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Abstract
Cell polarity is an important cellular process that cells use for various cellular func-
tions such as asymmetric division, cell migration, and directionality determination. In
asymmetric cell division, a mother cell creates multiple polarities of various proteins
simultaneously within her membrane and cytosol to generate two different daugh-
ter cells. The formation of multiple polarities in asymmetric cell division has been
found to be controlled via the regulatory system by upstream polarity of the mem-
brane to downstream polarity of the cytosol, which is involved in not only polarity
establishment but also polarity positioning. However, themechanism for polarity posi-
tioning remains unclear. In this study,we found a generalmechanismandmathematical
structure for the multiple streams of polarities to determine their relative position via
conceptional models based on the biological example of the asymmetric cell division
process of C. elegans embryo. Using conceptional modeling and model reductions,
we show that the positional relation of polarities is determined by a contrasting role of
regulation by upstream polarity proteins on the transition process of diffusion dynam-
ics of downstream proteins. We analytically prove that our findings hold under the
general mathematical conditions, suggesting that the mechanism of relative position
between upstream and downstream dynamics could be understood without depending
on a specific type of bio-chemical reaction, and it could be the universal mechanism
in multiple streams of polarity dynamics of the cell.

Mathematics Subject Classification 35Q92

1 Introduction

Cell polarity is an important cellular process that cells use for various cellular functions
such as asymmetric division, cell migration, and directionality determination (Cam-
panale et al. 2017). In particular, polarity formation in the asymmetric cell division
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process plays a core role in regulating the whole process of cell divisions occurred
in early development of C. elegans embryo (Gönczy 2005). A mother cell divides
its substrates asymmetrically into two daughter cells, which results in different gene
expression between the daughter cells and leads to cells with different functions. To
asymmetrically distribute the substrates, the mother cell creates a polarity pattern
in the membrane that simultaneously induces polarities in the cytoplasmic proteins.
After generating the polarities in bothmembrane and cytosol, a mother cell determines
the cleavage plane via regulation by proteins forming polarities, which consequently
determine the fate and size of the two daughter cells.

As a biological model system of asymmetric cell division, the polarity formation
of C. elegans embryo has been well-studied. Before symmetry breaking, a group of
transmembrane proteins, PAR-6, PAR-3, and PKC-3 [anterior PAR proteins (aPARs)],
is homogeneously distributed in the membrane, and the other group of transmembrane
proteins, PAR-2 and PAR-1 [posterior PAR proteins (pPARs)], is distributed homoge-
neously in the cytosol. Similarly, several cytoplasmic proteins homogeneously exist in
the cytosol. MEX-5/6 and PIE-1 are the most well-studied cytoplasmic proteins that
generate a polarity in the cytosol during asymmetric cell division. After the symmetry
breaking induced by sperm entry as an external signal, aPARs and pPARs generate
exclusive polarity domains of similar domain size in the membrane and determine
the posterior and anterior axes in a single cell (Cuenca et al. 2002; Gönczy 2005).
Interestingly, cytoplasmic proteins, MEX-5/6 and PIE-1, form polarity patterns in the
cytosol simultaneously with PAR polarity formation in the membrane, but the location
of polarity peaks are different betweenMEX-5/6 and PIE-1, whereMEX-5/6 forms the
polarity domain in the anterior end but PIE-1 forms a polarity domain in the posterior
end (Daniels et al. 2010; Wu et al. 2015, 2018).

The exclusive domain formation of PAR proteins has been experimentally found
to be underlined by the mutual inhibition interaction between aPARs and pPARs, in
which the two protein groups transmit each other from the membrane to the cytosol
via membrane binding/unbinding interaction (Hoege and Hyman 2013; Motegi and
Seydoux 2013). In contrast, cytoplasmic polarities of MEX-5/6 and PIE-1 are based
on the conversion of diffusion dynamics via a phosphorylation cycle (Daniels et al.
2010; Griffin et al. 2011; Tenlen et al. 2008; Wu et al. 2015, 2018). In particular, the
phosphorylation cycles of MEX-5 are regulated by PAR proteins, and those of PIE-1
are regulated by MEX-5. Thus, PAR polarity is the upstream regulator of MEX-5/6
polarity, and polarity of MEX-5/6 is midstream regulator of PIE-1 polarity.
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Theoretically, it has beenwell-studied that the underlyingmechanism of PARpolar-
ity formation is the bi-stability caused by the mutual inhibition effect of PARs in the
membrane and the mass conservation property (Goehring et al. 2011; Seirin-Lee and
Shibata 2015; Seirin-Lee 2016; Trong et al. 2014). A similar mathematical struc-
ture has been used to suggest most of the polarity formation mechanisms of the
cell membrane (Jilkine and Edelstein-Keshet 2011; Mori et al. 2008; Otsuji et al.
2007). In contrast, cytoplasmic polarity has been poorly understood. In particular,
the whole stream of polarity formation including both upstream of PAR polarity and
midstream/downstream of cytoplasmic polarity has been very poorly understood by
experiments, mathematical modeling, and analysis.

In this study, we focus on two questions. What is the essential mechanism or math-
ematical structure to generate the downstream polarity in a single cell with respect
to the upstream polarity formation? Furthermore, what is the general mechanism by
which the location of downstream polarity is determined with respect to the location of
upstream polarity? As a solution, we constructed a conceptional mathematical model
developed by the principal of capturing the essence of PAR, MEX-5/6, and PIE-1
dynamics. We then reduced the model more conceptually and introduce the two cyto-
plasmic polarity models. Using these models, we found that the positional relation
between upstream and downstream polarity is determined by contrasting biochemical
regulation by upstream protein on the conversion of diffusion dynamics of downstream
proteins. We also found that the essential mechanism to create a cytosol polarity is
independent of the mechanism to determine polarity position. We confirmed that the
conceptional model is enough to understand the general mechanism of up–mid–down
streams of polarity formation of PARs, MEX5/6, and PIE-1 in the asymmetric cell
division process. Finally, we analytically proved that our findings hold under more
general mathematical conditions. The results suggest that the mechanism of relative
position between upstream and downstream dynamics could be understood without
depending on specific bio-chemical reactions or phenomena, and it may be the uni-
versal mechanism for polarity positioning in multiple streams of polarity dynamics of
a cell.

2 Model formulation

2.1 Conceptional model for upstream and downstream polarities in a cell

In the C. elegans embryo, aPARs and pPARs in the membrane create mutually exclu-
sive polarity. At the same time, a cytoplasmic protein MEX-5/6 biases toward the
side where aPAPs generate a polarity (Fig. 1a). The upstream polarity of PARs can be
generated spontaneously without the downstream polarity of MEX-5/6, but MEX-5/6
requires the existence of polarity of PARs (Cuenca et al. 2002). Based on the bio-
logical evidences for MEX-5/6 and PAR polarity dynamics, we consider a general
type of upstream and downstream polarity model here. We formulate a top-to-down
model where upstream polarity is not affected by downstream polarity to focus on
the essential mechanism of downstream polarity formation and its polarity location in
terms of upstream polarity.
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Fig. 1 Schematic diagram of the model. a Polarity formation in C. elegans embryo. bModel simplification
from two dimensional space to one dimensional space [0, L]. c U1 (red) and U2 (gray) denote membrane

proteins that generate each polarity exclusively. The thick arrows in the cell representWs+Ui
μ1−−→ W f +Ui

or W f +Ui
μ2−−→ Ws +Ui (i = 1, 2). d Transit to fast diffusion (TFD) and transit to slow diffusion (TSD)

models with self-recruitment model reduction. The red arrows imply the activation effect, and the blue
arrows denote the inhibition effect on the transition from slow/fast to fast/slow (color figure online)

Now, we assume two proteins that generate mutually exclusive polarity domains in
the membrane by U1 and U2, respectively. Because we know that a reaction–diffusion
model satisfying bi-stability and mass conservation can generate a polarity (Mori
et al. 2008; Otsuji et al. 2007; Seirin-Lee and Shibata 2015), we choose the PAR
polarity model suggested by Seirin-Lee and Shibata (2015), where U1 and U2 are
transmembrane proteins that are mutually inhibited by translocating each other from
the membrane to the cytosol. We also assume that the concentrations of transmem-
brane proteins, U1 and U2, in the cytosol approach steady states quickly between the
peripheral area of cell membrane and the center area of cytosol, namely, well-mixed
states in the bulk space of cytosol because the diffusion coefficients in the cytosol are
higher than that in the membrane (Kuhn et al. 2011; Goehring et al. 2011). In addi-
tion, the imaging data of cytoplasmic proteins, e.g. MEX-5 and PIE-1, shows that the
interfaces of protein distributions are almost linear along to the vertical-axis as shown
in schematic figure of Fig. 1a (Cuenca et al. 2002; Daniels et al. 2010), indicating that
capturing the the patterning dynamics in the periphery of cell membrane would be
enough to understand the essential dynamics of polarity, in particular, the positioning
of polarity. Because the reaction dynamics in this study is also based on the membrane
binding/unbinding kinetic, we consider the cell domain in a one dimensional space
[0, L] with periodic boundary conditions (Fig. 1b).

