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Abstract
Game-theoretic studies of voluntary vaccination predict that a socially unstructured
population that is guided exclusively by individual rational self-interest always reaches
a Nash equilibrium with vaccination coverage that is below the societal optimum.
Human decision-making involves additional mechanisms, such as imitation of the suc-
cessful strategies of others. However, previous research has found that imitation leads
to vaccination coverage that is even below the Nash equilibrium. In this work, we note
that these conclusions rely on the widely accepted use of Fermi functions for modeling
the probabilities of switching to another strategy. We consider here a more general
functional form of the switching probabilities. It involves one additional parameter α.
This parameter can be loosely interpreted as a degree of open-mindedness. The result-
ing dynamics are consistent with the ones that would be generated by functions that
give best fits for empirical data in a widely cited psychological experiment. We show
that sufficiently high levels of open-mindedness, as conceptualized by our parame-
ter α, will drive equilibrium vaccination coverage levels above the Nash equilibrium,
and in fact arbitrarily close to the societal optimum. These results were obtained both
through mathematical analysis and numerical simulations.
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1 Introduction

While typically non-life-threatening for healthy individuals, seasonal influenza is
responsible for tens of thousands of deaths (Centers for Disease Control and Pre-
vention 2010a) and tens of billions of dollars of lost earnings (Molinari et al. 2007)
each year in the United States alone. Given the capacity of universal vaccination to
mitigate these consequences and to protect especially vulnerable populations (i.e. chil-
dren, pregnant women and the elderly), the United States Centers for Disease Control
and Prevention recommends that everyone 6 months of age or older get a flu vaccine
every year (Centers for Disease Control and Prevention 2010b). Despite the CDC rec-
ommendation, each year, roughly half of the American population still does not get a
flu shot (Centers for Disease Control and Prevention 2016).

The paper Galvani et al. (2007) reports that this empirically observed pattern is in
accord with predictions of a model that conceptualizes vaccination decisions as strate-
gies in a multi-player game. In these so-called vaccination games, rational individuals
are assumed to reach a Nash equilibrium at which each of them follows a strategy
that minimizes each individual’s expected cost given what the other individuals in the
population do. At Nash equilibrium, the vaccination coverage will not be sufficient
for herd immunity, and the overall cost to the population will not be minimized. This
misalignment between what is optimal for a society (vaccination levels at the herd
immunity threshold) and what is optimal for individuals (freeloading on the rest of
the population’s vaccination) is often referred to as the vaccination dilemma (Fu et al.
2011a). The vaccination dilemma was first described in Fine and Clarkson (1986),
and then later independently in Geoffard and Philipson (1997), albeit not phrased in
game-theoretic terminology. The first papers that cast this observation in terms of Nash
equilibria in vaccination games were Bauch et al. (2003) and Bauch and Earn (2004).
Since these seminal papers appeared, the study of vaccination games hasmushroomed.
A recent survey article Wang et al. (2016) includes a total of 777 citations, including
one book-length treatment Manfredi and d’Onofrio (2013).

While these general results on vaccination games explain how individual vacci-
nation decisions are likely to lead to lower vaccination coverages than the societally
optimal herd immunity threshold, they are based on several assumptions that will not
be satisfied in a real population. Peoplemaynot have an accurate perception of the costs
of vaccination (such as likelihood of side effects) and infection, and they don’t always
behave rationally. On the one hand, these factors can exacerbate the dilemma inherent
in voluntary vaccination. On the other hand, this creates opportunities for designing
public policy that would eliminate or alleviate the vaccination dilemma by offering
appropriate incentives or effective dissemination of useful information. Thereforemost
of the current research on vaccination games focuses on understanding the processes
by which people arrive at their decisions to vaccinate or remain unvaccinated, and how
these processes will influence the resulting vaccination coverage.

In this paper we focus on the role of imitation. Imitation is prevalent in much of
everyday decision-making, in particular when the environment is complex or largely
unknown. It can be a very successful procedure for finding advantageous strategies
in social games (Rendell et al. 2010). Social scientists and psychologists have long
recognized the importance of imitation, and it has recently moved into the focus of
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economists (Apesteguia et al. 2007). An important concern in the study of imitation
is that inertia, resistance to change, may be present in nearly all decision-making
processes (Forsell and Aström 2012).

