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Abstract
The use of multiple vaccine doses has proven to be essential in providing high levels
of protection against a number of vaccine-preventable diseases at the individual level.
However, the effectiveness of vaccination at the population level depends on several
key factors, including the dose-dependent protection efficacy of vaccine, coverage of
primary and booster doses, and in particular, the timing of a booster dose. For vaccines
that provide transient protection, the optimal scheduling of a booster dose remains an
important component of immunization programs and could significantly affect the
long-term disease dynamics. In this study, we developed a vaccination model as a sys-
tem of delay differential equations to investigate the effect of booster schedule using
a control parameter represented by a fixed time-delay. By exploring the stability anal-
ysis of the model based on its reproduction number, we show the disease persistence
in scenarios where the booster dose is sub-optimally scheduled. The findings indicate
that, depending on the protection efficacy of primary vaccine series and the coverage
of booster vaccination, the time-delay in a booster schedule can be a determining fac-
tor in disease persistence or elimination. We present model results with simulations
for a vaccine-preventable bacterial disease, Heamophilus influenzae serotype b, using
parameter estimates from the previous literature. Our study highlights the importance
of timelines for multiple-dose vaccination in order to enhance the population-wide
benefits of herd immunity.
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1 Introduction

Vaccination remains themost effective interventionmeasure in preventingmany infec-
tious diseases (Ehreth 2003). Conferring high levels of protection against a number
of vaccine-preventable diseases requires more than one dose of vaccine that may be
offered at different ages according to specific schedules set by vaccination programs
(Jackson et al. 2012; Riolo et al. 2013; Riolo and Rohani 2015). For instance, vaccine
schedules against Haemophilus influenzae serotype b (Hib) recommended for infants
includes either 3 primary doseswithout a booster, or 2 to 3 primary doses plus a booster
given at least 6months after completing the primary series (WorldHealthOrganization
et al. 2016). However, even in the presence of booster doses, resurgence and outbreaks
of some vaccine-preventable diseases still occur, notwithstanding substantial levels of
routine primary vaccine series (Jackson et al. 2012; Riolo et al. 2013; Riolo andRohani
2015). Reduced effectiveness of vaccination has been explicated for the occurrence of
such outbreaks due to factors associatedwith incomplete protection efficacy of primary
vaccine series, inadequate coverage of booster doses, waning immunity over time, and
the duration of vaccine-induced protection that may be significantly shorter than the
average lifetime of the population (Alexander et al. 2006; Riolo and Rohani 2015).

While the importance of age-at-vaccination and booster doses has been docu-
mented, the optimal vaccine schedules remains unclear for several vaccine-preventable
diseases and scheduling is mainly determined based on epidemiological context in
individual settings (Low et al. 2013; Jackson et al. 2013; Riolo and Rohani 2015). The
diversity of booster dose schedules observed in immunization programs worldwide
could have a significant impact on disease elimination, since the scheduling may also
affect the uptake rates of booster vaccination (Fitzwater et al. 2010). This poses a
particular challenge for public health immunization programs in the context of defer-
ral and subsequent refusal of booster doses that diminish the herd immunity (Omer
et al. 2009; Dubé et al. 2013; Briere et al. 2014), and could lead to disease resurgence.
Identification of the optimal booster schedule is therefore an important component of
vaccination policies.

Despite the importance of dosing interval between primary and booster vaccina-
tion, a theoretical framework to investigate the impact of such interval and varying
vaccination schedules on disease dynamics in the population is currently lacking. In
this study, we aimed to establish this framework by developing a vaccination model,
represented by a system of delay differential equations that describe the dynamics of
disease transmission. Using this system, we evaluated the effect of delay in booster
dose after primary vaccination on the long-term disease prevalence.We incorporated a
number of key parameters into the model including the protection efficacy of primary
vaccination, duration of vaccine-induced protection, and the coverages of primary and
booster vaccination. We considered the delay as a control parameter, and analyzed the
transient and steady-state behaviours of the system, in addition to determining the
effect of time interval between primary and booster doses on disease elimination and
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persistence. We show, by means of simulations, that the threshold of disease control
depends critically on the parameter of delay in booster dose for a given protection
efficacy of primary vaccination.

To study the dynamics of our vaccinationmodel, we first propose a basic framework
without vaccination, derive the basic reproduction number (R0), and prove a threshold
result for disease elimination in terms ofR0. We then construct the general model by
incorporating primary and booster vaccination into the basic framework, and analyze
its behaviour. Stability of the disease-free equilibrium is investigated, and represented
in terms of the control reproduction number (Rc). When Rc > 1, we show the uni-
form persistence, indicating that the disease elimination is infeasible. Finally, we use
parameter values estimated for a bacterial disease,Heamophilus influenzae serotype b
(Hib), and perform simulations to illustrate the model results by varying time interval
between primary and booster doses, represented by the delay parameter.

2 The basic framework

Todevelop the basic framework,wedivided a population of constant size N into several
compartments to represent the epidemiological statuses of individuals as susceptible
(S), infectious (I ), recovered and fully protected (R), and partially protected (W , and
Rw). The distinction between the two classesW and Rw is based on the consideration
that partial protection following natural infection may last for a certain period of
time (on average) before declining towards negligible levels. We assumed a fixed
duration of full protection following recovery from infection. Once this period has
elapsed, individuals will have only partial protection, and may become infected at
a reduced rate compared with fully susceptible individuals. The duration of partial
protection is divided into a period of fixed length (for those in the W class), followed
by an exponentially distributed period of waning immunity (for those in the Rw class)
leading to full susceptibility. Due to the fixed periods of full and partial protection, the
dynamics of disease transmission can be expressed by the following set of equations:

S′(t) = μN − βSI

N
− μS + θRw,

I ′(t) = βSI

N
+ ηβW I

N
+ ηβRw I

N
− γ I − μI ,

R(t) =
∫ τr

0
r(t, a)da,

W (t) =
∫ τw

0
w(t, a)da,

R′
w(t) = w(t, τw) − ηβRw I

N
− μRw − θRw, (1)

where β is the baseline transmission rate; γ is the recovery rate of infectious individ-
uals, η is the reduction of susceptibility to infection due to partial protection, μ is the
natural death rate (assumed to be the same as the birth rate), τr represents the fixed
duration of full protection, τw represents the fixed duration of partial protection; and

123



2160 Z. Wang et al.

RwI

N

WI

N
SI

N

I r(t, r ) w(t, w )
S I R RwW

Rw

Fig. 1 Schematic diagram for the basic structure of the model in the absence of vaccination

θ is the rate of loss of immunity in partially protected individuals in the Rw class. A
schematic diagram of the transitions between different classes of individuals in this
basic framework is represented in Fig. 1.