In what follows, we develop mathematical models in more detail (see Table 1 for
the details of notations and variables used in our models). Let each concentration of
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Ui (i = 1, 2) in the membrane be given by ui (x, t), and that in the cytosol be given by
vi (x, t), where x ∈ [0, L] and t ∈ [0,∞). The general form of the membrane polarity
model is given by

∂u1

∂t
= Dm1

∂2

∂x2
u1 + F1(u1, u2, v1, v2)

∂v1

∂t
= Dc1

∂2

∂x2
v1 − F1(u1, u2, v1, v2)

∂u2

∂t
= Dm2

∂2

∂x2
u2 + F2(u1, u2, v1, v2)

∂v2

∂t
= Dc2

∂2

∂x2
v2 − F2(u1, u2, v1, v2) (1)

where F1(x, t) = γ v1(x, t) − f1(u2(x, t))u1(x, t), and F2(x, t) = γ̄ v2(x, t) −
f2(u1(x, t))u2(x, t). These kinetic terms describe the transmembrane dynamics of
two proteins, U1 and U2, where γ (> 0) and γ̄ (> 0) are constant on-rates, and f1
and f2 are off-rate functions describing a mutual inhibition effect with basal off-rates
α(> 0) and ᾱ(> 0). The detailed form of these functions are given by

f1(u2) = α + K1u2
2

K + u2
2

, f2(u1) = ᾱ + K̄1u2
1

K̄ + u2
1

where K1, K̄1, K , and K̄ are positive constants. Note that the details of kinetic terms
may not be sensitive to our result as long as the kinetic terms satisfy the bi-stability
property.

Next, we assume that the cytoplasmic protein W changes its type to slow or fast
diffusive protein via membrane dependent phosphorylation by the protein, U1 or U2,
and denote them by Ws and W f , respectively. We first assume the model of Type I,
which has a slow diffusive phosphorylation cycle Ws and is transited to a fast-diffusive
type W f via U1-dependent phosphorylation. This fast-diffusive type W f is transited
to a slow diffusive type Ws via U2-dependent dephosphorylation. We also assume a
contrasting phosphorylation cycle as the model of Type II where a fast diffusive type
W f is transited to a slow diffusive type Ws via U1-dependent dephosphorylation and
a slow diffusive type Ws is transited to a fast diffusive type W f via U2-dependent
phosphorylation. The schematic diagrams are given in Fig. 1c. The Type I model is
based on theMEX-5/6 dynamics and theType IImodel is based on the PIE-1 dynamics.
We give the details of both MEX-5/6 model and PIE-1 model in Sect. 3.3.

Now, let us define the concentrations of Ws and W f by ws(x, t) and w f (x, t),
respectively, andw(x, t) = ws(x, t)+w f (x, t). Then, the general form of the cytosol
polarity model describing the above dynamics can be considered as follows:

∂ws

∂t
= Ds

∂2

∂x2
ws + G(u1, u2, ws, w f ),

∂w f

∂t
= D f

∂2

∂x2
w f − G(u1, u2, ws, w f ), (2)
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Table 1 Notations, variables, and parameters used in models

Protein name Notation Variable Definition

Transmembrane protein 1 U1 u1(x, t) Concentration in the membrane

v1(x, t) Concentration in the cytosol

Transmembrane protein 2 U2 u2(x, t) Concentration in the membrane

v2(x, t) Concentration in the cytosol

Cytoplasmic protein Ws ws (x, t) Concentration of slow diffusive type

(W ) W f w f (x, t) Concentration of fast diffusive type

Notation Parameter name Notation Parameter name

γ, γ̄ On-rate K1, K̄1 Maximal off-rate

α, ᾱ Basal off-rate K , K̄ Degree of off-rate change

μ1 Conversion rate of Ws → W f μ2 Conversion rate of W f → Ws

where D f ≥ Ds . Type I and Type II dynamics define the function of G(x, t) as
follows.

Type I: Ws + U1
μ1−−−→ W f + U1, W f + U2

μ2−−−→ Ws + U2

Type II: Ws + U2
μ1−−−→ W f + U2, W f + U1

μ2−−−→ Ws + U1 (3)

where μ1(> 0) is the conversion rate from the slow diffusive type to the fast diffusive
type andμ2(> 0) is the conversion rate from the fast diffusive type to the slowdiffusive
type.

The chemical reaction formulas (3) directly lead to

Type I: G(x, t) = μ2u2(x, t)w f (x, t) − μ1u1(x, t)ws(x, t),

Type II: G(x, t) = μ2u1(x, t)w f (x, t) − μ1u2(x, t)ws(x, t). (4)

2.2 Reduction to TFD and TSDmodels

To capture the essential structures of the cytoplasmic polarity mechanism, we reduce
the upstream polarity model (1)–(4) to a more conceptional model that considers the
core mathematical structure of polarity dynamics but is mathematically simpler. Let
us reduce the membrane polarity model to the self-recruitment model (Fig. 1d) (see
“Appendix A” for the details). The principal is that mutual inhibition can be considered
to be equivalent to the dynamics of self-activation (Seirin-Lee and Shibata 2015). One
can confirm that the dynamics of the reduction model are very similar to those of the
full model (1) (Fig. 2). The reduction model for upstream and downstream polarities
is given by
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∂u

∂t
= Dm

∂2

∂x2
u + F(u, v)

∂v

∂t
= Dc

∂2

∂x2
v − F(u, v)

∂ws

∂t
= Ds

∂2

∂x2
ws + G(u, ws, w f )

∂w f

∂t
= D f

∂2

∂x2
w f − G(u, ws, w f ) (5)

where u(x, t) and v(x, t) are the membrane and cytosol concentrations of either U1
or U2 (in this paper, we consider it to be U1). F(x, t) is given as

F(x, t) = γ v(x, t) −
[
α + β2

1 + β1u(x, t)2

]
u(x, t), (6)

and the concentration of U2 is reduced to

u2(x, t) = δ2

1 + δ1u(x, t)2
(7)

where β1, β2, δ1, and δ2 are positive constants. Each definition of the constants is
shown in “Appendix A”.

By substituting (7) into Type I and Type II of G(x, t), we obtain the transition to
fast diffusive (TFD) and transition to slow diffusive (TSD) models as follows;

TFD Model: G(x, t) = μ2
δ2

1 + δ1u(x, t)2
w f (x, t) − μ1u(x, t)ws(x, t), (8)

TSD Model: G(x, t) = μ2u(x, t)w f (x, t) − μ1
δ2

1 + δ1u(x, t)2
ws(x, t), (9)

respectively. As shown in Fig. 1d, the TFD model describes that the upstream protein
acts on a downstream protein to transit from the slow diffusive type to fast diffusive
type (orU inhibits/activates the transition of slow/fast diffusive type of W ). In contrast,
the TSDmodel shows that the upstream protein acts on a downstream protein to transit
from the fast-diffusive type to slow diffusive type (orU activates/inhibits the transition
of slow/fast diffusive type of W ).

3 Results

3.1 Transition to fast/slow diffusion induces anti-phase/in-phase cell polarity

We first highlight that the two conceptional models show two contrasting dynamics of
patterning. Type I and TFD models show that W generates an anti-phase cytoplasmic
polarity with respect to the membrane polarity ofU (Fig. 2a, b left panels). In contrast,
Type II and TSD models show that W generates an in-phase polarity with respect to
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Fig. 2 Representative simulation of in-phase and anti-phase polarities. a Results for Type I and Type II
models. b Results for TFD and TSD models. Type I and TFD models show anti-phase polarity between U
(red) and W (= W f + Ws ) (blue), but Type II and TSD models show in-phase polarity. The second line
panels show each concentration of slow diffusive type (Ws , black) and fast diffusive type (W f , gray). The
detailed parameter values and the initial conditions are given in “Appendix B” (color figure online)

the membrane polarity of U (Fig. 2a, b right panels). Furthermore, we found that in
bothmodels, the slow diffusive type Ws and fast diffusive type W f also create different
phases of polarity, and the polarity of Ws coincides with the phase of W , indicating
that Ws strongly affects the total dynamics of W polarity.

From the model properties, we conclude that the anti-phase mechanism is based on
the activation from slow type to fast type and the inhibition from fast type to slow type
by an upstream polarity substrate. In contrast, the in-phase mechanism is based on the
activation from fast type to slow type and the inhibition from slow type to fast type
by an upstream polarity protein (see Fig. 5 and Sect. 4 for more details). These results
suggest that the location of downstream polarity is dominated by the location of slow
type polarity, and anti-/in-phase polarity in the cytosol is determined by regulating the
upstream polarity protein.

3.2 Underlyingmechanism for downstream polarity

To understand the coremechanism for downstream polarity formation, we investigated
the effects of three factors that compose the downstream polarity model; (1) Existence
of membrane protein(U ) polarity, (2) proportion of diffusion rates (Ds/D f ), and (3)
transit rates,μ1 (from the slow type to the fast type) andμ2 (from the fast type to slow
type).

