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Abstract
We provide an analysis of a randomly grown 2-d network which models the mor-
phological growth of dendritic and axonal arbors. From the stochastic geometry of
this model we derive a dynamic graph of potential synaptic connections. We estimate
standard network parameters such as degree distribution, average shortest path length
and clustering coefficient, considering all these parameters as functions of time. Our
results show that even a simple model with just a few parameters is capable of rep-
resenting a wide spectra of architecture, capturing properties of well-known models,
such as random graphs or small world networks, depending on the time of the network
development. The introduced model allows not only rather straightforward simula-
tions but it is also amenable to a rigorous analysis. This provides a base for further
study of formation of synaptic connections on such networks and their dynamics due
to plasticity.
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1 Introduction

A strong believe that a comprehensive knowledge of the wiring diagram of the entire
brain is fundamental for understanding processing of information inspired laborious
creation of datasets of connectivity ondifferent levels:AllenMouseBrainConnectivity
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Atlas (Oh et al. 2014) and Human Connectome Project (Van Essen et al. 2013), meso-
scale, or Human Brain Project (Markram 2015), cell-level.

The effect of brain structure on brain performance can only be addressed in the
context of dynamical processes on networks. As data in vivo (Oh et al. 2014), or even
from the prepared slices (Perin et al. 2011) are enormously expensive, they can be
complemented by the data obtained by simulated network growth. One of the well
developed simulators of neuronal growth is NETMORPH (Koene et al. 2009), which
originates in earlier neurite growth models of van Pelt and Uylings (2002) and Uylings
and van Pelt (2002).

Lately some progress has been made to quantify the relations between structure
and functions, which is a very delicate task when it concerns changes only on a micro-
scale, such as synaptic connections. Examples of this include; Mäki-Marttunen et al.
(2013) defined, with a help of graph-theoretic measures, the aspects of structure which
have the greatest effect on the network excitability. Borisyuk et al. (2014) introduced
and studied a model of a brain development which is capable of exhibiting intimate
relations between structure and a complex function of an entire organism, such as
motion. Recently it has been reported (Guzman et al. 2016) that changes in micro-
connectivity, that is, on the synaptic level, also contribute to efficient memory storage
and retrieval in hippocampal networks. Some relevant discussion on modelling brain
oscillations on random graphs is provided by Kozma and Puljic (2015).

Nearly all contemporary analyses of empirical data on the neuronal networks appeal
to the graph theory for their very relevant terminology and methodology. Viewing
neuronal networks as abstract graphs results in numerous attempts to classify these net-
works using their empirical or statistical characteristics, such as for example, degree,
clustering coefficient or the shortest path (Bullmore and Sporns 2009). Since there
is only a few different well-studied graph models, this classification remains rather
rough as it divides all networks into large classes most often referring to Erdős and
Rényi (1960) random graphs, regular random graphs (Bollobás 2001), or the so-called
“small world networks” popularized by Watts and Strogatz (1998). Furthermore, all
these models miss the important characteristics, namely the dependence on space,
that is, distance between the nodes, and the dependence on time [see discussion of
Fornito et al. (2013)]. Graph models in metric spaces with polinomial decay of the
probabilities of connections with respect to distance have been studied recently by
Ajazi et al. (2017), Janson et al. (2015), Bringmann et al. (2019). Observe that all the
above mentioned models of random graphs assume the independence of the edges.
The latter can hardly be justified for a biological network.

Overall the limitation of applicability of popular random graph models to the study
of complex biological networks is clear, and assigning the edge weights to the con-
nections, in other words defining a proper graph model, remains the key challenge
for neuromodelling [see also Fornito et al. (2013), Ferrario et al. (2018)]. We address
this challenge here analyzing the dynamical graph model introduced by Ajazi et al.
(2015), which is greatly inspired by the original work of van Pelt and Uylings (2002)
and the study by Mäki-Marttunen et al. (2013).

Recall that van Pelt and Uylings (2002) model neurons by rooted binary trees. Their
detailed description of the outgrowth of axonal and dendritic arborizations allows one
to assess the parameters of the model in agreement with physiological data. A simula-
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tor NETMORPH helps to estimate neural connectivity (Mäki-Marttunen et al. 2011;
van Pelt and van Ooyen 2013; McAssey et al. 2014) using the following observation.
The neurons communicate through synaptic connections which require physical con-
tact between axons and dendrites of two corresponding neurons. Hence, it is suggested
by the work of Peters and Feldman (1976) that the probability of synaptic connec-
tion between two neurons is proportional to the overlap area of the corresponding
axonal and dendritic arborizations of these neurons. Hence, results of van Pelt and
van Ooyen (2013), McAssey et al. (2014), Aćimović et al. (2015), and even earlier
ones by Stepanyants and Chklovskii (2005) provide the estimates for the potential
synaptic connectivity only. It is also recognized, however, that the distance is not the
ultimate parameter, and hence the proximity of the axons and dendrites provides only
the necessary condition for the synaptic contact [see also a critical review of the related
works in Rees et al. (2017)].

The advantage of a relatively simple model by Ajazi et al. (2015) is that it is
amenable to a rigorous analysis. On the other hand this model is compatible statis-
tically with previously studied models. For example, the results on dendritic mass
distributions as functions of Euclidean distance reported by Ajazi et al. (2015) (Fig.
5) are very similar to those by van Pelt and van Ooyen (2013) (Fig. 13) obtained with
the help of NETMORPH (Koene et al. 2009).

