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Abstract
Aset of axioms is formulated characterizing ecologically plausible community dynam-
ics. Using these axioms, it is proved that the transients following an invasion into a
sufficiently stable equilibrium community by a mutant phenotype similar to one of the
community’s finitelymany resident phenotypes can always be approximated bymeans
of an appropriately chosen Lotka–Volterra model. To this end, the assumption is made
that similar phenotypes in the community form clusters that are well-separated from
each other, as is expected to be generally the case when evolution proceeds through
small mutational steps. Each phenotypic cluster is represented by a single phenotype,
which we call an approximate phenotype and assign the cluster’s total population den-
sity. We present our results in three steps. First, for a set of approximate phenotypes
with arbitrary equilibrium population densities before the invasion, the Lotka–Volterra
approximation is proved to apply if the changes of the population densities of these
phenotypes are sufficiently small during the transient following the invasion. Second,
quantitative conditions for such small changes of population densities are derived as
a relationship between within-cluster differences and the leading eigenvalue of the
community’s Jacobian matrix evaluated at the equilibrium population densities before
the invasion. Third, to demonstrate the utility of our results, the ‘invasion implies sub-
stitution’ result for monomorphic populations is extended to arbitrarily polymorphic
populations consisting of well-recognizable and -separated clusters.
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1 Introduction

Ecological interactions create selection pressures that may change those very inter-
actions. Such eco-evolutionary feedback can induce rich coevolutionary dynamics
including cyclic coevolution (e.g., Dieckmann et al. 1995; Dieckmann and Law 1996),
adaptive radiation (e.g., Ackermann andDoebeli 2004; Egas et al. 2005), adaptive spe-
ciation (e.g., Dieckmann and Doebeli 1999; Dieckmann et al. 2004; Rundle and Nosil
2004), taxon cycles (e.g., Kisdi et al. 2001; Ito and Dieckmann 2007), and commu-
nity formation (e.g., Loeuille and Loreau 2005; Dieckmann et al. 2007; Ito et al.
2009; Takahashi et al. 2013). To arrive at tractable descriptions of such evolutionary
dynamics, the assumption is often made that mutation rates are low relative to the
timescale of population dynamics. This assumption reduces the evolutionary dynam-
ics to a trait-substitution sequence resulting from repeated mutant invasions (Metz
et al. 1992, 1996; Dieckmann and Law 1996). Such invasions potentially bring about
various outcomes: most often, (1) extinction of only the resident that is parental to
the mutant, and more rarely, (2) coexistence of the mutant with all residents, or (3)
other combinations of extinctions of the parental resident, non-parental residents, and
mutant.

It has been proved that when for all residents all potentially invading mutants are
subject to directional selection and the resulting perturbations to the system are suf-
ficiently weak, as measured by the product of fitness gradients and mutational step
sizes relative to the return rate to their population-dynamical equilibrium before the
invasion, invading mutants replace their parental residents—a statement referred to as
the invasion–implies–substitution theorem (Geritz 2005; Dercole and Rinaldi 2008).
The resulting trait-substitution sequences describe directional coevolution, character-
ized well by a set of ordinary differential equations called the canonical equations of
adaptive dynamics theory (Dieckmann and Law 1996), which have a form similar to
Lande’s equations of quantitative genetics theory (Lande 1979).

Eventually, directional coevolution may take some residents to the neighborhood
of peaks, troughs, or saddles of the community’s fitness landscape, which means
that those populations experience very weak directional selection. Here, an invading
mutant may coexist with its parental resident, which may be followed by diversifying
evolution of the two morphs, called evolutionary branching (Metz et al. 1996). If the
community has a one-dimensional trait space and a single resident, necessary and
sufficient conditions for its evolutionary branching into two distinct residents have
been obtained (Metz et al. 1996; Geritz et al. 1998).

On the other hand, for higher-dimensional traits or more than one resident, obtain-
ing formal conditions for the occurrence of evolutionary branching is difficult (but
see Ito and Dieckmann (2014) for a special case). This is largely because in these
more complex community dynamics it is not easy to analyze the outcomes of mutant
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invasions (Metz et al. 1996). This difficulty may be reduced when the population
dynamics can be approximated by Lotka–Volterra (LV) models, which are analyti-
cally more tractable and have been studied well (e.g., Zeeman 1993; Hofbauer and
Sigmund 1998). The LV-approximation is possible when all existing residents and
the mutant are similar to each other, so that they form a single phenotypic cluster
(Meszéna et al. 2005; Durinx et al. 2008), which yields an expression for the invasion-
fitness function in terms of resident and mutant phenotypes that is given by a rational
function. By using this rational form, considerable progress in deriving conditions for
multidimensional evolutionary branching has recently been made (Geritz et al. 2016;
Sect. 9.3).

Dercole and Rinaldi (2008) proved that the LV-approximation holds also when all
of the existing residents are not similar to each other, i.e., when every cluster has
only a single resident, and their initial equilibrium population densities are not small.
(Although such limiting assumptions for residents are not made in their proof, these
assumptions are required when we consider trait-substitution sequences, as explained
in Sect. 4.4). Thus, the remaining cases to be analyzed are (a) only some residents are
similar to each other and (b) the population densities of some residents are very small
so that they may go extinct as a result of the invasion. Both cases are likely to occur in
multispecies coevolution, including processes involvingmultiple evolutionary branch-
ing and taxon cycles, commonly observed in numerical simulations of trait-mediated
community dynamics (e.g., Doebeli and Dieckmann 2000; Ito and Dieckmann 2007).
Therefore, the goal of the present paper is to obtain formal conditions for ensuring the
LV-approximation for an arbitrary set of residents, including the aforementioned two
cases. Based on the obtained conditions, the invasion–implies–substitution theorem
can be extended to a mutant with an arbitrary set of residents.

The next section, Sect. 2, formulates a set of axioms that are expected to hold
for ecologically plausible differential equations describing trait-mediated community
dynamics. Section 3 derives a condition for ensuring the LV-approximation. Sections 4
and 5 derive sufficient conditions for satisfying this condition, in terms of properties of
the fitness-generating function and mutational step sizes. Section 6 explains how the
thresholds for the obtained sufficient conditions can be improved further. Section 7
shows how to examine the obtained sufficient conditions for a specific ecological
model. Section 8 extends the invasion–implies–substitution theorem.

2 Framework and assumptions

2.1 Axioms for fitness-generating functions

We consider community dynamics written as

dni
dt

� ni F(si ; s;n) (2.1)

with population densities ni for i � 1, . . . , N .
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Wedenote byS ⊂ R
Z a compact Z -dimensional trait space, by s � (s1, . . . , sN )T ∈

SN an N -dimensional vector of trait values of the phenotypes present in the commu-
nity, and by n � (n1, . . . , nN )T ∈ R

N
+ the vector of their population densities. The

fitness-generating function

F : S ×
∞⋃

N�1

(
SN × R

N
)

→ R : (s′, s,n) �→ F(s′; s;n) (2.2)

describes the instantaneous per capita growth rate of an arbitrary phenotype s′ with an
infinitesimally small population density in the instantaneous environment produced
by resident community composition (s,n) (Brown and Vincent 1987; Cohen et al.
1999). The fitness-generating function provides a fitness landscape for each commu-
nity composition (s,n). We assume that it satisfies the following axioms:

(i) Smoothness: F is smooth on each component of its domain S × SN × R
N .

(ii) Symmetry: F(s′; σ s; σn) � F(s′; s;n) for all permutations σ operating on the
indices of (s;n).

(iii) Reducibility: F(s′; (s1, . . . , sN )T; (n1, . . . , nN−1, 0)T) �
F(s′; (s1, . . . , sN−1)T; (n1, . . . , nN−1)T).

(iv) Exchangeability: If sN � sN−1, then F(s′; (s1, . . . , sN )T; (n1, . . . , nN )T)�
F(s′; (s1, . . . , sN−1)T; (n1, . . . , nN−1 + nN )T).

(v) Bounded world: There exists an upper bound η > 0 for the community’s total
population density, i.e., Eq. (2.1) eventually restricts the population densities to{
(n1, . . . , nN ) ∈ R

N
+

∣∣∣
∑N

i�1 ni ≤ η
}
.

Below, we restrict the community’s space of population densities to [0, η]N .

The smoothness axiom (i) follows from the assumption that the population-
dynamical behavior of individuals depends smoothly on their traits and that all
ecological interactions are instantaneous. The latter assumption is implicit in the
assumption that the per capita growth rate depends only on the arguments s′ and (s,n).
Axioms (ii) to (iv) are consistency conditions that go with representing the behaviour
of large collectives of individuals by differential equations for their densities. Axiom
(ii) follows from the arbitrariness of the ordering of the trait N-tuples, and axiom (iv)
from the fact that individuals with the same trait values are assumed to be indistin-
guishable. The consequent additivity for identical phenotypes mechanistically lies at
the heart of the LV-approximability. The bounded-world axiom (v) is just what it says:
there necessarily is a limit to the biomass that a patch of world can support. Models
that do not acknowledge this may on occasion be good approximations for specific
purposes, but when we run into results contradicting the bounded-world assumption,
we have to start modifying the model.

Tokeep the exposition simple,we assume fromnowonaone-dimensional trait space
S ⊂ R. The results are generalized to higher-dimensional trait spaces in Sect. 5.4.
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2.2 Population dynamics triggered bymutant invasion

We assume that the community is at a locally stable equilibrium
�
n � (

�
n1, . . . ,

�
nN )T,

determined by F(si ; s;
�
n) � 0 for all i � 1, . . . , N . When an invasion by a mutant

s′ � sN+1 with |sN+1 − sN | � εμ has occurred, the combined population dynamics
can be written as

dni
dt

� ni F(si ; s′;n′) (2.3)

for i � 1, . . . , N + 1, where s′ � (s1, . . . , sN , sN+1)T and n′ � (n1, . . . , nN , nN+1)T,
starting from n′ � (

�
n1, . . . ,

�
nN , nN+1)T with very small nN+1, which means that n′ is

almost identical to the equilibrium before the invasion,
�
n

′ � (
�
n1, . . . ,

�
nN , 0)T.

Please notice that here we have introduced the notational convention, to which we
adhere throughout this paper, that vectors of dimension N + 1 directly corresponding

to vectors of dimension N are denoted by an added prime, as in s′, n′, and �
n

′
.

Proposition 1 For a sufficiently small mutational step size εμ, the fitness-generating
function during the transient following mutant invasion can be approximated by a
linear function of n′,

F(si ; s′;n′) � �

Fi +
N+1∑

j�1

ai j (n j − �
n j ),

�

Fi :� F(si ; s′;
�
n

′
),

ai j :� ∂F(si ; s′;n′)
∂n j

∣∣∣∣
n′��

n
′ , (2.4)

which upon substitution into Eq. (2.3) gives the approximating Lotka–Volterra model,

dni
dt

� ni

⎡

⎣γi +
N+1∑

j�1

ai j n j

⎤

⎦ (2.5)

with γi � �

Fi − ∑N+1
j�1 ai j

�
n j .

The remainder of this paper is devoted to making precise the, very general, condi-
tions under which this proposition holds, and to calculating the corresponding error
bounds. Important variables and parameters used in our analysis are shown in Table 1.
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Table 1 List of notation for parameters, phenotypes, population densities, fitness functions, and other quan-
tities

Parameter Formula Explanation Location

Important parameters

η Upper bound for the total population density a
community can sustain

Axiom (v)

εμ Phenotypic distance of a mutant phenotype from its
parental resident phenotype

Above Eq. (2.3)

ε � ρμεμ > εμ Threshold phenotypic distance for clustering
phenotypes

Above Eq. (3.1a)

ρm Threshold for treating population densities less than
ρmε as small

Above Eq. (5.2a)

N Number of resident phenotypes before mutant
invasion

Eq. (2.1)

M < N Number of phenotypic clusters described by
approximate phenotypes

Above Eq. (3.1a)

L ≤ M Number of approximate phenotypes with not-small
population densities

Above Eq. (5.2a)

K � M − L ≤ M Number of approximate phenotypes with small
population densities

Below Eq. (5.8c)

d Positive constant in Lyapunov function Eq. (5.5c)

Phenotype Formula Explanation Location

Phenotypes
s � (s1, . . . , sN )

T Phenotypes before mutant invasion

s′ � sN+1 � sN + εμ Mutant phenotype

s′ � (s1, . . . , sN , sN+1)
T Phenotypes after mutant invasion

sa � (s1, . . . , sM )T Approximate phenotypes, which
serve as the representative
phenotypes of clusters

ρ j � (s j − scid( j))/ε < 1 Difference of the j th phenotype from
its cluster’s approximate phenotype,
scaled by ε

ρ � (0, . . . , 0, ρM+1, . . . , ρN+1)
T Vector of the differences of all

phenotypes from their clusters’
approximate phenotypes, scaled by
ε

cid( j) ∈ {1, . . . , M} Identity of cluster to which the j th
phenotype belongs

com(i) � { j | cid( j) � i, j � 1, . . . , N + 1} Set of identities of phenotypes that
belong to the i th cluster

Densities Formula Explanation Location

Population densities

n � (n1, . . . , nN )
T Population densities before

mutant invasion
Eq. (2.1)
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Table 1 continued

Densities Formula Explanation Location

�
n � (

�
n 1, . . . ,

�
n N )

T Equilibrium population
densities before mutant
invasion

Below Eq. (2.3)

nN+1 Mutant population density Below Eq. (2.3)

n′ � (n1, . . . , nN , nN+1)
T Population densities after

mutant invasion
Below Eq. (2.3)

�
n

′ � (
�
n 1, . . . ,

�
n N , 0)T Below Eq. (2.3)

m � (m1, . . . ,mM )T Population densities of
approximate phenotypes sa

Above Eq. (3.1a)

mi � ∑
j∈com(i)

n j Total population density of
i th cluster, assigned to the
i th approximate phenotype

Eq. (3.1a)

(mM+1, . . . ,mN+1) � (εnM+1, . . . , εnN+1) Eq. (3.1b)

m′ � (m1, . . . ,mM ,mM+1, . . . ,mN+1)
T Above Eq. (3.3a)

�
m

′ � (
�
m1, . . . ,

�
mN+1)

T

� (
�
m1, . . . ,

�
mM , ε

�
n M+1, . . . , ε

�
n N , 0)T

Above Eq. (3.3a)

�
m � (

�
m1, . . . ,

�
mM )T Eq. (3.4a)

x (in Sect. 4) � (x1, . . . , xM )T � P(m − �
m Transformed vectors ofm

for stability analysis
Eq. (4.4)

mx � (m1, . . . ,mL )
T Approximate phenotypes

with not-small initial
population densities

Eq. (5.2a)

my � (mL+1, . . . ,mM )T Approximate phenotypes
with small initial
population densities

Eq. (5.2a)

m̃x(my) � �
mx − B−1

xx Bxymy Center manifold Eq. (5.3b)
�

m̃ � (
�

m̃x,
�

m̃y)T � (
�
mx, 0)T Modified equilibrium Above Eq. (5.4a)

x (in Sect. 5) � (x1, . . . , xL )
T

� P(mx − m̃x(my))
Transformed vectors of
mx − m̃x for stability
analysis

Eq. (5.4a)

y � my Eq. (5.4a)

w � (x, y)T Eq. (5.4a)

Fitness Formula Explanation Location

Fitness functions

F(si ; s′;n′) � 1
ni

dni
dt Per capita growth rate of

phenotype si in the
environment determined by
phenotypes s′ with population
densities n′

Eqs. (2.1), (2.3)

	
F(si ; s′;m′) � F(si ; s′; n′) Eq. (3.2)
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Table 1 continued

Fitness Formula Explanation Location

f (si ; s′; n′) � ∑
j∈com(i)

n j
mi

F(si ; s′; n′) Per capita growth rate of
approximate phenotype si in
the environment determined by
phenotypes s′ with population
densities n′

Eq. (4.1a)

Quantity Formula or explanation Location

Other quantities
�
Fi � F(si ; s′;

�

n′) Eq. (2.4)

ai j � ∂F(si ;s
′;n′)

∂n′
j

Eq. (2.4)

aTi � (
ai,1, . . . , ai,N+1

)
Eq. (3.5a)

W � ∂m′
∂n′ Eq. (3.5a)

b′
i j � ∂

	
F (si ;s

′;m′)
∂m j

∣∣∣∣∣
m′��

m′
Eq. (3.3c)

b′T
i � (

b′
i1, . . . , b

′
i N+1

)
Eq. (3.3c)

bi j ∂
	
F (si ;sa;m)

∂m j

∣∣∣∣∣
m��

m

Eq. (4.3b)

B

�
⎛

⎜⎝

b11 · · · b1M
...

. . .
...

bM1 · · · bMM

⎞

⎟⎠
Eq. (4.3b)

J � diag(
�
m)B Eq. (4.3b)

A � PJP−1 Eq. (4.4)

P (in Sect. 4) Matrix for transforming J for Lemma 4 Eq. (4.4)
λmax Leading eigenvalue of J, possibly adjusted for repeated eigenvalues Eq. 4.5a)
Bxx,Bxy,Byx,Byy

(
Bxx Bxy
Byx Byy

)
� B Eq. (5.2c)

Ax � PJxP−1 � Pdiag(�mx)BxxP−1 Eq. (5.4c)

P (in Sect. 5) Matrix for transforming Jx for Lemma 4 with A � Ax Eq. (5.4c)
U � ByxP−1 Eq. (5.4c)

Jy � Byy − ByxB
−1
xx Bxy Eq. (5.4c)

Ã �
(
Ax 0
dU dJy

)
Eq. (5.5a)

λ̃max Leading eigenvalue of 1
2 (Ã + ÃT) Eq. (5.5b)

Q �
(
Px PxB

−1
xx Bxy

0 Iy

)
Eq. (5.9b)
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3 Linear approximation of the fitness-generating function

3.1 Basic idea

The root of the LV-approximability is the exchangeability axiom (iv) combined with
the smoothness axiom (i). Under the exchangeability axiom (iv), the fitness-generating
function does not distinguish individuals with identical phenotypes. Hence, the func-
tion responds only to the sum of their densities. Under the smoothness axiom (i),
this property is approximately inherited by slightly different phenotypes; the fitness-
generating function responds primarily to the sum of their densities. In the remainder
of this paper, we will work out how to lowest order of approximation the fitness-
generating function responds linearly to the separate contributions to this sum, leading
to the LV-approximation.

To get a more specific picture, we first suppose that there exist only two phenotypes,
a resident phenotype s1 and a mutant phenotype s2, with population densities n1 and
n2, respectively, andwith their phenotypic difference given by themutational step size,
|s2 − s1|� εμ, with εμ being small. Proposition 1 trivially holds when the deviations

of n1 and n2 from their initial states
�

n′ � (
�
n1,

�
n2)T are both small during the transient

following mutant invasion. In many cases, however, those changes are large, resulting
in the exclusion of the resident (Dercole and Rinaldi 2008, Appendix B). In the latter
case, it is not obviouswhether a linear approximation of the fitness-generating function
in n′ � (n1, n2)T is valid.

On the other hand, as the mutant is similar to the resident, due to the smoothness
and exchangeability property of the fitness-generating function, they act almost like
a single phenotype in their effect on the environment. Thus, invasion by the mutant
in many cases causes only a slight change in their total population density n1 + n2,
and only their fractions may change substantially, but will do so slowly (Dercole and
Rinaldi 2008, Appendix B; Meszéna et al. 2005; Durinx et al. 2008). In other words,
the fitness-generating function is not sensitive to even large changes of n1 and n2, as
long as n1 + n2 is kept almost constant. As shown later, this implies that the change
of F(si ; s′;n′) induced by a large change of n2, keeping n1 + n2 constant, is slight, so
that F(si ; s′;n′) can be expanded with respect tom′ � (m1,m2)T � (n1 +n2, εμn2)T,
even for εμ → 0. The linear relationship between m′ and n′ then makes Proposition
1 hold: as the change of m2 � εμn2 is always small because of the smallness of εμ,
this is the case whenever the change of the population density m1 � n1 + n2 is small.
Below, we introduce the notion of approximate phenotypes, so we can abbreviate the
preceding condition by stating that the change in the population density m1 � n1 + n2
of the approximate phenotype (sa � s1 or sa � s2) is small.

The strategy above is readily extended tomultiple residents s1, . . . , sN and amutant
sN+1 emerged from the parental phenotype sN with |sN+1 − sN |� εμ, by choosing
an approximate phenotype from each of the existing phenotypic clusters, so that den-
sity changes of those approximate phenotypes can be kept small during the transient
following mutant invasion, and thus an LV-approximation can be warranted (Sect. 3).
We can gauge the smallness of their density changes from the leading eigenvalue of
the community’s Jacobian matrix evaluated at the equilibrium population densities of
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the approximate phenotypes before the invasion (Sect. 4). However, this linear stabil-
ity analysis does not work well when some approximate phenotypes have very small
initial equilibrium densities, because those small densities inevitably cause the lead-
ing eigenvalue of the community’s Jacobian matrix to be close to zero. To overcome
this difficulty, we analyze not only the linear terms but also the quadratic terms of
the transient dynamics around the initial equilibrium (Sect. 5). In the remainder of
this section, we show how we can easily find approximate phenotypes for a set of
phenotypes s′ � (s1, . . . , sN+1)T, such that Proposition 1 holds when the changes of
the population densities of these approximate phenotypes are sufficiently small.

3.2 Approximate phenotypes

We consider an arbitrary set of residents together with a mutant, s′ �
(s1, . . . , sN , sN+1)T. We choose phenotypic clusters so that within-cluster phenotypic
differences do not exceed ε � ρμεμ (Fig. 1a), with an arbitrarily chosen constant
ρμ larger than 1 (but not too large, so that the clustering is meaningful, i.e., the error
estimates to be derived below are small). We assume that those phenotypic clusters
are well-recognizable and well-separated from each other, so that we can find an ε that
is much smaller than the smallest distance among the approximate phenotypes. Gen-
erally, this assumption is warranted in evolutionary dynamics with small mutational
step sizes (as explained in Sect. 9.2) by the principle of limiting similarity. Notice
that in any case the mutant sN+1 and its parental phenotype sN form a cluster. Any
resident not similar to any other phenotype forms a cluster by itself. Thus, the number
of clusters, denoted byM , satisfies 1 ≤ M ≤ N . From each cluster, we arbitrarily pick
one phenotype as its representative. Then, by the symmetry axiom (ii), we can per-
mute s′ � (s1, . . . , sN , sN+1)T so that those representatives come first as s1, . . . , sM ,
followed by the other phenotypes, i.e., s′ � (s1, . . . , sM , sM+1, . . . , sN+1)T (Fig. 1b).
We refer to those representatives as approximate phenotypes sa � (s1, . . . , sM )T.

