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Abstract
A network is scale-free if its connectivity density function is proportional to a power-
law distribution. It has been suggested that scale-free networks may provide an
explanation for the robustness observed in certain physical and biological phenomena,
since the presence of a few highly connected hub nodes and a large number of small-
degree nodes may provide alternate paths between any two nodes on average—such
robustness has been suggested in studies of metabolic networks, gene interaction net-
works and protein folding. A theoretical justification for why many networks appear
to be scale-free has been provided by Barabási and Albert, who argue that expanding
networks, in which new nodes are preferentially attached to highly connected nodes,
tend to be scale-free. In this paper, we provide the first efficient algorithm to com-
pute the connectivity density function for the ensemble of all homopolymer secondary
structures of a user-specified length—a highly nontrivial result, since the exponential
size of such networks precludes their enumeration. Since existent power-law fitting
software, such as powerlaw, cannot be used to determine a power-law fit for our
exponentially large RNA connectivity data, we also implement efficient code to com-
pute the maximum likelihood estimate for the power-law scaling factor and associated
Kolmogorov–Smirnov p value. Hypothesis tests strongly indicate that homopolymer
RNA secondary structure networks are not scale-free; moreover, this appears to be the
case for real (non-homopolymer) RNA networks.

Keywords RNA secondary structure · Scale-free network · Small-world network ·
Dynamic programming

Mathematics Subject Classification 62G32 · 62G07 · 68W99 · 05C82 · 68R05

Research supported by National Science Foundation Grant DBI-1262439.

B P. Clote
clote@bc.edu

1 Department of Biology, Boston College, Chestnut Hill, MA 02467, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-019-01463-z&domain=pdf
http://orcid.org/0000-0003-3628-2874


1292 P. Clote

1 Introduction

The connectivity (or degree) of a node v in a network (or undirected graph) is the
number of nodes (or neighbors) of s, connected to v by an edge. A network is said to
be scale-free if its connectivity function N (k), which represents the number of nodes
having degree k, satisfies the property that N (a · k) = b · N (x), the unique solution
of which is a power-law distribution, which by definition satisfies N (k) ∝ k−α for
some scaling factor α > 1 (Newman 2006). Scale-free networks contain a few nodes
of high degree and a large number of nodes of small degree, hence may provide a
reasonablemodel to explain the robustness1 oftenmanifested in biological networks—
such robustness or resilience must, of course, be present for life to exist.

Barabasi and Albert (1999) analyzed the emergence of scaling in random net-
works, and showed that two properties, previously not considered in graph theory,
were responsible for the power-law scaling observed in real networks: (1) networks
are not static, but grow over time, (2) during network growth, a highly connected node
tends to acquire even more connections—the latter concept is known as preferential
attachment. In Barabasi and Albert (1999), it was argued that preferential attachment
of new nodes implies that the degree N (k) with which a node in the network interacts
with k other nodes decays as a power-law, following N (k) ∝ k−α , for α > 1. This
argument provides a plausible explanation for why diverse biological and physical
networks appear to be scale-free. Indeed, various publications have suggested that the
the following biological networks are scale-free: protein–protein interaction networks
(Ito et al. 2000; Schwikowski et al. 2000), metabolic networks (Ma and Zeng 2003),
gene interaction networks (Tong et al. 2004), yeast co-expression networks (VanNoort
et al. 2004), and protein folding networks (Bowman and Pande 2010).

How scale-free are biological networks?

The validity of a power-law fit for previously studied biological networks was first
called into question in Khanin and Wit (2006), where 10 published data sets of bio-
logical interaction networks were shown not to be fit by a power-law distribution,
despite published claims to the contrary. Estimating an optimal power-law scaling
factor by maximum likelihood and using χ2 goodness-of-fit tests, it was shown in
Khanin and Wit (2006) that not a single one of the 10 interaction networks had a
nonzero probability of being drawn from a power-law distribution; nevertheless, some
of the interaction networks could be fit by a truncated power-law distribution. The
data analyzed by the authors included data from protein–protein interaction networks
(Ito et al. 2000; Schwikowski et al. 2000), gene interaction networks determined by
synthetic lethal interactions (Tong et al. 2004), metabolic interaction networks (Ma
and Zeng 2003), etc.

1 A network is said to be robust, or resilient, if its connectivity is (relatively) unaltered in the event that
random nodes have been removed; i.e. alternate pathways exist to connect nodes, even if a (random) node
has been removed. Since functionality remains in the case of random node failure, network robustness is of
obvious importance in massively parallel computers, in the World Wide Web, in metabolic pathways, sig-
naling pathways, etc. This topic is discussed in detail in Chapter 16, “Percolation and Network Resilience”,
in Newman (2010).
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In Clauset et al. (2009), 24 real-world data sets were analyzed from a variety of
disciplines, each of which had been conjectured to follow a power-law distribution.
Estimating an optimal power-law scaling factor by maximum likelihood and using
goodness-of-fit tests based on likelihood ratios and on the Kolmogorov–Smirnov
statistic for non-normal data, it was shown in Clauset et al. (2009) that some of the con-
jectured power-law distributions were consistent with claims in the literature, while
others were not. For instance, Clauset et al. (2009) found sufficient statistical evidence
to reject claims of scale-free behavior for earthquake intensity and metabolic degree
networks, while there was insufficient evidence to reject such claims for networks of
protein interaction, Internet, and species per genus.

It is possible to come to opposite conclusions, depending on whether χ2 or
Kolmogorov–Smirnov (KS) statistics are used to test the hypothesis whether a network
is scale-free, i.e. follows a (possibly truncated) power-law distribution. Indeed, Khanin
and Wit (2006) obtained a p value of < 10−4 for χ2 goodness-of-fit for a truncated
power-law distribution for the protein–protein interaction data from Ito et al. (2000),
while Clauset et al. (2009) obtained a p value of 0.31 for KS goodness-of-fit for a
truncated power-law for the same data.

In this paper, we introduce the first efficient algorithm to compute the exact number
of homopolymer RNA secondary structures having k neighboring structures, for each
value of k, that can be reached by adding or deleting one base pair. Since there are
exponentially many secondary structures, our O(n5) time and O(n3) space algorithm
uses dynamic programming. By applying the Kolmogorov–Smirnov test, we then
show that homopolymer RNA secondary structure networks are not scale-free. We
also provide evidence that the same is true for real RNA networks. Prior to this paper,
only fragmentary results were possible by exhaustively enumerating all secondary
structures having free energy within a certain range obove the minimum free energy
(Wuchty 2003).

Our work investigates properties of the ensemble of RNA secondary structures,
considered as a network, and so extends results of Clote (2015), which described a
cubic time dynamic programming algorithm to compute the expected network degree.
The RNA connectivity algorithm described in Sect. 2.3 is completely unrelated to
that of Clote (2015), and allows one to compute all finite moments, including mean,
variance, skew, etc.

The plan of the remaining paper is as follows. Section 2 presents a brief summary
of basic definitions, followed by a description of an efficient dynamic programming
algorithm to determine the absolute [resp. relative] frequencies N (k) [resp. p(k)] for
secondary structure connectivity of a given homopolymer,which allows non-canonical
base pairs. Section 3 presents the statistical methods used to both fit RNA connnec-
tivity data to a power-law distribution and to perform a goodness-of-fit test using
Kolmogorov–Smirnov distance. Section 4 shows that RNA networks are not scale-
free, by performing (computationally efficient) Kolmogorov–Smirnov bootstrapping
tests. Section 5 presents concluding remarks, while the Appendix presents data that
suggests that RNA networks satisfy a type of preferential attachment. The rigorous
proof that RNA networks satisfy modified form of preferential attachment is sup-
pressed for reasons of space, but is available in the preprint (Clote 2018).
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1294 P. Clote

2 Computing degree frequency

Section 2.1 presents basic definitions and notation used; Sect. 2.2 presents an algorithm
to compute the frequency of each degree less than K in the ensemble of all secondary
structures with run time O(K 2n4) and memory requirements O(Kn3). Section 2.3
presents amore efficient algorithm, with run time O(K 2n3) andmemory requirements
O(Kn2), for the special case of a homopolymer, in which all possible non-canonical
base pairs are permitted. We implemented both algorithms in Python, cross-checked
for identical results, and call the resulting code RNAdensity. Since this paper is
a theoretical contribution on network properties, we focus only on homopolymers
and do not present the details necessary to extend the algorithm of Sect. 2.2 to non-
homopolymer RNA, where base pairs are required to be Watson–Crick or GU wobble
pairs—such an algorithm is possible to develop, using ideas of Sect. 2.2; however, since
the resulting complexity is formidible,withO(n9) time andO(n7) space requirements,
and since there are no obvious applications, we do not pursue such an extension.

2.1 Preliminaries

A secondary structure for a length n homopolymer is a set s of base pairs (i, j), such
that (1) there exist at least θ unpaired bases in every hairpin, where θ is usually taken
to be 3, though sometimes 1 in the literature, (2) there are no basd triples, so for
(i, j), (k, �) ∈ s, if {i, j} ∩ {k, �} �= ∅, then i = k and j = �, (3) there do not exist
base pairs (i, j), (k, �) ∈ s, such that i < k < j < �; i.e. a secondary structure
is a type of outerplanar graph, where each base pair (i, j) ∈ s satisfies j − i > θ .
The free energy of a homopolymer secondary structure s is defined to be −1 times
the number |s| of base pairs in s [Nussinov–Jacobson energy model (Nussinov and
Jacobson 1980)]. Since entropic effects are ignored, this is not a real free energy;
however it allows us to use the standard notation “MFE” for ‘minimum free energy’.
Note that the MFE structure for a length n homopolymer has � n−θ

2 � many base pairs.
For a given RNA sequence, consider the exponentially large network of all its

secondary structures, where an undirected edge exists between any two structures s
and t , whose base-pair distance equals one—in other words, for which t is obtained
from s by either removing or adding one base pair. The connectivity (or degree) of a
node, or structure, s is defined to be the number of secondary structures obtained by
deleting or adding one base pair to s—this corresponds to the so-called MS1 move set
(Flamm et al. 2000). At the end of the paper, we briefly consider the MS2 move set,
where the degree of a structure s is defined to be the number of secondary structures
obtained by adding, deleting or shifting one base pair (Bayegan and Clote 2015). The
MS1 [resp. MS2] connectivity of the MFE structure for a homopolymer of length n
is � n−θ

2 � [resp. 	 n−θ
2 
]. Connectivity N (k) is defined to be the absolute frequency of

degree k, i.e. the number of secondary structures having exactly k neighbors, that can
be obtained by either adding or removing a single base pair. The degree density p(k)
is defined to be the probability density function (PDF) or relative frequency of k, i.e.
the proportion p(k) = N (k)

Z of all secondary structures having k neighbors, where Z
denotes the total number of secondary structures for a given homopolymer. A network
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is defined to be scale-free, provided its degree frequency N (k) is proportional to a
power-law, i.e. N (k) ∝ k−α where α > 1 is the scaling factor.