The novelty here is that we study the main characteristics of the network (the
frequency of connection, the degree distribution, the shortest path and the clustering
coefficient) as functions of time. It has already been observed in Ajazi et al. (2015)
that a growing network undergoes phase transitions in structure due to evolution in
time. Here we provide further evidence of that with statistical analysis. We show that
the tuning of parameters results in structural changes in the model: the model may
possess properties closed, for example, to those of a classic random graph, or to the
ones of a “small world” network.

The most common approach to estimate the probabilities of connection in related
morphological networks (van Pelt and van Ooyen 2013; McAssey et al. 2014;
Aćimović et al. 2015) treats the areas of the dense dendritic mass by the convex
sets, for example, balls. However, it has been disclosed by Ajazi et al. (2015) that an
accurate consideration of spatial trees of connections (which are not convex subsets
of the plane) results in a more subtle dependence of the connections on the Euclidean
distances between the neurons rather than commonly assumed polynomial or exponen-
tial decay. We elaborate this approach here and study the probabilities of connections
as functions of both space and time, and of the branching parameter. Although we
still cannot perform the entire rigorous analysis of our model, we can derive some
exact equations which allow us to come up with at least qualitative conclusions and
hypotheses which we test statistically.

Our study reveals the properties of the network as functions of several parameters
(time, distance and branching), which does not seem to be a realistic task for complex
models with many more parameters.

We also address the question of scalings between parameters, which can be clarified
only analytically, but which has a strong impact on the modelling. Even if the size of
the neuronal network is finite it is definitely large, and therefore it might be useful to
consider limits when the number of nodes (a large parameter) goes to infinity, in which
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case all the remaining parameters (small ones as well) must be scaled correspondingly.
Using data on physical sizes in a cortex [for example, Rolls (2016)] one can fit our
model into a real scale of biological network.

Finally, as in the previously cited works starting with van Pelt and Uylings (2002),
we study here the formation of only potential connections in the network. Our results
provides a means to assess the parameters to model a graph with some desired proper-
ties (as for example, degree distribution, connection probabilities of a given strength,
high or low clustering coefficients etc.) which provides an underlying structure for a
more elaborated model of actual connections. Then the actual synaptic connections
can be modelled as a way of pruning the given potential connections according to
some biologically justified rule. The dynamics of synaptic connections due to plastic-
ity should be then modelled as another process on the underlying structure. This all
prompts the development of models of percolation processes on random graphs with
dependencies between the edges.

2 Model

2.1 Biological interpretation

Recall the definition of a directed randomgrowing network given byAjazi et al. (2015).
We assume that we are given a finite set of points V on a plane, where each v ∈ V

represents a location of one neuron. Each neuron develops its axonal tree independently
of other neurons. The dynamics of the trees will be defined later by two independent
processes of elongation and branching. Notice that for a simplicity we consider only
axonal trees. To account for the dendrites we set a ball of radius r around each point v
to represent the physical size of the soma together with an area of dense dendrites of
the neuron at v. A model with dendritic arborization can be treated in a similar way,
but this we leave for later studies.

Observe that this model of connectivity is similar to that of Borisyuk et al. (2014),
where the axons are modelled as trajectories of stochastic (but not branching as in our
case) processes, while the dendrites are also considerably simplified.

2.2 The associated graphmodel

Assume that V has a Poisson distribution on a set � = [−w,w] × [−w,w]. with
some intensity μ. Hence, on the average there are (2w)2μ nodes in �.

Let t ≥ 0 denote time. First we describe the dynamics of a tree Tv(t), v ∈ V . It
is given by the following branching random walk on a plane. Set Tv(0) = v. From a
point v a segment, or better a ray, as we shall consider directed graphs, starts to grow
at time t = 0 in a randomly chosen direction at a constant speed. We set the speed at
1, which is not a restriction, since the time can be rescaled. This initial ray splits at
some random moment into two rays. The time of splitting is exponentially distributed
with mean 1/λ. Each of the two new rays develops independently in the same manner,
but the directions of the new branches are independent random variables uniformly
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distributed on [−α, α], where parameter α ∈ [0, π ] represents the highest deviation
from the direction of the splitting ray. This means that each of the rays independently
chooses a random direction (within α) to grow, and then each splits independently
with the same intensity λ. Denote Tv(t) the resulting tree at time t .

Notice that graph Tv(t) is a subset of R2, that is, might grow outside of area �,
while v ∈ V ⊂ � ⊂ R2, andTv(t) as a graph on a planemight have self-intersections.
We discuss the resulting boundary effect below.

Parameter α < π implies some memory of direction in the model: the smaller is α,
the stronger is the memory of direction. In particular, the α = 0 case is equivalent to
the no branching case λ = 0 when the constructed tree consists simply of one growing
ray at any time t .

Consider nowacollectionof independent identically distributed trees (Tv(t), v∈V ).
We define a tree-distance ρ from any u to any v ∈ V as the smallest Euclidean distance
(‖ · ‖) between u and the tree Tv(t) as follows

ρ(u,Tv(t)) := min{‖x − u‖ : x ∈ Tv(t)}.