We introduce the cluster-identifying function cid, such that cid( j) � i means that
phenotype s j belongs to the i th cluster, with scid( j) as the representative—i.e., approx-
imate—phenotype of that cluster, and cid( j) � j for j ≤ M . We also introduce the
component-identifying function com, which returns the set of indices of the pheno-
types comprising the i-th cluster, i.e., com(i) � { j | cid( j) � i}. Then, the population
densities of these clusters are given by a vector m � (m1, . . . ,mM )T, with the popu-
lation densities

mi :�
∑

j∈com(i)

n j (3.1a)

for i � 1, . . . , M treated as belonging to the approximate phenotypes sa �
(s1, . . . , sM )T (Fig. 1c).While the approximate phenotype of the i th cluster is identical
to the representative phenotype of that cluster, the population densities of the former
and latter are different and given by mi and ni , respectively.

Notice that the number M of approximate phenotypes is less than the number N +1
of phenotypes in the original community dynamics. Thus, for expanding the fitness-
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n′ � (n1, n2, n3, n4, n5)

T of existing phenotypes s′ � (s1, s2, s3, s4, s5)
T—comprising four residents s1,

s2, s3, s4, and a mutant s5—are indicated by colored histogram bars. The thick gray curve shows the fitness
landscape, which passes through 0 at the resident phenotypes. The existing phenotypes are clustered so that
within-cluster phenotypic differences do not exceed the threshold ε, which is chosen to be larger than the
mutational step size εμ, so that the mutant s5 and its parental resident s4 are guaranteed to be part of the
same cluster. b The existing phenotypes are permuted so that the approximate phenotypes s1, s2, s3 come
first. c Within each cluster, an approximate phenotype is chosen to represent the cluster. The population
densities m1, m2, m3 of the approximate phenotypes are assigned so that each equals the total population
density of the corresponding cluster (color figure online)

generating function, we need to define the other (N − M + 1) variables in such a way
that their changes stay small during the transient followingmutant invasion. As long as
the population densities of the approximate phenotypes are kept almost constant, the
fitness-generating function is expected to be insensitive to ni for all i � 1, . . . , N + 1.
Thus, we describe the remaining degrees of freedom, mM+1, . . . ,mN+1, by

mi :� εni (3.1b)
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for i � M + 1, . . . , N + 1. Combining Eqs. (3.1a) and (3.1b), we write m′ �
(m1, . . . ,mM ,mM+1, . . . ,mN+1)T, which has the same dimension as n′. Then, by
the smoothness axiom (i), the exchangeability axiom (iv), and the bounded-world
axiom (v), we have

Lemma 1 With
	

F(si ; s′;m′) :� F(si ; s′;n′), for sufficiently small ε there exists a
constant C ′

Fm such that

∣∣∣∣∣∣
∂

	

F(si ; s′;m′)
∂m j

∣∣∣∣∣∣
≤ C ′

Fm (3.2)

for all i, j � 1, . . . , N + 1, n′ ∈ [0, η]N+1, and any s′ such that
∣∣s j − scid( j)

∣∣ ≤ ε.

See Appendix A for the proof. Although
	

F(si ; s′;m′) differs from F(si ; s′;n′) as a
mathematical object, their biological meaning is the same. Lemma 1 thus ensures the
expandability of F(si ; s′;n′) in terms ofm′. The estimate C ′

Fm still depends on s′, but
is positive and uniformly bounded away from 0 and ∞.

As we did for C ′
Fm, below we will introduce bounds for other important variables

and functions in the formof expressionsC· that are independent of population densities
(but may be functions of other model parameters). Please notice that here we have
introduced the notational convention, to which we adhere throughout this paper, that
CF · denotes the upper bound for the absolute value (or norm) of · the derivative
of the fitness function with respect to ·, while C· denotes the upper bound for the
absolute value (or norm) of · or for the derivative of the first symbol in · with respect
to the subsequent symbol(s). All CF · and C·are positive and uniformly bounded away
from 0 and ∞. In the propositions below, we just indicate that such constants exist.
Expressions for determining their values are derived in the associated appendices and
are shown in Table 2.

3.3 Taylor expansion in the population densities of the approximate phenotypes

We now expand the fitness-generating function in m′. We denote by
�

m′ �
(

�
m1, . . . ,

�
mN+1)T the initial state

�

n′ � (
�
n1, . . . ,

�
nN+1) expressed in terms of m′,

with
�
mi � ∑

j∈com(i)
�
n j for i � 1, . . . , M and

�
mi � ε

�
ni for i � M + 1, . . . , N + 1.

Lemma 1 allows F(si ; s′;n′) to be expanded inm′ around �
n

′
as

F(si ; s′;n′) � �

Fi + b′T
i (m′ −

�

m′) + Ri , (3.3a)

where

�

Fi :� F(si ; s′;
�

n′), (3.3b)
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Here
�

Fi � 0 for i � 1, . . . , N (from the equilibrium equation of the residents), and

∣∣∣∣
�

FN+1

∣∣∣∣ ≤ ε
�

C ′
Fz (3.3f)

(Appendix B.2). Moreover, by the bounded-world axiom (v) and Taylor’s theorem,
we have

Lemma 2 If there exists a constant Cm such that

∣∣∣m − �
m
∣∣∣ ≤ εCm, (3.4a)

then there exist constants C ′
m � √

C2
m + (N − M + 1)η2 and C ′

Fmm satisfying

∣∣∣∣m
′ −

�

m′
∣∣∣∣ ≤ εC ′

m (3.4b)

and

|Ri | ≤ 1
2C

′
Fmm

∣∣∣∣m
′ −

�

m′
∣∣∣∣
2

≤ 1
2ε

2C ′
FmmC

′2
m, (3.4c)

where for vectors | · | denotes the Euclidian norm.
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See Appendix B.3 for the proof. Thus, if Eq. (3.4a) is satisfied for a sufficiently
small ε, the fitness-generating function is approximated well by a linear function of
m′.

3.4 Taylor expansion in the population densities of the original phenotypes

Next, we transform the term linear inm′ in Eq. (3.3a) into one in n′. Asm′ is a linear
function of n′, m′ can be written as m′ � Wn′, where W is a (N + 1)-by-(N + 1)
matrix with components given by Eq. (3.1a). Therefore, substituting this relationship
into Eq. (3.3a) gives

F(si ; s′;n′) � �

Fi + b′T
i W(n′ −

�

n′) + Ri

� �

Fi + aTi (n
′ −

�

n′) + Ri , (3.5a)

where, since
	

F(si ; s′;m′) � F(si ; s′;n′),

aTi � (
ai,1, . . . , ai ,N+1

)
:� b′T

i W

� ∂
	

F(si ; s′;m′)
∂m′

∣∣∣∣∣∣
m′� �

m′
W

� ∂F(si ; s′;n′)
∂n′

∣∣∣∣
n′��

n′

�
(

∂F(si ; s′;n′)
∂n′

1
, . . . ,

∂F(si ; s′;n′)
∂n′

N+1

)∣∣∣∣
n′��

n′
. (3.5b)

By combining the equations above with Lemma 2, and by using Eq. (2.3), we get

Theorem 1 For the population densities m � (m1, . . . ,mM )T of approximate phe-
notypes sa � (s1, . . . , sM )T formed by clustering resident and mutant phenotypes
s′ � (s1, . . . , sN+1)T according to a threshold phenotypic distance ε � εμρμ, if m
satisfies

∣∣∣m − �
m
∣∣∣ ≤ εCm,

during the transient following mutant invasion, then the fitness-generating function
can be expanded as

F(si ; s′;n′) � �

Fi +
N+1∑

j�1

ai j (n j − �
n j ) + Ri (3.6a)
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with |Ri | ≤ C ′
Fmm

∣∣∣∣m
′ − �

m′
∣∣∣∣
2

≤ ε2C ′
FmmC

′
m, which gives the LV -approximation

dni
dt

� ni

⎡

⎣γi +
N+1∑

j�1

ai j n j + Ri

⎤

⎦ (3.6b)

with γi � �

Fi − ∑N+1
j�1 ai j

�
n j .

4 Approximability condition when the population densities
of the approximate phenotypes are large

In this section, we consider the sufficient condition in Eq. (3.4a) for LV-

approximability,
∣∣∣m − �

m
∣∣∣ < εCm.We refer to this as the approximability condition. If

the initial equilibrium population densities of approximate phenotypes are not small,
so that

�
mi � ε is satisfied for all i � 1, . . . , M , their dynamics can be analyzed

by a linear stability analysis of the resident equilibrium. On the other hand, if some
approximate phenotypes have very small equilibrium population densities, also the
corresponding eigenvalues of the associated Jacobian come very close to zero and
examining linear terms alone is not sufficient. In this section, we analyze the first,
simpler, case to show that the approximability condition (3.4a) can generally be ful-
filled. The second, more complicated, case is then analyzed in a similar manner in the
next section.

4.1 Dynamics of approximate phenotypes

The dynamics of approximate phenotypes m � (m1, . . . ,mM )T satisfies, by
Eqs. (3.1a) and (2.3),

dmi

dt
� mi f (si ; s′;n′) (4.1a)

for i � 1, . . . , M , where the growth rate of mi ,

f (si ; s′;n′) :�
∑

j∈com(i)

p j F(s j ; s′;n′), (4.1b)

is the average growth rate within the i th cluster weighted with the fractions p j :�
n j/mcid( j) of its component phenotypes. As for the remaining degrees of freedom in
m′, i.e., mi � εni for i � M + 1, . . . , N + 1, their dynamics are given by

dmi

dt
� mi F(si ; s′;n′). (4.1c)
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When m is kept constant, these remaining degrees of freedom describe the relatively
slow dynamics of the cluster compositions, corresponding to the dynamics of the
fractions p j .

4.2 Transformation into perturbed community

For convenience, Eq. (4.1a) is rewritten in vector–matrix form as

dm
dt

� diag(m)f(sa; s′;n′), (4.2)

where diag(m) is a diagonal matrix with diagonal entries m1, . . . ,mM , sa �
(s1, . . . , sM )T, and f(sa; s′;n′) :� (

f (s1; s′;n′), . . . , f (sM ; s′;n′)
)T. We decompose

the right-hand side of Eq. (4.2) into a component determined bym alone and a resid-
ual of order ε, which is treated as a perturbation. The former component is further
decomposed into linear and higher-order terms. Specifically, we have

Lemma 3 The dynamics of m in Eq. (4.2) can be transformed into

dm
dt

� J(m − �
m) + rm

∣∣∣m − �
m
∣∣∣
2
+ εhm, (4.3a)

where

J :� diag(
�
m)B �

⎛

⎜⎝

�
m1b11 . . .

�
m1b1M

. . . . . . . . .
�
mMbM1 . . .

�
mMbMM

⎞

⎟⎠,

bi j :� ∂F(si ; sa;m)

∂m j

∣∣∣∣
m��

m

, (4.3b)

and rm � (rm1, . . . , rmM )T is a function of m satisfying |rm| ≤ Crm, while hm �
(hm1, . . . , hmM )T is a function of m′ and ε satisfying |hm| ≤ Chm.

See Appendix C for the proof. Notice that J and rm are both independent of ε.

4.3 Local Lyapunov function

If the perturbation term is neglected in Eq. (4.3a), i.e., ε � 0, we can easily examine
the local stability of the fixed point

�
m by checking whether all eigenvalues of J have

negative real parts. With the perturbation, however, we also have to compare the
magnitudes of those eigenvalues with the perturbation. Moreover, as the perturbation
causes a deviation of the community from

�
m, the effect of the higher-order term rm∣∣∣m − �

m
∣∣∣
2
has to be examined as well.
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To simplify the analysis, we introduce a newvector x � (x1, . . . , xM )T � P(m− �
m)

with a real matrix P and write Eq. (4.3a) as

dx
dt

� Ax + r|x|2 + εh, (4.4)

with A :� PJP−1, r :� Prm
∣∣P−1x

∣∣2/|x|2, h :� Phm, |r| ≤ Cr, and |h| ≤ Ch; see
Appendix D. As proved in Appendix E, we have

Lemma 4 A real matrix P can be chosen so that A � PJP−1 satisfies

xTAx ≤ λmax|x|2 (4.5a)

for λmax < 0 with

λmax :� max{Re(λ1), . . . ,Re(λM )} (4.5b)

(when the eigenvalues λ1, . . . , λM of J in Eq. (4.3b) are all distinct) or

λmax :� max
{
Re(λ1), . . . ,Re(λD), 1

2Re(λD+1), . . . , 1
2Re(λM )

}
(4.5c)

(when some eigenvalues are repeated, with distinct eigenvalues λ1, . . . , λD and
repeated eigenvalues λD+1, . . . , λM).

When the second and third terms in Eq. (4.4) are both neglected, the time derivative
of |x|2 is a monotonically decreasing function if λmax < 0, which gives

Lemma 5 For Eq. (4.4) with ε � 0, if

λmax < 0, (4.6a)

then

V :�
M∑

i�1

x2i � |x|2 � xTx (4.6b)

is a local Lyapunov function, i.e., V � 0 for x � 0 and dV /dt < 0 for 0 < |x| < φ

with a sufficiently small φ.

Proof By Eqs. (4.4) and (4.6a), the time derivative of V equals

dV

dt
� 2xT

dx
dt

� 2xTAx + 2xTr|x|2 + 2εxTh

≤ 2λmax|x|2 + 2xTr|x|2 + 2εxTh

≤ 2λmax|x|2 + 2Cr|x|3 + 2εCh|x|
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0=V V

1x

2x
hφ rφ

0 δ= +V V

0

0

D 

E 

Fig. 2 Stability against perturbation when the initial equilibrium population densities of approximate phe-
notypes are not small. As a simple example, a community composed of two approximate phenotypes
sa � (s1, s2)T is considered. Their population densitiesm � (m1,m2)T are transformed into x � (x1, x2)T

so that x � 0 corresponds to the initial equilibrium before mutant invasion. A local Lyapunov function V �
|x|2 of the community dynamics monotonically decreases with time within the light-gray and dark-gray
regions marked by D. The dark-gray region marked by E is associated with a repeller that prevents the
community dynamics from passing its inner boundary |x| � φh from its inner side |x| < φh

� 2Cr|x|2(|x| − φr) + λmax|x|(|x| − φh), (4.7a)

where

φr :� |λmax|
2Cr

> 0,

φh :� 2εCh

|λmax| > 0. (4.7b)

Thus, if ε � 0 (i.e., φh � 0), then V � 0 for x � 0 and dV /dt < 0 for 0 < |x| < φr.
Therefore, V is a local Lyapunov function for x � 0. �

4.4 Stability condition under perturbation

For λmax < 0 and ε < λ2max/(4ChCr), there exists a contour V � V0 with φ2
h < V0 <

φ2
r on which dV /dt < 0 (Fig. 2). Hence, all solutions of Eq. (4.4) that start within this

contour stay inside of it. As the initial state
�
x satisfies

�
x � P(�

m − �
m) � 0, we have

Lemma 6 If

√
ε <

−λmax

2
√
ChCr

, (4.8a)

then

|x| < 2ε
Ch

|λmax| (4.8b)
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during the transient following mutant invasion.

Finally, by translating Eq. (4.8b) back to m − �
m � P−1x, and by substituting it

into Eq. (3.4a), we have

Theorem 2 For the population densities m � (m1, . . . ,mM )T of approximate phe-
notypes sa � (s1, . . . , sM )T formed by clustering resident and mutant phenotypes
s′ � (s1, . . . , sN+1)T according to a threshold phenotypic distance ε � ρμεμ, if λmax
defined by Eq. (4.5) satisfies the approximability condition, Eq. (4.8a),

√
ε < − λmax

2
√
ChC r

,

then
∣∣∣m − �

m
∣∣∣ ≤ Cmε (4.9a)

during the transient following mutant invasion, where

Cm � 2
∥∥P−1

∥∥Ch

|λmax| (4.9b)

with P defined by Eq. (E.24) of Appendix E and with ‖ · ‖ denoting the induced norm
for the matrix·, i.e., the maximum absolute value among its eigenvalues.

In evolutionary dynamics determined by trait-substitution sequences, i.e., induced
by repeatedmutant invasions,when thefitness gradients for all residents are sufficiently
strong, so that the coexistence of a mutant and its parental resident is impossible for
any resident (as explained in Sect. 8), each of the resident phenotypes is not similar
to any other. Then, ε may be chosen at ε � εμ (i.e., ρμ � 1), so that only the mutant
and its parental resident are clustered. This parental resident can be chosen as the
approximate phenotype of that cluster, in which case all approximate phenotypes are
identical to the resident phenotypes before the mutant invasion. Thus, as long as the
initial equilibrium before the invasion is linearly stable, λmax is negative, because of
Eq. (4.1a) in conjunction with Eq. (2.3). Hence, for sufficiently small εμ, Eq. (4.8a)
is always satisfied, in accordance with the proof by Dercole and Rinaldi (2008).

On the other hand, when the fitness gradients for some residents become small
as a consequence of their directional coevolution toward higher fitnesses, effects of
the higher-order properties of the fitness function may induce evolutionary branch-
ing. During the early stage of evolutionary branching, phenotypic distances among
residents branched from the ancestral resident have magnitudes that are comparable
with εμ. In this case, clustering only the mutant and its parental resident with ε � εμ

may provide too small a value of |λmax| to satisfy Eq. (4.8a), while including similar
residents in the cluster for an appropriate ε larger than εμ may provide a sufficiently
large |λmax| to satisfy Eq. (4.8a).

InDercole andRinaldi (2008), only themutant and its parental resident are clustered
together, and the other residents are not clustered. Thus, when the phenotypic distance
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among some residents is small, say, equal to εresident, the leading eigenvalue of the
community’s Jacobian matrix inevitably is close to zero as well. This problem is
avoided in their proof by assuming sufficiently small mutational step sizes compared
to εresident. However, when we consider a trait substitution sequence under a given
magnitude of mutational step sizes, early stages of evolutionary branching inevitably
lead to εresident of the same order of magnitude as the mutational step sizes, no matter
what is assumed for the latter. From this perspective, the proof by Dercole and Rinaldi
(2008) requires all the residents to be dissimilar.

According to Eq. (4.3b), the leading eigenvalue also becomes close to zero when
initial equilibrium densities of some residents are small. Analogously to the above case
of similar residents, while this problem is seemingly avoided in Dercole and Rinaldi
(2008) by assuming sufficiently smallmutational step sizes, it inevitably occurs in trait-
substitution sequences in which residents gradually go extinct. Hence, their proof fails
to cover all the cases that one may wish to consider (and are actually considered in
their book).

5 Approximability condition when the population densities of some
approximate phenotypes are small

If an approximate phenotype s1 has a small population density
�
m1 � O(ε) at the

initial equilibrium, then the corresponding eigenvalue of J � diag(
�
m)B will be close

to zero, making it difficult to satisfy the approximability condition in Eq. (4.8a). Even

in this case, however,
∣∣∣m − �

m
∣∣∣ � O(ε) may hold during the transient followingmutant

invasion. To cover this situation by developing a refined approximability condition,
we examine in this section not only linear terms, but also quadratic terms, of the Taylor
expansions investigated in the preceding section.

5.1 Transformation into perturbed community

First, we decompose the function f in Eq. (4.2),

dm
dt

� diag(m)f(sa; s′;n′),

into the terms that are linear inm, the terms that are of higher order inm, and the per-
turbation terms, in a manner similar to Lemma 3 in the previous section. Specifically,
we have

Lemma 7 Equation (4.2) can be transformed into

dm
dt

� diag(m)

[
B(m − �

m) + εhf + rf
∣∣∣m − �

m
∣∣∣
2
]
, (5.1)

where rf � (rf1, . . . , rfM )T is a function of m satisfying |rf| ≤ Crf and hf �
(hf1, . . . , hfM )T is a function of m′ and ε satisfying |hf| ≤ Chf.
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See Appendix C.1 for the proof.
We now consider situations in which L population densities, i.e.,

�
mi for i �

1, . . . , L , are large, while the remaining K � M − L population densities, i.e.,
�
mi

for i � L + 1, . . . , M , are small, such that
∣∣∣(�
mL+1, . . . ,

�
mM )

∣∣∣ � ρmε for a positive

constant ρm. To treat the small population densities differently from the larger ones,
we decompose m into the larger population densities mx � (m1, . . . ,mL )T and the
small population densitiesmy � (mL+1, . . . ,mM )T,m � (mx,my)T. Then, Eq. (5.1)
is split into

dmx

dt
� diag(mx)

[
Bxx(mx − �

mx) + Bxy(my − �
my) + εhfx + rfx

∣∣∣m − �
m
∣∣∣
2
]

(5.2a)

and

dmy

dt
� diag(my)

[
Byx(mx − �

mx) + Byy(my − �
my) + εhfy + rfy

∣∣∣m − �
m
∣∣∣
2
]
, (5.2b)

with
(
Bxx Bxy
Byx Byy

)
� B,

(
hfx
hfy

)
� hf,

(
rfx
rfy

)
� rf. (5.2c)

Around the initial equilibrium
�
m, the dynamics of my are much slower than those

ofmx.When ε goes to zero, the equilibrium population densities
∣∣∣(�
mL+1, . . . ,

�
mM )

∣∣∣ ≤
ρmε do so as well, i.e.,

�
m → (

�
m1, . . . ,

�
mL , 0, . . . , 0)T �

(
�
mx
0

)
�:

�

m̃, (5.3a)

and the whole dynamics get confined to a center manifold given by dmx/dt � 0. The
slow dynamics close to the center manifold are governed by dmy/dt . An approxima-
tion for this center manifold can be derived by setting dmx/dt � 0 with εhfx + rfx∣∣∣m − �

m
∣∣∣
2 � 0, yielding

mx � �
mx − B−1

xx Bxymy �: m̃x(my), (5.3b)

which passes through the fixed point m̃x(0) �:
�

m̃.