Let a, referred to as ‘age’, be the time elapsed since individuals enter each class.
Thus, r(t, a) and w(t, a) represent the density, with respect to age a at time t , of
recovered individuals having full protection, and those having partial protection during
the fixed period before moving to the exponentially distributed period, respectively.
Using the above notation, we have the following equations:(

∂

∂t
+ ∂

∂a

)
r(t, a) = −μr(t, a),

r(t, 0) = γ I (t),(
∂

∂t
+ ∂

∂a

)
w(t, a) = −μw(t, a) − ηβ I (t)

N
w(t, a),

w(t, 0) = r(t, τr ).

(2)

Solving along the characteristics gives:

r(t, τr ) = r(t − τr , 0)e
−μτr = γ I (t − τr )e

−μτr ,

w(t, τw) = w(t − τw, 0)e
−μτw−ηβ̂

∫ t

t−τw

I (u)du

= r(t − τw, τr )e
−μτw−ηβ̂

∫ t

t−τw

I (u)du

= γ I (t − τr − τw)e
−μ(τr+τw)−ηβ̂

∫ t

t−τw

I (u)du
,

(3)

where, for simplicity we used the notation β̂ = β/N . Note that system (1) includes
integral and differential equations. By differentiating the R and W equations in (1)
with respect to t , we obtain the following model, which together with (3), constitutes
a closed system of delay differential equations:
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S′(t) = μN − β̂SI − μS + θRw,

I ′(t) = β̂SI + ηβ̂W I + ηβ̂Rw I − γ I − μI ,

R′(t) = γ I − μR − r(t, τr ),

W ′(t) = r(t, τr ) − ηβ̂W I − μW − w(t, τw),

R′
w(t) = w(t, τw) − ηβ̂Rw I − μRw − θRw.

(4)

One can easily check that the population N (t) = S(t) + I (t) + R(t) +W (t) + Rw(t)
is indeed constant.

Let τ = τr + τw, and denote by C the Banach space C([−τ, 0],R5) of continuous
functions mapping the interval [−τ, 0] into R5 equipped with the norm:

‖φ‖ = sup
θ∈[−τ,0]

|φ(θ)|,

where φ ∈ C and | · | is a norm in R
5. For a continuous function u : [−τ, σφ) → R

5

with σφ > 0, we define ut ∈ C for each t ≥ 0 by ut (θ) = u(t+θ), for all θ ∈ [−τ, 0].
We choose the initial conditions for system (4) from the set Ω ⊆ C , defined by:

Ω =
{
φ ∈ C : φi (s) ≥ 0, s ∈ [−τ, 0], 1 ≤ i ≤ 5,

φ3(0) =
∫ τr

0
γ e−μaφ2(−a)da,

φ4(0) =
∫ τw

0
γ e−μ(τr+a)−ηβ̂

∫ 0
−a φ2(u)duφ2(−τr − a)da

}
.

(5)

The following result shows that system (4) is well-posed in Ω , and the solution
semiflow admits a global attractor on Ω .

Theorem 2.1 For any φ ∈ Ω , system (4) has a unique non-negative solution u(t, φ)

satisfying u0 = φ and ut ∈ Ω for all t > 0, and the solution semiflow Φ(t) = ut (·) :
Ω → Ω has a compact global attractor. Moreover, the solutions of system (4) with
initial conditions in Ω satisfy the integro-differential equations system (1).

Proof We start with the last assertion. From the third equation of (4), we have:

eμt (R′(t) + μR(t)) = γ eμt (I (t) − I (t − τr )e
−μτr ).

Integrating both sides yields:

eμt R(t) − R(0) = γ

(∫ t

0
eμs I (s)ds −

∫ t

0
eμs I (s − τr )e

−μτr ds

)

= γ

(∫ t

0
eμs I (s)ds −

∫ t−τr

−τr

eμs I (s)ds

)

= γ

∫ t

t−τr

eμs I (s)ds − γ

∫ 0

−τr

eμs I (s)ds.
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Therefore, with R(0) = γ
∫ 0
−τr

eμs I (s)ds = γ
∫ τr
0 e−μa I (−a)da, we have:

R(t) = γ

∫ t

t−τr

eμs I (s)ds = γ

∫ τr

0
e−μa I (t − a)da =

∫ τr

0
r(t, a)da. (6)

Similarly, by integrating

eμt+ηβ̂
∫ t
0 I (u)du

(
W ′(t) + μW (t) + ηβ̂ I (t)W (t)

)
,

and using the initial conditionW (0) = ∫ τw

0 γ e−(τr+a)−ηβ̂
∫ 0
−a I (u)du I (−τr − a)da, the

differential equation W ′(t) in (4) gives:

W (t)=γ

∫ τw

0
γ I (t − τr −a)e

−μ(τr+a)−ηβ̂

∫ t

t−a
I (u)du

da =
∫ τw

0
w(t, a)da. (7)

For a given φ ∈ C , we define

G(φ) := (G1(φ),G2(φ),G3(φ),G4(φ),G5(φ)),

with

G1(φ) = μN − β̂φ1(0)φ2(0) − μφ1(0) + θφ5(0),

G2(φ) = β̂φ1(0)φ2(0) + ηβ̂φ2(0)φ4(0) + ηβ̂φ2(0)φ5(0) − (γ + μ)φ2(0),

G3(φ) = γφ2(0) − μφ3(0) − γφ2(−τr )e
−μτr ,

G4(φ) = γφ2(−τr )e
−μτr − ηβ̂φ2(0)φ4(0) − μφ4(0)

− γφ2(−τr − τw)e−μ(τr+τw)−ηβ̂
∫ t
t−τw

φ2(s)ds,

G5(φ) = γφ2(−τr − τw)e−μ(τr+τw)−ηβ̂
∫ t
t−τw

φ2(s)ds − ηβ̂φ2(0)φ5(0)

− (μ + θ)φ5(0).