Definition 1 We say that a neuron v ∈ V has a connection to a neuron u at time t if
the tree Tv(t) intersects a ball of radius r > 0 with a center at u, or equivalently,

ρ(u,Tv(t)) ≤ r . (1)

Finally, given a collection of independent identically distributed trees {Tv(t), v∈V }
define a directed graph G(t) on vertices V by setting an edge from v ∈ V to u ∈ V if
ρ(u,Tv(t)) ≤ r . Denote a probability of this edge by

pλ,α(t, u, v) = P{ρ(u,Tv(t)) ≤ r}. (2)

Since every tree develops in the same manner we have due to the symmetry in the
model

P{ρ(u,Tv(t)) ≤ r} = P{ρ(v,Tu(t)) ≤ r},

therefore the probability (2) depends only on the Euclidean distance ‖u − v‖:

pλ,α(t, u, v) = pλ,α(t, ‖u − v‖) = P{ρ(u,Tv(t)) ≤ r}. (3)

Observe that only the edges outcoming from different nodes v ∈ V in the directed
graphG(t) are independent, whereas the edges outcoming from any given node v ∈ V
are not independent as they are constructed given the same tree Tv(t). Therefore
probability (2) does not contain all the informationon thedistributionof the graphG(t).
Nevertheless function pλ,α(t, d) allows one to analytically derive the distributions for
the local characteristics, such as the in-degrees and the out-degrees of the graph G(t).
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It is possible to derive the following integral equation for the function pλ,α(t, d)

for all λ ≥ 0 when α = π . Let qλ,π (t, d) = 1− pλ,π (t, d) for all λ ≥ 0 when α = π :

qλ,π (t, d) =
∫ +φ0

−φ0

∫ s0(φ)

0

λe−λs

2π
(qλ,π (t − s, d̃(d, s, φ)))2dsdφ

+
∫ 2π−φ0

φ0

∫ t

0

λe−λs

2π
(qλ,π (t − s, d̃(d, s, φ)))2dsdφ

+ e−λt q0(t, d), (4)

where

φ0 = arcsin r
d , s0(φ) = d cosφ −

√
−d2 sin2 φ + r2,

d̃(d, s, φ) = √
d2 + s2 − 2ds cosφ,

and

q0(t, d) =

⎧⎪⎪⎨
⎪⎪⎩

1, if t < d − r ,

1 − 1
π
arccos d2+t2−r2

2td , if t ∈ [d − r ,
√
d2 − r2],

1 − 1
π
arcsin r

d , if t >
√
d2 − r2.

(5)

This equation helps us to derive below some properties of the connection probabil-
ities, even though the exact solution to it for general λ > 0 remains an open problem.
We treat the case λ = 0 in detail below.

We study the main graph characteristics, such as degree distribution, minimum
length path and the clustering coefficient of the simulatedG(t) for different parameters
α, λ, μ, r , w.

Keeping in mind the physical interpretation of these parameters we assume the
following scaling

w = �(1), r = o(1), μ � 1, μr = o(1), (6)

where notation �(1) reads “of the order 1”.

2.3 Advantages and limitations of themodel

The introducedmodel is suitable both for simulations as well as for a rigorous analysis.
It has a fair amount of parameters for biological interpretation on one hand, but still
it is possible, in particular, for the probability of connections (4) to derive analytical
dependence on all the involved parameters. Furthermore, function pλ,α(t, d) allows
one to derive analytically the distributions for the local characteristics, such as the
in-degrees and the out-degrees of the graph G(t). This relation has not been disclosed
in other studies of the related models of morphological growth.
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The scaling (6) assumed above means that we take the area where the network
grows as a unit, while the number of neurons is very high, and the axons are very thin.
This assumption is in agreement with the biological data on cortex (Rolls 2016) that
the dendrites of cells are typically in the region of 500µm in diameter, and their axons
can be distributed in patches 200–300 µm across, separated by distances of up to 1
mm (Martin 1984).

Ajazi et al. (2015) reported that the probability of average connectivity in the graph
G(t) is not amonotone function of the distance between the nodeswhenα = π . Below
we empirically confirm this fact also for α < π . Observe that although this contradicts
a common assumption on the monotone decay of neuronal connections with the dis-
tance, the non-monotonicity of the strength of of connections between small groups
of neurons as a function of their interspaces was already observed by measurements
taken in Perin et al. (2011). Our results also contribute to the understanding of the so-
called patchy connectivity in the cortex, studied for example, by Voges et al. (2010),
where the dendrites are assumed to by centered in the soma while the center of mass of
axonal fields is at some distance from the soma. The latter assumption is in agreement
with our model.

A commonly adapted approximation of the axonal mass distribution by convex
sets (in dimensions 2 or 3) leads to a sharp decay of the probabilities of connections
with distance. On the other hand, our approach which takes into account that the
tree on a plane is non-convex, provides an explanation for the formation of long-range
connections. The latter is considered to be an important feature of a functional network
by Voges et al. (2010).

We argue that graph G(t) undergoes structural transitions, because its character-
istics exhibit different features depending on the time of the development. As a null
hypothesis we use the assumption that the measurements are made on the classic ran-
dom graph model G(n,m) with n vertices and m independent edges, where n and m
equal, correspondingly, the number of vertices and edges in the considered G(t).

There are some natural questions that have to be addressed in future studies. We
begin with the boundary conditions. In our model the neurons located at points close
to the boundary of � might grow axon trees beyond the area �, and all the trees
are identically distributed. However closeness to the boundary affects the in- and
out-degrees of the neurons; they become smaller (see analysis below).

One could study this model in a torus to avoid the boundary effects. However this
choice is perhaps less realistic for the neuromodelling.

Some other scenarios could include:

(I) As soon as a branch of a tree touches the boundary of � it stops growing.
(II) As soon as a branch of a tree touches the boundary of � it continues to grow

inside � as a reflected motion.

The latter option (II) might be more realistic as it models the boundary as special
conditions for the neurons. This may lead to a more dense distribution of the axons
and dendrites at the boundary.