Although for ε > 0,
�
m � (

�
mx,

�
my)T will deviate from

�

m̃ � (
�
mx, 0)T, it is expected

that for small ε the dynamics can still be effectively characterized by their projection
onto the center manifold mx � m̃x(my). Thus, we transform Eq. (5.2a) into

dx
dt

� Axx + εh̃x + r̃x|w|2, (5.4a)

dy
dt

= diag(y)
[
Jyy + Ux + εh̃y + r̃y|w|2

]
, (5.4b)
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with
∣∣∣h̃x

∣∣∣ ≤ C̃hx,
∣∣∣h̃y

∣∣∣ ≤ C̃hy, |r̃x| ≤ C̃rx, and
∣∣r̃y

∣∣ ≤ C̃ry,wherex :� P(mx−m̃x(my))

describes the convergence to, or deviation from, the center manifold mx � m̃x(my),
and y :� my describes the slow dynamics along the manifold. The other variables and
parameters newly introduced in Eqs. (5.4a) and (5.4b) are given by

w :�
(
x
y

)
,

Ax :� PJxP−1 � Pdiag(�
mx)BxxP−1,

U :� ByxP−1,

Jy :� Byy − ByxB−1
xx Bxy, (5.4c)

(Appendix F.1–F.4), where P is chosen so that Eq. (4.5a) is satisfied for A � Ax
(Appendix E). Notice that y must be non-negative while x is indeterminate. Here,

the effect of
�
m − �

m̃ is subsumed into the perturbation terms h̃x and h̃y. Neglecting

them gives a fixed point w �
(
x
y

)
� 0 that corresponds to

�

m̃ � (
�
mx, 0)T, which is

slightly different from the initial equilibrium
�
m � (

�
mx,

�
my)T when ε > 0. In the next

subsections, we analyze the magnitude of

∣∣∣∣m − �

m̃

∣∣∣∣ in Eq. (5.4a) during the transient

following mutant invasion, to obtain the magnitude of
∣∣∣m − �

m
∣∣∣ �

∣∣∣∣m − �

m̃

∣∣∣∣ + O(ε).

5.2 Local Lyapunov function

Following Mazenc (2001), we construct a local Lyapunov function to examine the
magnitude of |w| during the transient following mutant invasion. We have

Lemma 8 In Eq. (5.4a) with ε � 0, if the eigenvalues λ̃1, . . . , λ̃M of the symmetric
part of

Ã �
(
Ax 0
dU dJy

)
, (5.5a)

with d being a positive constant, satisfy

λ̃max � max
{
λ̃1, . . . , λ̃M

}
< 0 (5.5b)

and |w| < φ, with φ being a sufficiently small constant, then

V �
L∑

i�1

x2i + 2d
M∑

i�L+1

yi

� xTx + 2dcTy (5.5c)
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with c � (1, . . . , 1)T is a local Lyapunov function.

Proof We assume that λ̃max < 0. The time derivative of V is

dV

dt
� 2xT

dx
dt

+ 2dcT
dy
dt

� 2xT
[
Axx + εh̃x + r̃x|w|2

]
+ 2dcTdiag(y)

[
Jyy + Ux + εh̃y + r̃y|w|2

]

� 2xT
[
Axx + εh̃x + r̃x|w|2

]
+ 2dyT

[
Jyy + Ux + εh̃y + r̃y|w|2

]

� 2

(
x
y

)T( Ax 0
dU dJy

)(
x
y

)
+ 2

(
x
y

)T( r̃x
d r̃y

)
|w|2 + 2ε

(
x
y

)T( h̃x
dh̃y

)

� 2wTÃw + 2wTr̃|w|2 + 2εwTh̃, (5.6a)

with

r̃ �
(

rx
dry

)
, h̃ �

(
hx
dhy

)
. (5.6b)

Notice that the last line of Eq. (5.6a) has a form identical to the second line of
Eq. (4.7a). Although in this case the initial state �

w :� (0, . . . , 0,
�
mL+1, . . . ,

�
mM )T is

not zero,
∣∣∣�
w

∣∣∣ �
∣∣∣(0, . . . , 0, �

mL+1, . . . ,
�
mM )

∣∣∣ � ερm holds. Therefore, Eq. (5.6a) can

analogously be transformed further,

dV

dt
≤ 2λ̃max|w|2 + 2C̃r|w|3 + 2εC̃h|w|

� 2C̃r|w|2
⎛

⎝|w| −
∣∣∣λ̃max

∣∣∣

2C̃r

⎞

⎠ + λ̃max|w|
⎛

⎝|w| − 2εC̃h∣∣∣λ̃max

∣∣∣

⎞

⎠

≤ 2C̃r|w|2
⎛

⎝|w| −
∣∣∣λ̃max

∣∣∣

2C̃r

⎞

⎠ + λ̃max|w|
⎛

⎝|w| − max

⎧
⎨

⎩
2εC̃h∣∣∣λ̃max

∣∣∣
, ερm

⎫
⎬

⎭

⎞

⎠

� 2C̃r|w|2
(
|w| − φ̃r

)
+ λ̃max|w|

(
|w| − φ̃h

)
, (5.6c)

where C̃h ≥
∣∣∣h̃
∣∣∣, C̃r ≥ |r̃| (Appendix F.5) and

φ̃h � max

⎧
⎨

⎩
2εC̃h∣∣∣λ̃max

∣∣∣
, ερm

⎫
⎬

⎭,

φ̃r �
∣∣∣λ̃max

∣∣∣

2C̃r
. (5.6d)
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In Eq. (5.6c), the transformation from the second to the third row allows the initial

state �
w to satisfy

∣∣∣�
w

∣∣∣ � ερm ≤ φ̃h, which is used for the case of ε > 0 in Lemma 10.

Therefore, for ε � 0 (i.e., φ̃h � 0), V satisfies V � 0 for w � 0 and dV /dt < 0 for
|w| < φ̃r. �

In addition, the following lemma is proved in Appendix G.

Lemma 9 Equation (5.5b), i.e.,

λ̃max < 0,

holds, if the real parts of the eigenvalues of Jx � diag(
�
mx)Bxx and the real eigenvalues

of 1
2

(
Jy + JTy

)
with Jy � Byy − ByxB−1

xx Bxy are all negative, and if d is sufficiently

small.

5.3 Stability under perturbation

Next, we take the perturbation into account, i.e., we consider ε > 0. In the previous
section, the contour curves of the local Lyapunov function have the same shapes as
the boundaries of the region ensuring that dV /dt < 0, i.e., as the two circles |w| � φh
and |w| � φr. In this section, although the contours have shapes different from the
circles |w| � φ̃h and |w| � φ̃r, the manner of analysis is the same. First, as the initial

state �
w satisfies

∣∣∣�
w

∣∣∣ � ερm ≤ φ̃h according to Eq. (5.6d), we trivially have

Lemma 10 We assume that ε is sufficiently small so that φ̃h < φ̃r. For a region D �{
w| φ̃h < |w| < φ̃r

}
, within which dV /dt < 0 with V defined in Eq. (5.5c), consider

a contour curve V � V0 such that its inscribed circle is given by |w| � φ̃h and its
circumscribed circle is given by |w| � αφ̃h with α > 1 (Fig. 3). If

αφ̃h < φ̃r, (5.7a)

then there exists a set E � {w| V0 < V < V0 + δ} with a sufficiently small δ where
dV /dt < 0 and which therefore ensures that

|w| ≤ αφ̃h (5.7b)

holds during the transient following mutant invasion.

This lemma is an extension of Lemma 5 relaxing the requirement that the contours
be circular: Lemma 10 with α � 1 corresponds to Lemma 5.

Then, by substituting Eqs. (5.6d) into (5.7a), we have

Lemma 11 For some d, if

√
ε <

−λ̃max

2

√
αC̃rmax

{
C̃h,

1
2

∣∣∣λ̃max

∣∣∣ρm
} , (5.8a)

123



Lotka–Volterra approximations for evolutionary trait… 2169

y

x hφ%

0=V V

rφ%

0 δ= +V V

hαφ%
0

0

D 

E 

Fig. 3 Stability against perturbation when the initial equilibrium population densities of some approximate
phenotypes are small. As a simple example, a community composed of two approximate phenotypes sa �
(s1, s2)T is considered. Their population densitiesm � (m1,m2)T are transformed intow � (x, y)T so that
w � 0 corresponds to the initial equilibrium before mutant invasion, where y corresponds to the population
density of the phenotype with small population density. A local Lyapunov function V � x2 + dy (with
d > 0) of the community dynamics monotonically decreases with time within the light-gray and dark-
gray regions marked by D. The dark-gray region marked by E is associated with a repeller that prevents
the community dynamics from passing a boundary V � V0 from its inner side V < V0, thus keeping
|w| ≤ αφ̃h

then

|w| ≤ − 2εα∣∣∣λ̃max

∣∣∣
max

{
C̃h,

1
2

∣∣∣λ̃max

∣∣∣ρm
}

(5.8b)

holds during the transient following mutant invasion, where

α �

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 for K � 0

max

{√
φ̃2
h+Kd2

φ̃h
,

φ̃2
h+Kd2

2dφ̃h

}
for 0 < K ≤ φ̃2

h
d2

max

{√
2dK 1/2φ̃h

φ̃h
,
√
K

}
for K >

φ̃2
h

d2

, (5.8c)

and K � M − L is the number of approximate phenotypes with small equilibrium
population densities.

See Appendix H for the derivation of the expressions for α. When K � 0, this
lemma is independent of d and becomes identical to Lemma 6 in the previous section,
i.e., λ̃max � λmax, C̃r � Cr, C̃h � Ch, and α � 1. Thus, this lemma includes Lemma
6 as a special case. When K > 0, on the other hand, λ̃max, α, C̃h, and C̃r in Eq. (5.8a)
all depend on d. A choice for d may be one that maximizes the right-hand side of
Eq. (5.8a).

By translating Lemma 11 into a corresponding statement for m, we get
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Theorem 3 For the population densities m � (m1, . . . ,mM )T of approximate
phenotypes sa � (s1, . . . , sM )T formed by clustering resident phenotypes s′ �
(s1, . . . , sN+1)T according to a threshold phenotypic distance ε � ρμεμ, if the approx-
imability condition, Eq. (5.8a),

√
ε <

−λ̃max

2

√
αC̃rmax

{
C̃h,

1
2

∣∣∣λ̃max

∣∣∣ρm
}

is satisfied for some d, then

∣∣∣m − �
m
∣∣∣ �

∣∣∣∣Q
−1w +

�
m − �

m̃

∣∣∣∣ ≤ Cmε,

Cm �
2α

∥∥Q−1
∥∥max

{
C̃h, − 1

2 λ̃maxρm

}

∣∣∣λ̃max

∣∣∣
+ ρm, (5.9a)

holds during the transient following mutant invasion, where m is split into an L-
dimensional vector mx � (m1, . . . ,mL )T of not-small initial population densities,
and a K (� M − L)-dimensional vector my � (mL+1, . . . ,mM )T of small initial

population densities
�
mL+1, . . . ,

�
mM such that

∣∣∣
(

�
mL+1, . . . ,

�
mM

)∣∣∣ � ερm (ρm � 0

when all initial population densities are not small, i.e., K � 0), and λ̃1, . . . , λ̃M are

the eigenvalues of 1
2

(
Ã + ÃT

)
with

Ã �
(

Ax 0
dByxP−1 dJy

)
,

Ax � P−1diag(
�
mx)BxxP,

Jy � Byy − ByxB−1
xx Bxy,

Q �
(
P PB−1

xx Bxy
0 Iy

)
,

(
Bxx Bxy
Byx Byy

)
� B, (5.9b)

where Iy denotes the K ×K identity matrix,B is defined in Eq. (4.3b), and P is defined
in Eq. (E.24) in Appendix E.

Note that it is arbitrary which phenotypes we choose as having small initial popula-
tion densities. Thus, whether each approximate phenotype’s initial population density
is small or not can be decided in such a manner that satisfying the approximability
condition becomes easiest. If none of the approximate population densities is treated
as small, i.e., K � 0, Theorem 3 becomes identical to Theorem 2. Thus, Theorem 3
includes Theorem 2 as a special case. The threshold phenotypic distance ε and the
way of clustering can also be chosen arbitrarily, so that satisfying the approximability
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condition becomes easiest, as long as ε > εμ. Notice that C̃h depends on ε, although it
is bounded when ε → 0. In addition, all of the other mathematical objects in Eq. (5.8a)
depend indirectly on ε, because ε affects how to cluster the existing phenotypes. A
procedure for the evaluation of Eq. (5.8a) would be as follows: first choose ε, and
then choose approximate phenotypes, choose K , choose d when K > 0 (so that the
right-hand side of Eq. (5.8a) is maximized), and examine whether the inequality holds
good.

Moreover, the initial state
�

n′ need not be exactly at an equilibrium of the resident

phenotypes s1, . . . , sN if the value of
�

C ′
Fz is adjusted such that F(si ; s

′;
�

n′) ≤ ε
�

C ′
Fz is

satisfied for all i � 1, . . . , N+1. Therefore, this theorem can be applied also to the case
of higher mutation rates, in which frequent mutant invasions prevent the community
from reaching the next population-dynamical equilibrium.

Note also that the smallness of changes of the population densities of the approx-
imate phenotypes ensures not only the smallness of fitness changes of existing
phenotypes F(si ; s′;n′) for i � 1, . . . , N + 1, i.e., LV-approximability, but also the
smallness of fitness changes of any non-existing phenotype z, i.e., of the fitness land-
scape F(z; s′;n′). Specifically, from Theorem 3 we immediately see

Corollary 1 If the approximability condition, Eq. (5.8a), in Theorem 3 is satisfied, then
the change of the fitness landscape F(z; s′;n′) is slight during the transient following
mutant invasion, because by using Taylor’s theorem we see that

∣∣∣∣F(z; s
′;n′) − F(z; s′;

�

n′)
∣∣∣∣

�
∣∣∣∣

	

F(z; s′;m′) − 	

F(z; s′;
�

m′)
∣∣∣∣

�

∣∣∣∣∣∣∣

⎡

⎢⎣
	

F(z; s′;
�

m′) + ∂
	

F(z; s′;m′)
∂m′

∣∣∣∣∣∣
m′�m′

T

(m′ −
�

m′)

⎤

⎥⎦ − 	

F(z; s′;
�

m′)

∣∣∣∣∣∣∣

�

∣∣∣∣∣∣∣

∂
	

F(z; s′;m′)
∂m′

∣∣∣∣∣∣
m′�m′

T

(m′ −
�

m′)

∣∣∣∣∣∣∣

≤ max∣∣∣∣m′− �
m′
∣∣∣∣<C ′

mε

∥∥∥∥∥∥
∂

	

F(z; s′;m′)
∂m′

∥∥∥∥∥∥
C ′
mε, (5.10a)

wheremT :� θT(m − �
m) +

�
m with an appropriately chosen θT ∈ [0, 1], and by using

Cm from Eq. (5.9a) in C ′
m � √

C2
m + (N + 1 − M)η2 from Lemma 2, we see that

C ′
m �

√√√√√√

⎛

⎝
2α

∥∥Q−1
∥∥max

{
C̃h,− 1

2 λ̃maxρm

}

∣∣∣λ̃max

∣∣∣
+ ρm

⎞

⎠
2

+ (N + 1 − M)η2. (5.10b)

123



2172 H. C. Ito et al.

5.4 Generalization to higher-dimensional trait spaces

Theorems 1–3 and Corollary 1 apply to one-dimensional trait spaces. These results
readily generalized to trait spaces of arbitrary dimensions by a slightmodificationof the
analyses so that the derivative of the fitness function with respect to a phenotype in the
one-dimensional trait space is replaced with the corresponding directional derivative
in the higher-dimensional trait space, as shown in Appendix I.

6 Tighter estimates

For deriving the approximability conditions in Eqs. (4.7a) and (5.8a), we have used
the maximum possible values of the perturbation terms (h and h̃) and nonlinear
terms (r and r̃) attainable for n′ ∈ [0, η]N+1. These provide the simplest, but rather
conservative, approximability conditions. By approximating those terms as linear or
higher-order functions of population densities (corresponding to x and w), we may
improve the estimates underlying the approximability conditions. In Theorem 2, for
example, the perturbation term h can be expanded in w around w � 0 (i.e., m � �

m)
up to the first-order remainder terms,

h � �

h +Hx,
�

h � h|
m� �

m′ ,

H � ∂h
∂x

∣∣∣∣
m�m′

T

, (6.1)

with some appropriately chosen mT ∈ [0, η]M . Then, applying Eqs. (6.1) to Lemma
6 gives the condition

√
ε <

−λmax√
4

�

ChCr + 2CH|λmax|
, (6.2)

where
�

Ch ≥
∣∣∣∣
�

h

∣∣∣∣ and CH ≥ ‖H‖; see Appendix J for the derivation. As the magnitude

of the zeroth-order term for h is estimated more tightly by
�

Ch at m � �
m, compared

to Ch used in the original approximability condition in Eq. (4.8a), this condition can
work better than the original approximability condition, but is less simple.

7 Example: Approximability condition for a resource-competition
model

In this section, we give a simple example of how to examine the approximability
condition in a specific ecological model.
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7.1 Model description

We consider a resource-competition model based on the Beddington–DeAngelis-type
functional response (Beddington 1975; DeAngelis et al. 1975), known to describe
both saturation of consumption and interference competition among consumers.
Under N coexisting consumer phenotypes s � (s1, . . . , sN )T with their densities
n � (n1, . . . , nN )T, we describe the i th phenotype’s per-capita growth rate as

1

ni

dni
dt

� βg(si ; s;n) − ψ, (7.1)

g(si ; s;n) � θ (si )

ζ1 + ζ2θ (si ) + ζ3
∑N

j�1 n jα(s j , si )
, (7.2)

In Eq. (7.1), g(si ; s;n) is the resource gain of phenotype si , β is a constant assimila-
tion efficiency, and ψ is a constant natural death rate. In Eq. (7.2), θ (si ) is the density
of potential resources for si , and α(s j , si ) describes the niche overlap between phe-
notypes si and s j . ζ1, ζ2, and ζ3 are constant parameters related to the encounter rate
of resources, handling time of resources, and intensity of interference competition,
respectively. Notice that ζ3 � 0 gives the Holling type-II functional response (Holling
1959). Equation (7.2) can be derived from a generalized Beddington–deAngelis func-
tional response with explicit description of a resource distribution and phenotypes’
niches expressed along a resource-quality axis (Appendix L.1).

We assumeψ � 1 and ζ3 � 1 without loss of generality. For simplicity, we assume
that θ (si ) depends only on si (i.e., constant inflows of resources into the system) and
that

α(s j , si ) � exp
(
− 1

2 (s j − si )
2
)
. (7.3)

7.2 Approximability condition

As a simplest example for the approximability condition in this model, we consider
invasion by amutant phenotype s2 into a single resident phenotype s1 at its population-
dynamical equilibrium

�
n1 � [β − ζ2]θ (s1) − ζ1. From Eqs. (7.1) and (7.2), their

population dynamics are given by

1

n1

dn1
dt

� F(s1; s′;n′) � βθ (s1)

ζ1 + ζ2θ (s1) + n1 + n2α(s2, s1)
− 1, (7.4a)

1

n2

dn2
dt

� F(s2; s′;n′) � βθ (s2)

ζ1 + ζ2θ (s2) + n1α(s2, s1) + n2
− 1, (7.4b)

with s′ � (s1, s2)T and n′ � (n1, n2)T.
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We choose s1 as the approximate phenotype, i.e., sa � s1 and m′ � (m1,m2)T �
(n1 + n2, εn2)T with ε � s2 − s1, 0 < ε � 1. Then, from Eqs. (4.3b) and (4.5b), we
see

λmax � �
m1b11 � �

n1

[
dF(s2; s1;m1)

dm1

]

m1��
n 1

� −
�
n1

βθ (s1)

� − [β − ζ2]θ (s1) − ζ1

βθ (s1)
. (7.5)

Notice that λmax is always negative because
�
n1 must be positive. As for Ch and Cr

in the approximability condition
√

ε < −λmax/[2
√
ChCr] in Theorem 2, we find (as

derived in Appendix L.2) that

Ch ≤ 	

Ch,

	

Ch � ηβ[5C∂θ + 3εCθ ]

ζ1 + ζ2Cθmin
,

Cr � 1

βθ (s1)
+ η

2βθ (s1)

[ζ1 + ζ2θ (s1)]3
, (7.6)

with

η � [β − ζ2]Cθ − ζ1,

Cθ � max{θ (s)|s ∈ [s1, s2] },
Cθmin � min{θ (s)|s ∈ [s1, s2] },
C∂θ � max

{
dθ (s)

ds
|s ∈ [s1, s2]

}
. (7.7)

Therefore, a sufficient condition for the approximability condition is given by

√
ε < − λmax

2

√
	

ChCr

�
�
n1

2

√
ηβ[5C∂θ+3εCθ ]

ζ1+ζ2Cθmin

(
βθ (s1) + η

2β3θ(s1)3

[ζ1+ζ2θ(s1)]3

) (7.8)

with
�
n1 � [β−ζ2]θ (s1)−ζ1 and Eqs. (7.7). Notice that the right-hand side of Eq. (7.8)

includes εCθ , which is negligible when εCθ � C∂θ .
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8 Application: Extending the invasion–implies–substitution theorem

The derived stability conditions and resultant Lotka–Volterra approximation can be
used to analyze the community dynamics triggered by a mutant invasion. In this sec-
tion, we apply them to extend the invasion–implies–substitution theorem (Dercole and
Rinaldi 2008, Appendix B) to an arbitrary set of resident phenotypes that form well-
recognizable and -separated clusters in a one-dimensional trait space; see Appendix
K for details.