Firstly, we explored the existence of W polarity under the condition where U
does not lead to symmetric breaking to see whether the symmetry breaking of U is
indispensable to induce the symmetry breaking of W (Fig. 3a). Next, we investigated
whether the polarity of W is maintained under the assumption that symmetry breaking
is possible but the maintenance phase of U has failed (Fig. 3b). We found that both
the symmetry breaking and the maintenance of polarity cannot be established without
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Fig. 3 Underlying mechanism for downstream polarity formation. a, b Effect of upstream polarity of U on
downstream polarity of W was simulated. The dynamics of U were controlled as failure cases of symmetry
breaking (a) and maintenance phase (b). Under each condition, the result of W polarity is shown in the right
side of figures. c, d Parameter space of TFD and TSD models for W polarity with respect to the ratio of
conversion rates (μ2/μ1) and ratio of diffusion rates (Ds/D f ). The degree of apparent patterning (o(AP),
Eq. 10) is plotted in c1 and d1. c2–c5 and d2–d5 show how the values of w̄s/w̄ f and w̄tot change and are
affected o(AP) in the simulation in c1 and d1. The detailed parameter values and the initial conditions are
given in “Appendix B”

polarity formation of themembrane protein (U ), indicating that both establishment and
maintenance of membrane protein polarity are indispensable conditions for polarity
formation of cytoplasmic protein W .
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Next, under the condition whereU creates a polarity, we explored how the diffusion
and transit rates affect polarity formation of W . To evaluate whether downstream
polarity is established, we defined the apparent patterning degree (o(AP)) such that

o(AP) = wmax − wmin

w̄tot
, (10)

where wmax = maxx∈[0,L] w(x,∞), wmin = minx∈[0,L] w(x,∞), and

w̄tot = 1

L

∫ L

0
w(x,∞)dx .

Note that w̄tot denotes both the total concentration of W and the concentration of
homogeneous steady state of W in scaled space [0, 1]. Thus, o(AP) = 0 implies that
wmax = wmin = w̄tot . The higher value of o(AP) indicates that the polarity in the
cytosol is more apparent.

We first investigated the parameter space of Ds/D f and μ2/μ1 with respect to
o(AP) in Fig. 3c, d. We found that both TFD and TSD models show very similar
results, indicating that these four parameters do not essentially influence the location
of polarities (either anti- or in-phase polarity exists), but they are commonly related
with the existence of cytoplasmic polarity. The simulation results show that polarity
exists in a proper range of μ2/μ1, and patterning is not apparent when μ2/μ1 is
either very small or large. In contrast, patterning monotonically increases as Ds/D f

decreases. We found that when the diffusion rates differ slightly, the concentration
W is in a homogeneous state, although Ws and W f generate clear polarities (Fig. 6
in “Appendix”). This suggests that the symmetry breaking of W is dominated by not
only the asymmetry of the two transition rates but also the perturbation by different
diffusion rates, which are indispensable.

Next, we investigate the reason of the influence of transition and diffusion rates
on o(AP). Because the model is conservative, we first focused on the total mass of
W (w̄tot ) and the proportion of total mass of Ws and W f , denoted by w̄s and w̄ f ,
respectively (Fig. 3c2–c5, d2–d5), where

w̄s = (1/L)

∫ L

0
ws(x,∞)dx and w̄ f = (1/L)

∫ L

0
w f (x,∞)dx .

We found that both w̄tot and w̄s/w̄ f are proportional to μ2/μ1, and w̄s/w̄ f is also
proportional to Ds/D f (Fig. 3c2–c3, d2–d3). We confirmed o(AP) with respect to
w̄tot and w̄s/w̄ f and found that the polarity cannot be formedwhen w̄tot and w̄s/w̄ f are
either very small or large (Fig. 3c4–c5, d4–d5 ). This result shows that the concentration
valance of slow and fast types and the total mass are important to determine the degree
and shape of polarity. In contrast, we found that there are no notable differences
between the TFD and TSD models with respect to the above results. This indicates
that the mathematical structure for forming the polarity is the same between the two
models, and the location of polarity is purely determined by the properties of model
formulation.
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3.3 Dynamics of up–mid–down streams polarity in C. elegans embryo; PARs,
MEX-5/6, and PIE-1 models

Here, we show that the multiple streams polarity dynamics of PARs, MEX-5/6, and
PIE-1 in C. elegans embryo can be understood by our conceptional models. For this
purpose, we first construct the phenomenologicalmodel of PARs,MEX-5/6, and PIE-1
based on biological data.

The MEX-5/6 model including PARs dynamics is considered to be the Type I
model in our study. It has been found that MEX-5/6 exists as two diffusive types
of slow and fast diffusions in the cytosol, and the conversion of diffusion type is
regulated by phosphorylation and dephosphorylation via pPAR and aPAR dependent
manners (Daniels et al. 2010; Wu et al. 2018). It has been suggested that the slow
diffusive type of MEX-5/6 is converted to a fast diffusive type via pPAR-dependent
phosphorylation, and a fast diffusive type of MEX-5/6 is converted to a slow diffusive
type via aPAR-dependent dephosphorylation (Daniels et al. 2010; Hoege and Hyman
2013). The conceptional diagram for MEX-5/6 dynamics can be described as that
shown in Fig. 1c (Type I) by replacing U1 ≡ pPARs with U2 ≡ aPARs. Thus, we can
directly reconsider the MEX-5/6 model as the TFD model. By replacing u(x, t) and
v(x, t) with [Pm](x, t) and [Pc](x, t), which are the concentrations of posterior PAR
proteins in the membrane and cytosol, respectively, and ws(x, t) and w f (x, t) with
[Ms](x, t) and [M f ](x, t), which are the concentrations of MEX-5/6 of slow and fast
diffusive types, respectively, in the model (5) of TFD, we can directly formulate the
PARs-MEX-5/6 model as follows.

∂[Pm]
∂t

= Dm
∂2

∂x2
[Pm] + γ [Pc] −

{
α + β2

1 + β1[Pm]2
}

[Pm],
∂[Pc]
∂t

= Dc
∂2

∂x2
[Pc] − γ [Pc] +

{
α + β2

1 + β1[Pm]2
}

[Pm], (11)

∂[Ms]
∂t

= Ds
∂2

∂x2
[Ms] + μ2

δ2

1 + δ1[Pm]2 [M f ] − μ1[Pm][Ms],
∂[M f ]

∂t
= D f

∂2

∂x2
[M f ] − μ2

δ2

1 + δ1[Pm]2 [M f ] + μ1[Pm][Ms]. (12)

We define [M](x, t) = [Ms](x, t) + [M f ](x, t).
Next, we extend the PARs-MEX-5/6 model (11)–(12) with PIE-1 dynamics. PIE-

1 is a cytoplasmic protein generating a polarity in the opposite side of MEX-5/6
polarity. Thus, PIE-1 creates in-phase polarity to posterior PAR polarity in contrast to
MEX-5/6 which creates anti-phase polarity to posterior PAR polarity (Fig. 1a). PIE-
1 is downstream of MEX-5/6, and thus PAR polarity, MEX-5/6 polarity, and PIE-1
polarity are related by upstream, midstream, and downstream dynamics (Fig. 4a). The
underlyingmechanism of PIE-1 forming a polarity is known to be based on conversion
of diffusion type via a phosphorylation cycle regulated by MEX-5/6 concentration
(Daniels et al. 2009; Wu et al. 2015, 2018). Wu et al. (2015, 2018) proposed that
MEX-5/6 regulates the distribution of PIE-1 slow type particles, and PIE-1 mobility
is proportional to MEX-5/6 concentration. Thus, we assume that the transit rate from
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Fig. 4 Schematic diagram for model reduction and simulation results for PIE-1 polarity formation. a
Schematic diagram of PARs-PIE-1 Model. b Representative simulation results of the PARs-MEX-5/6-PIE-
1 model (11)–(13). c The comparison of approximated solution (dotted line) of [Ms ] given by (16), and the
numerical solutions (dashed line) of [Ms ] from the PARs-MEX-5/6-PIE-1 model (11)–(13) in sufficiently
large time. Ca is the case for Ds = 1.28 × 10−4, which is the same as the simulation results (b). Cb is
the case for Ds = 1.28 × 10−6. d Representative simulation result of the PIE-1 reduced model (17). The
result shows that PIE-1 shows in-phase polarity with respect to PAR polarity. e The comparison of PIE-1
solutions solved by the PARs-MEX-5/6-PIE-1 full model (11)–(13) with Ds = 1.28× 10−6 (red line) and
PIE-1 reduced model (17) (dotted black line) in sufficiently large time. The detailed parameter values and
the initial conditions are given in “Appendix B” (color figure online)

the slow diffusive type to the fast-diffusive type of PIE-1 is proportional to MEX-5
concentration such that

Transition rate from slow to fast type ≡ γ1[M](x, t)

where γ1 is a positive constant determining the transit rate. In contrast, Wu et al.
(2018) found that the transition rate from the fast diffusive type to the slow diffusive
type of PIE-1 increases from the anterior side (the side of high concentration of MEX-
5/6) to the posterior side (the side of low concentration of MEX-5/6), and it becomes
almost uniform in the spatially homogeneous state of MEX-5/6 concentration. Thus,
we assume that the transition rate from the fast diffusive type to the slow diffusive type
of PIE-1 decreases when MEX-5/6 increases and it becomes constant when MEX-5/6
is absent such that

Transit rate from fast to slow type ≡ γ2

1 + γ3[M](x, t)
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where γ2 is the basal transition rate of PIE-1 from the fast to slow type, and γ3 is the
inhibition rate by MEX-5/6. Hence, the two assumptions above lead to the following
PIE-1 model.