The influential paper Fu et al. (2011a) presented a model that incorporates imita-
tion into the decision-making process for vaccinations against flu-like infections. In
this model it is assumed that during a vaccination campaign that precedes the actual
outbreak of the disease, each focal individual i independently makes a decision based
on comparing his or her own costs C(i) in the preceding season with the cost C( j) of
one other randomly chosen individual j . Then i either follows the same strategy as in
the previous season, or switches to j’s strategy of the previous season. The probability
of switching is given by a so-called Fermi function

pswi tch(i → j) = 1

1 + e−β(C(i)−C( j))
. (1)

Thus the strategy of a much better performing player is readily adopted, whereas
it is unlikely, but not impossible, to adopt the strategies of worse performing players.
The parameter β incorporates the uncertainties in the strategy adoption, originating in
either the variation of costs or in mistakes in the decision-making process. In the limit
β → 0+ player i is unable to retrieve any information from player j and switches to
the strategy of j by tossing a fair coin (Hauert and Szabó 2005).

Fermi functions take their origin from the Fermi-Dirac distribution of statistical
physics; see, for example, Reif (2008) or Schroeder (1999). The first use of Fermi
functions for determining the probabilities of switching to another strategy is usually
attributed in the literature to Blume (1993). Fermi functions are examples of what
are referred to as “smoothed imitation” (Szabó and Fáth 2007). Other examples of
smoothed imitation would be functions of the form

pswi tch(i → j) = μ + ν

α + e−β(C(i)−C( j))+γ
(2)

for some suitable choice of parameters α,μ, and ν that gives probabilities.
There is evidence that switching probabilities as in (2) may be more realistic. In

fact, Traulsen et al. (2010) reports the results of behavioral experiments on imitation
in prisoner’s dilemma games. Analysis of observed behaviors and curve fitting lead to
probabilities of switching to the other strategy of the form (2) with α = 1, ν = 1− μ

and μ = 0.28 ± 0.07, β = 0.67 ± 0.28, γ = − 0.11 ± 0.23 for the switch from
cooperation to defection. For the switch from defection to cooperation they found
μ = 0.25 ± 0.01, β = 0.99 ± 0.23, γ = 0.79 ± 0.14.

While in the curve fitting performed by Traulsen et al. (2010) the parameter α

was always fixed at α = 1, as a matter of mathematical convenience, we will here
investigate models where α can vary, but μ, ν, and γ are fixed. Lemma 3 below then
shows that each of our models has a counterpart in the general form of (2) with
α = 1 that exhibits the same qualitative features of the dynamics as our models, in
particular, admits equilibria that are arbitrarily close to the societal optimum. See also
the discussion surrounding (2) below.
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While in ODE-based models such as Bauch (2005) the likelihood of imitation is
often assumed to be proportional to the difference in costs, Fermi functions are used
in almost all published discrete-time models of vaccination games with imitation.
Sometimes the cost of the focal player is comparedwith an average cost of several other
players (Fukuda et al. 2014; Ichinose andKurisaku 2017; Iwamura andTanimoto 2018;
Li et al. 2017), but the probability of switching still follows the pattern of (1). In view of
the results of Traulsen et al. (2010), the question naturally arises whether the particular
form of smoothing functions given by (1) significantly influences the predictions of
models based on it; a question that has received surprisingly little attention in the
literature thus far. A notable exception is Zhang et al. (2011), where two distinct
parameter settings in (2) that depend on the current strategy of the focal player were
assumed. For this type of setup, it is intuitively clear that the equilibrium may shift
towards the strategy with the more favorable parameters for being imitated.

In this work, we will demonstrate that the choice of the form of the smoothing
function itself can significantly alter the model’s predictions even if the parameters
in (2) do not depend on the current strategy of the focal player. Most notably, we
show that a suitable choice of the smoothing function alone can drive the system to
equilibrium vaccination coverages that are arbitrarily close to the societal optimum of
herd immunity.

There are four parameters in (2) in addition to the β of (1), but for mathematical
convenience, we will focus on models with switching probabilities of the form

pswi tch(i → j) = 1

α + e−β(C(i)−C( j))
(3)

that has only one additional parameter α ≥ 1. As will be shown in Section 4, this
modified switching probability models a situation where individuals only rarely com-
pare their costs with others, but are eager to switch when they do. Moreover, for every
model that uses (2) with γ < 0 there exists a corresponding model with switching
probabilities of the form (3) that for the same cost and disease transmission parameters
predicts the same equilibria and intervals where the vaccination coverage decreases or
increases. The additional parameters of (2) may influence the stability of the equilib-
ria and how fast vaccination coverages approach them, but they will not influence the
positions of the equilibria; see Lemma 3. For amore detailed discussion of generalized
Fermi functions, in particular of the role of the parameter α, see Sect. 4.