Finally we notice that considering a network on a plane makes sense as some of
the brain tissue form 2-dimensional surfaces (Braitenberg and Schüz 1991). Secondly,
and most importantly, one can also adapt our analysis for 3-dimensional growth. This
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will be a subject of future work. Observe here that in a tree grown in 3-dim with the
same algorithm (except that the direction is chosen uniformly in 3-dim space) the
self-intersections will happen with zero probability, which makes a model even more
relevant. Notice that Eq. (4) is straightforward generalized for dimension 3. However,
to make the same model tractable in dimension 3 as well one could incorporate some
features typical for the brain area which is being modelled. In particular, one may
consider axon growth which is not radially symmetric in dimension 3.

3 The degree

We study the in- and out- degrees here. Our formula provide the functional dependence
between the parameters of the model. In particular, we derive the conditions to have
“hubs”, that is, vertices with a very high degree observed in real neuronal tissue (Van
den Heuvel and Sporns 2013).

3.1 The out-degree

The out-degree νoutv (t) of a node v in a graph is the number of edges out-going from v.
Hence, νoutv (t) in our graph G(t) counts the number of points of the Poisson process
on � which are at a maximum distance r from the tree Tv(t).

Consider graph G(t) with a radial symmetry, assuming that α = π .
Let Ar (Tv(t)) denote the r -neighbourhood of Tv(t) in R2. For any set B in R2

let us denote |B| the area of this set. Then conditionally on a random parameter
μ |Ar (Tv(t)) ∩ �| the out-degree of the neuron v is a (compound) Poisson-distributed
random variable, that is

νoutv (t) ∼ Po(μ |Ar (Tv(t)) ∩ �|) (7)

(we use notation ∼ to denote equality in distribution here).
Notice that Tv(t) for any t is within the ball of radii t with a center at v. Therefore,

to avoid the boundary effect, let us assume first that

t < w/2 and |v| < w/2. (8)

Then we simply have

Ar (Tv(t)) ∩ � = Ar (Tv(t)).

When r is small, which is the case here, the area |Ar (Tv(t))| is well approximated by

|Ar (Tv(t))| ≈ 2(r + o(r))Lv(t), (9)

where Lv(t) is the sum of all segments of tree Tv(t), and its distribution is derived by
Ajazi et al. (2015). Inparticular,
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ELv(t) = eλt − 1

λ
, (10)

which is continuous at λ = 0. Then it follows that

Eνoutv (t) = 2(r + o(r))μ
eλt − 1

λ
(11)

for all λ ≥ 0 and α > 0. Assessing the parameters properly one can get any desired
expected number of the connections in the model. To increase this number one should
use λ of order at least | ln(rμ)|.

When |v| is increasing, that is, as v is closer to the boundary its out-degree is
decreasing, and the nodes at the corners of � have the smallest expectation of the out-
degree. However, due to the radial symmetry of the introduced tree evolution (recall
that we consider case α = π ) even vertices at the corners will have the expected
out-degree only 4 times less than the vertex at the origin. Hence, the boundary does
not have a major effect on the order of the out-degree. Same argument holds for the
in-degree as well.

It was proved byAjazi et al. (2015) that in the case α = π the out-degree of v = 0 in
a graph G(t)with t < w has an exponentially decaying tail. However, below we show
that by tuning parameters one can get “hubs” as well in this model, and, moreover even
in the case without branching. Recall that the existence of vertices-hubs is considered
as remarkable feature of a neuronal network (Van den Heuvel and Sporns 2013).

3.2 Conditions for the hubs

No branching case λ = 0 is of a limited interest for modelling purposes, however,
it provides some inside for the general one as it is exactly solvable and represents a
marginal case for the model with a positive branching parameter. Furthermore, the
feature of axons to grow in approximately straight lines unless their way is obstructed
(i.e., as in our case when λ = 0), was essentially used by Kaiser et al. (2009) to derive
the exponential decay of the distribution of connection lengths.

When λ = 0 the tree Tv(t) is simply a segment or a branch of length t , hence

|Ar (Tv(t))| = 2r t + πr2, (12)

and formula (7) yields

νoutv (t) ∼ Po (|Ar (Tv(t))|μ) ∼ Po
(
(2r t + πr2)μ

)
. (13)

This tells us that for all t as long as r tμ = o(1) the network consists mainly of
disconnected nodes.

As r tμ grows, next phase of development of the network will be when the majority
of the nodes still have the out-degree at most one. Then each a component of the
network consists of a unique cycle with possible incoming trees at every node.
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For all r ≤ t ≤ w, where w is at most of order constant (see (6)) all the trees-
segments with high probability intersect at a positive angle. Therefore the area of
the intersection of r -neighborhood of any tree with the r -neighborhood of all the
remaining trees in the network is

∣∣Ar (Tu(t)) ∩ ∪v∈V \{u}Ar (Tv(t))
∣∣ = O (r |Ar (Tu(t))|) = o (|Ar (Tu(t))|) .

Hence, the out-degrees defined by (13) can approximately be considered as indepen-
dent since the respective areas of their trees have a very small overlap. Let Dmax (t)
denote the maximal value among

|V |/4 ∼ Po
(
μw2

)

i .i .d. copies of (13). Due to the properties of the Poisson distribution [consult also
paper by Bollobás (1980)]

Dmax (t) = oP (1), if μr t  1

μ
, (14)

Dmax (t) = �P (1), if μr t = �

(
1

μ

)
, (15)

and with a high probability

logμ

log logμ
 Dmax (t)  logμ

| log(μr t)| , if μr t � 1

μ
. (16)

For more details on the distribution of the maximum of the sequence of i.i.d. Poisson
random variables, consult, for example, Anderson et al. (1997).