∂[P Is]
∂t

= Dps
∂2

∂x2
[P Is] + γ2

1 + γ3[M] [P I f ] − γ1[M][P Is],
∂[P I f ]

∂t
= Dp f

∂2

∂x2
[P I f ] − γ2

1 + γ3[M] [P I f ] + γ1[M][P Is], (13)

where [P Is](x, t) and [P I f ](x, t) are the concentrations of the slow and fast diffusive
types of PIE-1.

We first found that the model of PARs, MEX-5/6, and PIE-1 (11)–(13) successfully
forms anti-phase PIE-1 polarity with respect to the polarity peak of MEX-5/6 in the
cytosol,which results in an in-phase relationwith the polarity of PARsof themembrane
(Fig. 4b).

Next, we investigate that the dynamics of PIE-1 can be considered as a type of
TSD model with respect to PAR polarity via heuristic approximation. We show that
PIE-1 dynamics can essentially be reconsidered as direct downstream dynamics of
PARs (Fig. 4a). The numerical results of Fig. 2 show that stationary solutions exist
for the system (11)–(12). Let us consider the stationary problem of the model (12) for
sufficiently small Ds (i.e. Ds → 0) such that

0 = μ2
δ2

1 + δ1[Pm]2 [M f ] − μ1[Pm][Ms],

0 = D f
∂2

∂x2
[M f ] − μ2

δ2

1 + δ1[Pm]2 [M f ] + μ1[Pm][Ms], (14)

where [Pm], [Ms], and [M f ] are stationary solutions of the model (11). From Eq. (14),
we obtain

D f
∂2

∂x2
[M f ] = 0

with respect to the periodic boundary conditions. Thus, [M f ] should be a constant
stationary solution. Let us denote it by M∗

f . Then, from (14), we have

[Ms](x) = μ2δ2M∗
f

μ1[Pm](x){1 + δ1[Pm](x)2} . (15)

Based on (15), we approximate the solution of the slow diffusive type of MEX-5/6 on
[0, L] × (0, ∞) to

[Ms](x, t) ≈ μ2δ2M∗
f

μ1[Pm](x, t){1 + δ1[Pm](x, t)2} . (16)
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Note that the approximation solution given by (16) coincides well with the original
solution solved by (12) with respect to small Ds (Fig. 4c).

Now, let us substitute Eq. (16) into the PIE-1 model (13). We obtain the PIE-1
model including the direct interaction with PARs as follows.

∂[P Is]
∂t

= Dps
∂2

∂x2
[P Is] + p([Pm])[P I f ] − q([Pm])[P Is],

∂[P I f ]
∂t

= Dp f
∂2

∂x2
[P I f ] − p([Pm])[P I f ] + q([Pm])[P Is]. (17)

p(u) and q(u) are given by

p(u) = A2(A1u + u3)

A0 + A1u + u3 , q(u) = B0 + B3

B1u + B2u3

where A0 = γ3μ2δ2M∗
f /(μ1δ1 + μ1δ1γ3M∗

f ), A1 = 1/δ1, A2 = γ2/(1 +
γ3M∗

f ), B0 = γ1M∗
f , B1 = μ1, B2 = μ1δ1, and B3 = γ1μ2δ2M∗

f .
Note that the model (17) is independent of MEX-5/6 and is directly described

by PARs. Furthermore, we can simply show that p(u) is a monotonically increasing
function of u(> 0) for arbitrary positive parameters (check p′(u) > 0). This implies
that the upstream protein PAR activates the transiting effect of diffusive type of PIE-
1 from fast to slow. In contrast, we can directly show that q(u) is a monotonically
decreasing function of u(> 0) for arbitrary positive parameters. This indicates that the
upstream protein PAR inhibits the transiting effect of diffusive type of PIE-1 from slow
to fast. That is, the model formulation (17) can be described as a type of TSD model.
We confirm the model (17) with (11) in a numerical simulation, and Fig. 4d shows
that PIE-1 forms in-phase polarity with respect to PAR polarity. We also confirmed
that the PIE-1 solution of the reduced PIE-1 model (17) coincides with that of the full
model (11)–(13) (Fig. 4e).

4 Mathematical analysis

4.1 Mathematically general property for in- and anti-phase of polarity in a cell

Considering the result of approximatingMEX-5/6model and PIE-1model, we hypoth-
esize that TFD and TSD models can be extended to a general type model without
dependency of specific kinetic forms. From the simulation observations in the previous
section, we found that the positioning (either anti-phase or in-phase) of downstream
polarity to the upstream polarity is determined by either the transition of [Slow type
→ Fast type] is activated and [Fast type → Slow type] is inhibited by the upstream
polarity protein (Fig. 5a), or the transition of [Fast type→ Slow type] is activated and
[Slow type → Fast type] is inhibited by the upstream polarity protein (Fig. 5b). In
what follows, we show mathematically general property for anti-phase and in-phase
with respect to a monotone increasing function p(u) (the activation effect by upstream
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Fig. 5 General properties for the anti-phase TFD model and the in-phase TSD model. a and b Show a
general condition for anti-phase and in-phase patterning, respectively. p(u) is a monotonically increasing
function and q(u) is a monotonically decreasing function

polarity substrate) and a monotone decreasing function q(u) (the inhibition effect by
upstream polarity substrate).

A general type model describing these properties can be given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= d1

∂2u

∂x2
+ f (u, v),

∂v

∂t
= d2

∂2v

∂x2
− f (u, v),

∂ws

∂t
= ds

∂2ws

∂x2
+ g(u, ws, w f ),

∂w f

∂t
= d f

∂2w f

∂x2
− g(u, ws, w f ),

x ∈ I , t > 0. (18)

where u(x, t), v(x, t) are concentrations of upstream proteins, and ws(x, t), w f (x, t)
are concentrations of downstream proteins. d1, d2, ds, d f represent diffusion coef-
ficients of each protein and we suppose 0 < d1 ≤ d2 and 0 < ds ≤ d f . Let f
and g denote reaction terms for upstream proteins and downstream proteins, and we
consider f and g are smooth functions. Applying variable conversion, we can put
I := [−L/2, L/2]. This formulation makes our mathematical formulation be sim-
pler, and the mathematical results hold without loss of generality, because we consider
periodic boundary condition for (18).

If (u, v, ws, w f ) is solution to (18), it has conserved quantities independent of
variable t , given by

θ := 1

L

∫
I
(u(x, t) + v(x, t))dx ≡ 1

L

∫
I
(u(x, 0) + v(x, 0))dx,

ξ := 1

L

∫
I
(ws(x, t) + w f (x, t))dx ≡ 1

L

∫
I
(ws(x, 0) + w f (x, 0))dx, (19)
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The quantities θ and ξ are the spatial averages of the upstream proteins and the down-
stream proteins, respectively. We can prove the first equation of (19) by applying
differentiation under the integral sign and periodic boundary condition such that

L
dθ

dt
= d

dt

∫
I
(u(x, t) + v(x, t))dx

=
∫

I

(
∂u

∂t
(x, t) + ∂v

∂t
(x, t)

)
dx =

∫
I

(
d1

∂2u

∂x2
(x, t) + d2

∂2v

∂x2
(x, t)

)
dx

=
[

d1
∂u

∂x
(x, t) + d2

∂v

∂x
(x, t)

]x=L/2

x=−L/2
= 0.

Thus, θ is constant. Similarly, we can prove the second equation of (19).
Note that the spatial averages are not unique pair of conserved quantities for Eq. (18)

because c1θ and c2ξ are also conserved quantities of (18), where c1 and c2 are arbitrary
real numbers. Thus, we define the conserved quantity as a spatial average, without loss
of generality in order for the mathematical analysis to be simpler.

In this section, we consider stationary solutions of the system (18) when
(u(x, t), v(x, t)) converges to a stable non-constant stationary solution (u∗(x), v∗(x));
it corresponds to the condition that upstream proteins form a stable polarity pattern.
In this case, Eq. (18) is transformed to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = d1
d2u∗

dx2
+ f (u∗, v∗),

0 = d2
d2v∗

dx2
− f (u∗, v∗),

∂ws

∂t
= ds

∂2ws

∂x2
+ g(u∗, ws, w f ),

∂w f

∂t
= d f

∂2w f

∂x2
− g(u∗, ws, w f ),

x ∈ I , t > 0.

We apply variable conversion x → x/
√

d f , then time evolution equation of ws, w f

is given by

⎧⎪⎪⎨
⎪⎪⎩

∂ws

∂t
= D

∂2ws

∂x2
+ g∗(ws, w f )

∂w f

∂t
= ∂2w f

∂x2
− g∗(ws, w f ),

x ∈ I , t > 0.

g∗(x, t) := g(u∗(x), ws(x, t), w f (x, t)). (20)

Now, we set D := ds/d f , and replace L/
√

d f by L . Suppose that (w∗
s , w∗

f ) be a
stationary solution of Eq. (20). Then, it satisfies
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

D
d2w∗

s

dx2
+ g∗(w∗

s , w∗
f ) = 0,

d2w∗
f

dx2
− g∗(w∗

s , w∗
f ) = 0,

〈w∗
s 〉 + 〈w∗

f 〉 = ξ,

x ∈ I , t > 0. (21)

The third equation denotes a conserved quantity. 〈φ〉means the spatial average, where

〈φ〉 := (1/L)

∫
I
φ(x)dx .