We assume an arbitrary set of resident phenotypes s1, . . . , sN togetherwith amutant
s′ � sN+1, with the resident and mutant phenotypes clustered into approximate phe-
notypes sa � (s1, . . . , sM )T that satisfy the approximability condition of Theorem 3.
Then, from Lemma 2,

∣∣�m′∣∣ ≤ εC ′
m � ε

√
C2
m + (N + 1 − M)η2 is conserved during

the transient following mutant invasion. We denote the identity of the cluster contain-
ing the mutant by i , i.e., cid(N + 1) � i . Using Eq. (4.1a), the dynamics of the mutant
fraction pN+1 � nN+1/mi within this cluster can be expressed as

dpN+1

dt
� d

dt

nN+1

mi

� nN+1

mi
F(sN+1; s′;n′) − nN+1

mi
f (si ; s′;n′)

� pN+1F(sN+1; s′;n′) − pN+1

∑

j∈com(i)

p j F(s j ; s′;n′). (8.1)

For convenience, we assume that the representative phenotype si of this cluster is
chosen as the phenotype most similar to the mutant, i.e., |sN+1 − si | � min j∈com(i)∣∣sN+1 − s j

∣∣. Then, by Taylor’s theorem, we transform Eq. (8.1) into

dpN+1

dt
≥ pN+1(1 − pN+1)

[
�

Fz(si )(sN+1 − si ) − εC ′
Fzm

∣∣�m′∣∣ − ε2CFzz

]
. (8.2a)

Here,
�

Fz(si ) � ∂F(z; s′;
�

n′)/∂z
∣∣∣∣
z�si

is the fitness gradient at si , and the constants

C ′
Fzm and C ′

Fzz bound the remainder terms through
∣∣∣∣∣∣
∂

	

F(z; s′;m′)
∂m′∂z

∣∣∣∣∣∣
z�z jT

≤ C ′
Fzm,

∣∣∣∣
∂2F(z; s′;n′)

∂z2

∣∣∣∣
z�z jT

≤ C ′
Fzz, (8.2b)

for z jT ∈ [s j , scid( j)] for all j � 1, . . . , N + 1 during the transient following mutant
invasion. Then, by substituting our results

∣∣�m′∣∣ ≤ εC ′
m � ε

√
C2
m + (N + 1 − M)η2

and Eq. (5.9a) into Eq. (8.2a), a sufficient condition for dpN+1/dt to be always positive
is given by

�

Fz(si )(sN+1 − si ) > ε2[CFzz + C ′
FzmC

′
m] (8.3)

with C ′
m in Eq. (5.10b).
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If the fitness gradient
�

Fz(si ) is sufficiently strong, so that it satisfies Eq. (8.3), then
pN+1 monotonically increases until it reaches 1, i.e., until all other phenotypes within
the cluster containing the mutant are excluded. Equation (8.3) means that the fitness
advantage of sN+1 against si due to the fitness gradient must exceed the effects of the
curvature of the fitness landscape (ε2CFzz) and of the perturbation due to the population
dynamics (ε2C ′

FzmC
′
m). As long as Eq. (8.3) holds for any resident phenotype and its

mutants, repeated mutant invasions always result in monomorphic phenotype clusters,
i.e., resident phenotypes are kept dissimilar, corresponding to the situation considered

by Dercole and Rinaldi (2008). Notice that when
∣∣∣λ̃max

∣∣∣ becomes close to zero, e.g.,

when the community is close to a bifurcation point of its population dynamics, C ′
m

becomes large and Eq. (8.3) thus becomes difficult to satisfy.

9 Discussion

As explained in the beginning of this paper, ecological interactions engender vari-
ous evolutionary dynamics, including cyclic coevolution, adaptive radiation, adaptive
speciation, taxon cycles, and community formation. To analyze how ecological
interactions induce selection pressures that drive such dynamics, the following two
assumptions are often made (Metz et al. 1992, 1996; Dieckmann and Law 1996).
First, mutation rates are sufficiently small relative to the timescale of the population
dynamics, so that the evolutionary dynamics are reduced to trait-substitution sequences
resulting from repeatedmutant invasions. Second,mutational step sizes are sufficiently
small, so that a mutant invasion typically results in an equilibrium phenotype distri-
bution similar to that before the invasion. The latter is called attractor inheritance
(Geritz et al. 2002). In such cases, each mutant invasion modifies the fitness land-
scape only slightly. The fitness landscape can then be treated as a smooth function
of resident phenotypes at equilibrium population densities, enabling effective analy-
ses of directional coevolution (Dieckmann and Law 1996) and diversification through
evolutionary branching (Metz et al. 1992, 1996; Geritz et al. 1997, 1998). Using the
concept of approximate phenotypes introduced in the present paper, attractor inher-
itance can be translated into the smallness of changes of the population densities of
approximate phenotypes during the transient population dynamics following mutant
invasion, toward the next population-dynamical equilibrium.

9.1 Conditions for attractor inheritance

Prior to our analyses in the present paper, qualitative conditions for attractor inheri-
tance have been proved for sufficiently small mutational step sizes in the following
two cases: (1) all residents and the mutant are similar to each other (Geritz et al.
2002; Meszéna et al. 2005; Durinx et al. 2008), or (2) no two residents are similar
to each other and their initial equilibrium population densities are not small (Dercole
and Rinaldi 2008, Appendix B). In this paper, we have derived quantitative condi-
tions for attractor inheritance for a set of residents and a mutant, by clustering them
according to a threshold phenotypic distance into approximate phenotypes. The condi-
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tions ensuring attractor inheritance, i.e., the approximability conditions in Theorems
2 and 3, establish relationships among the magnitudes of the mutational step size,
the return rate to an equilibrium of the population dynamics of approximate phe-
notypes, the nonlinearity of the population dynamics, and the perturbation due to
within-cluster population dynamics. These conditions are especially important when
finite, rather than infinitesimally small, mutational step sizes are required for analyz-
ing the considered evolutionary dynamics, such as when investigating evolutionary
suicide (Gyllenberg and Parvinen 2001) and evolutionary branching of directionally
evolving populations (Ito and Dieckmann 2012, 2014). A next step would be to ana-
lyze whether it is really possible to satisfy the approximability condition, or rather,
whether the condition can be satisfied with not too large error bounds in all but a set of
theoretically possible but practically irrelevant cases. Although we here have consid-
ered only deterministic population dynamics, the impact of demographic stochasticity
on trait-substitution sequences (Geritz et al. 2002) can be considered using the same
framework we have introduced here, by subsuming its effect in the perturbation terms.

9.2 Assumption of well-recognizable and -separated phenotypic clusters

Our analysis assumes that the number N of existing phenotypes is finite, and that
phenotypic clusters are well-recognizable and well-separated from each other so that
the largest of within-cluster distances, ε, is much smaller than the smallest of between-
cluster distances. We discuss the validity of our two assumptions below.

In principle, ODE population models should be seen as large-system-size limits
of stochastic individual-based models. Generally, the larger the number of coexisting
phenotypes, the slower is the convergence to the ODE limit. Thus, for all practical
purposes, ODE models with very large numbers of phenotypes can be left out of the
picture. If we do so, the finiteness of the number of existing phenotypes, N , ensures
the existence of the smallest between-cluster distance and the largest within-cluster
distance.

However, if a system has long chains of phenotypes in which the distances between
any two consecutive members of the chain are small but the distance between the
ends of the chain is large, we have no way to cluster them so that ε becomes much
smaller than the smallest between-cluster distance. In this case, the error estimate for
perturbation terms in Theorems 2 or 3 (Ch or C̃h), in comparison with the leading
eigenvalue of the community Jacobian matrix (λmax or λ̃max), can be too large for the
approximability condition to be satisfied.

Fortunately, there is effectively no chance of such configurations occurring in ongo-
ing evolutionary dynamics with sufficiently small mutational step sizes as in such
dynamics closely similar phenotypes only occur in the early stages of evolutionary
branching. (The local coexistence regions that can occur in higher-dimensional trait
spaces around the zero fitness contour for particular residents are that narrow that the
chance of a mutant landing in them is practically negligible. The more so since the far
more common mutants landing outside these coexistence regions will oust all those
inside the regions, so there is no chance of the number of coexisting similar pheno-
types ever becoming large (Durinx et al. 2008).) Finally, of phenotypes that evolve
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towards each other, only one will survive due to competitive exclusion. Therefore,
the assumption of well-recognizable and -separated phenotypic clusters is warranted
except for a fraction of cases that will be encountered only very exceptionally, as well
as transiently, in the scenarios that have our interest.

9.3 LV-approximation for analyzing evolutionary branching inmultidimensional
trait spaces

As shown in Sect. 3, attractor inheritance in approximate phenotypes directly enables
LV-approximations of the population dynamics of the original phenotypes before clus-
tering, similar to the previous studies (Meszéna et al. 2005; Dercole and Rinaldi 2008;
Durinx et al. 2008). The derived LV-approximations may be especially useful for
extending conditions for evolutionary branching from one-dimensional trait spaces to
higher-dimensional trait spaces. In two-dimensional trait spaces, various numerical
analyses have shown that phenotypes that are strongly convergence stable, but not
evolutionarily stable, also known as strongly attracting invadable ESSes, induce evo-
lutionary branching (e.g., Vukics et al. 2003; Ackermann andDoebeli 2004; Egas et al.
2005; Ravigné et al. 2009; Ito andDieckmann 2012). Those phenotypes are fixed-point
attractors that can be attained by directional evolution causing the convergence of a
monomorphic population (Leimar 2009) to them, with sufficient proximity of a set in
S2 enabling the emergence of dimorphisms followed by directional evolution causing
the divergence of the two morphs. However, whether an emergent polymorphism can
evolutionarily diversify further into visually distinct morphs without collapse has not
been proved until recently for higher-dimensional trait spaces. Based on the rational
form of invasion-fitness functions in terms of existing phenotypes, which has been
derived by LV-approximation (Durinx et al. 2008), Geritz et al. (2016) derived a set of
conditions that ensure that such diversifying evolution does not collapse in trait spaces
of arbitrary dimension, by describing the initial diversifying evolution with coupled
Lande equations (Lande 1979).While those conditions are satisfied by strongly attract-
ing invadable ESSes in two-dimensional trait spaces, the higher-dimensional cases
remain to be analyzed further (Geritz et al. 2016).

9.4 Axioms for fitness functions

The analyses in this paper are based on a set of axioms for the fitness-generating
functions characterizing ecologically plausible differential equations describing trait-
mediated community dynamics. Our set of axioms are similar to the set of properties
assumed in Dercole (2016), which are used by him to derive a general procedure for
formulating population-dynamical models resulting from individual pairwise interac-
tion. Properties 1, 2, and 3 in Dercole (2016) are identical to our axiom (iii), (iv), and
(ii), respectively, while property 4 in Dercole (2016) corresponds to our axiom (i).
Dercole’s property 4, however, delimits a smaller class of models than ours.

The symmetry axiom (ii) and the reducibility axiom (iii) are no more than consis-
tency conditions, as is the exchangeability axiom (iv). The latter axiom, however, is
together with the remaining smoothness axiom (i) and bounded-world axiom (v) the
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root cause of the Lotka–Volterra approximabiliy. Indeed, Lemma 1, which is central
for deriving the condition for attractor inheritance and LV-approximation, is proved by
applying those three axioms (AppendixA).While the bounded-world axiom (v) seems
to bewell grounded in reality, the smoothness axiom (i) may not hold in an exact sense,
because it assumes that the population-dynamical behavior of individuals depends
smoothly on their traits and that all ecological interactions are instantaneous. This
instantaneousness can arise when the timescale of the life-history dynamics among
individuals is much faster than that of their population dynamics. Durinx et al. (2008)
have proved attractor inheritance and LV-approximation in physiologically structured
models with multiple birth states, in which the timescales of life-history dynamics and
population dynamics are not separated. This instills us with cautious optimism that the
assumption of instantaneousness we have used in the present paper might be relaxed
as well.
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Appendix A: Proof of Lemma 1

Here we deriveC ′
Fm in Eq. (3.2) in the main text. We start from the observation that by

the smoothness and exchangeability of F and the compactness of the set of community
states, i.e., axioms (i), (iv), and (v), there exists a constant C ′

Fn such that

∣∣∣∣
∂F(si ; s′;n′)

∂n j

∣∣∣∣ ≤ C ′
Fn (A.1)

for all i, j� 1, …, N+ 1, with

C ′
Fn ≤ max

{∣∣∣∣
∂F(si ; s′;n′)

∂n j

∣∣∣∣

∣∣∣∣ i, j � 1, . . . , N + 1, n′ ∈ [0, η]N+1
}
. (A.2)
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The derivative of
	

F with respect to m j is calculated from

∂
	

F(si ; s′;m′)
∂m j

�
N+1∑

k�1

∂nk
∂m j

∂
	

F(si ; s′;m′)
∂nk

. (A.3)

To calculate the derivative ∂nk
∂m j

, we substitute Eq. (3.1b),

mk � εnk, (A.4)

for i � M + 1, . . . , N + 1 into Eq. (3.1a) for i � 1, . . . , M,

mk �
∑

l∈com(k)

nl

� nk +
∑

l∈com(k),l ��k

nl

� nk +
∑

l∈com(k),l ��k

1

ε
ml , (A.5)

which gives

nk �
⎧
⎨

⎩
mk − 1

ε

∑
l∈com(k),l ��k

ml for k � 1, . . . , M

1
ε
mk for k � M + 1, . . . , N + 1.

(A.6)

Since l ∈ com(k) and l �� k require l ∈ {M + 1, . . . , N + 1}, we see for j �
1, . . . , M

∂nk
∂m j

�
{
1 for k � j
0 otherwise,

(A.7)

and for j � M + 1, . . . , N + 1

∂nk
∂m j

�
⎧
⎨

⎩

− 1
ε

for k � cid( j) (i.e., j ∈ com(k))
1
ε

for k � j
0 otherwise.

(A.8)

By substituting Eq. (A.7) into Eq. (A.3), we find for j � 1, . . . , M ,

∂
	

F(si ; s′;m′)
∂m j

� ∂F(si ; s′;n′)
∂n j∣∣∣∣∣∣

∂
	

F(si ; s′;m′)
∂m j

∣∣∣∣∣∣
�
∣∣∣∣
∂F(si ; s′;n′)

∂n j

∣∣∣∣ ≤ C ′
Fn. (A.9)
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Similarly, by substituting Eq. (A.8) into Eq. (A.3), we find for j � M+1, . . . , N +1

∂
	

F(si ; s′;m′)
∂m j

� ∂n j

∂m j

∂F(si ; s′;n′)
∂n j

+
∂ncid( j)
∂m j

∂F(si ; s′;n′)
∂ncid( j)

� 1

ε

[
∂F(si ; s′;n′)

∂n j
− ∂F(si ; s′;n′)

∂ncid( j)

]
. (A.10)

We use Taylor’s theorem and the exchangeability axiom (iv) to derive an estimate
for the term in square brackets,

∂F(si ; s′;n′)
∂n j

− ∂F(si ; s′;n′)
∂ncid( j)

�
[
∂F(si ; s′;n′)

∂n j
− ∂F(si ; s′;n′)

∂ncid( j)

]

s j�scid( j)

+

[
∂2F(si ; s′;n′)

∂s j∂n j
− ∂2F(si ; s′;n′)

∂s j∂ncid( j)

]

s j�s jT

(s j − scid( j))

�
[
∂2F(si ; s′;n′)

∂s j∂n j
− ∂2F(si ; s′;n′)

∂s j∂ncid( j)

]

s j�s jT

(s j − scid( j))

�
[
∂2F(si ; s′;n′)

∂s j∂n j
− ∂2F(si ; s′;n′)

∂s j∂ncid( j)

]

s j�s jT

ρ jε (A.11)

for some appropriately chosen s jT ∈ [s j , scid( j)], where ρ j � (s j − scid( j))/ε with∣∣ρ j
∣∣ ≤ 1 (because by assumption within-cluster phenotypic differences do not exceed

ε). By the smoothness of F , there exists a constant C ′
Fsn such that

∣∣∣∣
∂2F(si ; s′; n′)

∂s j∂n j
− ∂2F(si ; s′; n′)

∂s j∂ncid( j)

∣∣∣∣
s j�s jT

≤ max

{∣∣∣∣
∂2F(si ; s′; n′)

∂s j∂n j
− ∂2F(si ; s′; n′)

∂s j∂ncid( j)

∣∣∣∣
s j�s jT

∣∣∣∣
i � 1, . . . , N + 1, j � M + 1, . . . , N + 1
n′ ∈ [0, η]N+1, s jT ∈ [s j , scid( j)]

}

�: C ′
Fsn, (A.12)

Thus, substituting Eqs. (A.11) and (A.12) into Eq. (A.10) yields for j � M +
1, . . . , N + 1

∂
	

F(si ; s′;m′)
∂m j

�
[
∂2F(si ; s′;n′)

∂s j∂n j
− ∂2F(si ; s′;n′)

∂s j∂ncid( j)

]

s j�s jT

ρ j ,

∣∣∣∣∣∣
∂

	

F(si ; s′;m′)
∂m j

∣∣∣∣∣∣
≤ C ′

Fsn. (A.13)
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Finally, from Eqs. (A.9) and (A.13),
∣∣∣∣∣∣
∂

	

F(si ; s′;m′)
∂m j

∣∣∣∣∣∣
≤ max

{
C ′
Fn,C

′
Fsn

} �: C ′
Fm. (A.14)

�

Appendix B: Derivation of Eq. (3.3a) and proof of Lemma 2

B.1 Some preliminary estimates

To get an estimate for the remainder R in

G(x + �x) � G(x) + DG(x)�x + R, (B.1)

G : RN → R, consider the function g : R → R : g(z) � G(x + z�x). Then by
Taylor’s theorem,

g(z) � g(0) + Dg(0)z + 1
2D

2g(θTz)z
2, (B.2)

with θT some appropriately chosen number between 0 and 1. By the chain rule,

g(0) � G(x), Dg(0) � DG(x)�x,D2g(θTz) � �xTD2G(x + θTz�x)�x. (B.3)

Now we use that

�xTD2G(x + θTz�x)�x ≤
∥∥∥D2G(x + θTz�x)

∥∥∥
Q
|�x|2 (B.4)

with ‖·‖Q defined for an arbitrary K × K symmetric matrix B by

‖B‖Q :� max
{∣∣∣uTBu

∣∣∣
∣∣∣ |u| � 1

}
, (B.5)

i.e., the absolute value of the dominant eigenvalue. By using Eq. (B.5), we see

|R| ≤ 1

2
max

{∥∥∥D2G(x + θT�x)
∥∥∥
Q

∣∣∣∣ 0 ≤ θT ≤ 1

}
|�x|2. (B.6)

When it is given that |�x| < δ this translates into the uniform estimates

|R| <
1

2
max

{∥∥∥D2G(x + x′)
∥∥∥
Q

∣∣∣∣
∣∣x′∣∣ ≤ δ

}
δ2. (B.7)

Note that ‖B‖Q satisfies

‖B‖Q ≤ K Bmax (B.8)
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with Bmax � maxi, j∈{1,...,K }
(∣∣Bi j

∣∣), because

∣∣∣uTBu
∣∣∣ �

∣∣∣∣∣∣

K∑

i�1

K∑

j�1

Bi j ui u j

∣∣∣∣∣∣

≤ Bmax

K∑

i�1

K∑

j�1

|ui |
∣∣u j

∣∣ � Bmax

⎡

⎣
K∑

i�1

|ui |2 + 2
K−1∑

i�1

K∑

j>i

|ui |
∣∣u j

∣∣

⎤

⎦

� Bmax

⎡

⎣
K∑

i�1

|ui |2 +
K−1∑

i�1

K∑

j>i

|ui |2 +
K−1∑

i�1

K∑

j>i

∣∣u j
∣∣2 −

K−1∑

i�1

K∑

j>i

(|ui | − ∣∣u j
∣∣)2

⎤

⎦

� Bmax

⎡

⎢⎢⎢⎣

K∑
i�1

|ui |2 + [(K − 1)|u1|2 + · · · + |uK−1|2]

+ [(|u2|2 + · · · + |uK |2) + · · · + |uK |2] −
K−1∑
i�1

K∑
j>i

(|ui | − ∣∣u j
∣∣)2

⎤

⎥⎥⎥⎦

� Bmax

⎡

⎣
K∑

i�1

|ui |2 + (K − 1)
K∑

i�1

|ui |2 −
K−1∑

i�1

K∑

j>i

(|ui | − ∣∣u j
∣∣)2

⎤

⎦

≤ Bmax

⎡

⎣K
K∑

i�1

|ui |2 −
K−1∑

i�1

K∑

j>i

(|ui | − ∣∣u j
∣∣)2

⎤

⎦

≤ K Bmax|u|2. (B.9)

B.2 Proof of Eq. (3.3f)

By Taylor’s theorem, the
�

F j for j � M + 1, . . . , N + 1 can be written as

�

F j � F(z j ; s′;
�

n′)

� F(z j ; s′;
�

n′)
∣∣∣∣
z j�scid( j)

+
∂F(z j ; s′;

�

n′)
∂z j

∣∣∣∣∣∣
z j�s jT

(s j − scid( j))

� ∂F(z j ; s′;
�

n′)
∂z j

∣∣∣∣∣∣
z j�s jT

ρ jε, (B.10)

with some appropriately chosen parameter s jT ∈ [s j , scid( j)]. Hence,

1

ε

∣∣∣∣
�

F j

∣∣∣∣ � 1

ε

∣∣∣∣∣∣∣

∂F(z j ; s′;
�

n′)
∂z j

∣∣∣∣∣∣
z j�s jT

ρ jε

∣∣∣∣∣∣∣
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≤ ρ jmax

⎧
⎪⎨

⎪⎩

∣∣∣∣∣∣
∂F(z j ; s′;

�

n′)
∂z j

∣∣∣∣∣∣
z j�s jT

∣∣∣∣∣∣∣
s jT ∈ [s j , scid( j)]

⎫
⎪⎬

⎪⎭
�:

�

C ′
Fz, j , (B.11)

and

�

C ′
Fz :� max

j∈{M+1,...,N+1}
�

C ′
Fz, j

� max

⎧
⎪⎨

⎪⎩

∣∣∣∣∣∣
∂F(z j ; s′;

�

n′)
∂z j

∣∣∣∣∣∣
z j�s jT

∣∣∣∣∣∣∣
j � M + 1, . . . , N + 1, s jT ∈ [s j , scid( j)]

⎫
⎪⎬

⎪⎭

(B.12)

because ρ j � 0 for j � 1, . . . , M . �

B.3 Proof of Lemma 2

Using Taylor’s theorem, Eq. (3.3d) in the main text can be transformed to

Ri � 1

2
(m′ −

�

m′)T ∂2
	

F(si ; s′;m′)
∂m′∂m′T

∣∣∣∣∣∣
m′�m′

T

(m′ −
�

m′), (B.13)

where m′
T � θT

(
m′ − �

m′
)
+

�

m′ with some appropriately chosen θT ∈ [0, 1]. By

Eq. (3.4a) in the main text,

∣∣∣∣m
′ −

�

m′
∣∣∣∣ �

√∣∣∣m − �
m
∣∣∣
2
+
∣∣∣(mM+1, . . . ,mN+1)T − (

�
mM+1, . . . ,

�
mN+1)T

∣∣∣
2

�
√∣∣∣m − �

m
∣∣∣
2
+
∣∣∣(εnM+1, . . . , εnN+1)T − (ε

�
nM+1, . . . , ε

�
nN+1)T

∣∣∣
2

≤
√∣∣∣m − �

m
∣∣∣
2
+ ε2 max

i∈{M+1,...,N+1}

(∣∣∣ni − �
ni
∣∣∣
2
)
(N − M + 1)

≤
√

ε2C2
m + ε2η2(N − M + 1)

≤ ε

√
C2
m + (N − M + 1)η2 �: εC ′

m. (B.14)

Thus, the result from Appendix B.1 translates as

|Ri | � 1

2

∣∣∣∣∣∣
(m′ −

�

m′)T ∂2
	

F(si ; s′;m′)
∂m′∂m′T

∣∣∣∣∣∣
m′�m′T

(m′ −
�

m′)

∣∣∣∣∣∣
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≤ 1

2

∥∥∥∥∥∥
∂2

	