The last bound togetherwith our assumptions (6) tells us that the range of parameters
yielding “hubs” with high out-degree when λ = 0 requires the following condition

1

μ2  r  1

μ
. (17)

Positive branching case λ > 0. Observe that given a set of vertices V the outdegrees
for any λ ≥ 0 are independent, since the trees are independent. Then it follows
by approximation (9) that with a high probability the area of r -neighbourhood of a
branching tree is of order reλt , that is,

|Ar (Tv(t))| = O
(
reλt) . (18)

Therefore when

μreλt = �(1), (19)
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that is, of order constant, the area of intersections of the r -neighbourhood of all trees
is o(1) due to r = o(1). Hence, the subsets of V covered by r -neighbourhood of
different trees can approximately be thought of as independent. Assumptions (6) yield
μreλt � 1/μ, and similar to (16) we get that with a high probability

logμ

log logμ
 Dmax (t)  logμ. (20)

where μ depends on r and λ due to the relation (19).

3.3 The in-degree

The in-degree νinv (t) of a node v in graph G(t) is the number of in-coming to v edges.
While formula (7) for the out-degree distribution does not use the connection prob-

abilities, to compute the in-degree νinv (t) we shall make use of these probabilities. By
the definition of edges in G(t) (see (1)) we have

νinv (t) =
∑

u∈V \{v}
1{ρ(v,Tu(t))≤r}

d=
∑

u∈V \{v}
Xu(t), (21)

where, for any t and different u, the random variables Xu(t) are independent and each
has Bernoulli distribution with parameter pλ,α(t, ‖u − v‖) defined in (3).

Observe that the last formula suggests that (at least for some parameters) the distri-
bution of the in-degree can be well-approximated by the Poisson distribution. Indeed,
our numerical results confirm, that the in-degree is similar to the degree in the classical
random graph, while the out-degree is different.

Equation (4) which defines (3) in the case λ > 0 indicates an intricate dependence
for the probability of connections pλ,α(t, ‖u − v‖) on the distance between the nodes
(contrary to commonly assumed monotone polynomial or exponential decay) and on
the time. It is monotone increasing in t and decreasing in |u − v|. Furthermore, there
are certain time intervals when probability as a function of the distance, decays very
slow on some intervals of values. This results in more similarities with the G(n,m)

graph.

No branching case λ = 0. Note that by (5) the probability p0(t, d) that at time t there
is a connection from a fixed neuron v to another one u at distance d = ‖u − v‖ > r
is given by

p0(t, d) = 1 − q0(t, d) =

⎧⎪⎪⎨
⎪⎪⎩

0, if t < d − r ,

1
π
arccos d2+t2−r2

2td , if t ∈ [d − r ,
√
d2 − r2],

1
π
arcsin r

d , if t >
√
d2 − r2.

(22)

It is clear that for any fixed d > r , the function p0(t, d) increases in t , reaches its
maximum when t = √

d2 − r2, and then remains to be at this constant value which
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depends only on the ratio r/d. Hence, in the case λ = 0 a polynomial decay of the
probabilities of connections is justified.

To avoid boundary effects, assume, r  t < w/3 and consider the in-degree νinv (t)
of the vertex v = 0 at the center of �. Fix ε arbitrarily and define

Vn = {u ∈ V : (n − 1)ε < ‖u‖ ≤ nε}. (23)

This gives us the following partition of the set of vertices V

V = ∪n≥1Vn,

where by the definition of the set V each of Vn has also a Poisson distribution

|Vn| ∼ Po(π(2n − 1)ε2μ). (24)

This helps us to find the following stochastic bounds for the in-degree defined in (21):

[ t
ε

]∑
n=1

Po

(
π(2n − 1)ε2μ min

(n−1)ε≤d≤nε
p0(t, d)

)
� νinv (t)

�
[ t

ε

]+1∑
n=1

Po

(
π(2n − 1)ε2μ max

(n−1)ε≤d≤nε
p0(t, d)

)
. (25)

Let us now rewrite (22) as follows

p0(t, d) =

⎧⎪⎪⎨
⎪⎪⎩

0, if d > t + r ,

1
π
arccos d2+t2−r2

2td , if
√
t2 + r2 ≤ d ≤ t + r ,

1
π
arcsin r

d , if r < d ≤ √
t2 + r2,

(26)

where d > r . Recall that d here represents the distance between the centers of soma
of two neurons. Then we derive from (25) for t + r < w

[√
t2+r2
ε

]
−1∑

n=[r/ε]

2nε2μ arcsin
r

εn
≤ Eνinv (t) ≤

[ t+r
ε

]+1∑
n=[r/ε]

(2n − 1)ε2μ arcsin
r

εn
. (27)

Passing to the limit ε → 0 we get

∫ √
t2+r2

r
2xμ arcsin

r

x
dx ≤ Eνinv (t) ≤

∫ t+r

r
2xμ arcsin

r

x
dx

=
∫ √

t2+r2

r
2xμ arcsin

r

x
dx+O(r2μ)=2μr t+O(r3/2μ),

(28)
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which together with (25) yields

νinv (t) ∼ Po
(
2μr t + O(r3/2μ)

)
, (29)

that has the same asymptotic for small r as the out-degree (13).
Observe that despite the same value asymptotic, there is a major difference between

the spacial distribution of the set of vertices contributing to the in-degree and of the
set of vertices contributing to the out-degree of a vertex. Conditionally on the event
that there is an edge from v to u the location of the remaining vertices to which v

has an edge is restricted to the area close to the interval of length t which starts at
v and passes through a ball of radii r around u. However, conditionally on the event
that there is an edge from u to v, the locations of other vertices with edges to v are
independent of the location of u.