We focus here on the case where the cost of vaccination is low relative to the cost
of the disease, which is the realistic one for flu vaccinations. We also assume uniform
mixing of the population to eliminate all aspects of the structure of contact networks
that may confound the effects of using the modified switching probability (3) in place
of (1). Under these assumptions, for α = 1 it is reported in Fu et al. (2011a) that the
equilibrium coverage is always even lower than the Nash equilibrium, which is already
lower than the societal optimum at herd immunity. In stark contrast, we found that for
all sufficiently large values of β, as long as we also choose α large enough relative
to β, the equilibrium vaccination coverage predicted by our model can be arbitrarily
close to the societally optimal value of herd immunity.
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2 Ourmodel

Our model assumes an infection with seasonal outbreaks that follow dynamics of
type SIR in each season with no carry-over of immunity to the next season. These
assumptions would, in particular, apply to influenza in regions or countries where
outbreaks are seasonal. It is a deterministic difference equation model that predicts
the time evolution of vaccination coverage from season to season. We designed the
model in such a way that it is as similar as possible to the version of the model of Fu
et al. (2011a) with uniform mixing. Thus, in particular, the vaccine is assumed to
be 100% effective, each individual is assumed to base the vaccination decision only
on comparison of previous costs with one other individual, the stochasticity inherent
in individual vaccination decisions enter the model only via mean values, costs of
vaccination and infection are conceptualized as mean costs, and in addition to the
network-based versions the models of Fu et al. (2011a) we ignore the patterns by
which people make contact. This exact replication of the assumptions of the non-
network model in Fu et al. (2011a) allows us to cleanly disentangle the effects of our
new parameter α from all other potentially confounding aspects.

Each time step n represents a year or flu season, and Vn represents the proportion of
individuals in the population who decide to get vaccinated in season n. Decisions on
whether or not to get vaccinated may depend on individual experience in the previous
flu season, the current strategy of a host, and on imitation of one randomly chosen
other host. These decisions are assumed to be made by all hosts independently and
simultaneously prior to any flu outbreak. They collectively determine the vaccination
coverage Vn in season number n. After individuals make their vaccination decisions,
the probability xn = x(Vn) of infection of any unvaccinated individual in flu season
numbern is then calculated based on a standardSIRmodel.Our approach of combining
a discrete vaccination dynamical system with a continuous model of the inter-year
disease dynamics is similar to that of Vardavas et al. (2007), which was one of the first
game-theoretic models of influenza vaccination.

The above description is written in the language of an agent-based stochastic
process, but we did not actually implement and study the model for finite popula-
tions. Instead, our version assumes a very large population and is a deterministic
compartment-level model, based on expected proportions.

We let cv > 0 denote the mean cost of vaccination, and ci > 0 denote the mean cost
of infection. Costs are treated as fixed positive numbers here that represent average
costs. Throughout this paper, we assume that the relative cost of vaccination defined
as c = cv

ci
satisfies the inequality c < 0.5. This seems realistic for infections like

seasonal influenza (Fu et al. 2011b).
Themodel is initialized by randomly assigning strategies for the first season. Before

the next flu season n + 1, each player i updates his or her strategy as follows:

– Player i picks a randomly chosen other player j .
– Player i compares his or her own actual costC(i) in the current season to the actual
cost C( j) of player j in the current season.
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– Player i switches to player j’s strategy with probability

pswi tch(i → j) = 1

α + e−β(C(i)−C( j))
(4)

and retains the current strategy with probability 1 − pswi tch(i → j).

In the second stage of each season, after all individuals in the population have
made their vaccination decisions, there will be a flu outbreak. It is assumed to develop
according to a standard ODE-based SIR model with basic reproductive ratioR0 > 1
that is kept fixed over all seasons. For seasonal influenza in the continental U.S., typical
values for R0 range from 1.5 to 3 (Fu et al. 2011b). Our simulations reported here
were done for R0 = 2.5 that exemplifies this range, and for R0 = 1.3 and 5 to test
robustness of our findings.

More precisely, the outbreak in a given season is assumed to occur according to a
model of the form1

s′ = −ξsi,

i ′ = ξsi − ωi,

r ′ = ωi,

(5)

where s, i and r denote the proportions of the population that are susceptible, infectious
and recovered, respectively. The basic reproductive ratio of the model isR0 = ξ/ω >

1. The limit s∞ of the fraction s of susceptible individuals as t → ∞ depends only
onR0 and satisfies [see, for example Diekmann et al. (2013)]:

ln s∞ − ln s0 = R0 (s∞ − s0) . (6)

Note that t = ∞ here should be interpreted as the end of the given season.
In flu season n, the initial proportion of susceptible individuals is s0 = 1− Vn and

the probability of each susceptible individual being infected,

x(Vn) = s0 − s∞
s0

,

is then calculated by solving (6). Note that this derivation is valid under the assumption
of a 100%effective vaccinewhere the probability of being infected is 0 for a vaccinated
individual.