F(si ; s′;n′)
∂m′∂m′T

∣∣∣∣∣∣
m′�m′

T

∥∥∥∥∥∥
Q

∣∣∣∣m
′ −

�

m′
∣∣∣∣
2

≤ 1

2
C ′
Fmm

∣∣∣∣m
′ −

�

m′
∣∣∣∣
2

≤ 1

2
ε2C ′

FmmC
′2
m, (B.15)

where, as proved in the next subsection,

C ′
Fmm :� max

⎧
⎨

⎩

∥∥∥∥∥∥
∂2

	

F(si ; s′;m′)
∂m′∂m′T

∥∥∥∥∥∥
Q

∣∣∣∣∣∣

i � 1, . . . , N + 1,
m1, . . . ,mM ∈ [0, η],
mM+1, . . . ,mN+1 ∈ [0, εη]

⎫
⎬

⎭

≤ (N + 1)max
{
C ′
Fnn, 2C

′
Fsnn,C

′
Fssnn

}
. (B.16)

�

B.4 Finding C′
Fmm

Here we prove Eq. (B.16). Analogously to Appendix A, we start from the observation
that by the smoothness axiom (i) and bounded-world axiom (v) there exists a constant
C ′
Fnn such that

∣∣∣∣
∂F(si ; s′;n′)

∂nk∂n j

∣∣∣∣ ≤ C ′
Fnn (B.17)

for all i, j, k � 1, . . . , N + 1, with

C ′
Fnn :� max

{∣∣∣∣
∂F(si ; s′;n′)

∂nk∂n j

∣∣∣∣

∣∣∣∣i, j, k � 1, . . . , N + 1, n′ ∈ [0, η]N+1
}
. (B.18)

FromEqs. (A.9) and (A.10), the second derivative of the fitness-generating function
with respect to m j and mk is expressed as

∂2
	

F(si ; s′;m′)
∂mk∂m j

�

⎧
⎪⎨

⎪⎩

∂
∂nk

∂
	
F(si ;s′;m′)

∂m j
for k � 1, . . . , M

1
ε

{
∂

∂nk

{
∂

	
F(si ;s′;m′)

∂m j

}
− ∂

∂ncid(k)
∂

	
F(si ;s′;m′)

∂m j

}
for k � M + 1, . . . , N + 1,

(B.19)

while Eqs. (A.9) and (A.13) are combined into

∂
	

F(si ; s′;m′)
∂m j

�
⎧
⎨

⎩

∂F(si ;s′;n′)
∂n j

for j � 1, . . . , M[
∂2F(si ;s′;n′)

∂s j ∂n j
− ∂2F(si ;s′;n′)

∂s j ∂ncid( j)

]

s j�s jT
ρ j for j � M + 1, . . . , N + 1

(B.20)
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with some appropriately chosen s jT ∈ [s j , scid( j)]. By substituting Eqs. (B.20) into
(B.19), we see for j, k � 1, . . . , M

∂2
	

F(si ; s′;m′)
∂mk∂m j

� ∂F(si ; s′;n′)
∂nk∂n j

, (B.21)

and for j � M + 1, . . . , N + 1 and k � 1, . . . , M (and equivalently for k � M +
1, . . . , N + 1 and j� 1,…,M)

∂2
	

F(si ; s′;m′)
∂mk∂m j

�
[
∂3F(si ; s′;n′)
∂nk∂s j∂n j

− ∂3F(si ; s′;n′)
∂nk∂s j∂ncid( j)

]

s j�s jT

ρ j . (B.22)

For j, k � M + 1, . . . , N + 1, we first transform Eq. (B.19) and then substitute Eq.
(B.20) into the equation,

∂2
	

F(si ; s′;m′)
∂mk∂m j

� 1

ε

⎡

⎣∂2
	

F(si ; s′;m′)
∂nk∂m j

− ∂2
	

F(si ; s′;m′)
∂ncid(k)∂m j

⎤

⎦

sk�scid(k)

+
1

ε

⎧
⎨

⎩
∂

∂sk

⎡

⎣∂2
	

F(si ; s′;m′)
∂nk∂m j

− ∂2
	

F(si ; s′;m′)
∂ncid(k)∂m j

⎤

⎦

⎫
⎬

⎭
sk�skT

(sk − scid(k))

� ρk

⎧
⎨

⎩
∂

∂sk

⎡

⎣∂2
	

F(si ; s′;m′)
∂nk∂m j

− ∂2
	

F(si ; s′;m′)
∂ncid(k)∂m j

⎤

⎦

⎫
⎬

⎭
sk�skT

� ρkρ j

[
∂4F(si ; s′;n′)
∂sk∂nk∂s j∂n j

− ∂4F(si ; s′;n′)
∂sk∂nk∂s j∂ncid( j)

− ∂4F(si ; s′;n′)
∂sk∂ncid(k)∂s j∂n j

+
∂4F(si ; s′;n′)

∂sk∂ncid(k)∂s j∂ncid( j)

]

sk�skT,s j�s jT

,

(B.23)

with some appropriately chosen skT ∈ [sk, scid(k)]. Hence, from Eqs. (B.21) to (B.23),
we find for j, k� 1, …, M

∣∣∣∣∣∣
∂

	

F(si ; s′;m′)
∂mk∂m j

∣∣∣∣∣∣
≤ C ′

Fnn, (B.24)

for j � M+1, . . . , N+1 and k � 1, . . . , M (and equivalently for k � M+1, . . . , N+1
and j� 1, …, M)

∣∣∣∣∣∣
∂

	

F(si ; s′;m′)
∂mk∂m j

∣∣∣∣∣∣
≤ C ′

Fsnn (B.25)
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with

C ′
Fsnn :� max

⎧
⎪⎪⎨

⎪⎪⎩

∣∣∣∣
∂3F(si ; s′; n′)
∂s j∂nk∂n j

− ∂3F(si ; s′; n′)
∂s j∂nk∂ncid( j)

∣∣∣∣
s j�s jT

∣∣∣∣∣∣∣∣

i � 1, . . . , N + 1,
j � M + 1, . . . , N + 1,
k � 1, . . . , M,

n′ ∈ [0, η]N+1, s jT ∈ [s j , scid( j)]

⎫
⎪⎪⎬

⎪⎪⎭
,

(B.26)

and for j, k � M + 1, …, N + 1

∣∣∣∣∣∣
∂

	

F(si ; s′;m′)
∂mk∂m j

∣∣∣∣∣∣
≤ C ′

Fssnn (B.27)

with

C ′
Fssnn :� max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂4F(si ; s′;n′)
∂sk∂s j ∂nk∂n j

− ∂4F(si ;s′;n′)
∂sk∂s j ∂nk∂ncid( j)

− ∂4F(si ; s′;n′)
∂sk∂s j ∂ncid(k)∂n j

+ ∂4F(si ;s′;n′)
∂sk∂s j ∂ncid(k)∂ncid( j)

∣∣∣∣∣∣∣∣
sk�skT,s j�s jT

∣∣∣∣∣∣∣∣∣∣

i � 1, . . . , N + 1,
j, k � M + 1, . . . , N + 1,
n′ ∈ [0, η]N+1,

s jT ∈ [s j , scid( j)],
skT ∈ [sk , scid(k)]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(B.28)

Collecting Eqs. (B.24), (B.25), and (B.27), we find

∣∣∣∣∣∣
∂

	

F(si ; s′;m′)
∂mk∂m j

∣∣∣∣∣∣
≤ max

{
C ′
Fnn,C

′
Fsnn,C

′
Fssnn

} �: C ′
Fmm. (B.29)

Finally, for

∂2
	

F(si ; s′;m′)
∂m′∂m′T �

⎛

⎜⎜⎜⎝

∂2
	
F(si ;s′;m′)
∂m1∂m1

. . .
∂2

	
F(si ;s′;m′)

∂m1∂mN+1

. . .
. . . . . .

∂2
	
F(si ;s′;m′)

∂mN+1∂m1
. . .

∂2
	
F(si ;s′;m′)

∂mN+1∂mN+1

⎞

⎟⎟⎟⎠, (B.30)

we find its upper bound by using Eq. (B.8), as

∥∥∥∥∥∥
∂2

	

F(si ; s′;m′)
∂m′∂m′T

∥∥∥∥∥∥
Q

≤ (N + 1)C ′
Fmm � (N + 1)max

{
C ′
Fnn,C

′
Fsnn,C

′
Fssnn

} �: C ′
Fmm.

(B.31)

�
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Appendix C: Proof of Lemmas 3 and 7

C.1 Expansion of f

We assume that non-representative phenotypes, s j for j � M + 1, . . . , N + 1,
are functions of ε, s j � scid( j) + ερ j , so that when ε → 0 they converge to
their representative phenotypes, scid( j). Then s′ is expressed as s′ � s′a + ερ′ with
s′a :� (s1, . . . , sM , scid(M+1), . . . , scid(N+1))T and ρ′ :� (0, . . . , 0, ρM+1, . . . , ρN+1)T.
Notice that

∣∣ρ j
∣∣ ≤ 1 because within-cluster phenotypic differences are assumed not

to exceed ε, i.e.,
∣∣s j − scid( j)

∣∣ ≤ ε for all j � 1, . . . , N + 1. By Taylor’s theorem and
the exchangeability axiom (vi), the fitness of s j can be expanded in ε around ε � 0,
as

F(s j ; s′;n′) � F(scid( j) + ερ j ; s′a + ερ′;n′)
∣∣
ε�0 + ε

∂F(scid( j) + ερ j ; s′a + ερ′;n′)
∂ε

∣∣∣∣
ε�εT j

� F(scid( j); sa;m) + εFε j , (C.1)

with some appropriately chosen εT j ∈ [0, ε] and

Fε j :� ∂F(scid( j) + ερ j ; s′a + ερ′;n′)
∂ε

∣∣∣∣
ε�εT j

. (C.2)

Here,
∣∣Fε j

∣∣ satisfies

∣∣Fε j
∣∣ ≤ max

{∣∣∣∣
∂F(scid( j) + ερ j ; s′a + ερ′;n′)

∂ε

∣∣∣∣
ε�εT j

∣∣∣∣
j � 1, . . . , N + 1,
n′ ∈ [0, η]N+1, εT j ∈ [0, ε]

}
�: C ′

Fε.

(C.3)

By using Eq. (C.1), f (si ; s′;n′) from Eq. (4.1b) can be expressed as

f (si ; s′;n′) �
∑

j∈com(i)

p j F(s j ; s′;n′)

� F(si ; sa;m) + ε
∑

j∈com(i)

p j Fε j . (C.4)

We further expand F(si ; sa;m) around m � �
m � (

�
m1, . . . ,

�
mM )T as

F(si ; sa;m) � F(si ; sa;
�
m) + bTi (m − �

m) + (m − �
m)TFmmi (m − �

m), (C.5)

where

bTi :� (bi1, . . . , biM ) �
(

∂F(si ; sa;m)

∂m1
, . . . ,

∂F(si ; sa;m)

∂mM

)

m��
m
, (C.6)
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and

Fmmi :� ∂2F(si ; sa;m)

∂m∂mT

∣∣∣∣
m�mT

�

⎛

⎜⎜⎜⎝

∂2F(si ;sa;m)
∂m2

1
· · · ∂2F(si ;sa;m)

∂m1∂mM

...
. . .

...
∂2F(si ;sa;m)

∂mM∂m1
· · · ∂2F(si ;sa;m)

∂m2
M

⎞

⎟⎟⎟⎠

m�mT

, (C.7)

wheremT :� θT(m− �
m) +

�
m with some appropriately chosen θT ∈ [0, 1]. Notice that

by Eq. (C.1) F(si ; sa;
�
m) satisfies

F(si ; s′;
�

n′) � F(si ; sa;
�
m) + ε

∂F(si + ερi ; s′a + ερ′;
�

n′)
∂ε

∣∣∣∣∣∣
ε�εTi

� F(si ; sa;
�
m) + ε

�

Fεi , (C.8)

which gives

F(si ; sa;
�
m) � F(si ; s′;

�

n′) − ε
�

Fεi . (C.9)

Thus, combining Eqs. (C.4), (C.5), and (C.9), we obtain

f (si ; s′;n′) � bTi (m − �
m) + (m − �

m)TFmmi (m − �
m)

+ ε

⎡

⎣1

ε
F(si ; s′;

�

n′) − �

Fεi +
∑

j∈com(i)

p j Fε j

⎤

⎦

� bTi (m − �
m) + rfi

∣∣∣m − �
m
∣∣∣
2
+ εhfi , (C.10)

where

rfi :� (m − �
m)TFmmi (m − �

m)
∣∣∣m − �

m
∣∣∣
2 ,

hfi :� 1

ε
F(si ; s′;

�

n′) − �

Fεi +
∑

j∈com(i)

p j Fε j . (C.11)

Here

|rfi | �

∣∣∣∣∣∣∣

(m − �
m)TFmmi (m − �

m)
∣∣∣m − �

m
∣∣∣
2

∣∣∣∣∣∣∣
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≤ max

{∥∥∥∥
∂2F(si ; sa;m)

∂m∂mT

∥∥∥∥
Q

∣∣∣∣∣ i � 1, . . . , M,m ∈ [0, η]M
}

�: CFmm (C.12)

and by Eqs. (C.3) and (3.3f) in the main text, i.e.,

∣∣∣∣F(si ; s
′;

�

n′)
∣∣∣∣ �

∣∣∣∣
�

Fi

∣∣∣∣ � 0 for

i � 1, . . . , N and

∣∣∣∣F(sN+1; s′;
�

n′)
∣∣∣∣ �

∣∣∣∣
�

FN+1

∣∣∣∣ ≤ C ′
Fzε,

|hfi | �
∣∣∣∣∣∣
1

ε
F(si ; s′;

�

n′) − �

Fεi +
∑

j∈com(i)

p j Fε j

∣∣∣∣∣∣

≤ 1

ε

∣∣∣∣F(si ; s
′;

�

n′)
∣∣∣∣ +

∣∣∣∣
�

Fεi

∣∣∣∣ +

∣∣∣∣∣∣

∑

j∈com(i)

p j Fε j

∣∣∣∣∣∣

≤
�

C ′
Fz + 2C ′

Fε. (C.13)

Substituting Eq. (C.10) into Eq. (4.2) in the main text yields

dm
dt

� diag(m)

[
B(m − �

m) + rf
∣∣∣m − �

m
∣∣∣
2
+ εhf

]
, (C.14)

where

B :�
⎛

⎜⎝
bT1
...

bTM

⎞

⎟⎠ �
⎛

⎜⎝
b11 . . . b1M
...

. . .
...

bM1 . . . bMM

⎞

⎟⎠ (C.15)

with bTi defined by Eq. (C.6), hf � (hf1, . . . , hfM )T, and rf � (rf1, . . . , rfM )T, with

|rf| �
√√√√

M∑

i�1

|rfi |2 ≤ √
MCFmm �: Crf,

|hf| �
√√√√

M∑

i�1

|hfi |2 ≤ √
M max

i
(|hfi |) � √

M

[
�

C ′
Fz + 2C ′

Fε

]
�: Chf. (C.16)

C.2 Expansion of dm/dt

Eq. (C.14) is further transformed into

dm
dt

� diag(m)B(m − �
m) + diag(m)rf

∣∣∣m − �
m
∣∣∣
2
+ εdiag(m)hf

= diag
([

m − �
m
]
+

�
m
)
B(m − �

m) + diag(m)rf
∣∣∣m − �

m
∣∣∣
2
+ εdiag(m)hf
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� diag(
�
m)B(m − �

m)

+

[
diag(m − �

m)B(m − �
m) + diag(m)rf

∣∣∣m − �
m
∣∣∣
2
]
+ εdiag(m)hf

� J(m − �
m) + rm

∣∣∣m − �
m
∣∣∣
2
+ εhm (C.17)

where

J :� diag(
�
m)B �

⎛

⎜⎜⎝

�
m1b11 . . .

�
m1b1M

. . .
. . . . . .

�
mMbM1 . . .

�
mMbMM

⎞

⎟⎟⎠ (C.18)

is the Jacobian matrix at
�
m, and rm � (rm1, . . . , rmM )T and hm � (hm1, . . . , hmM )T

are given by

rm : �diag(m − �
m)B(m − �

m)
∣∣∣m − �

m
∣∣∣
2 + diag(m)rf,

hm :� diag(m)hf, (C.19)

where from Eq. (C.16) we find

|rm| ≤
∣∣∣diag(m − �

m)B(m − �
m)

∣∣∣
∣∣∣m − �

m
∣∣∣
2 + |diag(m)rf|

≤
∥∥∥diag(m − �

m)
∥∥∥‖B‖

∣∣∣m − �
m
∣∣∣

+ ‖diag(m)‖|rf|

�
max

i�1,...M

(∣∣∣mi − �
mi

∣∣∣
)
‖B‖

∣∣∣m − �
m
∣∣∣

+ max
i�1,...M

(|mi |)|rf|

≤

√√√√√√√
max

i�1,...M

(∣∣∣mi − �
mi

∣∣∣
)2

∑M
i�1

∣∣∣mi − �
mi

∣∣∣
2

‖B‖ + η|rf| ≤ ‖B‖ + ηCrf � ‖B‖ + η
√
MCFmm �: Crm,

|hm| ≤ ‖diag(m)‖|hf| ≤ max
i�1,...M

(|mi |)|hf| ≤ ηChf � η
√
M

[
�

C ′
Fz + 2C ′

Fε

]
�: Chm

(C.20)

�
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Appendix D: Finding Cr and Ch

Substituting x � (x1, . . . , xM )T � P(m − �
m) into Eq. (4.3a) in the main text gives

Eq. (4.4), dx
dt � Ax + r|x|2 + εh, where A � PJP−1 and

r :� (r1, . . . , rM )T � Prm
∣∣P−1x

∣∣2

|x|2 ,

h :� (h1, . . . , hM )T � Phm. (D.2)

There exist constants Cr and Ch such that |r| ≤ Cr and |h| ≤ Ch, given by, e.g.,

|r| ≤ ‖P‖|rm|∥∥P−1
∥∥2|x|2

|x|2

� ‖P‖
∥∥∥P−1

∥∥∥
2|rm|

≤ ‖P‖
∥∥∥P−1

∥∥∥
2
Crm �: Cr, (D.3)

and

|h| ≤ ‖P‖|hm| ≤ ‖P‖Chm �: Ch. (D.4)

By substituting Eqs. (C.20) into Eqs. (D.3) and (D.4), we obtain

Cr � ‖P‖
∥∥∥P−1

∥∥∥
2[‖B‖ + η

√
MCFmm

]
,

Ch � ‖P‖η√
M

[
�

C ′
Fz + 2C ′

Fε

]
. (D.5)

Appendix E: Proof of Lemma 4

We first prove three simple cases: all eigenvalues are (1) distinct, (2) the same real
number, or (3) the same complex number, and then combine them for proving the
general case.

E.1 All eigenvalues are distinct

We assume that all eigenvalues of the M × M matrix J are distinct, comprising G
real eigenvalues λ1, . . . , λG with corresponding real eigenvectors v1, . . . , vG and 2H
complex eigenvalues β1 ± iω1, . . . , βH ± iωH with corresponding complex eigen-
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vectors u1 ± iw1, . . . ,uH ± iwH , where G + 2H � M . Then J can be decomposed
as J � P−1AP, where

P :� (v1, . . . , vG ,u1,w1,u2,w2, . . . ,uH ,wH ),

A �

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0 . . . . . . . . . . . . . . . 0

0
. . . 0

. . .
. . .

. . .
. . .

...
... 0 λG 0 0

. . .
. . .

...
...

. . . 0 β1 ω1 0
. . .

...
...

. . . 0 −ω1 β1 0
. . .

...
...

. . .
. . . 0 0

. . . 0 0
...

. . .
. . .

. . .
. . . 0 βH ωH

0 . . . . . . . . . . . . 0 −ωH βH

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (E.1)

Thus, for λmax � max{Re(λ1), . . . ,Re(βH ± iωH )} � max
{λ1, . . . , λG , β1, . . . , βH } defined by Eq. (4.5b),

xTAx � xT
1

2

(
A + AT

)
x ≤ λmax|x|2 (E.2)

�

E.2 All eigenvalues are the same real number

We assume thatm � (m1,m2,m3)T for which all three eigenvalues of J are the same
real number, i.e., λ1 � λ2 � λ3 � λ. Then there exists a regular matrix PJ that
transforms J into the Jordan normal form � :� PJJP

−1
J with

� �
⎛

⎝
λ 1 0
0 λ 1
0 0 λ

⎞

⎠. (E.3)

Here we modify PJ to P by multiplying it with �,

P :� PJ� (E.4)

with

� :�
⎛

⎝
a2 a 1
0 a 1
0 0 1

⎞

⎠, �−1 �
⎛

⎝
a−2 −a−2 0
0 a−1 −a−1

0 0 1

⎞

⎠. (E.5)
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Then

A � PJP−1

� PJJP
−1
J �−1 �

⎛

⎝
a2 a 1
0 a 1
0 0 1

⎞

⎠

⎛

⎝
λ 1 0
0 λ 1
0 0 λ

⎞

⎠

⎛

⎝
a−2 −a−2 0
0 a−1 −a−1

0 0 1

⎞

⎠

�
⎛

⎝
a2λ a2 + aλ a + λ

0 aλ a + λ

0 0 λ

⎞

⎠

⎛

⎝
a−2 −a−2 0
0 a−1 −a−1

0 0 1

⎞

⎠ �
⎛

⎝
λ a 0
0 λ a
0 0 λ

⎞

⎠.

.

(E.6)

Thus, for λ < 0, a � λ/2 and x � (x1, x2, x3)T � P(m − �
m), we see

xTAx � xT

⎛

⎝
λ λ/2 0
0 λ λ/2
0 0 λ

⎞

⎠x � λ

4

[
4x21 + 4x22 + 4x23 + 2x1x2 + 2x2x3

]

� λ

4

[
3x21 + 2x22 + 3x23 + (x1 + x2)

2 + (x2 + x3)
2
]

≤ λ

4

[
3x21 + 2x22 + 3x23

]
≤ λ

2
|x|2.

. (E.7)

Similarly, for a W × W matrix J with W repeated real eigenvalues λ, its Jordan
normal form � � PJJP

−1
J is expressed as

� �

⎛

⎜⎜⎜⎜⎜⎜⎝

λ 1

λ
. . .
. . .

. . .
λ 1

λ

⎞

⎟⎟⎟⎟⎟⎟⎠
, (E.8)

where, here and below, all blank components are zero. We define

� :�

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

aW−1 aW−2 aW−3 · · · a 1
aW−2 aW−3 · · · a 1

. . .
. . .

...
...

. . .
. . .