2.2 Computing the degree density

In this section, we describe a novel dynamic programming algorithm to compute the
MS1 degree density p(k) for the network of secondary structures for a homopolymer
of length n. Note first that the empty structure s∅ of length n has

degree(s∅) = (n − θ)(n − θ − 1)

2
(1)

many neighbors, each obtained by adding a base pair. Indeed,

degree(s∅) =
n−θ−1∑

i=1

n∑

j=i+θ+1

1 =
n−θ−1∑

i=1

[n − (i + θ + 1) + 1]

=
n−θ−1∑

i=1

(n − i − θ) = (n − θ)(n − θ − 1) −
n−θ−1∑

i=1

i

= (n − θ)(n − θ − 1)

2

Using a simple induction argument, Eq. (1) implies that for all values of n, the
maximum possible degree, maxDegree(n), of a secondary structure for the length
n homopolymer is (n−θ)(n−θ−1)

2
Let N (i, j) denote the number of secondary structures on interval [i, j], computed

the following simple recurrence relation from Stein and Waterman (1978): for 1 ≤
i ≤ j ≤ i + θ ≤ n, set N (i, j) = 1, and for i + θ + 1 ≤ j ≤ n set

N (i, j) = N (i, j − 1) + N (i + 1, j − 1) +
j−θ−1∑

r=i+1

N (i, r − 1) · N (r + 1, j − 1)

(2)

or more simply

N (m) =

⎧
⎪⎨

⎪⎩

1 if 1 ≤ m ≤ θ + 1

N (m − 1) + N (m − 2) +
m−3∑

r=θ

N (m − r − 2) · N (r) if θ + 2 ≤ m ≤ n

(3)

Although Eq. (2) requires O(n3) time and O(n2) space, it can trivially be extended to
compute the number of secondary structures for an arbitary RNA sequence a1, . . . , an ,
where base pairs are either Watson–Crick or wobble pairs. If no such extension is
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1296 P. Clote

necessary, then the recurrence relation Eq. (3), first given in Stein and Waterman
(1978), requires O(n2) time and O(n) space, hence is more efficient by a factor of
n. In a similar fashion, the recurrence relations (5–12) and pseudocode in Sect. 2.2
are given in a form that allows an extension (not given here) to the general case of
computing the degree density for the ensemble of secondary structures of a given RNA
sequence a1, . . . , an . The top-level pseudocode given in Algorithm 1 requires O(n6)
time and O(n4) storage; however, in the next section, we improve this by a factor of
n, both in time and space requirements.

Suppose that every hairpin loop is required to have at least θ ≥ 1 unpaired positions;
i.e. if (i, j) is a base pair, then i + θ + 1 ≤ j . As described in the Eqs. (5–12)
for Base Cases A–D, let Z(i, j, k, h, v) denote the number of secondary structures
on the interval [i, j], for 1 ≤ i ≤ j ≤ n for the homopolymer model, that have
exactly k neighbors, and for which there are exactly h unpaired positions (or holes)
in [i, j − θ − 1], and for which there are exactly v ∈ [0, θ + 1] visible positions
among j − θ, j − θ + 1, . . . , j . Concretely, this means that either (i) v = θ + 1
and the rightmost θ + 1 positions in the interval [i, j] are all unpaired, or (ii) that
0 ≤ v < θ + 1, and that position j − v is paired to some r ∈ [i, j − v − θ − 1]. In
base case D and inductive case D below, we will treat the two possible subcases of
(i), in which the rightmost θ + 1 positions are unpaired – namely, the subcase (i)a in
which j − θ is unpaired (hence the rightmost j − θ + 1 positions are unpaired), and
the subcase (i)b in which position j − θ is paired with some r ∈ [i, j − v − θ − 1].

Let Z∗(i, j, k) denote the number of secondary structures on the interval [i, j] that
have exactly k neighbors with respect to the MS1 move set (i.e. have degree k), so that

Z∗(i, j, k) =
j−θ−i∑

h=0

θ+1∑

v=0

Z(i, j, k, h, v) (4)

Recalling from Eq. (1) that maxDegree(n) = (n−θ)(n−θ−1)
2 , for any 1 ≤ i ≤ j ≤ n,

we clearly have that

N (i, j) =
maxDegree(j-i+1)∑

k=1

Z∗(i, j, k)

=
maxDegree(j-i+1)∑

k=1

j−θ−i∑

h=0

θ+1∑

v=0

Z(i, j, k, h, v)

In the sequel,wedescribeBaseCasesA–D,which initialize the arrays Z(i, j, k, h, v)

and Z∗(i, j, k), followed by Inductive Cases A–D, which treat the corresponding
updates within the for-loops of the following pseudocode. Since arrays Z , Z∗ are
initially set to zero, all updates to the arrays will be performed by adding a value val
to the current value held in the array, so we will write Z(i, j, k, h, v) += val
and Z∗(i, j, k) += val, which is a standard abbreviation for the assignments
Z(i, j, k, h, v) = Z(i, j, k, h, v)+val and Z∗(i, j, k) = Z∗(i, j, k)+val. Expla-
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tory comments in the pseudocode are indicated by a double-slash. In Algorithm 1,
assume a positive integer input of n to indicate a length n homopolymer.

Algorithm 1 (Computing degree density)

1. Z = Z∗ = 0, then apply Base Cases A-D //initialize
Z , Z∗
2. for d = θ + 2 to n //d is distance between i and j
3. for i = 1 to n
4. j = i + d
5. if j ≤ n
6. for k = 0 to maxDegree( j − i + 1) // degree k
7. for h = 0 to j−i−θ // h holes in [i, j−θ−1]
8. for v = 0 to θ + 1 // v visible positions

among [ j − θ, j]
9. update Z(i, j, k, h, v) by Inductive Cases A-D

10. Z∗(i, j, k) = ∑
h
∑

v Z(i, j, k, h, v)

11. return Z , Z∗

In line 1, arrays Z , Z∗ are initialized to zero, then Base CasesA–D are applied; lines
2–9 then treat the Inductive Cases A–D. In this dynamic programming (DP) algorithm,
the idea is to define Z , Z∗ for all intervals [i, j]where d = j−i , after having computed
and stored the values for Z , Z∗ for all intervals [i, j]where j−i = d−1.All secondary
structures of the interval [i, j] can be partitioned into structures having exactly degree
k (i.e. k MS1 neighbors, in which k structures that can be obtained by either adding or
removing a single base pair). To support an inductive argument, in proceeding from
interval [i, j] to [i, j +1], we need additionally to determine the number of structures
having degree k, which have a certain number h of positions that are visible (external
to every base pair), which can be paired with the last position j + 1. Note that the
position j − θ can not be base-paired with j in [i, j]; however, j − θ can be base-
paired with j in [i, j + 1]. Thus in addition to keeping track of the number h of holes
(positions in i, . . . , j − θ − 1 that are external to all base pairs, hence can be paired
with j), we introduce the variable v to keep track of the number of visible positions
in j − θ, . . . , j . This explains our need for the function Z(i, j, k, h, v) as defined in
the Eqs. (5–12) for Base Cases A–D. We now proceed to the details, where for ease
of the reader, some definitions are repeated.

Let θ = 3 denote the minimum number of unpaired positions required to be present
in a hairpin loop. For a length n homopolymer, let 1 ≤ i ≤ j ≤ n, 0 ≤ k ≤ (n−θ

2

)
,

0 ≤ h ≤ j − i − θ , 0 ≤ v ≤ θ + 1. Recall that Z(i, j, k, h, v) denotes the number of
secondary structures on the interval [i, j], for 1 ≤ i ≤ j ≤ n for the homopolymer
model, that have exactly k neighbors, and for which there are exactly h unpaired
positions (or holes) in [i, j − θ − 1], and for which there are exactly v ∈ [0, θ + 1]
visible positions among j−θ, j−θ+1, . . . , j . For 0 ≤ v ≤ θ , thismeans that position
j−v is base-paired to some r ∈ [i, j−v−θ−1]while positions j−v, j−v+1, . . . , j
are not base-paired to any position in [i, j]. When v = θ + 1, this means simply that
the rightmost θ + 1 positions in the interval [i, j] are all unpaired.
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1298 P. Clote

Fig. 1 Structures considered in
base case A

Fig. 2 Structures considered in
base case B

Recall as well our definition that Z∗(i, j, k) = ∑
h
∑

v Z(i, j, k, h, v). We begin
by initializing Z(i, j, k, h, v) = 0 for all values in corresponding ranges. Letting
N (i, j) denote the number of secondary structures on [i, j] for the homopolymer
model, as computed by Eq. (2), the following recurrences describe an algorithm
that requires O(K · n3) storage and O(K 2 · n4) time to compute the probability
Prob[deg(s) = k] = Z∗(1,n,k)

N (1,n)
that a (uniformly chosen) random secondary structure

has degree k for 0 ≤ k ≤ K , where K is a user-defined constant bounded above by
maxDegree(n) = (n−θ)(n−θ−1)

2 .
Base Case A considers all structures on [i, j], as depicted in Fig. 1, that are too

small to have any base pairs, hence which have degree zero.

