useful
direction given the common use of compartmental representations of aging in bio-
logical models. Since the PDE system can be viewed as the limit of age-structured
compartmental ODE models as the number of age compartments approaches infinity,
we expect the identifiability results for the PDE system to also be a limiting case of
those for compartmental ODE systems.

More generally, this work underscores some of the directions that will need to be
explored to extend the differential algebra approach to the PDE case. The framework
presented here could be extended to other PDE models, such as reaction-diffusion
and advection-diffusion equations, in a variety of application areas. In particular, the
assumption used here that age-interactions are only local (i.e. individuals interact
with only people their own age) may be reasonable for reaction-diffusion models. But
for more general models, this method will need to be extended to handle integrals
across some variables—either to account for measurement processes that aren’t age-
structured or spatially resolved, or to account for non-local interactions. However,
since this methodology relies on the ability to express the input-output equations as
differential polynomials, there is a limit to the amount of complexity that it can han-
dle. Extension of concepts such as Gröbner bases and characteristic sets (which enable
automated generation of the input-output equations for ODEs) to the PDE case would
be an important step in this direction. However, highly nonlinear models and/or out-
put functions may require the use of other tools such as numerical methods. One such
method is the FIM, which we have demonstrated in the context of an age-structured
model with preferential mixing informed by real data. Additional tools for examining
identifiability of ODEmodels, e.g. based on Lie derivatives and observability methods
(Villaverde et al. 2018; Yates et al. 2009; Raue et al. 2014) may also be able to be
translated to the PDE case. In applying this methodology to other classes of PDEmod-
els, care will need to be taken regarding required existence and uniqueness properties.
Rigorous derivation of the necessary and sufficient conditions for this methodology to
be applied remains a direction for future research. Similarly, expanding the types of
PDE models considered will also require further consideration of how boundary con-
ditions (particularly age or spatially varying boundary conditions) may affect model
identifiability—either in the case where the boundary conditions are known and may
improve model identifiability or in the case where they involve unknown parameters
to be estimated. Finally, the approaches demonstrated here using PDEs may also open
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up the possibility of examining identifiability of stochastic systems that can be char-
acterized using PDEs (e.g. via Kolmogorov equations). We have previously begun to
explore this possibility for a class of continuous time Markov models used in can-
cer modeling (in which case the Kolmogorov equations could be written as ODEs)
(Brouwer et al. 2017).

A significant limitation of structural identifiability analysis is that it assumes the
availability of perfect data. In practice, data may contain noise and bias, and may be
sampled only at discrete time points. Thus, practical identifiability analysis must also
be performed to gain a complete understanding of the parameter identifiability of a
model given the available data. As demonstrated in our examples, practical identifi-
ability of a model may vary not only with the quality of the data but also with the
corresponding values of model parameters. Practical identifiability thus needs to be
handled on a case-by-case basis for models and their corresponding parameter sets.
Taken together, practical and structural identifiability provide rigor to the modeling
process, adding to the applicability of model predictions.

A further limitation of this methodology for structural identifiability analysis is that
it relies on the ability to eliminate system variables to obtain input-output equations.
The required algebra to do somaybe intractable for sufficiently complexmodels and/or
outputs, and may necessitate extending concepts such as characteristic sets and differ-
ential Gröbner bases (Boulier 2006) to the PDE identifiability setting. Alternatively
one might need to rely on numerical approaches to identifiability. For example, an
age-structured model with non-local mixing would require integral terms in the state
equations, making this approach substantially more difficult. Similarly, other concepts
from the ODE case, such as the idea of “persistently exciting” inputs (Ljung and Glad
1994), will need to be translated to the PDE case as well. Structural identifiability
analysis of such problems is a direction for future work.
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