...
a 1

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(E.9)
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with its inverse

�−1 �

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

a−W+1 −a−W+1

a−W+2 −a−W+2

. . .
. . .
. . .

. . .
a−1 −a−1

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (E.10)

which gives

A � PJP−1 � PJJP
−1
J �−1 �

⎛

⎜⎜⎜⎜⎜⎜⎝

λ a

λ
. . .
. . .

. . .
λ a

λ

⎞

⎟⎟⎟⎟⎟⎟⎠
. (E.11)

Thus, for λ < 0, a � λ/2, and x � (x1, . . . , xW )T � P(m − �
m), we see

xTAx � λ

4

[
4x21 + · · · + 4x2W + 2x1x2 + 2x2x3 + · · · + 2xW−1xW

]

� λ

4

[
3x21 + 2x22 + · · · + 2x2W−1 + 3x2W + (x1 + x2)

2 + · · · + (xW−1 + xW )2
]

≤ λ

4

[
3x21 + 2x22 + · · · + 2x2W−1 + 3x2W

]
≤ λ

2
|x|2.

.

(E.12)

�

E.3 All eigenvalues are the same complex number

We assume that m � (m1,m2,m3,m4,m5,m6)T for which the six-by-six matrix J
has three sets of repeated complex eigenvalues, i.e., β1 ± i1ω, β2 ± i2ω and β3 ± i3ω
with β1 � β2 � β3 � β and ω1 � ω2 � ω3 � ω. Then there exists a regular matrix
PJ that standardizes J to � � PJJP

−1
J in the following normal form

� �
⎛

⎝
C I2 0
0 C I2
0 0 C

⎞

⎠,

C �
(

β ω

−ω β

)
, I2 �

(
1 0
0 1

). (E.13)
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(Morris et al. 2003). Here we define a regular matrix P as

P :� PJ� (E.14)

with

� :�
⎛

⎝
a2E aE E
0 aE E
0 0 E

⎞

⎠, �−1 �
⎛

⎝
a−2E−1 − a−1E−1 0

0 a−1E−1 − a−1E−1

0 0 E−1

⎞

⎠,

E :�
(
1 − 1
1 1

)
, E−1 � 1

2

(
1 1

− 1 1

)
. (E.15)

Then we see

A � PJP−1

� �PJJP
−1
J �−1 �

⎛

⎝
a2E aE E
0 aE E
0 0 E

⎞

⎠

⎛

⎝
C I2 0
0 C I2
0 0 C

⎞

⎠

⎛

⎝
a−2E−1 −a−2E−1 0

0 a−1E−1 −a−1E−1

0 0 E−1

⎞

⎠

�
⎛

⎝
a2EC a2E + aEC aE + EC
0 aEC aE + EC
0 0 EC

⎞

⎠

⎛

⎝
a−2E−1 − a−2E−1 0

0 a−1E−1 − a−1E−1

0 0 E−1

⎞

⎠

�
⎛

⎝
ECE−1 aI2 0

0 ECE−1 aI2
0 0 ECE−1

⎞

⎠ �
⎛

⎝
C aI2 0
0 C aI2
0 0 C

⎞

⎠. (E.16)

Thus, for λ < 0, a � λ/2, and x � (x1, x2, x3, x4, x5, x6)T � P(m − �
m), we see

xTAx � xT

⎛

⎝
C aI2 0
0 C aI2
0 0 C

⎞

⎠x � xT

⎛

⎜⎜⎜⎜⎜⎜⎝

β ω β/2 0 0 0
− ω β 0 β/2 0 0
0 0 β ω β/2 0
0 0 − ω β 0 β/2
0 0 0 0 β ω

0 0 0 0 − ω β

⎞

⎟⎟⎟⎟⎟⎟⎠
x

� β

4

[
4x21 + 4x22 + 4x23 + 4x24 + 4x25 + 4x26 + 2x1x3 + 2x2x4 + 2x3x5 + 2x4x6

]

� β

4

[
3x21 + 3x22 + 2x23 + 2x24 + 3x25 + 3x26 + (x1 + x3)

2 + (x2 + x4)
2 + (x3 + x5)

2 + (x4 + x6)
2
]

≤ β

4

[
3x21 + 3x22 + 2x23 + 2x24 + 3x25 + 3x26

]
≤ β

2
|x|2. (E.17)
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Similarly, for a 2W × 2W matrix J with W sets of repeated complex eigenvalues,
i.e., β1 ± iω1, . . . , βW ± iωW with β1 � · · · � βW � β and ω1 � · · · � ωW � ω,
� � PJJP

−1
J is expressed as

� �

⎛

⎜⎜⎜⎜⎜⎜⎝

C I2

C
. . .
. . .

. . .
C I2

C

⎞

⎟⎟⎟⎟⎟⎟⎠
,C �

(
β ω

−ω β

)
, (E.18)

where, here and below, all blank components are zero. We define

� :�

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

aW−1E aW−2E aW−3E · · · aE E
aW−2E aW−3E · · · aE E

. . .
. . .

...
...

. . .
. . .

...
aE E

E

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(E.19)

with

�−1 �

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

a−W+1E−1 − a−W+1E−1

a−W+2E−1 − a−W+2E−1

. . .
. . .
. . .

. . .
a−1E−1 − a−1E−1

E−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(E.20)

which gives

A � PJP−1 � PJJP
−1
J �−1 �

⎛

⎜⎜⎜⎜⎜⎜⎝

C aI2

C
. . .
. . .

. . .
C aI2

C

⎞

⎟⎟⎟⎟⎟⎟⎠
. (E.21)

Thus, for λ < 0, a � λ/2, and x � (x1, . . . , x2W )T � P(m − �
m), we see

xTAx � β

4

[
4x21 + · · · + 4x22W + 2x1x3 + · · · + 2x2W−2x2W

]

� β

4

[
3x21 + 3x22 + 2x23 + · · · + 2x22W−2 + 3x22W−1
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+3x22W + (x1 + x3)
2 + · · · + (x2W−2 + x2W )2

]

≤ β

4

[
3x21 + 3x22 + 2x23 + · · · + 2x22W−2 + 3x22W−1 + 3x22W

]
≤ β

2
|x|2. (E.22)

�

E.4 General case

Bycombining the aforementioned three cases, hereweproveLemma4. For an arbitrary
M × M matrix J, there exists a regular matrix PJ that transforms J into � � PJJP

−1
J

in the following form

� �

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�R

�C

�
repR
1

. . .

�
repR
K

�
repC
1

. . .

�
repC
L

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (E.23)

where, here and below, all blank components are zero, �R is a G ×G diagonal matrix
with its entries given by the distinct real eigenvalues λR1 , . . . , λRG , and�C is a 2H×2H
block diagonal matrix with its entries determined by the distinct complex eigenvalues
βC
1 ± iωC

1 , . . . , βC
H ± iωC

H , i.e.,

�C �
⎛

⎜⎝
CC
1
. . .

CC
H

⎞

⎟⎠, CC
h �

(
βC
h ωC

h−ωC
h βC

h

)
, (E.24)

for h � 1, . . . , H (Morris et al. 2003). The subsequentmatrices inEq. (E.23),�repR
k for

k � 1, . . . , K are for repeated real eigenvalues, with their repetition numbers denoted
by repr(k). �

repR
k is a repr(k) × repr(k) matrix expressed in the form of Eq. (E.8)

with its diagonal entries λ � λ
repR
k . Finally, �repC

l for l � 1, . . . , L are for repeated

complex eigenvalues, with their repetition numbers denoted by repc(l). �
repC
l is a

2repc(l) × 2repc(l) matrix expressed in the form of Eq. (E.18) with

C � CrepC
l �

(
β
repC
l ω

repC
l

−ω
repC
l β

repC
l

)
. (E.25)
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Since J is an M × M matrix, G + 2H + repr(1) + · · · + repr(K ) + 2[repc(1) + · · · +
rep(L)] � M is fulfilled. Here we define

P :� PJ� (E.26)

with

� :�

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

IR

IC

�
repR
1

. . .

�
repR
K

�
repC
1

. . .

�
repC
L

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(E.27)

where IR and IC are, respectively,G×G and 2H×2H identitymatrices,�repR
k is given

by Eq. (E.9) with W � repr(k), and �
repC
l is given by Eq. (E.18) with W � repc(l).

Then we see

A � �PJJP
−1
J �−1 � ���−1

�

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�R

�C

	

�
repR

1
. . .

	

�
repR

K
	

�
repC

1
. . .

	

�
repC

L

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (E.28)

where
	

�
repR

k is the same as�
repR
k except that all 1 s in�

repR
k are replaced with λ

repR
k /2

for k � 1, . . . , K , and in the same manner
	

�
repC

l is the same as �
repC
l except that all

I2 in �
repC
l are replaced with β

repC
l I2/2 for l � 1, . . . , L . Therefore, we get
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xTAx �

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xR

xC

xrepR1
...

xrepRK

xrepC1
...

xrepCL

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

A

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xR

xC

xrepR1
...

xrepRK

xrepC1
...

xrepCL

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� [xR]T�RxR + [xC]T�CxC

+ [xrepR1 ]T
	

�
repR

1 xrepR1 + · · · + [xrepRK ]T
	

�
repR

K xrepRK

+ [xrepC1 ]T
	

�
repC

1 xrepC1 + · · · + [xrepCL ]T
	

�
repC

L xrepCL ,

. (E.29)

where

[xR]T3RxR ≤ max{λR1 , . . . , λRG}|xR|2,
[xC]T3CxC ≤ max{βC

1 , . . . , βC
H }|xC|2 (E.30)

are satisfied. In addition, from Eqs. (E.12) and (E.22) we see

[xrepRk ]T
	

�
repR

k xrepRk ≤ λ
repR
k

2
|xrepRk |2,

[xrepCl ]T
	

�
repC

l xrepCl ≤ β
repC
l

2
|xrepCl |2 (E.31)

for k � 1, . . . , K and l � 1, . . . , L . Thus, substituting Eqs. (E.30) and (E.31) into
Eq. (E.29) gives

xTAx ≤ max{λR1 , . . . , λRG}
∣∣∣xR

∣∣∣
2
+ max{βC

1 , . . . , βC
H }
∣∣∣xC

∣∣∣
2

+
λ
repR
1

2

∣∣∣xrepR1

∣∣∣
2
+ · · · + λ

repR
K

2

∣∣∣xrepRK

∣∣∣
2

+
β
repC
1

2

∣∣∣xrepC1

∣∣∣
2
+ · · · + β

repC
L

2

∣∣∣xrepCL

∣∣∣
2
,

≤ 	

λmax

[∣∣∣xR
∣∣∣
2
+
∣∣∣xC

∣∣∣
2
+
∣∣∣xrepR1

∣∣∣
2
+ · · · +

∣∣∣xrepRK

∣∣∣
2
+
∣∣∣xrepC1

∣∣∣
2
+ · · · +

∣∣∣xrepCL

∣∣∣
2
]

� 	

λmax|x|2

.

(E.32)
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with

	

λmax :� max

{
λR1 , . . . , λRG, βC

1 , . . . , βC
H ,

λ
repR
1

2
, . . . ,

λ
repR
K

2
,
β
repC
1

2
, . . . ,

β
repC
L

2

}
,

(E.33)

which is identical to λmax in Lemma 4. �

Appendix F: Derivation of Eq. (5.4a)

F.1 Adjustment of equilibrium point

As introduced in the main text just before Eq. (5.2a), m is expressed as m �(
mx
my

)
with mx � (m1, . . . ,mL )T and my � (mL+1, . . . ,mM )T with |�

my|�
|(�
mL+1, . . . ,

�
mM )|≤ ρmε for all i � L + 1, . . . , M . First, we transform

f(sa; sa;m) � B(m − �
m) + rf

∣∣∣m − �
m
∣∣∣
2
+ εhf (F.1)

by adjusting the perturbation term to get an equilibrium not at m � �
m �

(
�
mx
�
my

)
but

at m � �

m̃ �
(

�
mx
0

)
when ε � 0. This is done by the transformations

B(m − �
m) � B

(
mx − �

mx

my − �
my

)
� B

(
mx − �

mx
my

)
− B

(
0

�
my

)

� B
(
m − �

m̃

)
− ε

[
B

(
0

�
my
ε

)]
(F.2)

and

rf
∣∣∣m − �

m
∣∣∣
2 � rf

∣∣∣∣m − �

m̃

∣∣∣∣
2

+ rf

[∣∣∣m − �
m
∣∣∣
2 −

∣∣∣∣m − �

m̃

∣∣∣∣
2
]

� rf

∣∣∣∣m − �

m̃

∣∣∣∣
2

+ rf

[∣∣∣m − �
m
∣∣∣
2 −

∣∣∣∣(m − �
m) + (

�
m − �

m̃)

∣∣∣∣
2
]

� rf

∣∣∣∣m − �

m̃

∣∣∣∣
2

+ rf

[(
m − �

m
)T(

m − �
m
)

−[(m − �
m) + (

�
m − �

m̃)]T[(m − �
m) + (

�
m − �

m̃)]

]
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� rf

∣∣∣∣m − �

m̃

∣∣∣∣
2

+ rf

[
−2

(
m − �

m
)T

(
�
m − �

m̃) − (
�
m − �

m̃)T(
�
m − �

m̃)

]

� rf

∣∣∣∣m − �

m̃

∣∣∣∣
2

+ rf

[
−2

(
m − �

m
)

− (
�
m − �

m̃)

]T
(

�
m − �

m̃)

� rf

∣∣∣∣m − �

m̃

∣∣∣∣
2

+ rf

[
−2

(
m − �

m
)

−
(

0
�
my

)]T( 0
�
my

)
, (F.3)

which upon substitution into Eq. (F.1) gives

f(sa; sa;m) � B
(
m − �

m̃

)
+ r̃f

∣∣∣∣m − �

m̃

∣∣∣∣
2

+ εh̃f, (F.4)

where

r̃f � rf ,

h̃f � hf − B

(
0

�
my
ε

)
+
1

ε
rf

[
−2

(
m − �

m
)

−
(

0
�
my

)]T( 0
�
my

)
, (F.5)

and

|r̃f| � |rf| ≤ Crf �: C̃rf,

∣∣∣h̃f
∣∣∣ ≤ |hf| + ‖B‖

∣∣∣∣∣

�
my

ε

∣∣∣∣∣ +
1

ε
|rf |

[
2
∣∣∣my − �

my

∣∣∣ +
∣∣∣�
my

∣∣∣
]∣∣∣�
my

∣∣∣

≤ |hf| + ‖B‖ρm +
1

ε
|rf |[2η + ερm]ερm

≤ Chf + ‖B‖ρm + Crf[2η + ερm]ρm �: C̃hf. (F.6)

Substituting Eq. (E.4) into Eq. (4.2) in the main text gives

dm
dt

� diag(m)

[
B(m − �

m̃) + r̃f

∣∣∣∣m − �

m̃

∣∣∣∣
2

+ εh̃f

]
. (F.7)

F.2 Decomposition into not-small and small population densities

We decompose Eq. (F.7) into equations for the L phenotypes with larger population
densities mx � (m1, . . . ,mL )T and the other K � M − L phenotypes with small
population densitiesmy � (mL+1, . . . ,mM )T,

dmx

dt
� diag(mx)

[
Bxx(mx − �

mx) + Bxymy + r̃fx

∣∣∣∣m − �

m̃

∣∣∣∣
2

+ εh̃fx

]
, (F.8)
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dmy

dt
� diag(my)

[
Byx(mx − �

mx) + Byymy + r̃fy

∣∣∣∣m − �

m̃

∣∣∣∣
2

+ εh̃fy

]
, (F.9)

where m �
(
mx
my

)
, r̃x � (r̃1, . . . , r̃L )T, r̃y � (r̃L+1, . . . , r̃M )T, h̃x � (h̃1, . . . , h̃L )T,

h̃y � (h̃L+1, . . . , h̃M )T, and

Bxx �
⎛

⎝
b1,1 . . . b1,L
. . . . . . . . .

bL,1 . . . bL,L

⎞

⎠, Bxy �
⎛

⎝
b1,L+1 . . . b1,M

. . . . . . . . .

bL,L+1 . . . bL,M

⎞

⎠. (F.10)

Byx �
⎛

⎝
bL+1,1 . . . bL+1,L

. . . . . . . . .

bM,1 . . . bM,L

⎞

⎠, Byy �
⎛

⎝
bL+1,L+1 . . . bL+1,M

. . . . . . . . .

bM,L+1 . . . bM,M

⎞

⎠. (F.11)

F.3 Variable transformation

If |m − m̃| is sufficiently small, so that the nonlinear term in Eq. (F.8) can be neglected,
and ε � 0, then dmx

dt � 0 equals

Bxx(mx − �
mx) + Bxymy � 0, (F.12)

which gives an approximate slow manifold defined by Eq. (5.3b) in the main text,

m̃x(my) � �
mx − Tmy (F.13)

with T :� B−1
xx Bxy. Even when ε > 0, the dynamics is expected to be effectively

characterized by its projection on this manifold. Thus, we introduce x � P(mx −
m̃x(my)) and y � my, to capture the fast convergence to the manifold and slow

dynamics along it, respectively. The vector w �
(
x

y

)
is written as

w �
(
x

y

)
�
(
P(mx − �

mx + Tmy)

my

)
� Q

(
mx − �

mx

my

)
� Q(m − m̃), (F.14)

with

Q :�
(
P PT
0 Iy

)
,

Q−1 �
(
P−1 −T
0 Iy

)
, (F.15)
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where Iy is the K × K identity matrix. Then, by Eq. (F.7),

dw
dt

� Q
dm
dt

� Qdiag(m)

[
B(m − �

m̃) + r̃f

∣∣∣∣m − �

m̃

∣∣∣∣
2

+ εh̃f

]

� Qdiag(m)B(m − �

m̃) +Qdiag(m)r̃f

∣∣∣∣m − �

m̃

∣∣∣∣
2

+ εQdiag(m)h̃f. (F.16)

Qdiag(m) is further transformed as

Qdiag(m) �
(
P PT
0 Iy

)(
diag(

�
mx) + diag(mx − �

mx) 0
0 diag(my)

)

�
(
P 0
0 Iy

)(
diag(

�
mx) 0

0 diag(my)

)
+

(
P PT
0 0

)(
diag(mx − �

mx) 0
0 diag(my)

)

�
(
P 0
0 Iy

)(
diag(

�
mx) 0

0 diag(my)

)
+

(
P PT
0 0

)
diag(m − m̃). (F.17)

Substituting Eq. (F.17) into Eq. (F.16) gives

dw
dt

�
[(

P 0
0 Iy

)(
diag(

�
mx) 0

0 diag(my)

)
+

(
P PT
0 0

)
diag(m − �

m̃)

]
B(m − �

m̃)

+ Qdiag(m)r̃f

∣∣∣∣m − �

m̃

∣∣∣∣
2

+ εQdiag(m)h̃f

�
(
Pdiag(�

mx) 0
0 diag(my)

)
BQ−1w

+

[(
P PT
0 0

)
diag(m − �

m̃)B(m − �

m̃) +Qdiag(m)r̃f

∣∣∣∣m − �

m̃

∣∣∣∣
2
]
+ εQdiag(m)h̃f

�
(
Pdiag(�

mx) 0
0 diag(my)

)
BQ−1w + r∗|w|2 + εh∗, (F.18)

with

r∗ :� 1

|w|2
[(

P PT
0 0

)
diag(m − �

m̃)B(m − �

m̃) +Qdiag(m)r̃f

∣∣∣∣m − �

m̃

∣∣∣∣
2
]
,

h∗ :� Qdiag(m)h̃f, (F.19)

where r∗ is worked out below after the derivation of the equation for dw/dt , and
estimated in Appendix F.4. BQ−1 is transformed by using T � B−1

xx Bxy, as

BQ−1 �
(
Bxx Bxy
Byx Byy

)(
P−1 −T
0 Iy

)
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�
(
BxxP−1 −BxxT + Bxy

ByxP−1 −ByxT + Byy

)

�
(
BxxP−1 0
ByxP−1 −ByxB−1

xx Byy + Byy

)
�
(
BxxP−1 0

U Jy

)
, (F.20)

with U � ByxP−1 and Jy � −ByxB−1
xx Byy + Byy. Eq. (F.20) transforms the first term

of the last line of Eq. (F.18) into

(
Pdiag(�

mx) 0
0 diag(y)

)
BQ−1w

�
(
Pdiag(�

mx) 0
0 diag(y)

)(
BxxP−1 0

U J

)
w

�
(
Pdiag(�

mx)BxxP−1 0
diag(y)U diag(y)J

)
w

�
(

Ax 0
diag(y)U diag(y)J

)
w

�
(

Axx
diag(y)

[
Ux + Jyy

]
)

, (F.21)

with Ax � Pdiag(�
mx)BxxP−1. Therefore, Eq. (F.18) is transformed into

d

dt

(
x
y

)
�
(

Axx
diag(y)

[
Ux + Jyy

]
)
+ r∗|w|2 + εh∗. (F.22)

In addition, r∗ and h∗ given in Eq. (F.19) are further transformed into

r∗ � 1

|w|2
[(

P PT
0 0

)
diag(m − �

m̃)B(m − �

m̃) +

(
P PT
0 Iy

)
diag(m)r̃f

∣∣∣∣m − �

m̃

∣∣∣∣
2
]

� 1

|w|2

⎛

⎜⎜⎝

(
P PT

)
diag(m − �

m̃)B(m − �

m̃) +
(
P PT

)
diag(m)r̃f

∣∣∣∣m − �

m̃

∣∣∣∣
2

(
0 Iy

)
diag(m)r̃f

∣∣∣∣m − �

m̃

∣∣∣∣
2

⎞

⎟⎟⎠

�

⎛

⎜⎜⎜⎝

1
|w|2

(
P PT

)
[
diag(m − �

m̃)B(m − �

m̃) + diag(m)r̃f

∣∣∣∣m − �

m̃

∣∣∣∣
2
]

diag(y) 1
|w|2 r̃fy

∣∣∣∣m − �

m̃

∣∣∣∣
2

⎞

⎟⎟⎟⎠

�:

(
r̃x

diag(y)r̃y

)
, (F.23)
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h∗ �
(
P PT
0 Iy

)
diag(m)h̃f �

((
P PT

)
diag(m)h̃f(

0 Iy
)
diag(m)h̃f

)
�
((

P PT
)
diag(m)h̃f

diag(y)h̃fy

)

�:

(
h̃x

diag(y)h̃y

)
, (F.24)

with

r̃x � 1

|w|2
(
P PT

)
[
diag(m − �

m̃)B(m − �

m̃) + diag(m)r̃f

∣∣∣∣m − �

m̃

∣∣∣∣
2
]
,

r̃y � 1

|w|2 r̃fy
∣∣∣∣m − �

m̃

∣∣∣∣
2

,

h̃x � (
P PT

)
diag(m)h̃f,

h̃y � h̃fy.