Our main mathematical result is the shape of stable non-constant solution of the
system (21) and this result proposes that the polarity of downstream proteins is formed
when the polarity of the upstream proteins is formed. Note that if (u∗, v∗) is unstable,
then stationary solution (u∗, v∗, w∗

s , w∗
f ) for the system (18) becomes unstable. This

is because the equation of u and v are independent of ws and w f . Therefore, we here
assume the existence and stability of non-constant stationary state (u∗(x), v∗(x)).

In what follows, we first introduce basic assumptions in the Sect. 4.2, and then
explain the main results and proofs in the Sects. 4.3 and 4.4.

4.2 Basic assumptions

Let us first consider the system of only u and v as the following.

⎧⎪⎨
⎪⎩

∂u

∂t
= d1

∂2u

∂x2
+ f (u, v),

∂v

∂t
= d2

∂2v

∂x2
− f (u, v).

x ∈ I , t > 0. (22)

Assumption 1 Equation (22) has a stationary solution S(x) = (u∗(x), v∗(x)), where
u∗, v∗ are smooth functions in I, and satisfy

(i) u∗(x) > 0, v∗(x) > 0 (x ∈ I )
(ii) u∗ and v∗ are strictly decreasing and increasing, respectively, in x for 0 < x <

L/2.
(iii) u∗ and v∗ are even periodic functions with period L .

First condition is very obvious, because u∗ and v∗ are concentrations of chemical
substrates. Second condition assumes the shape of upstream polarity. Equation (22)
is invariant under the transformation x → −x , thus we assume the condition (iii). We
regard θ as a parameter of solution, and denote S(x) = S(x; θ).

Next, we assume the stability of S(x). Let us denote L, dom(L), and σ(L) as
linearized operators of the right hand side equations in (22) at S(x), domain of L, and
spectral set of L.
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dom(L) := X =
{
v =T (v1, v2) ∈ H2

p(I ) × H2
p(I );

∫
I
(v1 + v2)dx = 0

}
,

H2
p(I ) := {

u ∈ H2(I ); u(−L/2) = u(L/2), ux (−L/2) = ux (L/2)
}
,

Lv :=
(

d1 0
0 d2

)
∂2x v +

(
f ∗
u f ∗

v− f ∗
u − f ∗

v

)
v, where f ∗

u := fu(u∗, v∗), f ∗
v := fv(u

∗, v∗).

From Assumption 1, S(x) is even periodic function on I . Then its derivative Sx (x) =
(u∗

x (x), v∗
x (x)) is odd periodic function on I . Accordingly,

∫
I (u

∗
x +v∗

x )dx = 0. More-
over, substituting S(x) into the Eq. (22) and differentiating the equation by x , we
obtain LSx = 0. Therefore, 0 is eigenvalue of L, and Sx is the corresponding eigen-
function. Note that Sθ also satisfies LSθ = 0. However, Sθ /∈ dom(L), because∫

I (u
∗
θ + v∗

θ )dx = L . Therefore, Sθ is not eigenfunction of L.
Assumption 2 (i) 0 is simple eigenvalue of L with the eigenfunction Sx .
(ii) There exists some δ > 0, such that σ(L) ⊂ {λ ∈ C; Re(λ) < −δ} ∪ {0}, where

Re(λ) denotes real part of λ.

We only consider the case that upstream proteins generate a stable polarity, hence we
assume the condition above. Mathematically, this assumption is sufficient condition
that S(x) is stable except the translation.

Finally, we set the assumption for the mathematical condition of g.

Assumption 3 Let p and q be smooth functions, and suppose that p and q are strictly
increasing and decreasing functions in R. Moreover, we assume p(u) > 0, q(u) >

0 (u > 0). We suppose g satisfies the condition (T F D) or (T SD).

(T F D) g(x, t) = q(u(x, t))w f (x, t) − p(u(x, t))ws(x, t).

(T SD) g(x, t) = p(u(x, t))w f (x, t) − q(u(x, t))ws(x, t).

(T F D) and (T SD) are corresponding to the general conditions for in-phase and
anti-phase polarity.

In next subsection, we prove the existence of non-constant stationary solution of the
system (20) under Assumptions 1 and 3. In what follows, we explain all proof under
the case of (T F D) for simplicity and only remark the results for the case of (T SD),
because we can prove the results for (T SD) by the same manner with (T F D).

4.3 The existence of non-constant stationary solutions

For the case of (T F D), the system (21) is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D
d2ws

dx2
− p∗(x)ws + q∗(x)w f = 0,

d2w f

dx2
+ p∗(x)ws − q∗(x)w f = 0,

〈ws〉 + 〈w f 〉 = ξ,

x ∈ I . (23)

We consider the solution of the system (23) by (ws(x), w f (x))=(ws(x; ξ), w f (x; ξ)).
Note that the general solution is represented by (ws(x; ξ), w f (x; ξ)) = ξ(ws(x; 1),
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w f (x; 1)) if there exist a solution (ws(x; 1), w f (x; 1)) for ξ = 1, because every term
in the left hand side of Eq. (23) is linear about ws and w f . Therefore, we only need
to consider the case of ξ = 1.

Taking the sum of first and second equations in the system (23), we obtain

D
d2ws

dx2
+ d2w f

dx2
= 0, x ∈ I .

Applying the indefinite integration with periodic boundary conditions, we obtain

Dws(x; 1) + w f (x; 1) = C, x ∈ I , (24)

where C is an integration constant. Taking the spatial average of the equation above,
we obtain

C = D〈ws〉 + 〈w f 〉,
= D(1 − 〈w f 〉) + 〈w f 〉,
= D + (1 − D)〈w f 〉,

because 〈ws〉 + 〈w f 〉 = 1. Substituting C into (24), we obtain

ws(x; 1) = 1 + 1 − D

D
〈w f 〉 − 1

D
w f (x; 1).

Substituting ws into the second equation of (23), we finally obtain the equation con-
taining w f only as the following.

⎧⎪⎨
⎪⎩

d2w f

dx2
− ρ(x)w f + 1 − D

D
〈w f 〉p∗(x) = −p∗(x),

ws(x; 1) = 1 + 1 − D

D
〈w f 〉 − 1

D
w f (x; 1),

x ∈ I , (25)

where ρ(x) := D−1 p∗(x) + q∗(x) (0 < D ≤ 1).

Theorem 4.1 Suppose Assumption 1 and (T F D) hold, then (25) has unique solution
(w∗

f , w
∗
s ) satisfying the following (i)–(iii)

(i) w∗
f (x) > 0, w∗

s (x) > 0 (x ∈ I ).
(ii) w∗

f and w∗
s are even and periodic functions with period L.

(iii) w∗
f and w∗

s are strictly decreasing and increasing functions for x ∈ (0, L/2).
Moreover, we denote w∗(x) := w∗

f (x) + w∗
s (x) and suppose D �= 1, then w∗

satisfies (i) and (ii), and w∗ is strictly increasing function for x ∈ (0, L/2).

Remark 4.1 If we replace the condition (T F D) with (T SD) in Theorem 4.1, w∗
f

and w∗
s are strictly increasing and decreasing in (0, L/2). Moreover, w∗ is strictly

decreasing in (0, L/2), for D �= 1.
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Theorem 4.1(iii) proposes that the case of (T F D) makes anti-phase polarity and
Remark 4.1 proposes that the case of (T SD) makes in-phase polarity.

Remark 4.2 From Theorem 4.1, (23) has a unique solution for any ξ ∈ R, and the
solution is represented by (ws(x; ξ), w f (x; ξ)) = ξ(w∗

s (x), w∗
f (x)). Therefore, if

ξ > 0, then ws and w f also satisfy (i)∼(iii).

First equation of (25) is linear integro-differential equation. One of the useful tools
for solving this type equation is Sherman–Morrison–Woodbury’s formula (Wu 2016),
and we can find a unique solution represented by

w∗
f (x) = (H + Q)−1 (−p∗(x)

) =
(
H−1 − 1

c f
H−1QH−1

) (−p∗(x)
)
,

where

Hφ := d2φ

dx2
− ρ(x)φ, Qu := 1 − D

D
〈u〉p∗(x), c f := 1 + 1 − D

D
〈H−1 p∗〉,

if c f �= 0 and the inverse operator H−1 exists.
To justify above, we consider following equations under periodic boundary condi-

tion.
d2k

dx2
− ρ(x)k = −p∗(x), x ∈ I . (26)

Lemma 4.1 Suppose Assumption 1 and (TFD) or (TSD) hold, then Eq. (26) has a
unique solution under the periodic boundary condition.

Lemma 4.2 Suppose Assumption 1 and (TFD) hold, and let k∗ be a solution of Eq. (26)
under periodic boundary condition, then k∗ satisfies

(i) k∗ is even periodic function with period L,
(ii) k∗ is strictly decreasing function in (0, L/2),
(iii) 0 < k∗(x) < D (x ∈ I ).