Base Case A: For j − i ≤ θ , define

Z(i, j, 0, 0, j − i + 1) = 1 (5)

Base Case B considers all structures on [i, j], as depicted in Fig. 2, that have only
base pair (i, j), since other potential base pairs would contain fewer than θ unpaired
bases. The degree of such structures is 1, since only one base pair can be removed,
and no base pairs can be added. Moreover, no position in [i, j] is external to the base
pair (i, j), so visibility parameters h = 0, v = 0. The arrow in Fig. 2 indicates that
the sole neighbor is the empty structure, obtained by removing the base pair (i, j).

Base Case B: For j − i = θ + 1 and (i, j) is a base pair, define

Z(i, j, 1, 0, 0) = 1 (6)

Base Case C considers the converse situation, consisting of the empty structure on
[i, j] where j − i = θ + 1, whose sole neighbor is the structure consisting of base
pair (i, j). The arrow is meant to indicate that the structure on the right is the only
neighbor of that on the left, as depicted in Fig. 3. Since the size of the empty structure
on [i, j] is θ + 2 and every position in [i, j] is visible (external to every base pair),
h = 1 and v = θ + 1. the dotted rectangle in Fig. 3 indicates the θ + 1 unpaired
positions at the right extremity as counted by v = θ + 1.

Base Case C: For j − i = θ + 1 and (i, j) not base-paired, define

Z(i, j, 1, 1, θ + 1) = 1 (7)
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Fig. 3 Structures considered in
base case C

Fig. 4 Structures considered in
base case D

Fig. 5 Structures considered in
inductive case A

Base Case D considers the empty structure on [i, j]where j−i > θ +1. The empty
structure is the only structure having degree maxDegree(i, j) = ( j−i−θ+1)( j−i−θ)

2 ,
since maxDegree(i, j) many base pairs can be added to the empty structure. In Fig. 4,
the dotted rectangle indicates the θ + 1 rightmost unpaired positions, corresponding
to visibility parameter v = θ + 1, while dotted circles indicate the h = j − i − θ

holes, i.e. unpaired positions that could be paired with the rightmost position j .

Base Case D: For all ( j − i + 1) > θ + 2, the empty structure, as indicated by
h + v = j − i + 1 (so h = j − i − θ and v = θ + 1), has degree maxDegree(i, j) as
defined by Eq. 1, where

Z(i, j,maxDegree(i, j), j − i − θ, θ + 1) = 1 (8)

Inductive Case A considers the case where left and right extremities i, j form the
base pair (i, j), where j − i > θ + 1. No position in [i, j] is visible (external to all
base pairs), so visibility parameters h = 0 = v. Recalling the definition of Z∗(i, j, k)
from Eq. 4, we have the following.

Inductive Case A: For j − i > θ + 1 and (i, j) base-paired in [i, j],

Z(i, j, k, 0, 0) = Z(i, j, k, 0, 0) + Z∗(i + 1, j − 1, k − 1) (9)

From this point on, we use the operator +=, so that the previous equation would be
written as Z(i, j, k, 0, 0) += Z∗(i + 1, j − 1, k − 1) (see Fig. 5).

Inductive Case B considers the case where last position j base-pairs with the r ,
where i < r < j − θ . The value r = i has already been considered in Inductive Case
A, and values r = j − θ +1, . . . , j −1 cannot base-pair to j , since the corresponding
hairpin loop would constain less than θ unpaired positions. This situation is depicted
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1300 P. Clote

Fig. 6 Structures considered in
inductive case B

Fig. 7 Structures considered in
inductive case C(v)

in Fig. 6, where there are h holes (positions in [i, j − θ − 1] that are external to all
base pairs) and no visible positions in [ j − θ, j].

Inductive Case B: For j − i > θ + 1 and (r , j) base-paired in [i, j] for some
i < r < j − θ ,

Z(i, j, k, h, 0)

+ =
j−θ−1∑

r=i+1

∑

k1+k2=k−1

θ+1∑

w=0

Z(i, r − 1, k1, h − w,w) · Z∗(r + 1, j − 1, k2) (10)

When implemented, this requires a check that h − w ≥ 0.
For each value v ∈ {1, . . . , θ + 1}, inductive Case C(v) considers the case where

position r ∈ [i, j − v − θ − 1] forms a base pair with position j − v. The value
v = 0 is not considered here, since it was already considered in Inductive Cases A,B.
Note that a structure s of the format has k neighbors, provided the restriction of s to
[i, r − 1] has k1 neighbors, and the restriction of s to [r + 1, j − 1] has k2 neighbors,
where k1 + k2 + vh + 1 = k. The term vh is due to the fact that since base pair
(r , j − v) ensures that all holes are located in [i, r − 1], hence located at more than
θ + 1 distance from all visible positions in [ j − v + 1, j], a neighbor of s can be
obtained by adding a base pair from any hole to any visible suffix position—there
are vh many such possible base pairs that can be added. Finally, the last term +1 is
present, since one neighbor of s can obtained by removing base pair (r , j − v). This
explains the summation indices and summation terms in Eq. (11). Figure 7 depicts a
typical structure considered in case C(v).

Inductive Case C(v), for v ∈ {1, 2, . . . , θ + 1}: For j − i > θ + 1 and (r , j − v)

base-paired in [i, j], for some i < r < j −v−θ , where j −v+1, . . . , j are unpaired
in [i, j],

Z(i, j, k, h, v)+ = Z∗(2, j − 1 − v, k − 1 − vh)

+
j−v−θ−1∑

r=i+1

∑

k1+k2=(k−1−vh)

θ+1∑

w=0

Z(i, r − 1, k1, h − w,w) · Z∗(r + 1, j − 1 − v, k2) (11)
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Fig. 8 Structures considered in
inductive case D

The first term Z∗(2, j − 1− v, k − 1− vh) handles the subcase where r = 1, so that
(1, j −v) is a base pair, while the second term handles the subcase where r > 1. Note
that when implemented, this requires a test that h − w ≥ 0.

Case D considers the case where there are h holes, and positions j − θ − 1, . . . , j
are unpaired, so that v = θ + 1. Note that v = θ + 1 implies only that j − θ, . . . , j
are unpaired, so Case D includes the addition requirement that position j − θ − 1 is
unpaired. Structures s satisfying Case D can be partitioned into subcases where the
restriction of s to [i, j − θ − 1] has h − w holes in [i, ( j − θ − 1) − (θ + 1)] =
[i, j − 2θ − 2], and 1 ≤ w ≤ θ + 1 visible positions in [ j − 2θ − 1, j − θ − 1]. Note
that (h − w) + w = h, accounting for the h holes in structure s in [i, j − θ − 1], and
that it is essential that w ≥ 1, since the case w = 0 was considered in Case C(θ + 1).

The term w(w+1)
2 is due to the fact that the rightmost position j − θ − 1 in the

restriction of s to [i, j − θ − 1] can base-pair with position j , but not with j − 1, etc.
since this would violate the requirement of at least θ unpaired bases in a hairpin loop.
Similarly, the second rightmost position j−θ −2 in the restriction of s to [i, j−θ −1]
can base-pair with positions j and j − 1, but not with j − 2, etc.; as well, the third
rightmost position j − θ − 3 can base-pair with positions j , j − 1 and j − 2, but
not with j − 3, etc. The number of neighbors of s produced in this fashion is thus∑w

i=1 i = w(w+1)
2 . Finally, the term (θ + 1)(h − w) is due to the fact that each of the

h −w holes in the restriction of s to [i, j − θ − 1] can base-pair to each of the (θ + 1)
positions in [ j − θ, j].

The argument just given shows the following. Let s be a structure that satisfies
conditions of Case D with h holes and v = θ + 1 visible positions, and suppose that
the restriction of s to [i, j − θ − 1] has h − w holes and w visible positions. Then s
has k neighbors provided that the restriction of s to [i, j − θ − 1] has k − w(w+1)

2 −
(θ + 1)(h − w) neighbors on interval [i, j − θ − 1]. The Eq. (12) now follows.

Inductive Case D: For j − i > θ + 1 and j − θ − 1, j − θ, . . . , j unpaired in [i, j],
and 1 ≤ h < j − θ − i ,

Z(i, j, k, h, θ + 1)

+ =
θ+1∑

w=1

Z(i, j − θ − 1, k − w(w + 1)

2
− (θ + 1) · (h − w), h − w,w) (12)

As in Case C(v), when implemented, this requires a test that h − w ≥ 0 (see Fig. 8).
Our implementation of Eqs. (5–12) has been cross-checked with exhaustive enu-

meration; moreover, we always have that
∑

k Z
∗(i, j, k) = N (i, j), so the degree

density is correctly computed.
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2.3 Faster algorithm in the homopolymer case

The algorithmdescribed in Sect. 2.2 requires O(K 2n4) time and O(Kn3) space,where
K is a user-specified degree bound K ≤ (n−θ)(n−θ−1)

2 . By minor changes, that algo-

rithm can be modified to compute the degree density function p(k) = Z∗(1,n,k)
N (1,n)

for any
given RNA sequence a1, . . . , an . In the case of a homopolymer, any two positions are
allowed to base-pair (regardless of whether the base pair is a Watson–Crick or wobble
pair), provided only that every hairpin loop contains at least θ unpaired positions. For
homopolymers, we have a faster algorithm that requires O(K 2n3) time and O(Kn2)
space. Since nucleotide identity is unimportant, instead of Z(i, j, k, h, v), we describe
the function Ẑ(m, k, h, v), where m corresponds to the length j − i + 1 of interval
[i, j].

Ẑ∗(m, k) =
m−θ−1∑

h=0

θ+1∑

v=0

Ẑ(m, k, h, v)

N (m) =
(m−θ)(m−θ−1)

2∑

k=1

Ẑ∗(m, k)

We begin by initializing Ẑ(m, k, h, v) = 0 for all 1 ≤ m ≤ n, 0 ≤ k ≤
(m−θ)(m−θ−1)

2 , 0 ≤ h ≤ m − 2, and 0 ≤ v ≤ θ + 1. If h < 0, we assume that
Ẑ(m, k, h, v) = 0.