Thus, system (4) can be written as u′(t) = G(ut ). We show that G(φ) is Lipschitzian
inφ within each compact set inC , that is for allM > 0 there is a K > 0 such that for all
φ,ψ ∈ C with ‖φ‖ ≤ M and ‖ψ‖ ≤ M , the inequality |G(φ)−G(ψ)| ≤ K‖φ −ψ‖
holds. We note that there are terms of linear, quadratic and exponential types in G.
Quadratic terms are all Lipschitzian, and one can see that:

|φ1(0)φ2(0) − ψ1(0)ψ2(0)| ≤ |φ1(0)φ2(0) − φ1(0)ψ2(0)|
+|φ1(0)ψ2(0) − ψ1(0)ψ2(0)|

≤ 2M‖φ − ψ‖.
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The Lipschitzian property for the most involved term can also be seen from:

|φ2(−τ)e−ηβ̂
∫ t
t−τw

φ2(s)ds − ψ2(−τ)e−ηβ̂
∫ t
t−τw

ψ2(s)ds |
≤ |φ2(−τ)e−ηβ̂

∫ t
t−τw

φ2(s)ds − φ2(−τ)e−ηβ̂
∫ t
t−τw

ψ2(s)ds |
+|φ2(−τ)e−ηβ̂

∫ t
t−τw

ψ2(s)ds − ψ2(−τ)e−ηβ̂
∫ t
t−τw

ψ2(s)ds |
≤ Meηβ̂τwMηβ̂τw‖φ − ψ‖ + eηβ̂τwM‖φ − ψ‖,

where we used the mean value theorem ex − ey = eξ (x − y). Hence, there is a unique
solution of the system through (0, φ) on its maximal interval of existence [0, σφ). We
note from (4) that any solution satisfies:

I (t) = I (0)e
∫ t
0 β̂S(u)+ηβ̂W (u)+ηβ̂Rw(u)−γ−μdu, (8)

and hence if I (0) ≥ 0, then I (t) ≥ 0 for all t ∈ (0, σφ). From (6) and (7), we find
that R andW are non-negative. Then the non-negativity of S and Rw follows from the
inequalities

S′(t) ≥ μN − β̂SI − μS,

and

R′
w(t) ≥ −ηβ̂Rw I − μRw − θRw.

Thenon-negativity and relations (6) and (7) ensure thatΩ is forward invariant. Since
the total population is constant, it follows that S(t) and I (t) are bounded by N and
the solutions exist globally. Therefore, the solution semiflow Φ(t) = ut (·) : Ω → Ω

is point dissipative. By Theorem 3.6.1 in Hale (1977), Φ(t) is compact for any t > τ .
Thus, from Theorem 3.4.8 in Hale (1988), it follows that Φ(t) has a compact global
attractor in Ω . 	


2.1 Basic reproduction number

The basic reproduction number (R0) is the average number of new infected individ-
uals generated by a single infected individual introduced into an entirely susceptible
population, during the course of infection. According to the theory of epidemics, we
expect that the disease will vanish if R0 < 1, while it will persist in the population
if R0 > 1. New infections occur only in the S class with the rate β̂ I . In a fully sus-
ceptible population, S/N ≈ 1 and the average length of infection is (μ + γ )−1, and
therefore we define the basic reproduction number as R0 = β/(γ + μ). We proceed
by presenting the threshold dynamics for system (4), which determines whether the
disease dies out or persists.
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2.2 Threshold dynamics

It is clear that system (4) has a unique disease-free equilibrium E0 = (N , 0, 0, 0, 0).
We first show that E0 is globally asymptotically stable when R0 < 1. Then we
establish the uniform persistence of the disease when R0 > 1 using techniques of
persistence theory (Smith and Thieme 2011).

Theorem 2.2 IfR0 < 1, then the disease-free equilibrium E0 of system (4) is globally
asymptotically stable in Ω .

Proof Linearizing system (4) at E0, we obtain the following system:

u′(t) = A1u(t) + A2u(t − τr ) + A3u(t − τr − τw), (9)

where u(t) = (S(t), I (t), R(t),W (t), Rw(t))T , and

A1 =

⎛
⎜⎜⎜⎜⎝

−μ −β 0 0 θ

0 β − γ − μ 0 0 0
0 γ −μ 0 0
0 0 0 −μ 0
0 0 0 0 −(μ + θ)

⎞
⎟⎟⎟⎟⎠ ,

A2 = (A2)i j , 1 ≤ i, j ≤ 5, with (A2)32 = −γ e−μτr , (A2)42 = γ e−μτr and all other
components are zero; A3 = (A3)i j , 1 ≤ i, j ≤ 5, with (A3)42 = −γ e−μ(τr+τw),
(A3)52 = γ e−μ(τr+τw) and all other components are zero. The characteristic equation
of system (9) has the form:

det(λI − A1 − e−τrλA2 − e−(τr+τw)λA3) = 0,

which gives (λ + μ)3(λ + μ + θ)(λ − β + γ + μ) = 0. Since R0 < 1, we have
β − (γ + μ) < 0, which implies that E0 is asymptotically stable.

Nowweprove that E0 is globally attractive inΩ .We consider the following inequal-
ity:

I ′(t) ≤ β̂(S + W + Rw)I − (γ + μ)I ≤ (R0 − 1)(γ + μ)I .

Thus, I (t) ≤ I (0)e(R0−1)(γ+μ)t , and hence I (t) → 0 as t → ∞. From (6) and
(7), we find that R(t) and W (t) are also converging to zero. For any ε > 0, and a
sufficiently large t > 0, we have w(t, τw) < ε, and the following inequality holds:

R′
w(t) ≤ ε − (μ + θ)Rw.

This means that lim sup
t→∞

Rw(t) ≤ ε

μ + θ
, and therefore Rw → 0 as t → ∞. Since the

total population is constant, we obtain that S(t) → N as t → ∞. Thus, lim
t→∞ u(t, φ) =

(N , 0, 0, 0, 0), and we conclude that E0 is globally asymptotically stable. 	
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We now prove the persistence of disease forR0 > 1. Considering the semiflow Φ

on Ω , we define the persistence function by:

P : Ω → R+, P(φ) = φ2(0).

Let

Ω+ := {φ ∈ Ω|P(φ) > 0},
Ω0 := {φ ∈ Ω|P(φ) = 0} = Ω \ Ω+,

where Ω0 is called the extinction space corresponding to P (that is the collection of
states where the disease is not present). From the relation (8), it follows that the sets
Ω0 and Ω+ are forward invariant under the semiflow Φ. We now introduce some
terminology from persistence theory (Smith and Thieme 2011, Chapters 3.1 and 8.3).

Definition 2.3 Let X be a nonempty set and P : X → R+.

1. A semiflow Φ : R+ × X → X is called uniformly weakly P-persistent, if there
exists some ε > 0 such that

lim sup
t→∞

P(Φ(t, x)) > ε ∀ x ∈ X , P(x) > 0.

2. A semiflow Φ is called uniformly (strongly) P-persistent, if there exists some
ε > 0 such that

lim inf
t→∞ P(Φ(t, x)) > ε ∀ x ∈ X , P(x) > 0.

3. A set M ⊆ X is called weakly P-repelling if there is no x ∈ X such that P(x) > 0
and Φ(t, x) → M as t → ∞.

Theorem 2.4 If R0 > 1, then the semiflow Φ is uniformly P-persistent, i.e., there is
a δ > 0 such that for any solution lim inf t→∞ I (t) ≥ δ.