Recall that we model the dynamics of vaccination coverage from season to season,
where Vn is the expected proportion of hosts who decide to vaccinate in season n.
Now let us derive a formula for Vn+1 as a function of Vn from the underlying assump-
tions of our model about individual decision-making. Consider a very large population

1 Our choices of ξ for naming the transmission rate and of ω for naming the recovery rate are admittedly
nonstandard. In the literature, the former is usually denoted by β (Diekmann et al. 2013; Vardavas et al.
2007) and the latter is usually denoted by either α (Diekmann et al. 2013) or γ (Vardavas et al. 2007).
We chose the variable names in (5) to keep the usage of β and γ consistent with the literature on Fermi
functions and their generalizations to facilitate comparison of our modifications with earlier work that uses
these functions.
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of size N . Note that in the first stage of season n + 1, it is expected that a propor-
tion of 1 − Vn among approximately VnN focal individuals who did vaccinate in
season n will compare their cost cv with the cost born by individuals who did not
vaccinate. For individuals who did not vaccinate, the probability of infection in sea-
son n was xn = x(Vn). Thus approximately xnVn(1−Vn)N of those comparisons will
be with individuals that experienced infection with a cost of ci , and approximately
(1 − xn)Vn(1 − Vn)N will have escaped infection and born no cost whatsoever. As
a result of these comparisons, some players decide to switch to the other strategy, in
accordance with the switching probabilities given by (4). Therefore, the number of
individuals that got vaccinated in season n but do not in season n + 1 is given by

VnN (1 − Vn)

(
xn

1

α + e−β(cv−ci )
+ (1 − xn)

1

α + e−β(cv−0)

)
.

Ananalogous calculation shows that the number of individuals that did not vaccinate
in season n but do in season n + 1 is given by

(1 − Vn)NVn

(
xn

1

α + e−β(ci−cv)
+ (1 − xn)

1

α + e−β(0−cv)

)
.

Dividing by N , we obtain the expected changeΔ(n) in the proportion of vaccinators

Δ(n) = Vn+1 − Vn

= (1 − Vn)Vn

(
xn

α + e−β(ci−cv)
+ 1 − xn

α+eβcv
− xn

α+e−β(cv−ci )
− 1 − xn

α+e−βcv

)
,

(7)
Thus our difference equation model for the evolution of flu vaccination is given

by the updating function J : [0, 1] → [0, 1] that maps Vn to Vn+1 and is defined as
follows:

J (Vn) = Vn+1 = Vn + Δ(n)

= Vn + (1 − Vn)Vn

×
(

xn
α + e−β(ci−cv)

+ 1 − xn
α + eβcv

− xn
α + e−β(cv−ci )

− 1 − xn
α + e−βcv

)
.

(8)

Here xn is the fraction calculated according to the epidemic model (5), so that

xn = x(Vn) = s0 − s∞
s0

= (1 − Vn) − s∞
1 − Vn

and s∞ is the solution to

ln s∞ − ln(1 − Vn) = R0 (s∞ − (1 − Vn)) .
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3 Predictions of themodel

3.1 Preliminary observations: costs, Nash equilibria, and the societal optimum

The expected costs cVn and cUn for vaccinators and nonvaccinators in season n will be:

cVn = cv and cUn = ci xn .

Let

Vhit = 1 − 1

R0

denote the vaccination coverage at the herd immunity threshold. Then the probability x
of an unvaccinated individual getting infected is a strictly decreasing function on the
interval [0, Vhit ] such that x(Vhit ) = 0. Thus for vaccination coverage Vn = Vhit we
would have cVn = cv > cUn = 0 and the rational choice would be not to vaccinate.
Conversely, when ci x(0) > cv and Vn = 0, then cVn < cUn , and the rational choice
would be to vaccinate, which implies the existence of a unique Nash equilibrium with
vaccination coverage VNash ∈ (0, Vhit ).

Now let us consider a societally optimal vaccination coverage Vopt . This is sup-
posed to minimize the following function that represents the average cost to the entire
population:

PC(V ) = cvV + ci (1 − V )x(V ),

where for V ∈ [0, Vhit ] the function x = x(V ) is determined by the SIR model of the
outbreak.

An important observation is that when ci ≥ cv , then PC(V ) is strictly decreasing
on the interval [0, Vhit ] so that, in particular, Vhit is the societally optimal vaccination
coverage. Proofs of this observation can be found, for example, in Fu et al. (2011b)
and Xin et al. (2018).

3.2 Preliminary observations: equilibria in our model

Let J : [0, 1] → [0, 1] denote the updating function that maps the vaccination cov-
erage Vn in season n to the vaccination coverage Vn+1 in the next season. We were
primarily interested in finding equilibria V ∗ where J (V ∗) = V ∗ and determining their
stability properties. Note that the meaning of “equilibrium” is different here than in the
phrase “Nash equilibrium.” In our model players are assumed to base their decisions
on imitation, while Nash equilibria result from a different model that assumes rational
choice.