Base Case A: For 1 ≤ m ≤ θ + 1, define

Ẑ(m, 0, 0,m) = 1 (13)

Base Case B: For m = θ + 2, define

Ẑ(m, 1, 0, 0) = 1 (14)

Base Case C: For m = θ + 2, define

Ẑ(m, 1, 1, θ + 1) = 1 (15)

Base Case D: For all m > θ + 2, define

Ẑ(m,
(m − θ)(m − θ − 1)

2
,m − θ − 1, θ + 1) = 1 (16)

Inductive Case A: For m > θ + 2 and 1 ≤ k ≤ (m−θ)(m−θ−1)
2 , define

Ẑ(m, k, 0, 0) += Ẑ∗(m − 2, k − 1) (17)
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Inductive Case B: For m > θ + 2, 1 ≤ k <
(m−θ)(m−θ−1)

2 , and 0 ≤ h ≤ m − θ − 1,
define

Ẑ(m, k, h, 0) +=
m−θ−1∑

r=2

∑

k1+k2=k−1

θ+1∑

w=0

Ẑ(r − 1, k1, h − w,w) · Ẑ∗(m − r − 1, k2)

(18)

When implemented, this requires a check that h − w ≥ 0.

Inductive Case C(v): For v ∈ {1, 2, . . . , θ + 1} and m > θ + 2, define

Ẑ(m, k, h, v) += Ẑ∗(m − v − 2, k − 1 − vh)

+
m−v−θ−1∑

r=2

∑

k1+k2=(k−1−vh)

θ+1∑

w=0

Ẑ(r − 1, k1, h − w,w) · Ẑ∗(m − v − r − 1, k2) (19)

Inductive Case D: For m > θ + 2, 1 ≤ k <
(m−θ)(m−θ−1)

2 , and 1 ≤ h < m − θ − 1,

Ẑ(m, k, h, θ + 1)

+=
θ+1∑

w=1

Ẑ(m − θ − 1, k − w(w + 1)

2
− (θ + 1) · (h − w), h − w,w) (20)

Note that h is strictly less than m − θ − 1, since the case h = m − θ − 1 occurs only
when additionally v = θ + 1, which only arises in the empty structure. The general
case for the empty structure was handled in Base Case D. When implemented, this
requires a check that h − w ≥ 0.

3 Statistical methods

Current software for probability distribution fitting of connectivity data, such as
Matlab™, Mathematica™, R and powerlaw (Alstott et al. 2014), appear to
require an input file containing the connectivity of each node in the network. In the
case of RNA secondary structures, this is only possible for very small sequence length.
To analyze connectivity data computed by the algorithm of Sect. 2.3, we had to imple-
ment code to compute the maximum likelihood estimation for scaling factor α in a
power-law fit, the optimal degree kmin beyond which connectivity data is fit by a
power-law, and the associated p value for Kolmogorov–Smirnov goodness-of-fit, as
described in Clauset et al. (2009). We call the resulting code RNApowerlaw. This
section explains those details.
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Recall the definition of the zeta function

ζ(α) =
∞∑

n=n0

n−α (21)

We use both the generalized zeta function (22), as well as the truncated generalized
zeta function (23), defined respectively by

ζ(α; n0) =
∞∑

n=n0

n−α (22)

ζ(α; n0, n1) =
n1∑

n=n0

n−α (23)

Given a data set D = {x1, . . . , xn} of positive integers in the range [k0, k1], the
likelihood L(D|α) that the data fits a truncated power-law with scaling factor α and
range [k0, k1] is defined by

L(D|α) = Πn
i=1

x−α
i

ζ(α; k0, k1) (24)

Rather than sampling individualRNAsecondary structures to estimate the connectivity
of the secondary structure network for a given homopolymer, the algorithms from
Sects. 2.2 and 2.3 directly compute the exact number N (k) of secondary structures
having degree k, for all k within a certain range. It follows that the likelihood L(D|α)

that secondary structure connectivity fits a power-law with scaling factor α is given
by

L(D|α, k0, k1) = Π
k1
k=k0

(
k−α

ζ(α; k0, k1)
)N (k)

(25)

hence the log likelihood is is given by

L(D|α, k0, k1) = −
⎛

⎝log(ζ(α; k0, k1))
k1∑

k=k0

N (k)

⎞

⎠ −
⎛

⎝α

k1∑

k=k0

N (k) log(k)

⎞

⎠ (26)

The parameter α̂ which maximizes the log likelihood is determined by applying SciPy
function minimize (with Nelder-Mead method) to the negative log likelihood, start-
ing from initial estimate α0, taken from equation (3.7) of Clauset et al. (2009)

α0 = 1 + n

(
n∑

i=1

ln
xi

xmin − 1/2

)−1

(27)
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which in our notation yields

α0 = 1 +
⎛

⎝
k1∑

k=k0

N (k)

⎞

⎠ ·
⎧
⎨

⎩

k1∑

k=k0

N (k) · log
(

k

k0 − 1/2

)⎫
⎬

⎭

−1

(28)

In results and tables of this paper, we often write the maximum likelihood estimate
(MLE) α̂ simply as α.

We compute the Kolmogorov–Smirnov (KS) p value, following (Clauset et al.
2009), as follows. Given observed relative frequency distribution D and a power-law
fit P with scaling factor α, the KS distance is defined to be the maximum, taken over
all k ∈ [k0, k1] of the absolute difference between the cumulative distribution function
(CDF) for the data evaluated at k, and the CDF for the power-law, evaluated at k

K S(kmin, kmax ) = max
kmin≤x≤kmax

|Ca(x) − C f (x)| (29)

where Ca and C f are the actual and fitted cumulative density functions, respectively.
TheKS p value for the fit of data D by power-law P with scaling factorα, is determined
by (1) sampling a large number (N = 1000) of synthetic data sets Di froma true power-
law distribution with scaling factor α, (2) computing the KS distance between each
synthetic data set Di and its power law fit withMLE scaling factor αi , (3) reporting the
proportion of KS distances that exceed the KS distance between the original observed
data set and its power-law fit with scaling factor α.

Following (Clauset et al. 2009), kmin is chosen to be that degree k0, such that the KS
distance for the optimal power-lawfit is smallest. In contrast, kmax is always taken to be
the maximum degree in the input data. Our computation of p value for goodness-of-fit
follows Sect. 4.1 of Clauset et al. (2009), with the exception that we not generate any
synthetic data for values k < kmax , since the MLE scaling factor α is determined for
the (normalized) distribution of data values in the interval [kmin, kmax ], a convention
followed in Alstott et al. (2014). We have implemented Python code to compute α0, α,
kmin , KS distance, p value, etc. as described above. In Sect. 4, we compare results of
our codewith that frompowerlaw (Alstott et al. 2014) for very small homopolymers.
Though our code does not do lognormal fits, this is performed by powerlaw, where
the density function for the lognormal distribution with parameters μ, σ is defined by

p(x) =
exp

(
− (log(x)−μ)2

2σ 2

)

x · √
2πσ 2

(30)

In computing the p value for power-law goodness-of-fit using Kolmogorov–Smirnov
statistics, it is necessary to sample synthetic data from a (discrete) power-law dis-
tribution with scaling factor α, a particular type of multinomial distribution. Given
an arbitrary multinomial distribution with probability pi for each 1 ≤ i ≤ m, it is
straightforward to create M synthetic data sets, each containing N sampled values, in
time O(mNM); however, since M = 1000 and N is the (exponentially large) num-
ber of all secondary structures having degrees in [kmin, kmax ], the usual sequential
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method would require prohibitive run time. Instead, we implemented the much faster
conditional method (Malefaki and Iliopoulos 2007). Our goal is to sample from a
multinomial distribution given by

Prob [X1 = x1, X2 = x2, . . . , Xm] = N !
∏m

i=1
xi !

m∏

i=1

pxii (31)

where m = kmax − kmin + 1 is the number of degrees in the synthetic data, and in the
sample set of size N there are xi many occurrences of degree kmin + i . To do this, we
sample X1 from the binomial distribution of N coin tosses with heads probability p1,
then X2 from the binomial distribution of N − x1 coin tosses with heads probability
p2

1−p1
, then X3 from the binomial distribution of N − x1 − x2 coin tosses with heads

probability p2
1−p1−p2

, etc. where each xi is determined with the function binom from
Python Scipy.stats.

4 Results

Below, we use the algorithms described in previous sections to compute RNA sec-
ondary structure connectivity, determine optimal scaling factor α and minimum
degree kmin for a power-law fit, then perform Kolmogorov–Smirnov bootstrapping
to determine the goodness-of-fit for parameters α, kmin . In Appendix A, we show that
preferential attachment appears to hold for the network of RNA structures, at least for
our definition of preferential attachment.

4.1 Analysis of RNA networks using RNAdensity and RNApowerlaw

The algorithm RNAdensity described in Sect. 2.3 was used to compute abso-
lute and relative degree frequencies for the following cases: (1) homopolymers of
length n = 10, 12, . . . , 40 with θ = 3 for maximum possible degree upper bound
K = (n−θ)(n−θ−1)