Proof First we show that E0 is weakly P-repelling. Suppose that there exists ψ0 ∈ Ω

such that P(ψ0) > 0 with

lim
t→∞ Φ(t, ψ0) = E0. (10)

For such a solution, I (0) > 0 and limt→∞ I (t) = 0. Let ε > 0 small so that R0(1 −
ε
N ) > 1. Thus, for sufficiently large t we have ‖Φ(t, ψ0) − E0‖ < ε, and

I ′ ≥ β̂SI − (γ + μ)I ≥ β(N − ε)

N
I − (γ + μ)I

=
(
R0(1 − ε

N
) − 1

)
(γ + μ)I > 0,
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Table 1 Description of
vaccine-related individual
classes in the vaccination model

Variable Description

Vs Newborns who will receive primary vaccine in τs period
of time following birth

Vp Primary vaccinated individuals who may receive
booster dose

Vd Partially protected individuals who will not receive
booster dose

Vw Primary vaccinated individuals in whom
vaccine-induced protection wanes over

Vb Individuals who have received booster vaccination and
are currently fully protected

which contradicts the convergence of I to zero. Hence, E0 is weakly P-repelling.
Notice that whenever I (t) ≡ 0, from (6) and (7) we have R(t) ≡ 0 , W (t) ≡ 0,
and w(t, τw) ≡ 0, and consequently Rw → 0 and S → N as t → ∞. Therefore
∪φ∈Ω0ω(φ) = {E0}, and one can see from Theorem 8.17 in Smith and Thieme (2011)
that Φ is uniformly weakly P-persistent. Since Φ has a compact global attractor on
Ω , we can apply Theorem 4.5 in Smith and Thieme (2011) to conclude that Φ is
uniformly P-persistent. 	


Theorems 2.2 and 2.4 indicate that the disease dynamics are completely determined
by the basic reproduction number R0. In the following, we extend our model by
introducing the primary and booster vaccination, and analyze the persistence dynamics
of the resulting system.

3 The general vaccinationmodel

The vaccination model includes additional classes of individuals who are vaccinated
with primary series; partially protected following primary vaccination; and fully pro-
tected following booster vaccination (See Table 1). A schematic diagram for timelines
of primary and booster vaccination with delays is represented in Fig. 2. We assume
that a fraction p of newborns will receive primary vaccine series in the first τs period
of their life. The remaining fraction of newborns will be recruited to the susceptible
class and can therefore become infected through contacts with infectious individu-
als. The primary vaccination is assumed to provide partial protection for a certain
period of time during which infection can occur with a lower rate compared with fully
susceptible individuals. We also assume that partial protection induced by primary
vaccine gradually wanes over time, and individuals who forgo booster vaccination
will eventually become susceptible. Similar to the basic framework, we consider a
fixed duration of partial protection after primary vaccination, followed by an expo-
nentially distributed period of waning immunity leading to full susceptibility. Those
who have received primary vaccination may also receive booster dose. We assume
that, similar to recovery from infection, booster vaccination provides a fixed duration
of full protection, followed by fixed and exponentially distributed durations of partial
protection.
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d

p

s

birth
loss of partial 

protection

fully susceptible

booster
vaccination

vs(t,a) vp(t,a) vd (t,a) Vw

primary
vaccination b w

vb(t,a) w(t,a)

loss of full 
protection

1 r

I r(t,a)

infection recovery

Fig. 2 Schematic diagram for timelines of primary and booster vaccination with delay, and durations of
vaccine-induced and naturally acquired protection

In order to mathematically express the model, we let a represent the age since the
individuals enter each class, and define vs(t, a), vp(t, a), and vd(t, a) to represent
the density, with respect to age a at current time t , of primary vaccinated individuals,
those who are partially protected as a result of primary vaccination and eligible to
receive booster dose, and those who are partially protected by primary vaccination
and will not receive booster dose, respectively. Let τp (0 ≤ τp ≤ τw) represent the
delay in receiving booster vaccination within the fixed period of partial protection
following primary vaccination. For those who will not receive the booster, we denote
by τd the remaining period of time within the fixed duration of partial protection, i.e.,
τp + τd = τw. Description of all model parameters are provided in Table 2.

With the above notation, the model can be expressed by the following system of
integro-differential equations:

S′(t) = (1 − p)μN − β̂SI − μS + θVw,

Vs(t) =
∫ τs

0
vs(t, a)da,

Vp(t) =
∫ τp

0
vp(t, a)da,

Vd(t) =
∫ τd

0
vd(t, a)da,

V ′
w(t) = vd(t, τd) − ηβ̂Vw I − (μ + θ)Vw + w(t, τw),

Vb(t) =
∫ τb

0
vb(t, a)da,

W (t) =
∫ τw

0
w(t, a)da,

I ′(t) = β̂ I [S + Vs + η(Vp + Vd + Vw + W )] − γ I − μI ,
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Table 2 Description of the model parameters and their associated values (ranges) extracted from the pub-
lished literature

Parameter Description Value (range)

R0 Basic reproduction number 1.2 (1.1–1.4)

μ Birth and natural death rate 1/70 per year

γ Recovery rate of infection 7.3 per year

β = R0(γ + μ) baseline transmission rate of infection 8.777 per year

p Coverage of primary vaccination 0.9 (0–1)

ρ Coverage of booster vaccination Variable (0–1)

η Reduced susceptibility during partial protection Variable (0–1)

τs Age at primary vaccination 6 months

τp Delay in booster vaccination Variable (0–4)
years

τw Fixed period of partial protection 4 years

τb Fixed period of full protection following booster 6 years

τr Fixed period of full protection following recovery 4 years

θ Rate of loss of partial protection 0.1667 per year

R(t) =
∫ τr

0
r(t, a)da, (11)

with population densities expressed by:

(
∂

∂t
+ ∂

∂a

)
vs(t, a) = −μvs(t, a) − β̂ I (t)vs(t, a),

vs(t, 0) = pμN , (12)(
∂

∂t
+ ∂

∂a

)
vp(t, a) = −μvp(t, a) − ηβ̂ I (t)vp(t, a),

vp(t, 0) = vs(t, τs), (13)(
∂

∂t
+ ∂

∂a

)
vd(t, a) = −μvd(t, a) − ηβ̂ I (t)vd(t, a),

vd(t, 0) = (1 − ρ)vp(t, τp), (14)(
∂

∂t
+ ∂

∂a

)
vb(t, a) = −μvb(t, a),

vb(t, 0) = ρvp(t, τp), (15)(
∂

∂t
+ ∂

∂a

)
r(t, a) = −μr(t, a),

r(t, 0) = γ I (t), (16)(
∂

∂t
+ ∂

∂a

)
w(t, a) = −μw(t, a) − ηβ̂ I (t)w(t, a),
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w(t, 0) = vb(t, τb) + r(t, τr ). (17)