We prove these lemmas in “Appendix D”.

Proof of Theorem 4.1 Following Lemmas 4.1 and 4.2, k∗ is represented by k∗ =
H−1(−p∗), and from (iii) of Lemma 4.2, the constant c f is estimated by

c f = 1 − 1 − D

D
〈k∗〉 > 1 − 1 − D

D
D = D.

Consequently, c f �= 0. Thus, we can apply Sherman–Morrison–Woodbury formula
for (25) and obtain

w∗
f (x) =

{
1 + 1 − D

c f D
〈k∗〉

}
k∗(x) = D

D − (1 − D)〈k∗〉k∗(x),

w∗
s (x) = 1 + 1 − D

D
〈w∗

f 〉 − 1

D
w∗

f (x) = D − k∗

D − (1 − D)〈k∗(x)〉 ,
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w∗(x) = w∗
f (x) + w∗

s (x) = D − (1 − D)k∗(x)

D − (1 − D)〈k∗〉 .

Due to Lemma 4.2, k∗ is positive and strictly decreasing function, and D − (1 −
D)〈k∗〉 > D2, because of 〈k∗〉 < D. Thus, w∗

f and w∗
s satisfy (i)∼(iii). Moreover, we

can prove thatw∗ satisfies same properties ofw∗
s with samemanners, when 0 < D < 1

. Therefore, the theorem is proved. ��

Remark 4.3 Let us define w(x; ξ) := ws(x; ξ) + w f (x; ξ). From Theorem 4.1, we
directly obtain that w is strictly increasing function in (0, L/2) if ξ > 0 and D < 1.
This implies that w is anti-phase with respect to u∗. However, if D = 1, then w

becomes a constant function. Thus, the polarity in the down-stream is not formed,
although each ws and w f forms a polarity as shown in Fig. 6. This result proves that
the difference of diffusion coefficients causes the polarity of the total concentration of
downstream proteins.

4.4 The stability of the solution of Eq. (18)

In this subsection, we prove the stability of stationary solutions of the system (18)
given by S̃ := (u∗, v∗, w∗

s , w∗
f ). Let L̃, dom(L̃) and λ be linearized operators of the

right hand side of the system (18) at S̃, domain of L̃, and eigenvalue of L̃.

dom(L̃) := X × X ,

L̃� =

⎛
⎜⎜⎝

d1 0 0 0
0 d2 0 0
0 0 ds 0
0 0 0 d f

⎞
⎟⎟⎠ ∂2x � +

⎛
⎜⎜⎝

f ∗
u f ∗

v 0 0
− f ∗

u − f ∗
v 0 0

g∗
u 0 −p∗ q∗

−g∗
u 0 p∗ −q∗

⎞
⎟⎟⎠ � = λ�,

g∗
u := gu(u∗, w∗

s , w∗
f ). (27)

We can find that S̃x is the eigenfunction of L̃ associated with 0 in the similar way with
L.

Lemma 4.3 0 is simple eigenvalue of L̃ with the eigenfunction S̃x .

Proof Let K er(L̃) be kernel space of L̃. Because 0 is simple eigenvalue of L from
Assumption 2, any � ∈ K er(L̃) is given by (0, 0, φ, ψ) or (ux , vx , φ, ψ) up to scale,
where φ and ψ are some functions with (φ,ψ) ∈ X . If we choose � = (0, 0, φ, ψ),
then (φ,ψ) satisfies Eq. (23) with 〈φ〉 + 〈ψ〉 = 0. From Remark 4.2, φ = ψ = 0.
Therefore we consider the case of� = (ux , vx , φ, ψ) only. Suppose�1,�2 ∈ X × X
are represented by

�1 = (ux , vx , φ1, ψ1), �2 = (ux , vx , φ2, ψ2),
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up to scale. Substituting them into (27), each equation of (φ1, ψ1) and (φ2, ψ2) is
given to

⎧⎪⎪⎨
⎪⎪⎩

ds
d2φ1

dx2
+ g∗

uu∗
x − p∗(x)φ1 + q∗(x)ψ1 = 0,

d f
d2ψ1

dx2
− g∗

uu∗
x + p∗(x)φ1 − q∗(x)ψ1 = 0.

(28)

⎧⎪⎪⎨
⎪⎪⎩

ds
d2φ2

dx2
+ g∗

uu∗
x − p∗(x)φ2 + q∗(x)ψ2 = 0,

d f
d2ψ2

dx2
− g∗

uu∗
x + p∗(x)φ2 − q∗(x)ψ2 = 0.

(29)

Taking the differences between each first equation of (28) and (29), and between
each second equation of (28) and (29), we obtain

⎧⎪⎪⎨
⎪⎪⎩

ds
d2φ̃

dx2
− p∗(x)φ̃ + q∗(x)ψ̃ = 0,

d f
d2ψ̃

dx2
+ p∗(x)φ̃ − q∗(x)ψ̃ = 0,

where φ̃ := φ1 − φ2, ψ̃ := ψ1 − ψ2. Due to (φ̃, ψ̃) ∈ X , then φ̃ and ψ̃ are solutions
of (23) with ξ = 0. Thus, φ̃ ≡ 0, ψ̃ ≡ 0 from Remark 4.2. Consequently, we obtain
�1 = �2. This means any eigenfunction associated with 0 is given by S̃ up to scale.
Moreover, suppose that there is function � ∈ X × X such that L̃� = �, then 0 is
not eigenvalue of L. This is contradiction because of Assumption 2. Therefore, 0 is
simple eigenvalue of L̃. ��

Next, we prove there exist no eigenvalue with positive real part. For the proof, we
have referred the mathematical technique in Lemma 2.5 of Bates and Chen (2002),
Protter and Weinberger (1984).

Theorem 4.2 Any eigenvalue of L̃ has a negative real part except for 0. Moreover,
there is no pure imaginary eigenvalue of L̃.

Proof (Case 1) The case that λ is complex number.
Suppose that λ = a + b

√−1 (a ≥ 0, b �= 0) is eigenvalue of L̃, and we will show
a contradiction. FromAssumption 2, λ is not eigenvalue ofL. Then, the eigenfunction
� is given by �(x) =T (0, 0, φ1(x), φ2(x)). Substituting � into Eq. (27), we obtain

λ

(
φ1
φ2

)
=

⎛
⎜⎜⎝

ds
d2φ1

dx2
− p∗(x)φ1 + q∗(x)φ2

d f
d2φ2

dx2
+ p∗(x)φ1 − q∗(x)φ2

⎞
⎟⎟⎠ =: L†

(
φ1
φ2

)
,

(30)
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where (φ1(x), φ2(x)) = (ϕ1(x), ϕ2(x))+√−1(ψ1(x), ψ2(x)) and each ofϕ1, ϕ2, ψ1,

ψ2 is real valued function. Let �(x, t) be given function as follows.

�(x, t) :=
(

θ1(x, t)
θ2(x, t)

)
= cos(bt)

(
ϕ1(x)

ϕ2(x)

)
− sin(bt)

(
ψ1(x)

ψ2(x)

)
,

then, �(x, t) satisfies

�t = L†� − a�, θ1(x, t) ≤ |φ1(x)|, θ2(x, t) ≤ |φ2(x)| (x ∈ I , t > 0),

�(x, 0) =
(

ϕ1(x)

ϕ2(x)

)
(x ∈ I ). (31)

Next, let τ1 and τ2 be

τ1 := min{τ ∈ R; τw∗
s (x) − |φ1(x)| ≥ 0, x ∈ I },

τ2 := min{τ ∈ R; τw∗
f (x) − |φ2(x)| ≥ 0, x ∈ I },

where τ1 > 0 or τ2 > 0, because w∗
s , w∗

f > 0 and φ1 �≡ 0 or φ2 �≡ 0. We consider
the case τ1 ≥ τ2. From the definition of τ1, there exist x0 ∈ I such that τ1w

∗
s (x0) =

|φ1(x0)|.
We define W (x) :=T (w∗

s (x), w∗
f (x)) and let V (x, t) be the function given by

V (x, t) :=
(

v1(x, t)
v2(x, t)

)
= τ1W (x) − �(x, t).

From τ1 ≥ τ2 and �(x, t) satisfies (31), V satisfies V (x, t) ≥ 0 (x ∈ I , t > 0) and
V (x, 0) �≡ 0 hold. Moreover,

Vt − L†V + aV = −�t + L†� + aV = −(L†� − a�) + L†� + aV

= a� + aV = aτ1W ≥ 0.

Therefore, applying strong comparison principle (Protter and Weinberger 1984), we
obtain V (x, t) > 0 (x ∈ I , t > 0). However, in the first component of �(x, t), there
exists t0 > 0, such that

cos(bt0)ϕ1(x0) − sin(bt0)ψ1(x0) = |φ1(x0)|.

Then, we obtain

0 < v1(x0, t0) = τ1w
∗
s (x0) − |φ1(x0)| = 0.

This is contradiction. We can prove in the case τ1 ≤ τ2 by similar manner, thus λ is
not eigenvalue.