Notice that the updating function J that maps Vn to Vn+1 and is defined in (8) maps
[0, 1] continuously into [0, 1]. If Vn = 1, then all individuals vaccinate, and if Vn = 0,
then nobody vaccinates. In either case, no player can switch strategies, since there is
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nobody in the population to imitate who would follow another strategy. So J (0) = 0,
J (1) = 1, and V ∗∗ := 0, V ∗∗∗ := 1 are always equilibria.

However, we would be more interested in interior equilibria V ∗ ∈ (0, 1) for our
model. Note that in our conceptualization of imitation there is always a positive prob-
ability that a player will stick with the current strategy rather than imitate another one,
even if that other strategy gave a vastly lower cost. Thus J (V ) = 0 only if V = 0 and
J (V ) = 1 only if V = 1, which means that the interior (0, 1) is invariant under J .
If both V ∗∗ and V ∗∗∗ are repelling, then the updating function J maps some interval
[ε, 1 − ε] into itself, and at least one such interior equilibrium V ∗ is guaranteed to
exist by Brouwer’s fixed point theorem.

If V ∗ exists, then it must be in the interval (0, Vhit ). To see this, consider
Vn ∈ [Vhit , 1). For very large population sizes N , we will observe approximately
Vn(1− Vn)N comparisons that may induce a player to switch from vaccinating to not
vaccinating, and the same number of comparisons that may induce a player to switch
from not vaccinating to vaccinating. In all these comparisons, players who vaccinated
will have born a positive cost, while players who did not vaccinate will not have born
any cost. Thus for any choice of the parameters α, β we will observe more switches
from vaccinating to not vaccinating than vice versa, and it follows that Vn+1 < Vn .

In particular, it follows that the equilibrium V ∗∗∗ = 1 is always repelling. Lemma 2
of the next subsection shows that an interior equilibrium exists in our model only
if V ∗∗ = 0 is repelling and gives precise conditions on the parameters for when this
is the case. Lemma 1 of the next subsection shows that if an interior equilibrium V ∗
exists, it must be unique.

3.3 Our main theorem

The following theorem is the main result of this paper. It shows that for all suffi-
ciently large β and all choices of α that are sufficiently large relative to β the interior
equilibrium V ∗ will be arbitrarily close to the societal optimum Vhit .

Theorem 1 Fix any 0 ≤ V− < Vhit and assume the parameters α, β of our model
satisfy the inequalities

1 − e−2β(ci−cv) − 2(1 − x(V−))

x(V−)
e−β(ci−2cv) > 0.

α > max{1, eβ(ci−cv) + e−β(ci−cv) − 2eβcv − 2e−βcv }.

Then

(a) If 0 < Vn < V−, then Vn+1 > Vn.
(b) If an interior equilibrium V ∗ exists, then V ∗ ≥ V−.

The inequalities in Theorem 1 only provide sufficient conditions that serve the
purpose of giving a rigorously derived qualitative result rather than providing good
estimates of the thresholds. In order to keep the complexity of the calculations within
reasonable limits, we used considerable simplifications, so the inequalities are far from
sharp. For example, with R0 = 2.5, ci = 12, cv = 1 and V− = 0.5, the first inequality
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implies that β > β0, where β0 is approximately 0.1281. In the second inequality, the α

threshold value increases exponentially fast as β increases. Under the same parameter
setting, when β = 0.1281, the second inequality gives α > α0 where α0 is 1, when
β = 0.2, α0 is approximately 5.0555, and when β = 1, α0 is approximately 59,868.

Proof of Theorem 1 Note that it suffices to prove part (a); part (b) is then an immediate
consequence.

Let V−, α, β be as in the assumption, and let Vn < V−.
We will show that the sign of Δ(n) = Vn+1 − Vn is positive. From (7) we get:

Δ(n) = Vn+1 − Vn

= (1 − Vn)Vn

(
xn

α + e−β(ci−cv)
+ 1 − xn

α + eβcv
− xn

α + e−β(cv−ci )
− 1 − xn

α + e−βcv

)

= (1 − Vn)Vn

(
xn(α + e−β(cv−ci )) − xn(α + e−β(ci−cv))

(α + e−β(ci−cv))(α + e−β(cv−ci ))

)

+ (1 − Vn)Vn

(
(1 − xn)(α + e−βcv ) − (1 − xn)(α + eβcv )

(α + eβcv )(α + e−βcv )

)

= (1 − Vn)Vn

(
xn(eβ(ci−cv) − e−β(ci−cv))

(α + e−β(ci−cv))(α + eβ(ci−cv))
+ (1 − xn)(e−βcv − eβcv )

(α + eβcv )(α + e−βcv )

)

= (1 − Vn)Vn
(α + eβcv )(α + e−βcv )

(
quot(α, β)xn(e

β(ci−cv) − e−β(ci−cv))

+ (1 − xn)(e
−βcv − eβcv )

)
,

where

quot(α, β) = (α + eβcv )(α + e−βcv )

(α + eβ(ci−cv))(α + e−β(ci−cv))
.