. (F.25)

Substituting Eqs. (F.23) and (F.24) into Eq. (F.22) gives Eq. (5.4a) in the main text,

d

dt

(
x
y

)
�
(

Axx
diag(y)

[
Ux + Jyy

]
)
+

(
r̃x

diag(y)r̃y

)
|w|2 + ε

(
h̃x

diag(y)h̃y

)

�
(

Axx + εh̃x + r̃x|w|2
diag(y)

[
Jyy + Ux + εh̃y + r̃y|w|2

]
)

. (F.26)

F.4 Finding C̃rx, C̃ry, C̃hx, and C̃hy

By using the following relationships,

∣∣∣∣m − �

m̃

∣∣∣∣
|w| ≤

∣∣Q−1w
∣∣

|w| �
∥∥∥Q−1

∥∥∥,
∥∥∥∥diag(m − �

m̃)

∥∥∥∥
|w| ≤

maxi

(∣∣∣∣mi − �

m̃i

∣∣∣∣

)

|w| �

∣∣∣∣m − �

m̃

∣∣∣∣
|w|

maxi

(∣∣∣∣mi − �

m̃i

∣∣∣∣

)

∣∣∣∣m − �

m̃

∣∣∣∣

≤
∥∥∥Q−1

∥∥∥

√√√√√√√√√

maxi

(∣∣∣∣mi − �

m̃i

∣∣∣∣
2
)

∑M
i�1

∣∣∣∣mi − �

m̃i

∣∣∣∣
2 ≤

∥∥∥Q−1
∥∥∥, (F.27)
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the following formulas for C̃rx, C̃ry, C̃hx, and C̃hy are found,

|r̃x| �

∣∣∣∣∣∣∣∣∣

(
P PT

)

⎡

⎢⎢⎢⎣
diag(m − �

m̃)

|w| B
(m − �

m̃)

|w| + diag(m)r̃f

∣∣∣∣m − �

m̃

∣∣∣∣
2

|w|2

⎤

⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣

≤ (‖P‖ + ‖PT‖)
[∥∥∥Q−1

∥∥∥‖B‖
∥∥∥Q−1

∥∥∥ + max
i

(mi )C̃rf

∥∥∥Q−1
∥∥∥
2
]

≤ ‖P‖(1 + ‖T‖)
∥∥∥Q−1

∥∥∥
2[‖B‖ + ηC̃rf

]
�: C̃rx, (F.28)

∣∣r̃y
∣∣ ≤ ∣∣r̃fy

∣∣

∣∣∣∣m − �

m̃

∣∣∣∣
2

|w|2 ≤ C̃rf

∥∥∥Q−1
∥∥∥
2 �: C̃ry, (F.29)

∣∣∣h̃x
∣∣∣ ≤ ‖P‖(1 + ‖T‖)ηC̃hf �: C̃hx, (F.30)

∣∣∣h̃y
∣∣∣ �

∣∣∣h̃fy
∣∣∣ ≤ C̃hf �: C̃hy. (F.31)

F.5 Finding C̃r and C̃h

From Eq. (5.6b) in the main text and Eqs. (F.28) to (F.31), we see

|r̃| �
∣∣∣∣

(
r̃x
d r̃y

)∣∣∣∣ �
√

|r̃x|2 + d2
∣∣r̃y

∣∣2 ≤
√
C̃2
rx + d2C̃2

ry �: C̃r,

∣∣∣h̃
∣∣∣ �

∣∣∣∣

(
h̃x
dh̃y

)∣∣∣∣ �
√∣∣∣h̃x

∣∣∣
2
+ d2

∣∣∣h̃y
∣∣∣
2 ≤

√
C̃2
hx + d2C̃2

hy �: C̃h. (F.32)

Appendix G: Proof of Lemma 9

We denote the eigenvalues of Jx and 1
2

(
Jy + JTy

)
by λ1, . . . , λL and λL+1, . . . , λM ,

respecitively.WeproveLemma9by showing that forλxmax :� maxi�1,...,L(Re(λi )) <

0, λymax :� maxi�L+1,...,M (Re(λi )) < 0, and a sufficiently small d, 1
2

[
ÃT + Ã

]
is

negative definite,

wTÃw �
(
x
y

)T( Ax 0
dU dJy

)(
x
y

)

� xTAxx + dyTUx + dyTJyy

� xTAxx + dyTUx + dyT
1

2

(
Jy + JTy

)
y

≤ λxmax|x|2 + d‖U‖|x||y| + dλymax|y|2
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� λxmax

[
|x|2 + 2

d‖U‖|x||y|
2λxmax

+
d2‖U‖2|y|2
4λ2xmax

]
− d2‖U‖2|y|2

4λxmax
+ dλymax|y|2

� λxmax

[
|x| + d‖U‖|y|

2λxmax

]2
− d2‖U‖2|y|2

4λxmax
+ dλymax|y|2

� λxmax

[
|x| + d‖U‖|y|

2λxmax

]2
+
d|y|2‖U‖2
4λxmax

[
4λxmaxλymax

‖U‖2 − d

]
. (G.1)

Thus, wTÃw is always negative for any w, under λxmax < 0, λymax < 0, and a
sufficiently small d so that

d <
4λxmaxλymax

‖U‖2 . (G.2)

In this case, all eigenvalues of 1
2

[
ÃT + Ã

]
are negative. �

Appendix H: Derivation of Eq. (5.8c)

Here we derive Eq. (5.8c) in the main text. As explained in the main text, the contour
curve V � V0 has an inscribed circle |w| � φ̃h, and a circumscribed circle |w| � αφ̃h.
Specifically, the contour curve is defined by

EV �
⎧
⎨

⎩w � (x1, . . . , xL , y1, . . . , yK )
T
∣∣∣

L∑

i�1

x2i + 2d
K∑

j�1

y j � V0

⎫
⎬

⎭, (H.1)

where V0 is determined so that |w| � φ̃h is an inscribed circle of V � V0, i.e.,

φ̃2
h � min

w∈EV

(
|w|2

)
. (H.2)

For convenience, we write y for y � (y1, . . . , yK )T, which is identical to y �
(yL+1, . . . , yM )T in the other appendices and in the main text. On the other hand, the
radius of the circumscribed circle, αφ̃h, satisfies

α2φ̃2
h � max

w∈EV

(
|w|2

)
. (H.3)

Thus, α is given by

α �
√√√√α2φ̃2

h

φ̃2
h

�
√√√√maxw∈EV

(|w|2)

minw∈EV

(|w|2) . (H.4)
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To calculate the maximum and minimum of |w|2 for w ∈ EV we proceed as
follows. To make calculation easier, we decompose the expression of EV as EV �{
w| x ∈ EVx, y ∈ EVy, q ∈ [0, 1]

}
, with

EVx �
{
x|

L∑

i�1

x2i � (1 − q)V0

}
, (H.5)

EVy �
⎧
⎨

⎩y|2d
K∑

j�1

y j � qV0, y j ≥ 0 for all j � 1, . . . , K

⎫
⎬

⎭. (H.6)

Then, minw∈EV

(|w|2) and maxw∈EV

(|w|2) are expressed as

min
w∈EV

(
|w|2

)
� min

q∈[0,1]

(
min
x∈EVx

(
|x|2

)
+ min

y∈EVy

(
|y|2

))
, (H.7)

max
w∈EV

(
|w|2

)
� max

q∈[0,1]

(
max
x∈EVx

(
|x|2

)
+ max

y∈EVy

(
|y|2

))
. (H.8)

Before performing the extremisations, we first work out the various expressions for a
given value of q. We start with the x-part of w. Clearly,

min
x∈EVx

(
|x|2

)
� max

x∈EVx

(
|x|2

)
� (1 − q)V0. (H.9)

For the calculation of maxy∈EVy

(|y|2), the |y|2 can be transformed by 2d
∑K

j�1 y j �
qV0 into

|y|2 �
K∑

i�1

y2i �
[

K∑

i�1

yi

]2

− 2
K∑

j�1

K∑

k� j+1

y j yk � q2V 2
0

4d2
− 2

K∑

j�1

K∑

k� j+1

y j yk .

(H.10)

Since yi ≥ 0 for i � 1, . . . , K , maxy∈EVy

(|y|2) is given by

max
y∈EVy

(
|y|2

)
� q2V 2

0

4d2
, (H.11)

which is attained when y j0 � qV0
2d and y j �� j0 � 0 for some j0 � 1, . . . , K .

To calculate miny∈EVy

(|y|2), Eq. (H.10) is further transformed into

K∑

i�1

y2i �
[

K∑

i�1

yi

]2

− 2
K∑

j�1

K∑

k� j+1

y j yk

� q2V 2
0

4d2
+

K∑

j�1

K∑

k� j+1

(y j − yk)
2 −

K∑

j�1

K∑

k� j+1

(y2j + y2k )
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� q2V 2
0

4d2
+

K∑

j�1

K∑

k� j+1

(y j − yk)
2

−
K∑

j�1

K∑

k� j+1

y2j −
K∑

j�1

K∑

k� j+1

y2k

� q2V 2
0

4d2
+

K∑

j�1

K∑

k� j+1

(y j − yk)
2

−
[
(K − 1)y21 + · · · + y2K−1

]
−
[
(y22 + · · · + y2K ) + · · · + (y2K )

]

� q2V 2
0

4d2
+

K∑

j�1

K∑

k� j+1

(y j − yk)
2 − (K − 1)

K∑

j�1

y2j . (H.12)

Solving Eq. (H.12) for
∑K

i�1 y
2
i � |y|2 gives

|y|2 �
K∑

i�1

y2i � q2V 2
0

4d2K
+

1

K

K∑

j�1

K∑

k� j+1

(y j − yk)
2. (H.13)

Therefore,

min
y∈EVy

(
|y|2

)
� q2V 2

4d2K
, (H.14)

which is attained when yi � qV0
2dK for all i � 1, . . . K . Substituting Eqs. (H.9), (H.11),

and (H.14) into Eqs. (H.7) and (H.8) gives

min
w∈EV

(
|w|2

)
� min

q∈[0,1]

(
(1 − q)V0 +

q2V 2
0

4d2K

)

� min
q∈[0,1]

(
V 2
0

4d2K
q2 − V0q + V0

)

� min
q∈[0,1]

(
V 2
0

4d2K

[
q − 2d2K

V0

]2
+ V0 − Kd2

)

�
⎧
⎨

⎩
V0 − Kd2 for 2d2K

V0
≤ 1

(
attained when q � 2d2K

V0

)

V 2
0

4d2K
for 2d2K

V0
> 1 (attained when q � 1)

(H.15)
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and

max
w∈EV

(
|w|2

)
� max

q∈[0,1]

(
q2V 2

0

4d2
+ (1 − q)V0

)

� max

{
V 2
0

4d2
, V0

}
(attained when q � 0 or 1). (H.16)

Thus, from Eqs. (H.2) and (H.15), V0 is obtained as

V0 �
⎧
⎨

⎩
φ̃2
h + Kd2 for K ≤ φ̃2

h
d2

2d
√
K φ̃h for K >

φ̃2
h

d2
.

(H.17)

Finally, substituting Eqs. (H.16) and (H.17) into Eq. (H.4) gives

α �
√√√√maxw∈EV

(|w|2)

φ̃2
h

�

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 for K � 0

max

{
φ̃2
h+Kd2

2dφ̃h
,

√
φ̃2
h+Kd2

φ̃h

}
for 0 < K ≤ φ̃2

h
d2

max

{√
K ,

√
2dK 1/2φ̃h

φ̃h

}
for

φ̃2
h

d2
< K ,

(H.18)

where maxw∈EV

(|w|2) � maxw∈EV

(|x|2) � φ̃2
h for K � 0 is used.

Appendix I: Generalization to higher-dimensional trait spaces

Throughout the manuscript, the dimensionality of the considered trait space matters
only when the fitness function (or its derivatives with respect to population densities or
phenotypes) is Taylor expanded, as in Eqs. (A.11), (B.10), (B.23), (C.1), and (C.8), for
a non-representative phenotype s j for j � M +1, . . . , N +1, around its representative
phenotype scid( j). Those equations are readily extended to higher-dimensional trait
spaces, by replacing those derivatives with the corresponding directional derivatives,
as explained below.

We consider a trait space of arbitrary dimension Z , having N resident pheno-
types v1, . . . , vN and a mutant v′ � vN+1, where the j th phenotype is denoted by
v j � (v j,1, . . . , v j,Z )T ∈ R

Z . The fitness function, denoted by F(v j ;V′;n′) with
V′ � (v1, . . . , vN+1) and n′ � (n1, . . . , nN+1)T, is assumed to satisfy all axioms (i–v)
in Sect. 2. Analogously to the one-dimensional case, we permute and cluster those
N + 1 phenotypes into M groups so that their representatives, i.e., approximate phe-
notypes, Va � (v1, . . . , vM )T satisfy

∣∣v j − vcid( j)
∣∣ < ε for all j � M + 1, . . . , N + 1

and cid( j) ∈ {1, . . . , M}. To expand F(v j ;V′;n′) using directional derivatives, we
introduce u j (s j ) for j � M + 1, . . . , N + 1 as

u j (s j ) :� vcid( j) + (s j − scid( j))e j,cid( j), (I.1)
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with a scalar parameter s j ,

e j,cid( j) :� v j − vcid( j)∣∣v j − vcid( j)
∣∣ , (I.2)

and scid( j) ∈ {s1, . . . , sM }, where s1, . . . , sM can be chosen arbitrarily as long as
u j (s j ) � v j holds for j � M + 1, . . . , N + 1 (because all the expansions of the
fitness function in this paper are in non-representative phenotypes that correspond to
sM+1, . . . , sN+1). Notice that u j (scid( j)) � vcid( j). For notational convenience, we also
introduce for j � 1, . . . , M

u j (s j ) :� v j . (I.3)

Then we define for j � 1, . . . , N + 1

Fj (s j ; s′;n′) :� F(u j (s j );U′(s′);n′) (I.4)

with s′ :� (s1, . . . , sN+1)T, u j (s j ) � v j , and U′(s′) � (u1(s1), . . . ,uN+1(sN+1)) �
V′. Note that the Fj (s j ; s′;n′) satisfy the smoothness axiom (i), the reducibility axiom
(ii), and the bounded-world axiom (iii). The exchangeability axiom (iv) is also satisfied
between s j and its representative phenotype scid( j), for j � M + 1, . . . , N + 1 (i.e.,
Fj (s j ; s′;n′) � Fcid( j)(scid( j); s′;n′) for s j � scid( j)). Thus, by Taylor’s theorem,
Fj (s j ; s′;n′) for j � M + 1, . . . , N + 1 can be expanded in s j around scid( j) as

Fj (s j ; s′;n′) � Fj (s j ; s′;n′)
∣∣
s j�scid( j)

+
∂Fj (s j ; s′;n′)

∂s j

∣∣∣∣
s j�s jT

(s j − scid( j))

� Fcid( j)(s j ; s′;n′)
∣∣
s j�scid( j)

+
∂Fj (s j ; s′;n′)

∂s j

∣∣∣∣
s j�s jT

(s j − scid( j)) (I.5)

with some appropriately chosen s jT ∈ [s j , scid( j)]. The derivatives of Fj (s j ; s′;n′)with
respect to population densities or phenotypes can be expanded in the same manner.
Therefore, for all · � i, j, k replacing F(s·; s′;n′) with F·(s·; s′;n′), F(z·; s′;n′) with
F·(z·; s′;n′), F(s·; s′;

�

n′) with F·(s·; s′;
�

n′),
	

F(s·; s′;m′) with
	

F ·(s·; s′;m′), F(s·; sa;m)
with F·(s·; sa;m) and F(scid(·) + ερ·; s′;n′) with F·(scid(·) + ερ·; s′;n′) throughout this
paper (except in this section, Sect. 7, and Appendix K) gives the complete proofs for
Theorems 1–3 for the fitness function F(v j ;V′;n′).
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Appendix J: Tighter estimates

J.1 Main derivation

Here we derive an approximability condition based on the first-order approximation
of the perturbation term, corresponding to the zeroth-order approximability condition
in Sect. 4, Eq. (4.8a),

√
ε <

−λmax

2
√
ChCr

, (J.1)

which is applied when the initial equilibrium population densities of approximate
phenotypes are not small. The standardized dynamics of the approximate phenotypes
is given by Eq. (4.4) in the main text,

dx
dt

� Ax + r|x|2 + εh. (J.2)

By Taylor’s theorem, the perturbation term expands as

h � h|x�0 +
∂h
∂x

∣∣∣∣
x�xT

x

� �

h +Hx, (J.3)

where H is an M × M matrix given by

H �
⎛

⎜⎝

∂h1
∂x1

. . . ∂h1
∂xM

. . . . . . . . .
∂hM
∂x1

. . . ∂hM
∂xM

⎞

⎟⎠

x�xT

, (J.4)

where x � (x1, . . . , xM )T and xT � θTx with some appropriately chosen θT ∈ [0, 1].

There exist constants
�

Ch and CH such that

∣∣∣∣
�

h

∣∣∣∣ ≤ �

Ch and ‖H‖ ≤ CH; see next

subsection. We introduce

ch(φx) :�
�

Ch + CHφx, (J.5)

which clearly satisfies

max|x|≤φx
(|h|) ≤ ch(φx). (J.6)
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2214 H. C. Ito et al.

This means that |h| does not exceed ch(φx) when x is within a circle of radius φx.
Thus, replacing Ch with ch(φx) in Eqs. (4.8a) and (4.8b) in Lemma 5 in Sect. 4, we
have

ε <
λ2max

4ch(φx)Cr
� λ2max

4(
�

Ch + CHφx)Cr

(J.7)

and

|x| ≤ 2ε
ch(φx)

|λmax| � 2ε

�

Ch + CHφx

|λmax| . (J.8)

Equation (J.8) is ensured by Eq. (J.7), as long as φx is appropriately chosen so that
the right-hand side of Eq. (J.8) does not exceed φx, i.e.,

2ε

�

Ch + CHφx

|λmax| ≤ φx. (J.9)

Clearly, the smallest φx that satisfies both Eq. (J.7) and Eq. (J.9) makes the approx-
imability condition Eq. (J.7) the easiest to satisfy for a given λmax, and simultaneously
makes the right-hand side of Eq. (J.8) the smallest. Such a φx is given by solving Eq.
(J.9) assuming equality, i.e.,

φx � 2ε
�

Ch

|λmax| − 2εCH
. (J.10)

Substituting Eq. (J.10) into Eq. (J.7) gives the improved stability condition, Eq.
(6.2) in the main text,

√
ε <

−λmax√
4

�

ChCr + 2CH|λmax|
. (J.11)

This approximability condition can be further improved by the higher-order approxi-
mationof the nonlinear termand/or perturbation term, although the resultant conditions
will be less simple than Eq. (J.11).

J.2 Finding Ch and CH

From Eqs. (C.11), (C.19), and (D.2), h is given by

h � Phm�Pdiag(m)hf. (J.12)
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with hf � (hf1, . . . , hfM )T and

hfi � 1

ε
F(si ; s′;

�

n′) − �

Fεi +
∑

j∈com(i)

p j Fε j . (J.13)

As for
�

Ch ,

�

h � h|
m��

m
�
[
Pdiag(�

m)hf
]

m��
m

(J.14)

gives

∣∣∣∣
�

h

∣∣∣∣ ≤
∥∥∥Pdiag(�

m)hf
∥∥∥
m��

m
�:

�

Ch . (J.15)

As for CH, we first transform H by using x � P(m − �
m) and Eq. (J.12) as

H � ∂h
∂x

� ∂h
∂m

∂m
∂x

� P
∂[diag(m)hf]

∂m
P−1

� P

⎛

⎜⎜⎝

∂m1hf1
∂m1

· · · ∂m1hf1
∂mM

...
. . .

...
∂mMhfM

∂m1
· · · ∂mMhfM

∂mM

⎞

⎟⎟⎠P−1. (J.16)

To calculate ∂mi hfi
∂mk

for i, k � 1, . . . , M , we transform mihfi by using Eq. (J.13),

Eqs. (A.6), and F(si ; s′;
�

n′) � 0 for i � 1, . . . , M as

mihfi � −m
�

Fεi +
∑

j∈com(i)

n j Fε j

� −mi
�

Fεi + ni Fεi +
∑

j∈com(i), j ��i

n j Fε j

� −m
�

Fεi +

⎛

⎝mi − 1

ε

∑

j∈com(i), j ��i

m j

⎞

⎠Fεi +
1

ε

∑

j∈com(i), j ��i

m j Fε j

� mi (Fεi − �

Fεi ) − 1

ε

∑

j∈com(i), j ��i

m j Fεi +
1

ε

∑

j∈com(i), j ��i

m j Fε j . (J.17)

Since j ∈ com(i) and j �� i require j ∈ {M + 1, . . . , N + 1}, we see for i, k �
1, . . . , M

∂mihfi
∂mk

� ∂mi

∂mk
(Fεi − �

Fεi ) + mi
∂Fεi

∂mk
− 1

ε

∑

j∈com(i), j ��i

m j
∂Fεi

∂mk
+
1

ε

∑

j∈com(i), j ��i

m j
∂Fε j

∂mk
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� δ(i − k)(Fεi − �

Fεi ) +
∑

j∈com(i)

n j
∂Fεi

∂mk
−

∑

j∈com(i), j ��i

n j
∂Fεi

∂mk
+

∑

j∈com(i), j ��i

n j
∂Fε j

∂mk

� δ(i − k)(Fεi − �

Fεi ) +
∑

j∈com(i)

n j
∂Fε j

∂mk

� δ(i − k)(Fεi − �

Fεi ) + cTi diag(n
′) ∂F

′
ε

∂mk
, (J.18)

where δ(i − k) � 1 for i � k, δ(i − k) � 0 otherwise, F′
ε :� (Fε1, . . . , Fε, N+1)T, and

ci is a vector of length N + 1 with entries 0 or 1 such that cTi n
′ � ∑

j∈com(i) n j � mi .
We transform Eq. (J.18) into vector–matrix form,

∂
[
diag(m)hf

]

∂m
� diag(Fε − �

Fε) +

⎛

⎜⎜⎝

cT1 diag(n
′) ∂F′

ε

∂m1
· · · cT1 diag(n

′) ∂F′
ε

∂mM
...