2 , (2) homopolymers of length n = 30, 35, . . . , 150 with θ = 3,
where degree upper bound K = 2n for n ∈ [30, 100] and K = n + 30 for
n ∈ [105, 150], (3) homopolymers of length n = 30, 35, . . . , 150 with θ = 1,
where degree upper bound K = 2n for n ∈ [30, 100] and K = n + 30 for
n ∈ [105, 150]. For small homopolymers of length at most 30, optima values for kmin ,
power-law scaling factor α, Kolmogorov–Smirnov distance were determined using
software powerlaw powerlaw (Alstott et al. 2014) as well as RNApowerlaw
from Sect. 3. Table 1 summarizes these results, which show the agreement between
powerlaw and RNApowerlaw. Moreover, both both programs indicate that for-
mal hypothesis testing rejects the null hypothesis that a power-law distribution fits
connectivity data; indeed, powerlaw determines a negative log odds ratio R for the
logarithm of power-law likelihood over lognormal likelihood, indicating a better fit
for the lognormal distribution, and RNApowerlaw determines small p values for
Kolmogorov–Smirnov goodness-of-fit of a power-law distribution. Figure 9a shows
connectivity density function for a 100-mer, with overlaid Poisson and lognormal
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Fig. 9 a Connectivity degree distribution for homopolymer of length 100 where θ = 3, computed with the
algorithm described in Sect. 2.3 for all degrees bounded by K = 200. There are 6.32 ·1032 secondary struc-
tures for the 100-mer (exact number 6.31986335936396855341222902079183), and 99.9978706904% of
the structures have degree bounded by K . Using the output degree densities, the degree mean [standard
deviation] is μ = 46.2543801196 [resp. σ = 12.2262985078]; note that the mean computed from the
algorithm in Sect. 2.3 is very close to the exact degree mean of μ = 46.2591895818, computed over all
structures using the different dynamic programming algorithm in Clote (2015). The Poisson distribution
(blue curve) with same mean μ is shown, as well as the lognormal distribution (red) with parameters
μ0 = 3.80467214577 and σ0 = 0.235563374146; i.e. μ0 [resp. σ0] is the mean [resp. standard devia-
tion] for logarithms of the connectivity degree—see Eq. (30). b Power-law fit of tail with scaling factor
α = 7.8762287746 and kmin = 83, determined by maximum likelihood. Kolmogorov–Smirnov (KS) dis-
tance for the fit is 0.01213—see Eq. (29), while average KS distance for the alpha power-law fit 0.00400.
Nevertheless, since the p value 0 (to 10 decimal places), hypothesis testing would reject the null hypothesis
that the power-law distribution is a good fit for the tail (color figure online)

distributions—since Erdös-Rényi random graphs have a Poisson degree distribution
(Albert and Barabási 2002), it follows that RNA secondary structure networks are
strikingly different than random graphs. Figure 9b shows a portion of the power-
law fit for degrees in [kmin, kmax ], where scaling factor α ≈ 7.876 and kmin = 83.
Although maximum degree probability at kpeak is less than 0.05 for the raw data, the
connectivity density for [kmin, kmax ] is normalized, which explains why the degree
probability for kmin is ≈ 0.08. Visual inspection might suggest an excellent fit for
the power-law distribution; however, a Kolmogorov–Smirnov p value of ≈ 0 indi-
cates that the distribution is not power-law. The seemingly good power-law fit for
RNA connectivity data, suggested by visual inspection, however motivated our initial
investigation of preferential attachment.

Since powerlaw requires input files of (individually observed) connectivity
degrees, when creating Table 1, we could not run powerlaw for homopolymer
length greater than 28, for which latter the input file contained 50, 642, 017 values. A
potentially attractive alternative is to generate input files consisting of N · p(k) many
occurrences of the value k, where N = 102, 103, . . . , 107 denotes the total number
of samples, and where relative frequency p(k) is the proportion of structures having
degree k. However, Table 2 shows that neither scaling factor α nor kmin are correct
with this alternative approach, even for small homopolymers of length 20, 30 and 40.
This table justifies the need for our implementation of RNApowerlaw as described
in Sect. 3. Table 3 shows maximum likelihood scaling factors α and Kolmogorov–
Smirnov p values for optimal power-law fis of connectivity data for homopolymers
of lengths from 30 to 150.

123



Are RNA networks scale-free? 1309

Ta
bl
e
2

Ta
bl
e
sh
ow

in
g
th
at
ap
pr
ox
im

at
e
[r
es
p.
ex
ac
t]
sc
al
in
g
fa
ct
or

α
0
[r
es
p.

α
]
an
d
m
in
im

um
de
gr
ee

k m
in

fo
r
op

tim
al
po
w
er
-l
aw

fit
of

ho
m
op

ol
ym

er
co
nn

ec
tiv

ity
da
ta
ca
n

no
tb

e
re
lia

bl
y
co
m
pu

te
d
by

us
in
g
so
ft
w
ar
e
p
o
w
e
r
l
a
w
(A

ls
to
tt
et
al
.2

01
4)

on
da
ta
sa
m
pl
ed

fr
om

re
la
tiv

e
fr
eq
ue
nc
ie
s

N
10

2
10

3
10

4
10

5
10

6
10

7
R
N
A
P
L

S n

α
0
,n

=
20

6.
58

31
8

3.
66

50
5

3.
93

38
9

3.
86

01
7

3.
84

74
9

3.
84

65
7

3.
84

64
8

10
66

33
≈

1.
1

·1
05

k m
in

10
7

10
10

10
10

10
–

α
0
,n

=
30

5.
27

58
1

4.
42

18
3

4.
46

30
7

4.
35

00
8

4.
32

65
1

4.
32

27
2

4.
32

21
3

24
09

44
07

6
≈

2.
4

·1
08

k m
in

12
13

16
16

16
16

16
–

α
0
,n

=
40

5.
15

97
8

5.
09

71
4

5.
03

71
9

5.
24

48
8

5.
16

98
5

5.
70

91
6

5.
94

56
1

63
31

80
24

73
73

≈
6.
3

·1
01

1

k m
in

15
19

23
29

29
42

49
–

α
,n

=
20

6.
76

57
5

3.
70

98
8

3.
96

13
9

3.
88

57
0

3.
87

27
1

3.
87

18
0

3.
87

16
5

10
66

33
≈

1.
1

·1
05

k m
in

10
7

10
10

10
10

10
–

α
,n

=
30

5.
33

16
2

4.
44

65
1

4.
47

96
3

4.
36

51
1

4.
34

12
2

4.
33

73
9

4.
33

68
1

24
09

44
07

6
≈

2.
4

·1
08

k m
in

12
13

16
16

16
16

16
–

α
,n

=
40

5.
19

19
7

5.
11

60
4

5.
04

94
19

5.
25

36
5

5.
17

82
4

5.
65

20
6

5.
95

03
3

63
31

80
24

73
73

≈
6.
3

·1
01

1

k m
in

15
19

23
29

29
41

49
–

A
pp

ro
xi
m
at
e
va
lu
e

α
0
is
co
m
pu

te
d
fr
om

E
q.

(2
7)
,w

hi
le

α
is
th
e
m
ax
im

um
lik

el
ih
oo
d
es
tim

at
e
(M

L
E
)
of

th
e
op
tim

al
po
w
er
-l
aw

sc
al
in
g
fa
ct
or
.G

iv
en

ho
m
op
ol
ym

er
le
ng
th

n
=

20
,
30

,
40

,c
on
ne
ct
iv
ity

de
ns
ity

is
co
m
pu
te
d
ov
er

al
ls
ec
on
da
ry

st
ru
ct
ur
es

fo
r
(a
ll
po
ss
ib
le
)
de
gr
ee
s
k

=
1,

..
.,

(n
−3

)(
n−

4)
2

us
in
g
th
e
al
go
ri
th
m

de
sc
ri
be
d
in

Se
ct
.2

.3
.

Si
nc
e
p
o
w
e
r
l
a
w
re
qu

ir
es

in
pu

t
fil
es

of
(i
nd

iv
id
ua
lly

ob
se
rv
ed
)
co
nn

ec
tiv

ity
de
gr
ee
s,
ra
th
er

th
an

a
hi
st
og

ra
m

of
(a
bs
ol
ut
e)

fr
eq
ue
nc
ie
s
F

(k
)
of

co
nn

ec
tiv

ity
de
gr
ee
s,
w
e

ge
ne
ra
te
d
a
fil
e
co
ns
is
tin

g
of

N
·p

(k
)
m
an
y
oc
cu
rr
en
ce
s
of

th
e
va
lu
e
k,

w
he
re

N
=

10
2
,
10

3
,
..

.,
10

7
de
no

te
s
th
e
to
ta
l
nu

m
be
r
of

sa
m
pl
es
,a
nd

w
he
re

re
la
tiv

e
fr
eq
ue
nc
y

p(
k)

is
de
fin

ed
by

p(
k)

=
F

(k
)/

∑
(n

−3
)(
n−

4)
/
2

k=
1

F
(k

).
In

co
nt
ra
st
to

p
o
w
e
r
l
a
w
,o

ur
pr
og

ra
m

R
N
A
p
o
w
e
r
l
a
w
(R

N
A
PL

)
co
m
pu

te
s
ex
ac
tv

al
ue
s
fr
om

co
nn

ec
tiv

ity
de
gr
ee

(a
bs
ol
ut
e)

fr
eq
ue
nc
ie
s.
W
he
n
us
in
g
p
o
w
e
r
l
a
w
,i
t
is
cl
ea
rl
y
ne
ce
ss
ar
y
to

cr
ea
te

in
pu
t
fil
es

of
ev
er
-i
nc
re
as
in
g
si
ze
s
N
,i
n
or
de
r
to

ha
ve

m
or
e
ac
cu
ra
te

va
lu
es

of
α
0
,α

an
d

k m
in
.S

in
ce

th
e
nu

m
be
r
S n

of
R
N
A

se
co
nd

ar
y
st
ru
ct
ur
es

is
ex
po

ne
nt
ia
l
in

ho
m
op

ol
ym

er
le
ng

th
n,

it
ra
pi
dl
y
be
co
m
es

im
po
ss
ib
le

to
us
e
p
o
w
e
r
l
a
w
fo
r
la
rg
e
R
N
A
s—

fo
r

in
st
an
ce
,t
ab
le
va
lu
es

fo
r
n

=
40

re
qu

ir
ed

an
ov
er
ni
gh

tr
un

of
p
o
w
e
r
l
a
w
,w

hi
le
ou

r
so
ft
w
ar
e
re
tu
rn
ed

th
e
ex
ac
tv

al
ue

w
ith

in
a
fe
w
se
co
nd

s

123



1310 P. Clote

Ta
bl
e
3

Ta
bl
e
sh
ow

in
g
m
ax
im

um
lik

el
ih
oo

d
sc
al
in
g
fa
ct
or
s

α
w
ith

as
so
ci
at
ed

p
va
lu
es

fo
r
op

tim
al

po
w
er
-l
aw

fit
s
of

R
N
A

se
co
nd

ar
y
st
ru
ct
ur
e
co
nn

ec
tiv

ity
da
ta

fo
r

ho
m
op

ol
ym

er
s
of

le
ng

th
n

=
30

to
15

0

n
k m

a
x

%
of

S n
k
pe
ak

k m
fe

k m
in

α
(k
m
in

,
k m

a
x
)

K
S(
k m

in
,
k m

a
x
)