Finally we observe that when λ = 0 the network after time t = 2w no longer
changes since as soon as the “axons” pass the size of the area� they do not return to�.

3.4 Statistical analysis for the degree when � > 0

In this section, we run computer simulations generating networks with α = π/2,
λ = 1.5, μ = 100 and empirically exploring the distributions of the in-degrees and
out-degrees. Figure 1 represents histograms of in-degrees and out-degrees generated
from one simulated network. One can observe that the maximal out-degrees exhibit
the highest discrepancy between our model and the corresponding G(n,m) model, as
we could already predict from our analysis. This is observed not only for this particular
simulated network of Fig. 1 but for several other networks we generated. Another find-
ing based on several simulations of such types of networks is that when λ increases the
differences between the in-degree distribution and the out-degree distribution vanish,
similar to the classical random graph, where in- and out-degree have the same distri-
bution. Going back to the in- and out-degrees distributions, we conduct a statistical
analysis on the different degrees shown in Fig. 1, inferring which distribution fits the
data best in each case. Figure 2 shows quantile-quantile plots of the different degrees
data against the normal distribution. Although the discrete nature of the data appears
in the plots, the normal distribution seems to adequately approximate the empirical
distributions apart from the out-degree of G(t) (top right panel of Fig. 1). Table 1
provides the value of the Akaike criteria for each potential distribution fitted to the
degrees. For each case, we retain the distribution which minimizes the AIC, that is the
normal distribution for the in-degree of a G(t) graph, the exponential distribution for
the out-degree of theG(t) graph and the Poisson distribution for the in and out-degrees
of theG(n,m) graph. The estimated parameters values of the different distributions are
shown inTable 2.Note that this inference is based ononly one sample of trees generated
fromaPoisson distributionwith intensity equal to 100. The normal distribution appears
as the approximate limiting distribution of the Poisson. The exponential distribution fit
is not surprising given the shape of the distribution of the out-degree ofG(t) graph (cf.
top right panel of Fig. 1). Note that some AIC values and estimated values are equal
and correspond to the sample mean which is the same for the four types of degrees.

123



1652 F. Ajazi et al.

G in−degree

In−Degree

Fr
eq

ue
nc

y

0 5 10 15 20 25 30

0
5

10
15

20
G out−degree

Out−Degree

Fr
eq

ue
nc

y

0 5 10 15 20 25 30

0
10

20
30

40
G(n,m) in−deg

In−Degree

Fr
eq

ue
nc

y

0 5 10 15 20 25 30

0
5

10
15

20

G(n,m) out−deg

Out−Degree

Fr
eq

ue
nc

y

0 5 10 15 20 25 30

0
5

10
15

20

Fig. 1 Computer simulations: Frequency of degree of the graphsG(t) andG(n,m) simulatedwithα = π/2,
λ = 1.5, μ = 100, T = 1.5, w = 1

Table 1 Akaike criteria (AIC) corresponding to several candidate distributions fitted by maximum likeli-
hood estimation for the four different degrees

Distribution G in-degree G out-degree G(n,m) in-deg G(n,m) out-deg

Normal 590.77 787.32 526.22 574.65

Poisson 592.02 1151.91 524.33 549.66

Exp 649.15 649.15 649.15 649.15

Gamma NA NA 529.08 558.17

Lognormal NA NA 540.12 574.65

The lowest AIC scores are highlighted in bold

4 Statistical analysis of a network with branching � > 0

When λ > 0 the axons within area � may grow unbounded, or until the r -
neighborhood around all the trees covers the entire area �. Hence, there is a time
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Fig. 2 Computer simulations: Quantile-quantile plots against normal distribution for degree of the graphs
G(t) and G(n,m) simulated with α = π/2, λ = 1.5, μ = 100, T = 1.5, w = 1

Table 2 Estimated values of the parameters of the distribution which minimizes the AIC for the different
degrees

G in-degree G out-degree G(n,m) in-deg G(n,m) out-deg

Normal (μ, σ ) Exp(λ) Poisson(μ) Poisson(μ)

μ̂ = 5.58(0.26); σ̂ =
2.85(0.18)

λ̂ = 0.18(0.016) μ̂ = 5.58(0.22) μ̂ = 5.58(0.22)

The value in parenthesis is the standard error

T (r) when the development stops due to the space limitation. Notice that T (r) → ∞
if r → 0, in which case the network becomes eventually fully connected.
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Since the connectivity of our network as a function of time is monotone increasing
for any given parameters, by the analogy with phase transitions in random graphs
one may expect to find certain time intervals when the properties of network change
significantly.

Below we provide the results of the simulated network dynamics to highlight the
functions of different parameters of the network, particularly of time.

4.1 Frequency of connection

It was observed by Ajazi et al. (2015) that the density in space of the axonal tree of
one neuron is not monotone decreasing with the distance from this neuron. We expect
this property to be reflected in the frequency of connections as well.

Given μ = 100, r = 0.01, α = π/2 we generate 100 graphs, with different
branching intensity λ ∈ {0, 5, 10} and for different time moments t within the interval
[√μr , 3

√
μr ]. Furthermore, we consider different values for the size of the area,

namely w. Keeping μ/w2, the intensity of the nodes per unit area being fixed, we
simulate themodel for various values ofwwhich represents distances between vertices
(bottom right panel of Figs. 3, 4 and 5).

We compute the frequency of connections P(t) in the graph for different values of
the parameters μ, μ/w2 and t , setting

P(t) = Pw,μ,r ,λ,α(t) = #{directed edges in the graph G(t)}
#{ordered pairs of vertices of the graph G(t)} .