Let

f (α, β) = quot(α, β)xn(e
β(ci−cv) − e−β(ci−cv)) + (1 − xn)(e

−βcv − eβcv ).

Now to show that Δ(n) > 0, it suffices to show that f (α, β) > 0.
For β, Vn as in the assumptions we have xn > x(V−), and hence

1 − e−2β(ci−cv) − 2(1 − x(V−))

x(V−)
e−β(ci−2cv) > 0,

1 − e−2β(ci−cv) − 2(1 − xn)

xn
e−β(ci−2cv) > 0,

1 − e−2β(ci−cv) + 2(1 − xn)

xn
e−βci − 2(1 − xn)

xn
e−β(ci−2cv) > 0.
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Then

1

2
xn(e

β(ci−cv) − e−β(ci−cv)) + (1 − xn)(e
−βcv − eβcv )

= xn
2
eβ(ci−cv)

(
1 − e−2β(ci−cv)+ 2(1 − xn)

xn
e−βci − 2(1 − xn)

xn
e−β(ci−2cv)

)
>0.

Moreover, the following inequalities are all equivalent:

quot(α, β) = (α + eβcv )(α + e−βcv )

(α + eβ(ci−cv))(α + e−β(ci−cv))
>

1

2
,

2α2 + (2eβcv + 2e−βcv )α + 2 > α2 + (eβ(ci−cv) + e−β(ci−cv))α + 1,

α2 + (2eβcv + 2e−βcv − eβ(ci−cv) − e−β(ci−cv))α + 1 > 0.

Thus for α > max{1, eβ(ci−cv) + e−β(ci−cv) − 2eβcv − 2e−βcv } we have

quot(α, β) >
1

2
.

Then

f (α, β) = quot(α, β)xn(e
β(ci−cv) − e−β(ci−cv)) + (1 − xn)(e

−βcv − eβcv )

>
1

2
xn(e

β(ci−cv) − e−β(ci−cv)) + (1 − xn)(e
−βcv − eβcv )

> 0.

	

Lemma 1 There can be at most one equilibrium V ∗ in the interval (0, 1).

Proof In this argument we will treat x as a variable that is a function of V . This
function is strictly decreasing, and hence invertible, on the interval [0, Vhit ]. Consider
the functions:

g(x) := quot(α, β)(eβ(ci−cv) − e−β(ci−cv))x + (1 − x)(e−βcv − eβcv ),

G(V ) := quot(α, β)(eβ(ci−cv) − e−β(ci−cv))x(V ) + (1 − x(V ))(e−βcv − eβcv ),

(9)
where quot(α, β) is as in the proof of Theorem 1. It follows from our calculations of
Δ(n) in that proof that at an interior equilibrium V ∗ with x∗ := x(V ∗) we must have
g(x∗) = G(V ∗) = 0.

Note that g(x) is a linear function with slope

m = quot(α, β)(eβ(ci−cv) − e−β(ci−cv)) + eβcv − e−βcv > 0. (10)

Thus the system can have at most one interior equilibrium. 	
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Lemma 2 The following conditions are equivalent:

(a) An interior equilibrium V ∗ ∈ (0, Vhit ) exists.
(b) The equilibrium V ∗∗ = 0 is repelling.
(c) One of the following equivalent inequalities holds:

quot(α, β)x(0)(eβ(ci−cv) − e−β(ci−cv)) + (1 − x(0))(e−βcv − eβcv ) > 0,

x(0)
(
quot(α, β)

(
eβ(ci−cv) − e−β(ci−cv)

)
+ eβcv − e−βcv

)
> eβcv − e−βcv ,

x(0) >
1

quot(α, β)
(
eβ(ci−cv)−e−β(ci−cv)

eβcv −e−βcv

)
+ 1

.

Proof Let g(x),G(V ) be defined as in (9). Then the conditions in part (c) are simply
saying that g(x(0)) = G(0) > 0.

Here x(0) = x(V ∗∗) is the predicted final size of an outbreak with no vaccination
whatsoever. Note that the function g(x) is linear in x and increasing by (10), while
x(V ) is nonincreasing, and strictly decreasing on [0, Vhit ]. Thus G(V ) will be strictly
decreasing on the interval [0, Vhit ]. Since x(Vhit ) = 0 and thus

G(Vhit ) = e−βcv − eβcv < 0,

it follows from the IVT that V ∗ exists if, and only if, G(0) > 0.
Here and in the next subsection we will work with the following formula for the

updating function J as defined in (8):

H(V ) := (1 − V )V

(α + eβcv )(α + e−βcv )
,

J (V ) = V + H(V )G(V ).