In this model, we considered a single class Vw for partially protected individuals
with exponentially distributed duration of protection, regardless of whether the immu-
nity was conferred by vaccination or natural infection. Thus, the Rw class from the
basic framework is included in the Vw class in the vaccination model. Solving along
the characteristics gives:

vs(t, τs) = vs(t − τs, 0)e
−μτs−β̂

∫ t

t−τs

I (u)du

= pμNe
−μτs−β̂

∫ t

t−τs

I (u)du

,

vp(t, τp) = vp(t − τp, 0)e
−μτp−ηβ̂

∫ t

t−τp

I (u)du

,

vd(t, τd) = vd(t − τd , 0)e
−μτd−ηβ̂

∫ t

t−τd

I (u)du

,

vb(t, τb) = vb(t − τb, 0)e
−μτb = ρvp(t − τb, τp)e

−μτb ,

r(t, τr ) = r(t − τr , 0)e
−μτr = γ I (t − τr )e

−μτr ,

w(t, τw) = w(t − τw, 0)e
−μτw−ηβ̂

∫ t

t−τw

I (u)du
.

(18)

Differentiating the integral equations Vs , Vp, Vd , Vb, W and R in (11) and substi-
tuting the density functions, we obtain the following system of differential equations
with delays:

S′(t) = (1 − p)μN − β̂SI − μS + θVw,

V ′
s (t) = pμN

(
1 − e−μτs−β̂A

)
− β̂Vs I − μVs,

V ′
p(t) = pμN

(
e−μτs−β̂A − e−μ(τs+τp)−ηβ̂B−β̂A(t−τp)

)
− ηβ̂Vp I − μVp,

V ′
d(t) = (1 − ρ)pμNe−μ(τs+τp)−ηβ̂B−β̂A(t−τp)

− (1 − ρ)pμNe−μ(τs+τp+τd )−ηβ̂C−β̂A(t−τw) − ηβ̂Vd I − μVd ,

V ′
w(t) = (1 − ρ)pμNe−μ(τs+τp+τd )−ηβ̂C−β̂A(t−τw) − ηβ̂Vw I − (μ + θ)Vw

+ ρ pμNe−μ(τs+τp+τb+τw)−ηβ̂C−ηβ̂B(t−τb−τw)−β̂A(t−τp−τb−τw)

+ γ I (t − τr − τw)e−μτr−μτw−ηβ̂C ,

V ′
b(t) = ρ pμNe−μ(τs+τp)−ηβ̂B−β̂A(t−τp) − μVb

− ρ pμNe−μ(τs+τp+τb)−ηβ̂B(t−τb)−β̂A(t−τp−τb),

W ′(t) = ρ pμNe−μ(τs+τp+τb)−ηβ̂B(t−τb)−β̂A(t−τp−τb) − ηβ̂W I − μW

− ρ pμNe−μ(τs+τp+τb+τw)−ηβ̂B(t−τb−τw)−β̂A(t−τp−τb−τw)−ηβ̂C
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− γ

(
I (t − τr − τw)e−μτw−ηβ̂C − I (t − τr )

)
e−μτr ,

I ′(t) = β̂

(
S + Vs + η(Vp + Vd + Vw + W )

)
I − γ I − μI ,

R′(t) = γ I − γ I (t − τr )e
−μτr − μR, (19)

where

A(t) =
∫ t

t−τs

I (u)du, B(t) =
∫ t

t−τp

I (u)du, C(t) =
∫ t

t−τw

I (u)du.

The total population S(t)+Vs(t)+Vp(t)+Vd(t)+Vw(t)+Vb(t)+W (t)+I (t)+R(t) =
N . Note that the equations of Vb and R are decoupled from the rest of the model.

In the following, we show that (19) is well-posed, and further define the disease-
free equilibrium and the control reproduction number. Let τc = max{τs + τp + τb +
τw, τr + τw}. We choose the initial conditions for system (19) from the set X , which
is defined by

X =
{
φ ∈ C([−τc, 0],R9) : φi (s) ≥ 0, s ∈ [−τc, 0], 1 ≤ i ≤ 9,

φ2(0) =
∫ τs

0
pμNe−μa−β̂

∫ 0
−a φ8(s)dsda,

φ3(0) =
∫ τp

0
pμNe−μ(τs+a)−ηβ̂

∫ 0
−a φ8(s)ds−β̂

∫ −a
−τs−a φ8(s)dsda,

φ4(0) =
∫ τd

0
(1 − ρ)pμNe

−μ(τs+τp+a)−ηβ̂
∫ 0
−τp−a φ8(s)ds−β̂

∫ −τp−a
−τs−τp−a φ8(s)dsda,

φ6(0) =
∫ τb

0
ρ pμNe

−μ(τs+τp+a)−ηβ̂
∫ −a
−τp−a φ8(s)ds−β̂

∫ −τp−a
−τs−τp−a φ8(s)dsda,

φ7(0) =
∫ τw

0
ρ pμNe−μ(τs+τp+τb+a)−ηβ̂

∫ 0
−a φ8(s)ds−ηβ̂

∫ −τb−a
−τp−τb−a φ8(s)ds

× e−β̂
∫ −τp−τb−a
−τs−τp−τb−a φ8(s)ds + γφ8(−τr − a)e−μ(τr+a)−ηβ̂

∫ 0
−a φ8(s)dsda,

φ9(0) =
∫ τr

0
γ e−μaφ8(−a)da

}
. (20)

Theorem 3.1 For any φ ∈ X , system (19) has a unique non-negative solution U (t, φ)

satisfying U0 = φ and Ut ∈ X , and the solution semiflow Φ(t) = Ut (·) : X → X
has a compact global attractor. Moreover, the solutions of system (19) with initial
conditions in X satisfy the integro-differential equations system (11).

Proof The proof is similar to Theorem 2.1. 	
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3.1 Reproduction number

Recall that in the absence of vaccination, system (19) reduces to (4) and the basic repro-
duction number is given byR0 = β/(μ + γ ). Letting I (t) ≡ 0, we obtain the unique
disease-free equilibrium of system (19), E∗

0 = (S◦, V ◦
s , V ◦

p , V ◦
d , V ◦

w, V ◦
b ,W ◦, 0, 0),

where

S◦ = (1 − p)N + θ pN

μ + θ

[
(1 − ρ)e−μτs + ρe−μ(τs+τp+τb)

]
e−μτw ,

V ◦
s = pN

(
1 − e−μτs

)
,

V ◦
p = pN

(
1 − e−μτp

)
e−μτs ,

V ◦
d = (1 − ρ)pN

(
1 − e−μτd

)
e−μ(τs+τp),

V ◦
w = μpN

μ + θ

[
(1 − ρ)e−μτs + ρe−μ(τs+τp+τb)

]
e−μτw ,

V ◦
b = ρ pN

(
1 − e−μτb

)
e−μ(τs+τp),

W ◦ = ρ pN
(
1 − e−μτw

)
e−μ(τs+τp+τb).