〈K
S〉

p
va
l

30
60

0.
99

88
61

10
13

16
4.
22

36
74

0.
01

43
93

0.
00

48
77

0.
00

00
00

35
70

0.
99

91
74

12
16

18
4.
39

59
36

0.
01

53
91

0.
00

52
84

0.
00

00
00

40
80

0.
99

94
04

14
18

23
4.
73

66
79

0.
01

52
98

0.
00

48
59

0.
00

00
00

45
90

0.
99

95
63

16
21

30
5.
14

66
70

0.
01

20
75

0.
00

42
91

0.
00

00
00

50
10

0
0.
99

96
81

18
23

32
5.
31

08
01

0.
01

24
21

0.
00

43
45

0.
00

00
00

55
11

0
0.
99

97
62

20
26

39
5.
67

42
31

0.
01

16
49

0.
00

39
79

0.
00

00
00

60
12

0
0.
99

98
23

22
28

41
5.
82

93
10

0.
01

23
28

0.
00

39
79

0.
00

00
00

65
13

0
0.
99

98
66

24
31

49
6.
20

07
20

0.
01

07
72

0.
00

35
72

0.
00

00
00

70
14

0
0.
99

98
99

26
33

52
6.
38

64
52

0.
01

08
36

0.
00

34
64

0.
00

00
00

75
15

0
0.
99

99
23

28
36

60
6.
72

15
88

0.
00

97
19

0.
00

31
51

0.
00

00
00

80
16

0
0.
99

99
41

31
38

63
6.
89

71
03

0.
00

98
18

0.
00

30
67

0.
00

00
00

85
17

0
0.
99

99
55

33
41

67
7.
09

75
44

0.
00

97
37

0.
00

29
40

0.
00

00
00

90
18

0
0.
99

99
65

35
43

74
7.
37

35
69

0.
00

89
16

0.
00

27
26

0.
00

00
00

95
19

0
0.
99

99
73

37
46

78
7.
56

42
08

0.
00

87
55

0.
00

26
15

0.
00

00
00

10
0

20
0

0.
99

99
79

40
48

83
7.
77

50
22

0.
00

84
44

0.
00

24
76

0.
00

00
00

10
5

13
5

0.
99

93
88

42
51

67
7.
20

49
37

0.
01

07
12

0.
00

38
53

0.
00

00
00

11
0

14
0

0.
99

94
32

44
53

70
7.
36

01
92

0.
01

08
10

0.
00

38
54

0.
00

00
00

11
5

14
5

0.
99

94
74

46
56

73
7.
51

37
28

0.
01

08
89

0.
00

38
52

0.
00

00
00

123



Are RNA networks scale-free? 1311

Ta
bl
e
3

co
nt
in
ue
d

n
k m

a
x

%
of

S n
k
pe
ak

k m
fe

k m
in

α
(k
m
in

,
k m

a
x
)

K
S(
k m

in
,
k m

a
x
)

〈K
S〉

p
va
l

12
0

15
0

0.
99

95
12

49
58

77
7.
70

67
17

0.
01

04
05

0.
00

37
03

0.
00

00
00

12
5

15
5

0.
99

95
49

51
61

80
7.
85

69
62

0.
01

05
04

0.
00

36
96

0.
00

00
00

13
0

16
0

0.
99

95
82

53
63

84
8.
04

54
58

0.
01

01
02

0.
00

35
56

0.
00

00
00

13
5

16
5

0.
99

96
14

55
66

88
8.
23

12
67

0.
00

97
24

0.
00

34
25

0.
00

00
00

14
0

17
0

0.
99

96
43

58
70

91
8.
37

74
10

0.
00

98
09

0.
00

34
18

0.
00

00
00

14
5

17
5

0.
99

96
70

60
71

94
8.
52

21
70

0.
00

98
84

0.
00

34
13

0.
00

00
00

15
0

18
0

0.
99

96
95

62
75

98
8.
70

30
41

0.
00

95
15

0.
00

32
89

0.
00

00
00

A
bs
ol
ut
e
an
d
re
la
tiv

e
co
nn
ec
tiv

ity
de
gr
ee

fr
eq
ue
nc
ie
s
w
er
e
co
m
pu
te
d
by

R
N
A
d
e
n
s
i
t
y
fr
om

Se
ct
.2
.3
,w

hi
le
th
e
op
tim

al
pa
ra
m
et
er
s
α
,
k m

in
an
d
p
va
lu
es

w
er
e
co
m
pu

te
d
by

R
N
A
p
o
w
e
r
l
a
w
fr
om

Se
ct
.3

.C
ol
um

n
he
ad
er
s
ar
e
as

fo
llo

w
s:
n
is
se
qu

en
ce

le
ng

th
,k

m
a
x
is
th
e
de
gr
ee

up
pe
r
bo

un
d
K

fo
r
R
N
A
d
e
n
s
i
t
y
,%

of
S n

in
di
ca
te
s
th
e
pr
op

or
tio

n
of

al
ls
ec
on

da
ry

st
ru
ct
ur
es

ha
vi
ng

de
gr
ee

bo
un

de
d
by

K
=

k m
a
x
,k

pe
ak

is
th
e
lo
ca
tio

n
of

th
e
de
ns
ity

m
ax
im

um
,k

m
fe

=
�n

−θ 2
�i
s
th
e
de
gr
ee

of
th
e
m
in
im

um
fr
ee

en
er
gy

st
ru
ct
ur
e
(h
av
in
g
la
rg
es
tn

um
be
r
of

ba
se

pa
ir
s)
,k

m
in

is
th
e
op
tim

al
lo
w
er

bo
un
d
fo
r
a
po
w
er
-l
aw

fit
,α

(k
m
in

,
k m

a
x
)
is
th
e
m
ax
im

um
lik

el
ih
oo
d
sc
al
in
g
fa
ct
or

fo
r
po
w
er
-l
aw

fit
,
K
S(
k m

in
,
k m

a
x
)
is
th
e
K
ol
m
og
or
ov
–S

m
ir
no
v
(K

S)
di
st
an
ce

be
tw
ee
n
co
nn
ec
tiv

ity
da
ta

an
d
po
w
er
-l
aw

fit
,
p
va
l
is
go

od
ne
ss
-o
f-
fit

p
va
lu
e
fo
r
K
ol
m
og

or
ov
–S

m
ir
no
v

st
at
is
tic
s,
an
d

〈K
S〉

is
th
e
av
er
ag
e
K
S
di
st
an
ce
,o

bt
ai
ne
d
by

re
pl
ac
in
g
‘m

ax
’
by

‘m
ea
n’

in
E
q.
(2
9)

123



1312 P. Clote

Fig. 10 a Plot of the least cut-off value xc as a function of homopolymer length n, for n = 30, 40, . . . , 100.
Here xc is defined as the least value such that the probability that a secondary structure for length n
homopolymer has degree greater that xc is at most 0.01. For the least-squares fit, the regression equation is
y = 0.870714x +38.1369, with p value of 1.65112 ·10−15 for slope value, and p value of 5.20963 ·10−13

for the y-intercept. b MS2 connectivity for the 106,633 secondary structures for a 20-nt homopolymer with
θ = 3 (green shaded curve), with Poisson distribution of the same mean. Connectivity values range from
4, . . . , 136 (with many intermediate gaps before the max degree). The distribution mean [resp. standard
deviation] is μ = 22.0531 [resp. σ = 7.333]; these values should be contrasted with the corresponding
values of μ′ = 8.3364 [resp. σ ′ = 4.7690] for MS1 connectivity for the same 20-nt homopolymer (data
not shown) (color figure online)

Fig. 11 a Plot of ln(density) as a function of ln(degree) for the degree distribution for MS2 connectivity of
the 20-nt homopolymer with θ = 3, for degrees 4, . . . , 136. The distribution tail appears to satisfy a power-
lawwith exponent≈ −5.6247, i.e. p(x) ∝ x−5.6247, where x is degree and p(x) is the relative frequency of
the number of nodes having degree x (regression equation log-log plot is ln(p(x)) = 14.7589−5.6247·x).b
It iswell-known that linear regression of the log-log plot is less reliable than usingmaximum likelihoodwhen
establishing whether the tail of empirical data is fit by a power-law distribution. For the MS2 connectivity
data of a 20-nt homopolymer, the maximum likelihood estimation (MLE) of optimal power-law scaling
factor is α = 6.8257 with p value is 0.219 when kmin = 36 and kmax = 136. Since the p value is not less
than 0.05, we can not reject the null hypothesis that MS2 connectivity is well-fit by a power-law distribution
(color figure online)

Figure 10a shows a scatter plot with regression line for the cut-off values xc, defined
to be the least value such that the probability that a secondary structure for length n
homopolymer has degree greater that xc is at most 0.01. From this figure, we deter-
mined that for homopolymer length n > 100, it more than suffices to take degree
upper bound K = n + 30. Figure 10b shows the connectivity degree distribution for
a homopolymer of length 20, where degree dg(s) is redefined to be the number of
structures t that can be obtained from s by adding, removing, or shifting a base pair
in s. The so-called MS2 move set, consisting of an addition, removal or shift of a
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Are RNA networks scale-free? 1313

base pair is the default move set used in RNA kinetics software kinfold (Lorenz
et al. 2011). Although a dynamic programming algorithm was described in Clote and
Bayegan (2015) to compute the average MS2 network degree, the methods of this
paper do not easily generalize to MS2 connectivity densities. Figure 11 shows a least-
squares regression line for the log-log density plot for MS2 connectivity (computed
by brute-force) for a homopolymer of length 20, together with an optimal power-law
fit computed by RNApowerlaw. Since there are only 106.633 secondary structures
for the 20-mer with θ = 3, we ran powerlaw on MS2 connectivity data, which
determined α = 6.84, kxmin = 36, and a log odds ratio R = −2.06 with p value of
0.248. Since RNApowerlaw determined α = 6.84, kxmin = 36, and a Kolmogorov–
Smirnov p value of 0.219, we can not reject the null hypothesis that a power-law
distribution fits the tail of MS2 connectivity data for a 20-mer.