. . .
...

cTMdiag(n′) ∂F′
ε

∂m1
· · · cTMdiag(n′) ∂F′

ε

∂mM

⎞

⎟⎟⎠

� diag(Fε − �

Fε) +

⎛

⎜⎝
cT1 diag(n

′)
...

cTMdiag(n′)

⎞

⎟⎠
(

∂F′
ε

∂m1
· · · ∂F′

ε

∂mM

)

� diag(Fε − �

Fε) +

⎛

⎜⎝
cT1
...
cTM

⎞

⎟⎠diag(n′)∂F
′
ε

∂m
. (J.19)

Substituting Eq. (J.19) into Eq. (J.16), we find

‖H‖ ≤ ‖P‖
∥∥∥∥
∂[diag(m)hf]

∂m

∥∥∥∥
∥∥∥P−1

∥∥∥

≤ ‖P‖
⎡

⎣
∥∥∥∥diag(Fε − �

Fε)

∥∥∥∥ +

∥∥∥∥∥∥

⎛

⎝
cT1

cTM

⎞

⎠

∥∥∥∥∥∥

∥∥diag(n′)
∥∥
∥∥∥∥
∂F′

ε

∂m

∥∥∥∥

⎤

⎦
∥∥∥P−1

∥∥∥

≤ ‖P‖
[
2 max
i∈{1,...,M}(|Fεi |) + (N + 1) max

i∈{1,...,N+1}(|ni |)
∥∥∥∥
∂F′

ε

∂m

∥∥∥∥

]∥∥∥P−1
∥∥∥

≤ ‖P‖
∥∥∥P−1

∥∥∥[2CFε + (N + 1)ηCFεm] �: CH, (J.20)

with

CFε :� max

{∣∣∣∣
∂F(scid(i) + ερi ; s′a + ερ′;n′)

∂ε

∣∣∣∣
ε�εTi

∣∣∣∣
i � 1, . . . , M,

n′ ∈ [0, η]N+1, εTi ∈ [0, ε]

}

(J.21)
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and

CFεm :� max

⎧
⎪⎨

⎪⎩

∥∥∥∥
∂F′

ε

∂m

∥∥∥∥

∣∣∣∣∣∣∣

εTi ∈ [0, ε],

m1, . . . ,mM ∈ [0, η],

mM+1, . . . ,mN+1 ∈ [0, εη]

⎫
⎪⎬

⎪⎭
,

F′
ε �

⎛

⎜⎝
Fε1
...
Fε,N+1

⎞

⎟⎠ �

⎛

⎜⎜⎜⎜⎝

∂
	
F(scid(1)+ερ1;s′a+ερ′;m′)

∂ε
...

∂
	
F(scid(N+1)+ερN+1;s′a+ερ′;m′)

∂ε

⎞

⎟⎟⎟⎟⎠
, (J.22)

where Fεi is defined by Eq. (C.2) and
	

F(si ; s′;m′) � F(si ; s′;n′) as in Lemma 1.

Appendix K: Proof of Eq. (8.2)

K.1 Main proof

First, we derive Eqs. (8.1) from Eq. (4.1a) in the main text,

dpN+1

dt
� d

dt

[
nN+1

mi

]
� 1

mi

dnN+1

dt
− nN+1

m2
i

dmi

dt

� nN+1

mi
F(sN+1; s′;n′) − nN+1

mi
f (si ; s′;n′)

� pN+1F(sN+1; s′;n′) − pN+1

∑

j∈com(i)

p j F(s j ; s′;n′)

� pN+1

⎡

⎣F(sN+1; s′;n′) −
∑

j∈com(i)

p j F(s j ; s′;n′)

⎤

⎦. (K.1)

This is further transformed as

dpN+1

dt
� pN+1

⎡

⎣(1 − pN+1)F(sN+1; s′;n′) −
∑

j∈com(i), j ��N+1

p j F(s j ; s′;n′)

⎤

⎦

� pN+1(1 − pN+1)

⎡

⎣F(sN+1; s′;n′) − 1

1 − pN+1

∑

j∈com(i), j ��N+1

p j F(s j ; s′;n′)

⎤

⎦

� pN+1(1 − pN+1)

⎡

⎣F(sN+1; s′;n′) −
∑

j∈com(i), j ��N+1

p̃ j F(s j ; s′;n′)

⎤

⎦, (K.2)

where p̃ j � p j/(1 − pN+1) � n j/(mi − nN+1) is the proportion of phenotype s j in
the i th cluster when the mutant sN+1 is removed. Thus, the sign of dpN+1

dt is determined
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by the terms inside the square bracket. The F(s j ; s′;n′) is expanded in s j around
si � scid( j) as

F(s j ; s′; n′) � F(si ; s′; n′) +
∂F(z j ; s′; n′)

∂z j

∣∣∣∣
z j�si

(s j − si ) +
1

2

∂2F(z j ; s′; n′)
∂z2j

∣∣∣∣∣
z j�s jT

(s j − si )
2

� F(si ; s′; n′) +
∂F(z j ; s′; n′)

∂z j

∣∣∣∣
z j�si

ρ jε +
1

2

∂2F(z j ; s′; n′)
∂z2j

∣∣∣∣∣
z j�s jT

ρ2
j ε

2

� F(si ; s′; n′) + Fz(si )ρ jε +
1

2
Fzz(s jT)ρ

2
j ε

2 (K.3)

with some appropriately chosen s jT ∈ [si , s j ], where
∣∣ρ j

∣∣ ≤ 1 because the within-
cluster phenotypic differences do not exceed ε. Substituting Eq. (K.3) into Eq. (K.2)
transforms the term inside of the square bracket as

F(sN+1; s′;n′) −
∑

j∈com(i), j ��N+1

p̃ j F(s j ; s′;n′)

� F(si ; s′;n′) + Fz(si )ρN+1ε +
1

2
Fzz(sN+1,T)ρ

2
N+1ε

2

−
∑

j∈com(i), j ��N+1

p̃ j

[
F(si ; s′;n′) + Fz(si )ρ jε +

1

2
Fzz(s jT)ρ

2
j ε

2
]

� εFz(si )

⎡

⎣ρN+1 −
∑

j∈com(i), j ��N+1

p̃ jρ j

⎤

⎦

+
ε2

2

⎡

⎣Fzz(sN+1,T)ρ
2
N+1 −

∑

j∈com(i), j ��N+1

p̃ j Fzz(s jT)ρ
2
j

⎤

⎦. (K.4)

The second term satisfies

∣∣∣∣∣∣
Fzz(sN+1,T)ρ

2
N+1 −

∑

j∈com(i), j ��N+1

p̃ j Fzz(s jT)ρ
2
j

∣∣∣∣∣∣

≤ ∣∣Fzz(sN+1,T)
∣∣ρ2

N+1 + max
j∈com(i), j ��N+1

∣∣Fzz(s jT)
∣∣ρ2

j

≤ 2 max
j∈com(i), j ��i

(∣∣Fzz(s jT)
∣∣)

≤ 2C ′
Fzz, (K.5)

where the constant C ′
Fzz is defined by

C ′
Fzz :� max

{∣∣∣∣
∂2F(z; s′;n′)

∂z2

∣∣∣∣
z�s jT

∣∣∣∣∣
∣∣�m′∣∣ ∈ [0, εC ′

m],

j � M + 1, . . . , N + 1, s jT ∈ [s j , scid( j)]
}
, (K.6)
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while the first term is further transformed by expanding Fz(si ) inm′ as

εFz(si )

⎡

⎣ρN+1 −
∑

j∈com(i), j ��N+1

p̃ j (si )ρ j

⎤

⎦

� Fz(si )ε[ρN+1 − ρ̄i ]

�
⎡

⎣ ∂F(z; s′;
�

n′)
∂z

∣∣∣∣∣∣
z�si

+
∂2F(z; s′;n′)

∂z∂m′

∣∣∣∣
z�si ,�m′��m′

T

�m′
⎤

⎦ε[ρN+1 − ρ̄i ]

≥
[

�

Fz(si ) − C ′
Fzm

∣∣�m′∣∣
]
ε[ρN+1 − ρ̄i ]

≥ �

Fz(si )ε(ρN+1 − ρ̄i ) − εC ′
Fzm

∣∣�m′∣∣, (K.7)

where ρ̄ :� ∑
j∈com(i), j ��N+1 p̃ j (si )ρ j is the average value for ρ j of this cluster when

the mutant sN+1 is removed, satisfying |ρN+1 − ρ̄i |≤ 1, and C ′
Fzm is calculated in the

next subsection. Substituting Eqs. (K.4), (K.5), and (K.7) into Eq. (K.2) gives

dpN+1

dt
≥ pN+1(1 − pN+1)

[
�

Fz(si )ε(ρN+1 − ρ̄i ) − εC ′
Fzm

∣∣�m′∣∣ − ε2CFzz

]

� pN+1(1 − pN+1)

[
�

Fz(si )(sN+1 − s̄i ) − εC ′
Fzm

∣∣�m′∣∣ − ε2CFzz

]
, (K.8)

where s̄i � ερ̄i + si � ∑
j∈com(i), j ��N+1 p̃ j (ερ j + si ) � ∑

j∈com(i), j ��N+1 p̃ j s j is
the average trait value of this cluster when the mutant sN+1 is removed. For conve-
nience, we assume that the representative phenotype is the most similar phenotype
to the mutant, i.e., |sN+1 − si | � mink∈com(i)(|sN+1 − sk |). Notice that |sN+1 − si | ≤
|sN+1 − s̄i |. Then, by exploiting

∣∣�m′∣∣ ≤ εC ′
m, a sufficient condition for Eq. (K.8)

being always positive is given by

�

Fz(si )(sN+1 − si ) > ε2
[
C ′
FzmC

′
m + CFzz

]
. (K.9)

K.2 Finding C′
Fzm

From Eq. (A.7), we find for j � 1, . . . , M

∣∣∣∣
∂2F(z; s′;n′)

∂m j∂z

∣∣∣∣
z�s jT

�
∣∣∣∣∣

N+1∑

k�1

∂nk
∂m j

[
∂2F(z; s′;n′)

∂nk∂z

]

z�s jT

∣∣∣∣∣ �
∣∣∣∣
∂2F(z; s′;n′)

∂n j∂z

∣∣∣∣
z�s jT

≤ C ′
Fzn,

(K.10)
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for any s jT ∈ [s j , scid( j)] with

C ′
Fzn :� max

{∣∣∣∣
∂2F(z; s′;n′)

∂z∂n j

∣∣∣∣
z�s jT

∣∣∣∣∣ j � 1, . . . , N + 1, n′ ∈ [0, η]N+1, s jT ∈ [scid( j), s j ]

}
.

(K.11)

From Eq. (A.8) and Taylor’s theorem, we find for j � M + 1, . . . , N + 1 and for any
s jT ∈ [s j , scid( j)]

∣∣∣∣∣

[
∂2F(z; s′;n′)

∂m j∂z

]

z�s jT

∣∣∣∣∣ � 1

ε

∣∣∣∣∣

[
∂2F(z; s′;n′)

∂n j∂z
− ∂2F(z; s′;n′)

∂ncid( j)∂z

]

z�s jT

∣∣∣∣∣

� 1

ε

∣∣∣∣∣∣

[
∂2F(z; s′;n′)

∂n j∂z
− ∂2F(z; s′;n′)

∂ncid( j)∂z

]

z�s jT,
s j�scid( j)

+

[
∂3F(z; s′;n′)
∂s j∂n j∂z

− ∂3F(z; s′;n′)
∂s j∂ncid( j)∂z

]

z�s jT,
s j�s jTT

(s j − scid( j))

∣∣∣∣∣∣

�
∣∣∣∣∣∣
ρ j

[
∂3F(z; s′;n′)
∂s j∂n j∂z

− ∂3F(z; s′;n′)
∂s j∂ncid( j)∂z

]

z�s jT,
s j�s jTT

∣∣∣∣∣∣
≤ C ′

Fzsn

(K.12)

with some appropriately chosen s jTT ∈ [s j , scid( j)] and

C ′
Fzsn � max

{∣∣∣∣
∂3F(z; s′; n′)
∂z∂s j∂n j

− ∂3F(z; s′;n′)
∂z∂s j∂ncid( j)

∣∣∣∣
z�s jT,s j�s jTT

∣∣∣∣∣
j � 1, . . . , N + 1, n′ ∈ [0, η]N+1,

s jT ∈ [scid( j), s j ], s jTT ∈ [scid( j), s j ]

}
.

(K.13)

From Eqs. (K.10) and (K.12), we find

∣∣∣∣
∂2F(z; s′;n′)

∂m′∂z

∣∣∣∣
z�s jT

�

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2F(si ;s′;n′)
∂m1∂z
. . .

∂2F(si ;s′;n′)
∂mM∂z

∂2F(si ;s′;n′)
∂mM+1∂z

. . .
∂2F(si ;s′;n′)

∂mN+1∂z

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
z�s jT

≤

∣∣∣∣∣∣∣∣∣∣∣∣

⎛

⎜⎜⎜⎜⎜⎜⎝

C ′
Fzn
. . .

C ′
Fzn

C ′
Fzsn
. . .

C ′
Fzsn

⎞

⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣

�
√
MC ′2

Fzn + (N + 1 − M)C ′2
Fzsn :� C ′

Fzm. (K.14)
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Appendix L: Derivation of functional response and error estimates
in Sect. 7

L.1 Functional response

For an arbitrary resource distribution expressed along a resource-quality axis
w (size, hardness, toxicity, nutrient composition, etc.), incorporation of interfer-
ence competition into Holling’s disc equation (Holling 1959) gives a generalized
Beddington–deAngelis-type functional response,

g(si ; s;n) �
∫
R(w)c(w, si )dw

ζ1 + ζ2
∫
R(w)c(w, si )dw + ζ3

∫
C(w)c(w, si )dw

, (L.1)

(Ito et al. 2009; Ito and Dieckmann 2012), where R(w) is the resource distribution and
c(w, si ) describes the niche of a phenotype si , in the form of the individual consump-
tion effort as a function of the resource quality w. C(w) is the consumption-effort
distribution along the resource-quality axis w invested by all existing phenotypes,

C(w) �
N∑

i�1

ni c(w, si ). (L.2)

Notice that the derivation of Eq. (L.1) in Ito et al. (2009) implicitly assumes
that an individual searching resources engages in interference competition not only
with the other individuals searching resources but also with individuals handling
resources. Even when interference competition occurs only among individuals search-
ing resources, a functional response can be derived by applying the “Holling square
argument” (Heesterbeek and Metz 1993), but in a different form from Eq. (L.1). Eq.
(L.1) can be transformed into

g(si ; s;n) � θ (si )

ζ1 + ζ2θ (si ) + ζ3
∑N

j�1 n jα(s j , si )
,

α(s j , si ) �
∫

c(w, s j )c(w, si )dw,

θ (si ) �
∫

R(w)c(w, si )dw. (L.3)

L.2 Derivation of�, Ch, and Cr

As for η, we see from Eqs. (7.1) and (7.2) in the main text that for any i

1

ni

dni
dt

� βθ (si )

ζ1 + ζ2θ (si ) +
∑2

j�1 n jα(s j , si )
− 1

≤ βθ (si )

ζ1 + ζ2θ (si ) + ni
− 1, (L.4)
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which is negative whenever ni satisfies

ni > [β − ζ2]Cθ − ζ1, (L.5)

with Cθ � max{θ (s)|s ∈ [s1, s2] }. Thus, we find

η � [β − ζ2]Cθ − ζ1. (L.6)

As for Cr, we see from Table 2 that

Cr � ‖P‖
∥∥∥P−1

∥∥∥
2[‖B‖ + η

√
MCFmm

]

� 1

βθ (s1)
+ ηCFmm, (L.7)

since P � 1, M � 1, and B � b11 � −1/[βθ (s1)]. In addition, we see from Table 2
that

CFmm � max

{∥∥∥∥
∂2F(si ; sa;m)

∂m∂mT

∥∥∥∥
Q

∣∣∣∣∣ i � 1, . . . , M, m ∈ [0, η]M
}

� max

{∣∣∣∣∣
∂2F(s1; s1; n1)

∂n21

∣∣∣∣∣

∣∣∣∣∣ n1 ∈ [0, η]

}

� max

{∣∣∣∣
2βθ (s1)

[ζ1 + ζ2θ (s1) + n1]3

∣∣∣∣

∣∣∣∣ n1 ∈ [0, η]

}

� 2βθ (s1)

[ζ1 + ζ2θ (s1)]3
, (L.8)

which upon substitution into Eq. (L.7) gives

Cr � 1

βθ (s1)
+ η

2βθ (s1)

[ζ1 + ζ2θ (s1)]3
. (L.9)

As for Ch, we see from Table 2 that

Ch � ‖P‖Chm � ‖P‖η√
M

[
�

C ′
Fz + 2C ′

Fε

]

� η

[
�

C ′
Fz + 2C ′

Fε

]
. (L.10)
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For
�

C ′
Fz, we see from Table 2 that

�

C ′
Fz � max

⎧
⎪⎨

⎪⎩

∣∣∣∣∣∣
∂F(z j ; s′;

�

n′)
∂z j

∣∣∣∣∣∣
z j�s jT

∣∣∣∣∣∣∣
j � M + 1, . . . , N + 1, s jT ∈ [s j , scid( j)]

⎫
⎪⎬

⎪⎭

� max

⎧
⎨

⎩

∣∣∣∣∣∣
∂F(z2; s′;

�

n′)
∂z2

∣∣∣∣∣∣
z2∈[s1,s2]

⎫
⎬

⎭

� max

{∣∣∣∣∣
∂

∂z2

[
βθ (z2)

ζ1 + ζ2θ (s1) +
�
n1α(z2, s1)

− 1

]∣∣∣∣∣
z2∈[s1,s2]

}

� max

{∣∣∣∣∣
β
dθ(z2)
dz2

ζ1 + ζ2θ (s1) +
�
n1α(z2, s1)

+
βθ (z2)[−�

n1(z2 − s1)α(z2, s1)]

[ζ1 + ζ2θ (s1) +
�
n1α(z2, s1)]2

∣∣∣∣∣
z2∈[s1,s2]

}

≤ max

{∣∣∣∣∣
β
dθ(z2)
dz2

ζ1 + ζ2θ (s1)

∣∣∣∣∣
z2∈[s1,s2]

+

∣∣∣∣
βθ (z2)ε

ζ1 + ζ2θ (s1)

∣∣∣∣
z2∈[s1,s2]

}

≤ βC∂θ

ζ1 + ζ2θ (s1)
+

βCθ ε

ζ1 + ζ2θ (s1)
, (L.11)

with Cθ � max{θ (s)|s ∈ [s1, s2] } and C∂θ � max{dθ (s)/ds|s ∈ [s1, s2] }. For C ′
Fε,

we see from Table 2 that

C ′
Fε � max

⎧
⎨

⎩

∣∣∣∣
∂F(scid( j) + ερ j ; s′a + ερ′;n′)

∂ε

∣∣∣∣
ε�εT j

∣∣∣∣∣∣

j � 1, . . . , N + 1,
n′ ∈ [0, η]N+1,

εT j ∈ [0, ε]

⎫
⎬

⎭

� max

⎧
⎨

⎩

∣∣∣∣
∂F(scid( j) + ερ j ; (s1, s1 + ε)T; (n1, n2)T)

∂ε

∣∣∣∣
ε�εT

∣∣∣∣∣∣

j � 1, 2,
0 ≤ n1 ≤ η, 0 ≤ n2 ≤ η,

εT ∈ [0, ε]

⎫
⎬

⎭,

(L.12)

where for j � 1 we see from Eqs. (7.4a) in the main text that

∣∣∣∣
∂F(s1; (s1, s1 + ε)T; (n1, n2)T)

∂ε

∣∣∣∣

�
∣∣∣∣

∂

∂ε

[
βθ (s1)

ζ1 + ζ2θ (s1) + n1 + n2α(s1 + ε, s1)

]∣∣∣∣

� βθ (s1)εn2α(s1 + ε, s1)

[ζ1 + ζ2θ (s1) + n1 + n2α(s1 + ε, s1)]2

≤ βθ (s1)ε

ζ1 + ζ2θ (s1) + n1 + n2α(s1 + ε, s1)

≤ εβCθ

ζ1 + ζ2Cθmin
(L.13)
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with Cθmin � min{θ (s)|s ∈ [s1, s2] }, and for j � 2 we see analogously
∣∣∣∣
∂F(s1 + ε; (s1, s1 + ε)T; (n1, n2)T)

∂ε

∣∣∣∣

�
∣∣∣∣

∂

∂ε

[
β

ζ1 + ζ2θ(s1 + ε) + n1α(s1 + ε, s1) + n2

]∣∣∣∣

≤
[

β

ζ1 + ζ2θ(s1 + ε) + n1α(s1 + ε, s1) + n2
+

βθ(s1 + ε)ζ2
[ζ1 + ζ2θ(s1 + ε) + n1α(s1 + ε, s1) + n2]2

]∣∣∣∣
∂θ(s1 + ε)

∂ε

∣∣∣∣

+
βθ(s1 + ε)n1εα(s1 + ε, s1)

[ζ1 + ζ2θ(s1 + ε) + n1α(s1 + ε, s1) + n2]2

≤
[

β

ζ1 + ζ2θ(s1 + ε) + n1α(s1 + ε, s1) + n2
+

β

ζ1 + ζ2θ(s1 + ε) + n1α(s1 + ε, s1) + n2

]
C∂θ

+
βθ(s1 + ε)ε

ζ1 + ζ2θ(s1 + ε) + n1α(s1 + ε, s1) + n2

≤ β

ζ1 + ζ2θ(s1 + ε)
C∂θ +

β

ζ1 + ζ2θ(s1 + ε)
C∂θ

+
βθ(s1 + ε)ε

ζ1 + ζ2θ(s1 + ε)
≤ β[2C∂θ + εCθ ]

ζ1 + ζ2Cθmin
(L.14)

Combining Eqs. (L.6), (L.11), (L.12), (L.13), and (L.14), we find

Ch � η

[
�

C ′
Fz + 2C ′

Fε

]

≤ η

[
βC∂θ

ζ1 + ζ2θ (s1)
+

βCθ ε

ζ1 + ζ2θ (s1)
+ 2max

{
εβCθ

ζ1 + ζ2Cθmin
,
β[2C∂θ + εCθ ]

ζ1 + ζ2Cθmin
,

}]

≤ η

[
βC∂θ + βCθ ε

ζ1 + ζ2Cθmin
+
2β[2C∂θ + εCθ ]

ζ1 + ζ2Cθmin

]

≤ ηβ[5C∂θ + 3εCθ ]

ζ1 + ζ2Cθmin
(L.15)

with Cθ � max{θ (s)|s ∈ [s1, s2] }, Cθmin � min{θ (s)|s ∈ [s1, s2] }, and C∂θ � max
{dθ (s)/ds|s ∈ [s1, s2] }.
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