(11)

Thus when G(0) > 0, then J (ε) > ε for sufficiently small ε > 0 and V ∗∗ = 0 will
be repelling. On the other hand, when G(0) ≤ 0, then we must have G(V ) < 0 for
all V ∈ (0, 1], the equilibrium V ∗∗ will be locally asymptotically stable and globally
attracting on [0, 1), while V ∗ does not exist. 	


Lemma 2 predicts that the vaccination coverage in a population that starts with
V (0) ∈ (0, 1) will evolve towards the equilibrium V ∗∗ = 0 where nobody vaccinates
if, and only if,

x(0) ≤ 1

quot(α, β)
(
eβ(ci−cv)−e−β(ci−cv)

eβcv −e−βcv

)
+ 1

. (12)

When the inequality in (12) is reversed, the vaccination coverage may evolve towards
an interior equilibrium V ∗ even when V ∗∗ = 0 is the Nash equilibrium. For details
see Xin et al. (2018).
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(a) (b) (c)

Fig. 1 Equilibrium vaccine coverage, V ∗, as a function of α and β via numerical simulation of Eq. (8) with
cv = 1, ci = 12 and stopping criteria of |Vn+1 − Vn | < 10−5. Labeled contours illustrate where imitation
matches the vaccination coverage of the Nash equilibrium, VNash , and the societal optimal (i.e. herd
immunity threshold),Vhit = 1−1/R0,when applicable.All simulations start at initial vaccination coverage
of V0 = 0.5. Typical estimates of R0 for seasonal influenza range from around 1.5 to 3 (Fu et al. 2011b)

3.4 Simulated evolution of vaccination coverage

Figure 1 shows equilibrium vaccination coverage, V ∗, as a function of the parameters
determining the shape of the switching probabilities, α and β. Vaccine coverage at
equilibrium is calculated via numerical simulation of themodel inEq. (8)with stopping
criteria of |Vn+1−Vn| < 10−5. In our simulations, the cost parameter values are chosen
according to those estimated in Galvani et al. (2007), which analyzed responses to
surveys of health opinions, behaviors and outcomes from the Health Promotion at
Work longitudinal study of university employees. These parameter values were also
used in Fu et al. (2011a). For a detailed derivation of the parameter values from the
findings of Galvani et al. (2007), see Fu et al. (2011b).

The locations of apparent interior equilibria V ∗ that were found in these simula-
tions closely match those predicted by the theoretical analysis; see Figure 10 of Xin
et al. (2018). To demonstrate the result of Theorem 1, contours are included for the
vaccination coverage achieved at the Nash equilibrium.

The simulation results in Fig. 1 qualitatively agree with the behavior predicted
by Theorem 1. Specifically, we see that open-minded imitation leads to vaccination
coverage higher than that of the Nash equilibrium provided that β is not excessively
small and that α is sufficiently large relative to β. Moreover, numerical simulation in
the finite window ofα, β producesmaximumvaccination coverage levels that are quite
close to the societal optima (e.g. maximum vaccine coverages of V = 0.597, 0.798
compared with Vhit = 0.6, 0.8 in Fig. 1b, c, respectively). While it is true that the
vaccination coverages obtained with open-minded imitation do not outperform those
of the Nash equilibrium by large amounts, we note that this is a consequence of the
fact that Nash equilibrium coverages are close to societal optimal because the costs of
vaccination and infection differ significantly [i.e. cv = 1 and ci = 12 as in Fu et al.
(2011a, b)].

The lower right corner of Fig. 1a (i.e. simulation results for large α and small
β) shows the situation where imitation appears to produce vaccination coverage that
is even higher than the societal optimum. However, recall from Section 1 that the
focal player is unable to retrieve any information from comparing to another player
as β → 0+ and note that pswi tch is a decreasing function of α. Therefore, the high
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levels of vaccination coverage are not a result of the imitation dynamics but rather a
consequence of the fact that the values of α and β make the probability of switching
strategies so low that vaccine coverage stays at or near the initial vaccination coverage
of V0 = 0.5 for a long time.

3.5 Stability of the interior equilibrium

When α is sufficiently large, the interior equilibrium will be locally stable and will be
monotonically approached. However, for α close to 1 trajectories may approach V ∗
via damped oscillations, or V ∗ may even become unstable, with trajectories exhibiting
sustained oscillations instead of approaching V ∗.

Let us assume that the interior equilibrium V ∗ exists and work with the function J
defined in (11). A sufficient condition for stability of V ∗ is given by

−1 <
d J

dV
(V ∗) < 1.