5 Conclusion

Since the pioneering work of Zipf on the scale-free nature of natural languages (Zipf
1949), various groups have found scale-free networks in diverse domains ranging
from communication patterns of dolphins (McCowan et al. 2002), metabolic networks
(Jeong et al. 2000), protein–protein interaction networks (Ito et al. 2000; Schwikowski
et al. 2000), protein folding networks (Bowman and Pande 2010), genetic interaction
networks (Tong et al. 2004; Van Noort et al. 2004) to multifractal time series (Budroni
et al. 2017). These discoveries have galvanized efforts to understand biological net-
works from a mathematical and topological standpoint. Using mathematical analysis,
Barabasi andAlbert (1999) established that scale-free networks naturally emergewhen
networks are dynamic, whereby newly accrued nodes are preferentially connected to
nodes already having high degree. On such grounds, one might argue that protein
folding networks and protein–protein interaction (PPI) networks should exhibit scale-
free properties, since nature is likely to reuse and amplify fast-folding domains—cf.
Gilbert’s exon shuffling hypothesis (Gilbert 1978). Indeed, Cancherini et al. (2010)
have established that in 4 metazoan species analyzed (H. sapiens, M. musculus, D.
melanogaster, C. elegans) those genes, which are enriched in exon shuffling events,
displayed a higher connectivity degree on average in protein–protein interaction (PPI)
networks; i.e. such genes had a larger number of interacting partners. On similar
grounds that nature should reuse and amplify successful metabolic networks, one
might argue that metabolic networks should exhibit scale-free properties. However,
rigorous statistical analysis has shown that metabolic networks fail a goodness-of-fit
test for scale-free distribution, while PPI satisfy a goodness-of-fit test for scale-free
distributions over a certain range of connectivity (Khanin and Wit 2006; Clauset et al.
2009).

There appears to be a current polemic whether certain naturally occurring networks
are scale-free. Broido and Clauset (2019) provide statistical arguments that less than
45 of the 927 real-world network data sets (i.e. 4%) found in the Index of Complex
Networks exhibit the “strongest level of direct evidence for scale-free structure”. In a
response to a preprint of Broido and Clauset (2019) dated March 6, 2018 and posted
on the Barabási Labweb site https://www.barabasilab.com/post/love-is-all-you-need,
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A.L. Barabási argued against the conclusions of Broido and Clauset (2019). Here, it
should be noted that this is not the first time a polemic has arisen about the power-law
distribution—indeed, there was a heated exchange between Mandelbrot and Simon
almost 60 years ago in the journal Information and Control. For details, references,
and a history of the power-law distribution, see Mitzenmacher (2004).

Given the current interest in whether certain naturally occurring networks are
scale-free, we have introduced a novel algorithm to compute the connectivity density
function for a given RNA homopolymer. Our algorithm requires O(K 2n4) run time
and O(Kn3) storage, where K is a user-specified degree bound K ≤ (n−θ)(n−θ−1)

2 .
Short of exhaustively listing secondary structures by brute-force, no such algorithm
existed prior to our work. Since existent software appears unable to perform power-
law fitting for exponentially large RNA connectivity data, we have also implemented
code to compute and statistically evaluate the maximum likelihood power-law fit for
an input histogram, using a very fast method to the density function of a sampled
power-law distribution with given scaling parameter. Using the resulting code, called
RNAdensity andRNApowerlaw, we have computed the connectivity density func-
tion for RNA secondary structure networks for homopolymers of length up to 150.
Statistical analysis categorically shows that there is no statistically significant power-
law fit for homopolymer RNA secondary structure network connectivity, despite the
seemingly good visual fit shown in Fig. 9. Figure 12 shows that secondary structure
network connectivity is not scale-free for the (real) 32 nt selenocysteine insertion
sequence fruA. Figure 13 shows that the MS1 and MS2 degree distributions for other

Fig. 12 aMS1- andMS2-degreedistribution for the 32nt selenocystein insertion (SECIS) element fruAwith
sequence CCUCGAGGGG AACCCGAAAG GGACCCGAGA GG, obtained by brute-force computation
from an enumeration of all secondary structures (exact number 971299), ranging in degree from 4 to 123.
Average MS1-degree 13.10; average MS2-degree 33.25. Using notation from Table 9, the MLE power-
law fit for MS1-degree data has values of kmin = 35, α(35, 123) = 6.329, K S(35, 123) = 0.0221,
〈K S〉 = 0.0075, p value of 0.0000. In contrast, the MLE power-law fit for MS2-degree data has values of
kmin = 93,α(93, 123) = 14.441, K S(93, 123) = 0.0219, 〈K S〉 = 0.0081, p value of 0.729. Summarizing,
Kolmogorov–Smirnov statistics indicate that the MS1 data is not scale-free, while it cannot be refuted that
the MS2 data is scale-free. However, the range of degrees for which the MS2 data might be scale-free is
from 93 to 123, which accounts for only 5.77 ·10−4 of the density. As shown in (b), even log-log regression
suggests that theMS2 data is not scale-free. bLog–log plot ofMS2-density of fruAwith regression equation
ln density = 24.37 + 7.56 · ln degree, determined from the relative frequency of structures having MS2-
degree in the range of 29 to 4123, corresponding to the portion of the MS2 density starting after the peak
of 0.04987 in previous panel at degree kpeak = 29 (color figure online)
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Fig. 13 a MS1- and MS2-degree distribution for the 65 nt fourU RNA from Klebsiella pneumoniae
subsp. pneumoniaewith sequenceGGACAAGCAAUGCUUGCCUUUAUGUUGAGCUUUUGAAUGA
AUAUUCAGGA GGUUAAUUAU GGCAC and EMBL accession code CP000647.1/1773227-1773291.
FourU RNA is a class of thermometers found in bacteria such as E. coli, Salmonella, V. cholerae, etc. that
regulate protein expression by undergoing a conformation change triggered by temperature—for instance,
the conformational change of the V. cholerae fourU thermometer at 37◦C permits the transcription of a
virulence factor. All 1,079,102 secondary structures having free energy within 13 kcal/mol of the mini-
mum free energy (MFE) of this RNA were generated using RNAsubopt from the Vienna RNA Package
(Lorenz et al. 2011). The MS1 and MS2 degree of each secondary structure were determined in order to
produce the degree relative frequency histogram. Although the collection of structures having free energy
within 13◦C of the MFE contains over one million structures (computation required 1–2 days), there are
1995457849526533 (≈ 1.99546 × 1015) many secondary structures altogether. The average MS1 degree
is 38.0, while the average MS2 degree is 64.2. FourU MS1 analysis: Using RNApowerlaw, xmin = 93,
α = 6.02, and p value is 0 (to 10 decimal places). Using powerlaw, xmin = 96, α = 6.02, and the log ratio
of power-law fit to log-normal fit is R = −23.6283 with corresponding p value of 1.77 × 10−4—in other
words, a log-normal distribution provides a significantly better fit than a power-law distribution for the MS1
degree data of this fourU RNA. FourU MS2 analysis: Using RNApowerlaw, xmin = 85, α = 6.159, and
p value is 0 (to 10 decimal places). Using powerlaw, xmin = 85, α = 6.159, and the log ratio of power-law
fit to log-normal fit is R = −122.1518 with corresponding p value of 5.9389 × 10−20—in other words, a
log-normal distribution provides a significantly better fit than a power-law distribution for the MS2 degree
data of this fourU RNA. b MS1- and MS2-degree distribution for the 76 nt alanine transfer RNA from
Mycoplasma mycoides with accession code tdbR00000006 from tRNAdb (Juhling et al. 2009) (acces-
sion code RA1180 from the Sprinzl tRNA database) with sequence GGGCCCUUAG CUCAGCUGGG
AGAGCACCUG CCUUGCACGC AGGGGGUCGA CGGUUCGAUC CCGUUAGGGU CCACCA. All
408414 secondary structures having free energy within 13 kcal/mol of the minimum free energy of this
RNAwere generated using RNAsubopt from the Vienna RNA Package (Lorenz et al. 2011). TheMS1 and
MS2 degree of each secondary structure were determined in order to produce the degree relative frequency
histogram. Although the collection of secondary structures having free energy within 13◦C of theMFE con-
tains about one-half million structures (computation required 1-2 days), there are 877346780605139050
(≈ 8.77347 × 1017) many secondary structures altogether. The average MS1 degree is 38.1, while the
average MS2 degree is 68.3. tRNA MS1 analysis: Using RNApowerlaw, xmin = 36, α = 5.1419, and p
value is 0 (to 10 decimal places). Using powerlaw, xmin = 36, α = 5.1419, and the log ratio of power-law
fit to log-normal fit is R = −95.3556, with corresponding p value of 1.6193 × 10−16—in other words, a
log-normal distribution provides a significantly better fit than a power-law distribution for the MS1 degree
data of this fourU RNA. tRNA MS2 analysis:Using RNApowerlaw, xmin = 114, α = 7.0845 and p value
is 0 (to 10 decimal places). Using powerlaw, xmin = 122, α = 7.1352, and the log ratio of power-law
fit to log-normal fit is R = −41.1935 with corresponding p value of 5.0374 × 10−6—in other words, a
log-normal distribution provides a better fit than power-law for the MS22 degree data of this tRNA (color
figure online)
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naturally occurring RNAs are not scale-free, in particular for the 65 nt RNA ther-
mometer fromKlebsiella pneumoniae subsp. pneumoniae with EMBL accession code
CP000647.1/1773227-1773291 and the 76 nt alanine transfer RNA fromMycoplasma
mycoides with accession code tdbR00000006 from tRNAdb Juhling et al. (2009)
(accession code RA1180 from the Sprinzl tRNA database). While the density plot in
Fig. 12 was produced by exhaustively enumerating all 971,299 secondary structures
of the 32 nt fruA, Figure 13 was produced by enumerating all secondary structures
having free energy within 13 kcal/mol of the minimum free energy, as computed by
RNAsubopt from the Vienna RNA Package (Lorenz et al. 2011); this procedure
generated 1,079,102 secondary structures (out of a total of ≈ 1.99546 × 1015 struc-
tures) for the 65 nt fourU RNA, and 408,414 secondary structures (out of a total of
≈ 8.77347 × 1017 structures) for the 76 nt tRNA.