Linearizing system (19) at E∗
0 , we obtain the following equation for the infection

class:

I ′(t) = β̂[S◦ + V ◦
s + η(V ◦

p + V ◦
d + V ◦

w + W ◦)]I − (γ + μ)I . (21)

We now introduce the reproduction number following the idea in (Xu and Zhao 2012).
Denote by x0 the number of infectious individuals at time t = 0, and x1(t) be the
remaining population at time t . Thus,

x1(t) = x0e
−(γ+μ)t .

Thus, from (21), the total number of newly infected cases is

x̄1 = β̂[S◦ + V ◦
s + η(V ◦

p + V ◦
d + V ◦

w + W ◦)]
∫ ∞

0
x1(t)dt

= β̂

γ + μ

(
S◦ + V ◦

s + η(V ◦
p + V ◦

d + V ◦
w + W ◦)

)
x0.

Therefore, we define the reproduction number in the presence of vaccination by

Rc = β̂

γ + μ

(
S◦ + V ◦

s + η(V ◦
p + V ◦

d + V ◦
w + W ◦)

)

= R0

[
(1 − pe−μτs ) + p

(θ + ημ

μ + θ

)(
(1 − ρ)e−μτs + ρe−μ(τs+τp+τb)

)
e−μτw

+ ηp
(
1 − e−μτp

)
e−μτs + η(1 − ρ)p(1 − e−μτd )e−μ(τs+τp)

+ ηρ p
(
1 − e−μτw

)
e−μ(τs+τp+τb)

]
,
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which can be interpreted as the total number of new infections generated by a single
infectious individual in all non-infection classes during the average infectious period
1/(μ + γ ).

3.2 Threshold dynamics

3.2.1 Local stability

Here, we show disease elimination for sufficiently small I (corresponding to solutions
in a small neighbourhood of E∗

0 ) ifRc < 1.
Notice that Vb and R in system (19) are independent of other state variables. In the

following, we consider (19) with the additional equations:

A′(t) = I (t) − I (t − τs),

B ′(t) = I (t) − I (t − τp),

C ′(t) = I (t) − I (t − τw).

(22)

Linearizing (19) at E∗
0 , we have

U ′(t) = DU (t) + D1U (t − τs) + D2U (t − τp) + D3U (t − τw) + D4U (t − τr )

+D5U (t − τb) + D6U (t − (τp + τb)) + D7U (t − (τr + τw))

+D8U (t − (τb + τw)) + D9U (t − (τp + τb + τw)), (23)

whereU (t) = (
S(t), Vs(t), Vp(t), Vd(t), Vw(t),W (t), I (t), A(t), B(t),C(t)

)T , and

D =
(

D11 D∗
O4×6 D21

)
.

This is a block triangular matrix with the zero block O4×6, and

D11 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−μ 0 0 0 θ 0
0 −μ 0 0 0 0
0 0 −μ 0 0 0
0 0 0 −μ 0 0
0 0 0 0 −(μ + θ) 0
0 0 0 0 0 −μ

⎞
⎟⎟⎟⎟⎟⎟⎠

,

D21 =

⎛
⎜⎜⎝

(γ + μ)(Rc − 1) 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

⎞
⎟⎟⎠ .

All matrices Dj , j = 1, . . . 9, that appear in (23) can also be derived from (19) and
(22).
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Theorem 3.2 IfRc < 1, then the disease-free equilibrium E∗
0 of system (19) is locally

asymptotically stable.

Proof The characteristic equation of the linearized system at E∗
0 is

det
[
D + e−λτs D1 + · · · + e−λ(τp+τb+τw)D9 − λI

]
= 0,

which, after straightforward calculations, simplifies to

λ3(λ + μ)5(λ + μ + θ)(λ − (γ + μ)(Rc − 1)) = 0.

Since Rc < 1, the local stability of E∗
0 is proven. 	


Remark 3.3 Wehave not been able to establish the global stability of E∗
0 whenRc < 1.

There are some vaccination models that exhibit the phenomenon of backward bifur-
cation, where a stable endemic equilibrium co-exists with the stable disease-free
equilibrium Gumel (2002). However, based on the simulation results presented in the
next section, we conjecture that Theorem 3.2 holds for the entire domain of system
(19) and E∗

0 is globally stable.

3.2.2 Uniform persistence

In this section, we prove the disease persistence whenRc > 1. Consider the semiflow
Φ(t) inX , defined by the unique global solutions. We define the persistence function:

P : X → R+, P(φ) = φ8(0).

Let

X+ := {φ ∈ X |P(φ) > 0},
X0 := {φ ∈ X |P(φ) = 0} = X \ X+,

whereX0 is the extinction space corresponding to P (i.e.,X0 is the collection of states
without disease presence). From Theorem 3.1, it follows that X0 and X+ are forward
invariant under the semiflow Φ.

Theorem 3.4 IfRc > 1, then the semiflow Φ is uniformly P-persistent, i.e. there is a
δ > 0 such that for any solution lim inf t→∞ I (t) ≥ δ.

Proof First we show that E∗
0 is weakly P-repelling. Suppose that there exists ψ0 ∈ X

such that P(ψ0) > 0 with

lim
t→∞ Φ(t, ψ0) = E∗

0 . (24)
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For such a solution, I (0) > 0 and limt→∞ I (t) = 0. For sufficiently small ε > 0,

we haveRc− 6ε

γ + μ
> 1.Hence, for sufficiently large t , we get ‖Φ(t, ψ0)−E∗

0‖ < ε,

and

I ′ ≥ β̂[S◦ + V ◦
s + η(V ◦

p + V ◦
d + V ◦

w + W ◦) − 6ε]I − (γ + μ)I

=
[
Rc − 6ε

γ + μ
− 1

]
(γ + μ)I > 0,

which contradicts the convergence of I to zero. Thus, E∗
0 is weakly P-repelling. We

also note that whenever I (t) ≡ 0, from the R equation in (11) and Theorem 3.1, it
follows that R(t) ≡ 0, Vs → V ◦

s , Vp → V ◦
p , Vd → V ◦

d , Vw → V ◦
w, Vb → V ◦

b ,
W → W ◦, and consequently S → S◦ as t → ∞. Therefore ∪φ∈X0ω(φ) = {E∗

0 },
and one can see that Φ is uniformly weakly P-persistent (Smith and Thieme 2011,
Theorem 8.17). Since Φ has a compact global attractor on X , the application of
Theorem 4.5 in Smith and Thieme (2011) guarantees thatΦ is uniformly P-persistent.