(Case 2) The case that λ is real number.
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Suppose thatλ > 0 is real eigenvalue of L̃, wewill show a contradiction. In the same
way of (Case 1), the corresponding eigenfunction is given by (0, 0, ϕ1(x), ϕ2(x)). In
here, ϕ1, ϕ2 are real valued functions and let us suppose that there exist some x∗ ∈ I ,
such that ϕ1(x∗) > 0 or ϕ2(x∗) > 0.

Next, let τ1 and τ2 be

τ1 := min{τ ∈ R; τw∗
s (x) − ϕ1(x) ≥ 0, x ∈ I },

τ2 := min{τ ∈ R; τw∗
f (x) − ϕ2(x) ≥ 0, x ∈ I },

where τ1 > 0 or τ2 > 0, because w∗
s , w∗

f > 0. Now, we consider the case τ1 ≥ τ2,
and let us define a function V (x) as follows.

V (x) :=
(

v1(x)

v2(x)

)
=

(
τ1w

∗
s (x) − ϕ1(x)

τ1w
∗
f (x) − ϕ2(x)

)
= τ1W (x) − �(x),

where v1(x) ≥ 0 and v2(x) ≥ 0 (x ∈ I ). From the definition of τ1, there exist x0 ∈ I ,
such that v1(x0) = 0. Moreover, it is hold that

L†V (x) − λV (x) = L†(τ1W (x) − �(x)) − λ(τ1W (x) − �(x))

= −λτ1W (x).

For the first component of above equation at x = x0, we obtain

0 > −λτ1w
∗
s (x0) = ds

d2v1

dx2
(x0) − p(x0)v1(x0) + q(x0)v2(x0) − λv1(x0)

≥ ds
d2v1

dx2
(x0) + q(x0)v2(x0) ≥ 0,

because v1 takes minimal value 0 at x = x0. This is contradiction. Similarly, we can
also prove for the case of τ1 ≤ τ2. Therefore, λ is not eigenvalue.

From (Case1) and (Case2), the theorem is proved. ��

5 Discussion

In the past decade, both theoretical and experimental approaches for elucidating polar-
ity formation in a single cell have been extensively explored (Knoblich 2008; Otsuji
et al. 2007; Mori et al. 2011; Hoege and Hyman 2013; Trong et al. 2014; Seirin-Lee
and Shibata 2015; Seirin-Lee 2016; Campanale et al. 2017; Kuwamura et al. 2018).
However, most studies have focused on the polarity occurring in the cell membrane,
and the cytoplasmic polarity has been poorly understood. In this study, we focused
on finding an essential mechanism of cytoplasmic polarity and polarity positioning
between membrane and cytoplasmic proteins, a phenomenon that is motivated by
asymmetric cell division of C. elegans embryo. We devised a conceptional model for
downstream polarity formation with respect to upstream polarity formation by captur-
ing the essential dynamics of proteins in C. elegans embryo upstream of membrane
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protein (PARs) and downstream of cytosol proteins (MEX-5/6 and PIE-1). Using the
conceptional model, we found a general mechanism by which the proteins upstream
of membrane proteins determine the relative downstream position of cytosol proteins.
Especially, we found that the mechanism for the downstream polarity to be in an
anti-phase pattern is based on the transitional regulation such as activation from slow
type to fast type and the inhibition from fast type to slow type by an upstream polarity
substrate (TFD model). In contrast, the mechanism for the downstream polarity to
be in an in-phase pattern involves the reverse regulation of the anti-phase mechanism
(TSDmodel). This result shows that the mechanism for the fast/slow type transition to
be promoted plays a key role in inducing anti-phase/in-phase polarity. We also found
that these mechanisms are mathematically generalized and confirmed that they hold
under some general mathematical conditions.

For generating downstream polarity, we found that both establishment and mainte-
nance of upstreampolarity are indispensable and that a proper proportion of conversion
rates is essential. These results imply that the heterogeneous transition of diffusive
type of downstream proteins is important for downstream polarity (Wu et al. 2018).
Indeed, our mathematical analysis shows that there exists a non-constant solution of
downstream proteins under these conditions (Assumptions 1). In addition, we also
numerically found and mathematically confirmed that the difference in diffusion rates
between the fast type and slow type transition is indispensable. In this case, downstream
polarity does not appear, although the fast type and slow type transitions generate
clear polarities (Remark 4.3). In contrast, from the comparison of numerical results
between TFD and TSD models for the parameter spaces (the difference of diffusion
rates between fast type and slow type and the balance of conversion rates) with respect
to the existence of downstream polarity, we found that the parameters do not affect
the location of downstream polarity. Indeed, our mathematical proof does not require
a different set of conditions for the TFD and TSD models (Lemma 4.1). From these
results, we conclude that the mathematical structure to form the downstream polar-
ity itself is independent of the details of the mechanism of polarity location, and the
polarity positioning can be completely determined by the properties of regulation by
upstream protein on the downstream protein.

Finally, we constructed phenomenological models for the polarity proteins, PARs,
MEX-5/6, and PIE-1, in C. elegans and confirmed that the multiple streams polar-
ity dynamics in C. elegans can be understood by our two conceptional models. This
implies that the mechanism for the relative positioning between upstream and down-
stream polarity which we found here may become a general mechanism to explain
the position of multiple streams of polarity dynamics in asymmetric cell division.
Furthermore, our mathematical analysis under general conditions suggests that such a
mechanism can be understood without specific bio-chemical reactions or phenomena
and thus can be a universalmechanism for polarity positioningwithout the requirement
of cell specification.
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Appendix

A: Reduction to self-recruitment model

One-dimensional (U1, V1) and (U2, V2) polarity model (Seirin-Lee and Shibata 2015)
is given to

∂u1

∂t
= Dm1

∂2u1

∂x2
+ γ v1 − f1(u2)u1,

∂v1

∂t
= Dc1

∂2v1

∂x2
− γ v1 + f1(u2)u1,

∂u2

∂t
= Dm2

∂2u2

∂x2
+ γ̄ v2 − f2(u1)u2,

∂v2

∂t
= Dc2

∂2v2

∂x2
− γ̄ v1 + f2(u1)u2, (32)

where

f1(u2) = α + K1u2
2

K + u2
2

, f2(u1) = ᾱ + K̄1u2
1

K̄ + u2
1

.

We assume that the polarity of U1 and U2 in the membrane is established from the
initial situation where U2 is distributed uniformly in the membrane, in which a small
amount ofU1 invades at some point of themembrane from the cytosol.We assume suf-
ficiently fast diffusion in the cytosol so that the concentration of V1 and V2 are quickly
homogeneous and keep an equilibrium state (denoted by v∗

1 and v∗
2 , respectively). This

assumption can be rewritten as the following mathematical conditions:

γ̄ v∗
2 − f2(u1)u2 ≈ 0,

|u1(x, t)| � 1. (33)

Using Taylor expansion, we can approximate f2(u1) such that

f2(u1) = ᾱ + K̄1u2
1

K̄ + u2
1

≈ ᾱ + β̄u2
1 + O(u3

1) (34)
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where β̄ = K̄1/K̄ . Substituting (34) into Eq. (33), we obtain

u2 ≈ γ̄ v∗
2

ᾱ + β̄u2
1

= δ2

1 + δ1u2
1

, (35)

where δ1 = β̄/ᾱ and δ2 = γ̄ v∗
2/ᾱ. Then, we have

f1(u2) = α + K1u2
2

K + u2
2

≈ α + K1

K

(
1+δ1u21

δ2

)2

+ 1

= α + K1

1 + K
δ22

+ 2δ1K
δ22

u2
1 + O(u3

1)
≈ α + β2

1 + β1u2
1

, (36)

where β1 = 2δ1K
δ22

/

(
1 + K

δ22

)
and β2 = K1/

(
1 + K

δ22

)
.

Now, we substitute (36) into the equation of (u1, v1) in (32), then the self-
recruitment model is given to

∂u1

∂t
= Dm1

∂2u1

∂x2
+ γ v1 −

(
α + β2

1 + β1u2
1

)
u1,

∂v1

∂t
= Dc1

∂2v1

∂x2
− γ v1 +

(
α + β2

1 + β1u2
1

)
u1.

In addition, from Eq. (35), G(x, t) in Type I and II is given to

TFD: G(x, t) = μ1u1(x, t)ws(x, t) − μ2
δ2

1 + δ1u1(x, t)2
w f (x, t),

TSD: G(x, t) = μ1
δ2

1 + δ1u1(x, t)2
ws(x, t) − μ2u1(x, t)w f (x, t).

Note that the reduction has been carried under the assumption of |u1(x, t)| � 1.
However, we have found that the polarity dynamics in the reduced model is essentially
similar with the original model as shown in Fig. 2.