Since (Day et al. 2003; Kihara and Skolnick 2003) have presented data that suggests
that existent protein structures can be explained using only a small number of pro-
tein folds, we presented data in Table 4 that suggests that RNA secondary structures
may satisfy a type of preferential attachment—a rigorous combinatorial argument
establishes this fact for a modified notion of preferential attachment [data not shown,
but available in the Appendix of Clote (2018)]. Finally, Python implementations of
the algorithms from this paper are publicly available at http://bioinformatics.bc.edu/
clotelab/RNAnetworks.

As an afternote, our personal opinion is that it doesn’t much matter whether a nat-
urally occurring network arising from physical phenomena is precisely scale-free or
not. If network connectivity appears to follow a power-law distribution, even approx-
imately, then by results of Barabasi and Albert (1999), this suggests that preferential
attachment could play a role in how the network may have been constructed by nature.
Preferential attachment might well have been a factor in how protein and RNA struc-
tures have been formed by evolutionary forces—even in the emergence of stable folds
in prebiotic times (Abkevich et al. 1997). It is noteworthy that only a small number of
protein folds suffice to explain the diversity of all protein folds found in the Protein
Data Bank (PDB) (Kihara and Skolnick 2003): “The number of proteins required to
cover a target protein is very small, e.g. the top ten hit proteins can give 90% coverage
below a RMSD of 3.5 Å for proteins up to 320 residues long.” As well, the 30 most
populated metafolds represent “about half of a nonredundant subset of the PDB” (Day
et al. 2003). However, other evolutionary factors seem to be present in the evolution
of protein folds, such as kinetic accessibility (Cossio et al. 2010), as well as the ability
to switch between alternate conformations (Porter and Looger 2018).
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Appendix

A Preferential attachment of RNA secondary structures

In this section, we provide preliminary data that suggest that preferential attachment
holds in the homopolymer RNA secondary structure model. A rigorous argument can
be found in the preprint (Clote 2018) for all homopolymer RNA networks, albeit with
respect to a slight relaxation of our definitions. Before proceeding we recall basic
definitions and notation. The notion of homopolymer secondary structure was defined
at the beginning of Sect. 2.1; throughout this section, we denote the set of all secondary
structures for a length n homopolymer by Sn . If s ∈ Sn and s′ ∈ Sn+1, then we say
that s′ extends s, and write s ≺ s′, if s′ is obtained by either (1) appending unpaired
nucleotide n + 1 to the right of s, so that the dot-bracket notation of s′ is s•, or (2)
adding a base pair (k, n + 1) to s, where k ∈ [1, n − θ ] is external to every base pair
of s, i.e. it is not the case that i ≤ k ≤ j for any base pair (i, j) of s. Since the seminal
papers of Stein and Waterman (1978), Nussinov and Jacobson (1980), this notion
of extension has been used as the basis of recursive and/or dynamic programming
algorithms to count/enumerate all secondary structures and to compute minimal free
energy structures.

A reasonable approach to establish preferential attachment in the context of RNA
secondary structures is to show that if the degree of s is greater than or equal to the
degree of t in the network Sn , then for most extensions s′ of s, and t ′ of t , the degree of
s′ is greater than or equal to the degree of t ′ in the network Sn+1. We show that this is
indeed the case for homopolymers of modest length, using by brute-force, exhaustive
computations in this section, and we rigorously establish this result for a relaxation
S∗
n of the secondary structure model in Appendix A.
For fixed homopolymer length n, define the set An of 4-tuples (s, t, s′, t ′) by

An = {(s, t, s′, t ′) : s, t ∈ Sn, s
′, t ′ ∈ Sn+1, s �= t, s ≺ s′, t ≺ t ′, dg(s) ≥ dg(t)}

(32)

A 4-tuple (s, t, s′, t ′) ∈ An succeeds in demonstrating preferential attachment if
dg(s′) ≥ dg(t ′); otherwise the 4-tuple fails to demonstrate preferential attachment. Let
Succn [resp. Failn] denote the set of 4-tuples that succeed [resp. fail] to demonstrate
preferential attachment, so that An = Succn ∪ Failn (when n is clear, we drop the
subscripts, and we ambiguously also use Succ and Fail to denote the sizes of these
sets). Our first quantification of preferential attachment is given by the proportion
Succ/(Succ+Fail):

P(Succn) = |{(s, t, s′, t ′) ∈ An : dg(s′) ≥ dg(t ′)}|
|An| (33)
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Since secondary structures have possibly quite different degrees and numbers of exten-
sions, a more accurate measure (in our opinion) of preferential attachment is given by
〈p(s′, t ′|s, t)〉, defined as follows. For distinct, fixed structures s, t ∈ Sn , define

p(s′, t ′|s, t) = P
(
dg(s′) ≥ dg(t ′)|dg(s) ≥ dg(t), s ≺ s′, t ≺ t ′|dg(s) ≥ dg(t)

)

=
{
0 if dg(s) < dg(t)
|{(s′,t ′):s′,t ′∈Sn+1,s′ �=t ′,s≺s′,t≺t ′,dg(s′)≥dg(t ′)}|

|{(s′,t ′):s′,t ′∈Sn+1,s′ �=t ′,s≺s′,t≺t ′}| else

(34)

〈p(s′, t ′|s, t)〉 =
∑

s,t∈Sn ,s �=t p(s
′, t ′|s, t)

|{(s, t) : s, t ∈ Sn, s �= t, dg(s) ≥ dg(t)}| (35)

To clarify these definitions, we consider a small example. If n = 5, then Sn consists
of the two structures •••••, and ( ••• ) , while Sn+1 consists of the four structures
••••••, ( ••••) , •( ••• ) , ( ••• ) •. Fix s to be ( ••• ) , and t to be •••••.
Since the only neighbor of s is t , and vice-versa, it follows that dg(s) = 1 = dg(t).
By definition, an extension s′ of s is obtained either by adding an unpaired nucleotide
to s at position n+1, or by adding a base pair (k, n+1) to s, where k is external to all
base pairs of s. In the current case, the only possible extension of s is produced by the
former rule, thus obtaining s′ = ( ••• ) •. Note that we do not consider the structure
•( • • • ) to be an extension of s. In contrast, the structure t = • • • • • has three
extensions: t ′1 = • • • • ••, t ′2 = ( • • • •) , t ′3 = •( • • • ) , where by definition,
t ′4 = ( • • • ) • is not considered to be an extension of t . Clearly dg(s′) = dg(t ′2),
dg(s′) = dg(t ′3), but dg(s′) = 1 � dg(t ′1) = 3, so

2

3
= |{(s′, t ′) : dg(s′) ≥ dg(t ′) ∧ s ≺ s′, t ≺ t ′, s, t ∈ Sn+1}|

|{(s′, t ′) : s ≺ s′, t ≺ t ′, s, t ∈ Sn+1}|
so p(s′, t ′|s, t) = 0.6667. If we now take s = • • • • •, and t = ( • • • ) , we find
that

3

3
= |{(s′, t ′) : dg(s′) ≥ dg(t ′), s ≺ s′, t ≺ t ′, s, t ∈ Sn+1}|

|{(s′, t ′) : s ≺ s′, t ≺ t ′, s, t ∈ Sn+1}|

so p(s′, t ′|s, t) = 1. The (arithmetical) average of 1 and 2/3 is 2+3
3 = 5/6 = 0.8333,

which is the value 〈p(s′, t ′|s, t)〉 found in the first row and last column of Table 4.
In contrast to this value, averaged over all pairs s, t ∈ Sn for which dg(s) ≥ dg(t),
the total number of successes [resp. failures] is 5 [resp. 1], where a success [resp.
failure] is defined as a 4-tuple (s, t, s′, t ′) for which s, t ∈ Sn , s′, t ′ ∈ Sn+1, s ≺ s′,
t ≺ t ′, dg(s) ≥ dg(t) and dg(s′) ≥ dg(t ′) [resp. dg(s′) < dg(t ′)]. Thus we find the
value 5/6 = 0.8333 in the first row and 7th column; however, it is not generally true
that Succn / (Succn+ Failn) agrees with 〈p(s′, t ′|s, t)〉, since s, t may have different
degrees in Sn , and each may have a different number of extensions s ≺ s′, t ≺ t ′, and
each s′, t ′ may each have different degrees in Sn+1.

For homopolymers of length 5 to 18, Table 4 shows the proportion of successes,
P(Succ), defined in Eq. (33), as well as the average preferential attachment probabil-
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ities 〈p(s′, t ′|s, t)〉, defined in Eq. (35). Values in this table, produced by brute-force,
exhaustive computation, were obtained for each homopolymer length n ∈ [5, 19], by
first generating the collections Sn , then computing the degrees dg(s) for s ∈ Sn by
brute force, then considering all

(n
2

)
unordered pairs s, t of distinct structures in Sn .

So far, the number of instances to consider is large—for instance, when n = 18, there
are

(n
2

) = 274, 564, 461 unordered pairs of distinct structures from Sn . For each pair
of distinct structures s, t from Sn that satisfy dg(s) ≥ dg(t), a list Ls [resp. Lt ] of
extensions s ≺ s′ [resp. t ≺ t ′] were computed, where the size of each list is one plus
the number of positions in [1, n − θ ] that are external to every base pair of s [resp.
t]. Subsequently, the proportion of extension pairs s′, t ′ that satisfy dg(s′) ≥ dg(t ′)
is determined, thus yielding p(s′, t ′|s, t). Finally, the mean and standard deviation of
the latter yields 〈p(s′, t ′|s, t)〉, shown in the last column of the table. For n = 18,
more than one trillion (1.36 · 109) 4-tuples (s, t, s′, t ′) where considered for which
dg(s) ≥ dg(t)—this value is used in the denominator of Eq. (35)!

From the values in Table 4, it appears that the RNA homopolymer secondary struc-
turemodel does demonstrate preferential attachment. This, in our opinion,mayprovide
theoretical justification for the close approximation of the tail of degree distributions
by a power-law distribution, even though a rigorous statistical test by bootstrapping
Kolmogorov–Smirnov values solidly rejects this hypothesis.
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