	

Remark 3.5 It is expected that an endemic equilibrium exists when the disease is
uniformly persistent. Due to the exponential terms in the model, it is not possible to
derive an explicit formula for the components of an endemic equilibrium, andwe could
not prove the existence or uniqueness of such equilibrium using established methods
(such as fixed point arguments). However, our numerical experiments suggest that
there is a unique endemic equilibrium that emerges as Rc increases and passes the
threshold of one. Regarding its stability, it is known that SIRS models with delay
can exhibit periodic oscillations Hethcote et al. (1981), and their endemic equilibria
can either be stable or unstable. For our model, a linear stability analysis seems very
difficult to conduct due to the various delay terms. In numerical simulations, however,
we can readily find a combination of parameter values for which the vaccinationmodel
(19) exhibits sustained oscillations in the disease prevalence. This typically occurs for
a small vaccination coverage, and increasing this coverage first stabilizes the endemic
equilibrium, and then can lead to disease elimination when it is sufficiently high to
bringRc less than one.

4 Simulation results

To illustrate the effect of booster schedule on the dynamics of disease spread in the
population, we simulated the model while varying the protection efficacy of primary
vaccination and the coverage of booster vaccination. For the simulation results pre-
sented here, we used parameter values estimated forHaemophilus influenzae serotype
b (Hib) in the published literature. Primary vaccination for Hib in most routine infant
immunization programs includes 2 to 3 doses of vaccine offered between 2 to 6months
of age (World Health Organization et al. 2016), and we therefore assumed τs = 6
months for completion of primary series. Primary vaccination is estimated to provide
partial protection for a fixed duration of τw = 4 years, followed by an exponentially
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distributed time periodwith the average of 1/θ = 6 years (Konini andMoghadas 2015;
Jackson et al. 2012). Booster vaccination provides full protection for a fixed period of
τb = 6 years (Konini et al. 2016; Leino et al. 2000). We assumed that, after the period
of full protection has elapsed, partial protection follows the same timelines as primary
vaccination. Similar to booster vaccination, we assumed that recovery from infection
provides full protection for a fixed period of τr = 4 years (Konini and Moghadas
2015). Infection in the form of carriage (i.e., asymptomatic without showing clinical
symptoms) contributes more significantly to the incidence of Hib compared to symp-
tomatic disease, and has a prolonged infectious period from several days to several
weeks (Leino et al. 2000; Jackson et al. 2012). We therefore assumed an average
infectious period of 1/γ = 50 days.

For the purpose of simulations, we used a population of size N = 100, 000 with
an average lifetime of 1/μ = 70 years. The transmission parameter β was calcu-
lated based on a given basic reproduction number, while fixing other parameters of
the model. We assumed R0 = 1.2 in the range 1.1–1.4 estimated in studies of Hib
(Farrington et al. 2001) and other pathogens that cause bacterial meningitis, such as
Neisseria meningitidis serotype C (Stephens 2011). We fixed the coverage of primary
vaccine at p = 0.9, and varied the protection efficacy of primary vaccination, reflected
in the reduction of susceptibility to infection. We ran the simulations while changing
the time for booster vaccination within the fixed period of partial protection following
primary vaccination, that is, 0 < τp ≤ τw = 4 years.

We also simulatedRc as a function of twomodel parameters, namely the protection
efficacy of primary vaccination (η), and the time for booster vaccination following
primary series (τp). For these simulations, we considered the coverage of booster
vaccination as a function of τp in three different scenarios:

(i) Fixed coverage of booster vaccination: ρ = 0.95 (Fig. 3, solid line).
(ii) Exponentially declining coverage of booster vaccination:

ρ(τp) = 0.95e−0.001τp .

This coverage reduces as the time delay τp in booster vaccination increases
(Fig. 3, dashed line).

(iii) Inverted logistic declining coverage of booster vaccination:

ρ(τp) = 14.2307e−0.006τp

0.1 + e−0.006(τp−450)
.

This coverage reduces with time delay τp in booster vaccination in a functional
form similar to van Genuchten-Gupta model (Fig. 3, dotted line).

Figure 4 shows the variation inRc corresponding to the scenarios of booster cover-
age. For a fixed coverage of booster vaccination (ρ = 0.95), Fig. 4a shows that when
the protection efficacy of primary vaccination is sufficiently high (approximately above
70%),Rc decreases with increasing delay in booster schedule following primary vac-
cination, and the disease can be eliminated if Rc < 1 (in the region to the left side
of the white line). When primary vaccination provides a protection efficacy that is
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Fig. 3 The coverage of booster vaccination (ρ) as a function of time delay (τp) following primary vaccina-
tion. Solid line corresponds to a fixed coverage; dashed line represents the exponentially declining booster
coverage; and dotted line illustrates an inverted logistic coverage of booster vaccination declining over time

nearly as good as that conferred by the booster dose (i.e., η > 0.9), the disease can
be eliminated regardless of the time for booster schedule. However, for a moderate to
low protection efficacy of primary vaccination, the delay in booster vaccination has
little or no effect in reducing Rc and the disease persists in the population.

When the coverage of booster vaccination declines exponentially, we observed
lower Rc for early booster schedule, regardless of the protection efficacy of primary
vaccination (Fig. 4b). In our simulations, disease elimination can occur with a protec-
tion efficacy above 90%, but requires booster vaccination within 12 months following
the primary vaccination (i.e., the region below the white line in Fig. 4b). In contrast
to the scenario for a fixed coverage of booster vaccination, these simulations suggest
that an early booster dose may be essential in curtailing disease spread if the coverage
of booster vaccine is expected to decline (exponentially) over time. This scenario may
correspond to vaccine refusal in the contexts of booster deferral (Centers for Disease
Control and Prevention et al. 2009).

Further simulations indicate that functional form of the decline in booster coverage
can also play an important role in determining the optimal timing of booster vaccina-
tion. With the inverted logistic functional form of ρ represented by the dotted curve in
Fig. 3, we observed that the protection efficacy of primary vaccination can influence
the magnitude of reduction inRc with the time delay in booster schedule (Fig. 4c). For
a moderate to low protection efficacy of primary vaccination, early booster (similar
to the scenario of exponential decline in ρ) leads to the maximum reduction in Rc.
However, as the protection efficacy of primary vaccination increases (approximately
above 50% in these simulations), the maximum reduction of Rc corresponds to an
intermediate time-interval for booster vaccination. Figure 4c indicates that an optimal
timing of booster schedule may lead to disease elimination, while the disease can
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Fig. 4 Reproduction number (Rc) as a function of protection efficacy of the primary vaccination (1 − η,
x−axis) and delay in the booster dose schedule (τp , y−axis). The coverage of booster dose is: a ρ = 0.95

fixed; b ρ = 0.95e−0.001τp ; and c ρ = 14.2307e−0.006τp /
(
0.1 + e−0.006(τp−450)). The white curve

corresponds to Rc = 1

persist in the population if the booster dose is offered too early or too late following
primary vaccination.