Hence, P(t) is an approximation for the graph probability pλ,α(t, d) defined in (3).
In particular, our simulated results for α = π also provide an approximation for the
solution to the Eq. (4) averaged over the entire graph.

Figure 3 illustrates the growthof the frequencies of connections over timedepending
on the intensity of branching and on different distances w. Our simulations confirm
the following properties of the frequencies

• Top left panel For λ = 0 the number of connections is rather constant over time.
This is also in a perfect agreement with formula (22) for the probabilities of
connections: when t is of order w most of the vertices have their trees beyond area
�, therefore probabilities of connections do not change for them after time w.

• Top right panel For small positive λ = 5 the amount of connections increases over
time and stabilizes after a certain time. The small λ case deviates slightly from
λ = 0 (see Eq. 4), but again after the tree leaves the box only a few branches come
back.

• Bottom left panel For a higher λ = 10 the frequency of the probability grows
linearly in time. High values of λ imply that a tree grows almost as a ball with
a bit shifted center from the soma. For a high λ the probability of connections
increases to one, and the frequency stabilizes after a certain time T (r) (not seen
in the graph) as discussed above.

• Bottom right panel For fixed time t = 3w we compute the frequency P(t) for
different distancesw. We observe a non-monotonicity with respect to the distance.
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Fig. 3 Computer simulations: Frequency P(t) with respect to t with α = π/2, t = [w, 3w], for λ = 0 (top
left panel); λ = 5 (top right panel); λ = 10 (bottom left panel); Frequency P(t) with respect to distance w,
for λ = 5 given fixed time t = 3w (bottom right panel). The dotted curves are the 95% confidence intervals

Further investigations have shown that the frequency of connections is stable over time
when λ = 0 whaterver the values of α and that it increases before stabilization after a
certain time around 0.2, for a positive λ.

Connectivity increases with time while it decays with the parameter w, which
in our simulations measures the distance between nodes. Notice that the computa-
tions could have been performed directly using the exact coordinates of the nodes.
But to simplify the procedure we introduce instead scaling of the space, i.e, the param-
eter w.

Figures 4 and 5, left panels exhibit the geometric characteristics of the network
evolution forw ∈ {0.5, 1, 2, 3} respectively and report the corresponding connectivity
(right panels) in the network. At the smallest distance, when w = 0.5 there are fewer
connections than when w ∈ [1, 2], while at w = 1 there is a maximum number of
connections.
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Fig. 4 Computer simulations: Trees structures (left) with α = π/6 and for w = 0.5 (top), w = 1 (bottom)
and respective graph of connections G(t) (right)

4.2 Shortest path

Given an arbitrarily fixed set of parameters for ourmodel, we now compute the average
shortest path of G(t) and of the corresponding G(n,m), that is, where n and m are
the same as for G(t).

Denote dv→u the length of the shortest path from v to u in graph G, that is, the
number of the edges it consists of. When there is no path from v to u we set dv→u = 0.
We also define the directed average shortest path length as follows

L(G) = 1

|V |
∑
v∈V

∑
u∈V : u �=v dv→u

|V | − 1
. (30)
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Fig. 5 Computer simulations: Trees structures (left) with α = π/6 and for w = 2 (top), w = 3 (bottom)
and respective graph of connections G(t) (right)

Figure 6 shows the ratio between the average shortest path of G(t) and the average
shortest path of G(n,m) depending on the time t for α = π/6 (left panel) and for
α = π (right panel). It seems that the higherα the closer the ratio L(G(t))/L(G(n,m))

is to one. Further investigations have shown that this ratio slowly tends to one for any
value of α as the time increases. For both values of α the ratio remains almost constant
between 0.5 and 1.1 when the time is big enough.

Our results show that when the time is small then the average shortest path length
between any two nodes at distance bigger than t is lower in G(t) than in the corre-
sponding G(n,m). This is due to the geometry of G(t) since here only a few short
connections are available at small time, while G(n,m) the length of a path is not
sensitive to the length of the edges. Further computer simulations have shown that for
a wide range of parameters our model exhibits a low average shortest path, a property
similar to the classic random graph (Bollobás 2001).
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Fig. 7 Computer simulations: Given the graph G(t) (left panel) and G(n,m) (right panel) for chosen
parameters α = π/4, λ = 6, t = 0.4, w = 0.2, r = 0.1, we compute the respective clustering coefficients
CC→(G) = 0.19 and CC→(G(n,m)) = 0.041

4.3 Clustering coefficient

Tostudy the clustering coefficient in the introduceddirectedgraphwe followacommon
approach (for example, Fagiolo 2007). For any graph G on V vertices with adjacency
matrix (auv)u,v∈V the number of directed triangles t→v attached to the node v ∈ V is
given by the following equation

t→v = 1

2

∑
w,u∈V

(avw + awv)(avu + auv)(awu + auw). (31)
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Table 3 Clustering coefficients when λ = 0. The values which are different with significance level 5 % are
highlighted in bold

CC→(G(t)) CC→(G(n, m))

λ = 0 w
0.28 0.7 1.121

t
0.2 0.042 0.007 0 0.007 0 0
0.66 0.028 0 0 0 0 0
1.121 0.027 0.002 0.002 0 0 0

Table 4 Clustering coefficients when λ = 1.5. The values which are different with significance level 5 %
are highlighted in bold