B: Initial conditions and detailed parameters for simulations

In this paper, we used a local concentration type, which represents that a cell polarity
starts with an auxiliary mechanism in a cell or by a strong external stimulation, such as
an invasion of sperm in C. elegans embryo cell, in which the anterior protein initially
dominates awholemembrane and the posterior protein is distributed only in the cytosol
(Gönczy 2005). Thus, we give the initial condition for U1 or U such that

u(x, 0) = u0δ(x − L/2),

123



1912 S. Seirin-Lee et al.

Table 2 Representative
parameter set

Parameter Dimensional value Dimensionless value

L 142.75 µm 1.0

t 4.0 s 1.0

Dm1, Dm 0.122 µm2/s 2.40 × 10−5

Dc1, Dc 7.743 µm2/s 1.44 × 10−3

Dm2 0.122 µm2/s 2.40 × 10−5

Dc2 7.743 µm2/s 1.44 × 10−3

Ds 0.65 µm2/s 1.28 × 10−4

D f 16.3 µm2/s 3.20 × 10−3

Dps 0.6 µm2/s 1.180 × 10−4

Dp f 8.7 µm2/s 1.708 × 10−3

where u0 is given, and for the other substrates, for example v, such that

v(x, 0) = v0

L
(1 + εφc(x)) for x ∈ [0, L],

where v0 is a homogeneous steady states obtained from the model equation with a
given u0 and φc(x) are perturbation functions and we take ε in [0.001, 0.01].

For simulations, we chose parameter values for spatial size, time scale and diffusion
coefficients based on the experimental data from the C. elegans embryo (Goehring
et al. 2011; Daniels et al. 2009; Wu et al. 2018). The representative parameter set
is given in Table 2 and the detailed parameter values used in each figure are given
below.

Figure 2 (A) u10 = 0.26, u20 = 0.56, w f 0 = 0.4, K1 = 1.2, K̄1 = 5.2, K =
0.8, K̄ = 1.25, α = 0.06, ᾱ = 0.06, γ = 0.2, γ̄ = 0.2 for both I and
Type II. μ1 = 1.0, μ2 = 0.2 for Type I and μ1 = 1.0, μ2 = 1.0 for Type II.
(B) u0 = 0.26, w f 0 = 0.4, β1 = 4.5, β2 = 4.0, α = 0.06, γ = 0.2 for
both TFD and TSD. μ1 = 1.0, μ2 = 0.2, δ1 = 0.5, δ2 = 10.0 for TFD and
μ1 = 0.1, μ2 = 1.0, δ1 = 0.5, δ2 = 10.0 for TSD.
Figure 3 (A) Same parameter values with Fig. 2(B) TFD except for u0 = 0.16.
(B) Same parameter values with Fig. 2(B) TFD except for u0 = 0.56 and Dm =
D f = 2.40 × 10−5. (C–D) u0 = 0.56, w f 0 = 0.4, β1 = 4.5, β2 = 4.0, α =
0.06, γ = 0.2, δ1 = 0.5, δ2 = 10.0.
Figure 4 (B) [Pm]0 = 0.56, [M f ]0 = 0.4, [P I f ]0 = 1.0, β1 = 4.5, β2 =
4.0, α = 0.06, γ = 0.2, δ1 = 0.5, δ2 = 10.0, μ1 = 1.0, μ2 = 0.2, γ1 =
1.0, γ2 = 5.0, γ3 = 5.0. (C) The case of Ca: Same parameter values with (B).
The case of Cb: Same parameter values with (B) except for Ds . M∗

f was found
by calculating the model (11)–(12) with sufficiently large D f and Ds = 0, and
we obtained spatially homogeneous solution about M∗

f = 0.19209. (D) Same
parameter values with (B). (E) Same parameter values with (B) except for Ds .
M∗

f = 0.19209.
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C: Additional figures

Figure 6 shows that the concentration W shows homogeneous state although Ws and
W f generate clear polarities when there is little difference in diffusion rates between
Ds and D f .

D: Proof of Lemmas 4.1 and 4.2

D.1: Proof of Lemma 4.1

(Uniqueness.) Suppose that k1 and k2 are solutions of (26). Substituting each of k1
and k2 to (26), and taking the difference between each equation, we obtain

d2k̃

dx2
− ρ(x)k̃ = 0,

where k̃ := k1 − k2. Multiplying both side of above equation by k̃, and integrating it
for the interval I , we obtain

∫
I

d2k̃

dx2
k̃ − ρ(x)k̃2dx =

[
dk̃

dx
k̃

]x=L/2

x=−L/2

−
∫

I

⎛
⎝

(
dk̃

dx

)2

+ ρ(x)k̃2

⎞
⎠ dx

= −
∫

I

⎛
⎝

(
dk̃

dx

)2

+ ρ(x)k̃2

⎞
⎠ dx = 0,

accordingly, k̃ ≡ 0, then k1 = k2. This means the uniqueness of solutions.

Fig. 6 Example of Ds ≈ D f
case in TFD model.
Representative parameter set
Table 2 were chosen except for
Ds = D f = 0.0032
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(Existence) By the uniqueness of solution, if the solution exists, it must be even

function and satisfies
dk∗

dx
(0) = dk∗

dx
(±L/2) = 0. Thus, we consider the existence of

solution for the equation as follows.

{Hk = −p∗(x), x ∈ I+,
dk

dx
(0) = dk

dx
(L/2) = 0,

(37)

where I+ := (0, L/2),H := d2

dx2
− ρ(x). This equation is Sturm–Liouville equation

and any eigenvalue of H is real number. Let λ0 be maximal eigenvalue of H and �

be the eigenfunction associated with λ0, then λ0 is given by (Dunford and Schwartz
1988).

λ0 = sup
k∈H1(I+),k �≡0

−
∫

I+

(∣∣∣∣ dk

dx

∣∣∣∣
2

+ ρ(x)k2
)

dx

∫
I+

k2dx
=

−
∫

I+

(∣∣∣∣ d�

dx

∣∣∣∣
2

+ ρ(x)�2

)
dx

∫
I+

�2dx
< 0,

because ρ > 0. This means 0 is element of the resolvent set of H, then there exists
inverse operator H−1, therefore (37) has a unique solution kN . Now, we let k∗ given
function as follows.

k∗(x) :=
{

kN (x) (x ∈ (0, L/2)),
kN (−x) (x ∈ (−L/2, 0)).

It is clear that k∗ is solution of (26). Therefore, the existence of solution is proved. ��
Remark When we suppose Assumption 1 and 3, Eq. (21) can be written as the follow-
ing

⎧⎪⎪⎨
⎪⎪⎩

∂ws

∂t
= D

d2ws

dx2
− p∗(x)ws + q∗(x)w f ,

∂w f

∂t
= d2w f

dx2
+ p∗(x)ws − q∗(x)w f ,

x ∈ I .

p∗(x) := p(u∗(x)), q∗(x) := q(u∗(x)). (38)

This equations have a conserved quantity and the comparison principle is holed under
the periodic boundary conditions (Protter and Weinberger 1984). Thus, we can also
directly prove the existence and uniqueness of the stationary solutions of Eq. (38) from
the result of Ogiwara (2014) in which more general type of equations was considered.

D.2: Proof of Lemma 4.2

Proof of (i) is already done in the proof of Lemma 4.1, then we prove (ii) and (iii).
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(Proof of (ii)) First, we prove
dk∗

dx
(x) ≤ 0 (x ∈ I+). Suppose k∗ doesn’t satisfy this

condition, and we will show a contradiction. By Lemma 4.1, the derivative of k∗ takes
0 at x = 0, K/2. Then there exist x1 ∈ I+ and positive constant δ1 = δ1(x1), such
that

dk∗

dx
(x1) > 0,

d2k∗

dx2
(x1) = 0,

dk∗

dx
(x) > 0,

d2k∗

dx2
(x) < 0, (x ∈ Iδ1 ⊂ I+), (39)

where Iδ := (x1, x1 + δ) for δ > 0. In the view of (26),

d2k∗

dx2
(x) < 0 ⇔ ρ(x)k∗(x) − p∗(x) < 0,

⇔ k∗(x) <
p∗(x)

ρ(x)
=: ρ̃(x), (40)

therefore, k∗(x) < ρ̃(x) (x ∈ Iδ1). From Assumption 1 and (T F D), ρ̃ is strictly
decreasing function in I+, then k∗(x) < ρ̃(x1) (x ∈ Iδ1). However, due to (39), there
exists a constant δ2 = δ2(x1) > 0, such that

k∗(x1) = ρ̃(x1) k∗(x) > ρ̃(x1) (x ∈ Iδ2 ⊂ I+).

Let δ3 := min{δ1, δ2}, then k∗(x) < ρ̃(x1) and k∗(x) > ρ̃(x1) (x ∈ Iδ3). This is

contradiction, then
dk∗

dx
(x) ≤ 0 (x ∈ I+). This means k∗ is decreasing function for

x ∈ I+.
Next, we prove that k∗ is strictly increasing in I+. Suppose k∗ doesn’t satisfy it,

then there exists open interval (a, b) ⊂ I+, such that
dk∗

dx
(x) = 0 for x ∈ (a, b).

Therefore k∗ is constant in (a, b), then
d2k∗

dx2
(x) = 0. In view of (40), k∗(x) = ρ̃(x)

for x ∈ (a, b), then ρ̃(x) is constant in (a, b). This is contradiction.
(Proof of (iii)) Due to Lemma 4.2, k∗ is even and strictly decreasing function in I

and I+, then we only have to prove that k∗(0) < D, k∗(K/2) > 0. Because k∗ takes

maximum at x = 0,
d2k∗

dx2
(0) ≤ 0 and k∗(0) ≤ ρ̃(0) < D, due to (40). It is proved

that k∗(K/2) > 0 by same manners. ��
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