To further illustrate our findings in terms of disease prevalence, we simulated the
model for the scenarios of booster coverage, while fixing the protection efficacy of the
primary vaccination. Figure 5a shows that for fixed ρ = 0.95 and η = 0.8, the disease
will be eliminated if the booster dose is offered30months after the primaryvaccination.
However, an earlier schedule of a booster dose 6 months after the primary vaccination
leads to the disease persistence in the population. This situation is reversed for the
scenario of booster coverage that declines exponentially with time delay in booster
vaccination. Figure 5b shows the disease elimination and persistence for η = 0.95,
with the booster dose schedules of 2 and 24 months after the primary vaccination,
respectively. When the booster coverage declines in a functional form similar to the
inverted logistic function, Fig. 5c shows the disease persistence for early and late
booster schedules of 1 and 24 months after the primary vaccination with η = 0.88.
However, for an intermediate delay of 9 months in booster vaccination, the disease is
eliminated over time.
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Fig. 5 Prevalence of disease with: a η = 0.8 and fixed ρ = 0.95; b η = 0.95, ρ = 0.89 (for τp = 2
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Fig. 6 Prevalence of disease in varying populations. Dashed (black) curve corresponds to a constant pop-
ulation size (i.e., simulated dashed curve in Fig. 5b). Colour curves represent the disease prevalence over
time with changing population size. Parameter values are the same as Fig. 5b with τp = 24 months, while
the birth rate changes by Δ

Remark 4.1 For our theoretical results and simulations presented in Fig. 5, we assumed
that the population size (N ) is constant. To illustrate the effect of a changing popula-
tion size on the disease dynamics, we considered the parameter setting of Fig. 5b with
τp = 24 months, and modified the birth rate by some constant value Δ. Hence,Δ > 0
corresponds to a growing population size, while Δ < 0 represents a declining popu-
lation. The results are illustrated in Fig. 6, showing the change in disease prevalence
for different values of Δ as the population size changes.
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5 Discussion

In this study, we investigated the role of booster schedule on the long-term disease
dynamics.We developed a system of delay differential equations to include several key
parameters describing the protection efficacy of primary vaccine series, durations of
partial and full protection following vaccination, and coverage of primary and booster
doses. In addition to investigating its dynamics, we simulated themodel with a delay in
booster dose after completing primary series using parameter values estimated for Hib.
Simulation results indicate that, for a given protection efficacy of primary vaccination,
the reduction of disease transmissibility, reflected in the reproduction number (Rc),
depends critically on the timing of a booster dose. However, the coverage of booster
vaccination remains a key parameter influencing the optimal timing of a booster dose.
When the uptake of a booster dose is expected to remain high, a delay in booster
vaccination (within the expected duration of protection induced by primary vaccine
series) may be beneficial in reducing Rc, and could lead to disease elimination for
a sufficiently high protection efficacy of primary vaccination. This is particularly
important if the booster dose provides only a relatively short period of full protection
comparedwith the average lifetime. However, vaccination programsmay contendwith
the possible drop-out and decrease in the coverage of booster vaccination, whether due
to acquiring infection after receiving the primary series, or simply due to individuals
voluntarily forgoing (e.g., refusal of) the booster dose (Omer et al. 2009; Dubé et al.
2013; Briere et al. 2014). In this case, our simulations illustrate that if the coverage
of booster vaccination decreases over time, then the timing of a booster dose can be
essential to achieve the greatest reduction of disease prevalence over time.

This study has important implications for public health vaccination policies. First,
for routine infant immunization programs with high primary and booster coverages,
deferral of a booster dose within the average duration of protection induced by the
primary series may be beneficial. However, the protection efficacy of the primary vac-
cine series remains an important parameter in determining the optimal dosing interval
between primary and booster vaccination (Charania and Moghadas 2016). Second, in
the absence of efforts to achieve an optimal schedule, having a booster program does
not necessarily guarantee the elimination of disease, even though the incidence may
be reduced as has been observed for Hib. Given the high protection efficacy of primary
vaccine series (> 85%) against Hib disease (Jackson et al. 2013), and weak evidence
of additional protection from booster within one year following complete primary vac-
cine series, our results suggest that immunization programs should consider a longer
time interval between primary and booster doses. Furthermore, the sensitivity of long-
term disease outcomes to the booster schedule underscores the importance of targeted
efforts towards improving uptake rates of both primary series and booster vaccination.
It is also important to note that our results herein apply to vaccines that confer only
a temporary protection. Conspicuously, for a vaccine that provides a long-term full
protection comparable to the average life-time, the best outcomes are achieved with
the shortest time interval between the primary and booster vaccination.

Our study has several limitations thatmerit further investigation.Ourmodel is based
on the assumption of homogeneous mixing in the population dynamics of disease
spread. It is well documented that heterogeneities and contact patterns can influence
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vaccination dynamics at both the individual and population levels (Metcalf et al. 2015).
We assumed a uniform protection efficacy of primary and booster vaccination without
considering immunological characteristics of individuals that affect the within-host
immune dynamics. Our simulation results are based on the assumption that an anti-Hib
polysaccharide conjugate vaccine provides stronger immune protection due to effects
of carrier protein on stimulation and proliferation of immune responses. This is an
important consideration in the development of conjugate vaccines for T-cell indepen-
dent pathogens (such as Hib) in order to enhance immunogenicity in infants and young
children (Goldblatt 2000). We therefore assumed a shorter period of full protection
following recovery from natural infection compared to booster vaccination. However,
in older individuals with competent immune system, natural infection can also lead
to the development of adaptive immune memory and therefore induce strong protec-
tion effects with timelines similar to those conferred by conjugate vaccines (Goldblatt
2000). These considerations can be included in advanced computational frameworks,
such as agent-based modelling (Laskowski and Moghadas 2014; Shoukat et al. 2018),
in order to evaluate the effect of individual level characteristics on the population
dynamics of disease spread and control in the presence of vaccination. Despite these
limitations, our study provides a theoretical foundation for future studies involving
more detailed computational and quantitative models to help improve vaccination pro-
grams and booster schedules against vaccine-preventable diseases that requiremultiple
vaccine doses.
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