CC→(G(t)) CC→(G(n, m))
λ = 1.5
α = π

w
0.28 0.7 1.121

t
0.2 0.067 0 0.002 0.016 0 0.002
0.66 0.186 0.019 0.007 0.092 0.011 0
1.121 0.243 0.091 0.012 0.172 0.031 0.005

λ = 1.5
α = π/2

w
0.28 0.7 1.121

t
0.2 0.029 0 0 0.01 0 0
0.66 0.116 0.025 0.002 0.044 0.005 0
1.121 0.106 0.022 0.007 0.064 0.012 0.006

λ = 1.5
α = π/6

w
0.28 0.7 1.121

t
0.2 0.036 0 0 0.005 0 0
0.66 0.066 0.014 0.002 0.03 0.001 0
1.121 0.074 0.019 0.007 0.03 0.006 0.001

Setting νtotv = νoutv + νinv , the directed clustering coefficient CC→(G) for a graph G
is defined as follows

CC→(G) = 1

|V |
∑
v∈V

t→v
νtotv (νtotv − 1) − 2

∑
w∈V avwawv

. (32)

Figure 7 provides an example of application of the last formula.
We further run 50 independent simulations of G(t) and of corresponding G(n,m)

with r = 0.1, μ = 10, with a range of parameters λ ∈ {0, 1.5, 3}, α ∈ {π, π/2, π/6},
t ∈ {0.2, 0.66, 1.12}, w ∈ {0.28, 0.7, 1.121}. Then we compute the clustering coef-
ficients CC→(G(t)) and CC→(G(n,m)) for all possible combinations of these
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Table 5 Clustering coefficients when λ = 3. The values which are different with significance level 5 % are
highlighted in bold

CC→(G) CC→(G(n, m))
λ = 3
α = π

w
0.28 0.7 1.121

t
0.2 0.062 0 0 0.017 0 0
0.66 0.237 0.045 0.016 0.138 0.007 0
1.121 0.467 0.169 0.065 0.308 0.094 0.02

λ = 3
α = π/2

w
0.28 0.7 1.121

t
0.2 0.038 0 0 0.007 0 0
0.66 0.1 0.028 0.01 0.071 0.012 0
1.121 0.235 0.111 0.027 0.158 0.076 0.015

λ = 3
α = π/6

w
0.28 0.7 1.121

t
0.2 0.047 0.002 0 0.009 0 0
0.66 0.1 0.02 0.003 0.03 0.006 0
1.121 0.08 0.03 0.029 0.031 0.007 0

parameters. The results are given in Tables 3, 4 and 5. We highlight in bold those
cases where CC→(G(t)) and CC→(G(n,m)) are different from each other at a sig-
nificance level of 5%.

Our computations show that the clustering coefficient of G(t) is not monotone in
time t . For the value λ = 0 (Table 3) and a fixed distance w = 0.28, CC→(G(t))
decreases in t . This fact is due to the geometry of the model. After a certain time the
probability of forming single connections is higher than forming triples.

The non-monotone behavior in time can also be seen for the parameter λ = 1.5,
α = π/2 and λ = 3, α = π/6, respectively, in Tables 4 and 5. The combination
(λ, α) = (1.5, π/2) produces graphs where the tree structures have the shape of
thigh cones due to the low frequency of branching. Also, despite the high intensity of
branching, the pair (λ, α) = (3, π/6) produces as well a tree area very small due to
the sharp angle of the directions of the trees growth.

On the other hand, when the trees grow more homogeneously, that is, high λ and
α = π , we can observe that the clustering coefficient increases monotone with time.

We conclude that our model is capable to possess different properties depending on
the parameters. In particular, our simulations prove a great variability of the clustering
coefficient.
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5 Conclusions

We define a random graphG(t)whichmodels potential synaptic connectivity between
neurons. The network connectivity depends on different parameters which capture the
most relevant features of potential synaptic development like intensity of branching,
length, angle and speed of growth. We investigate the spatial development of those
potential synapses, and show how degree distribution, frequency of connections, aver-
age shortest path and clustering coefficient evolve in time.

We show that the maximum of the in-degree of G(t) does not differ much from
the one for the corresponding G(n,m) graph, unlike the maximum of the out-degree,
which is much higher than the one in G(n,m).

Our results confirm that the frequency of connections increases monotone in time,
but the highest value depends on the distances between the nodes.

Our simulations show for different parameters that our network depending on the
parameters may resemble the typical characteristic of small world structure, that is,
small average shortest path and high clustering coefficient, or it can be similar to the
classic randomgraphmodelwhere both average shortest path and clustering coefficient
are small.

Our study addresses also the question of scaling of the physical parameters to fit
the model into real biological framework.

With this study we propose a model [simplified version of the one introduced by
Mäki-Marttunen et al. (2013)], which is analytically tractable and allows simulations
to mimic some properties of the real neural networks (Stepanyants and Chklovskii
2005).

The code which we used to produce the simulations is open under request.
Finallywe remark that although herewe consider 2-dimensional network instructed

by the fact (Rolls 2016) that axonal trees form essentially 2-dimensional surfaces, our
analysis is amenable for the models in dimension 3 as well (Goriachkin and Turova
2019). Let us also mention here that a related 3-dimmodel of cylinder percolation was
studied by Tykesson and Windisch (2012).

The most challenging task remains to find a mathematically tractable model which
is capable to quantify the relations between the structure on the cell level, as neuronal
networks, and a macro behaviour, as, for example, movement. It is a subject of further
study to apply our analysis to the model of Borisyuk et al. (2014).

Another direction to improve considered here model is to take into account both
the axon and the dendritic arborization. Our approach should work in this case as well,
however the analogue of Eq. (4) will be more involved.
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