Similarly, a sufficient condition for monotone approach to V ∗ is given by

0 <
d J

dV
(V ∗) < 1.

By differentiating J with respect to V we find that for all V ∈ (0, 1):

d J

dV
(V ) = 1 + dH

dV
(V )G(V ) + H(V )

dG

dV
(V ).

At the interior equilibrium V ∗ we have G(V ∗) = 0, so that:

d J

dV
(V ∗) = 1 + dH

dV
(V ∗)G(V ∗) + H(V ∗)dG

dV
(V ∗)

= 1 + dH

dV
(V ∗)(0) + H(V ∗)dG

dV
(V ∗) = 1 + H(V ∗)dG

dV
(V ∗)

= 1 + H(V ∗)m dx

dV
(V ∗)

< 1.

(13)

Since H(V ) > 0 for V ∈ (0, 1), the last inequality in (13) follows from (10) and
the fact that x(V ) is a strictly decreasing function on [0, Vhit ]; no special assumptions
on α, β needed so far.

Now consider the term H(V ∗)m dx
dV (V ∗) of the third line of (13). This term is

always negative. For local stability of V ∗ we need

− 2 ≤ H(V ∗)m dx

dV
(V ∗), (14)
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and for monotone approach we need that

− 1 ≤ H(V ∗)m dx

dV
(V ∗). (15)

It remains to investigate bounds on dx
dV (V ). This involves fairly straightforward

but somewhat tedious calculations; for details see Subsection 4.2 of Xin et al. (2018).
These calculations show that in our model α ≥ 2 is a sufficient condition for local
stability of V ∗ and α ≥ 4 is a sufficient condition for monotone approach to V ∗.

If we extend our model to allow for switching probabilities of the form (16), then
these conditions are no longer sufficient for large enough values of the parameter ν,
but for any given choice of the parameters ν and γ , local stability of V ∗ and even
monotone approach to V ∗ will still be guaranteed for all sufficiently large α.

The conditions α ≥ 2 for local stability of V ∗ and α ≥ 4 for monotone approach
are only sufficient in our model, but not necessary. However, some conditions on
the parameters are needed even for stability. We numerically explored the value of
H(V ∗)m dx

dV (V ∗) and found regions of the parameter space where (15) and even (14)
fail. In order to better visualize these regions, we color-coded them by distinguish-
ing values in certain relevant intervals. More specifically, we defined a function
I nt

(
H(V ∗)m dx

dV (V ∗)
)
in the following way:

– I nt
(
H(V ∗)m dx

dV (V ∗)
) = −4 if H(V ∗)m dx

dV (V ∗) < −2,
– I nt

(
H(V ∗)m dx

dV (V ∗)
) = −1.5 if −2 ≤ H(V ∗)m dx

dV (V ∗) < −1.05,
– I nt

(
H(V ∗)m dx

dV (V ∗)
) = −0.7 if −1.05 ≤ H(V ∗)m dx

dV (V ∗) < −1,
– I nt

(
H(V ∗)m dx

dV (V ∗)
) = −0.5 if −1 ≤ H(V ∗)m dx

dV (V ∗) < 0.

In Figs. 2 and 3 below, we plot the resulting color-coded partitions of the parameter
space, together with some sample trajectories of Vn in regions of interest. Additional
details about these observations are given in Xin et al. (2018). In particular, numerical
explorations of the phase transitions for stability of V ∗ and monotone approach to this
equilibrium are reported in Subsubsection 5.1.2 of Xin et al. (2018).

4 Discussion: generalized Fermi functions and the interpretation of˛
as a degree of open-mindedness

In the introduction we mentioned three functional forms for the probability of focal
player i switching to the strategy of player j . Here we will discuss in more detail the
relationship between these forms and the roles of their parameters. For convenience,
let us repeat their formulas here. A fairly general form of smoothed imitation is given
by

qswi tch(i → j) = μ + ν

α + e−β(C(i)−C( j))+γ
, (16)

where the parameters satisfy the inequalities α, ν > 0, μ, β ≥ 0.
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Fig. 2 Numerical exploration of the stability of the interior equilibrium whenR0 = 12. Given that stability

is determined by the quantity defined by I nt
(
H(V ∗)m dx

dV (V ∗)
)
in (14) and (15), parameter sets in the

blue/green region guarantee stability (as illustrated by simulations with α = β = 1 and α = 1, β = 5)
and that parameter sets in the yellow region guarantee monotone convergence as well (see simulation with
α = 2, β = 1) (colour figure online)

In this paper, we focus on the case μ = γ = 0 and ν = 1 with α ≥ 1, so that:

pswi tch(i → j) = 1

α + e−β(C(i)−C( j))
. (17)

For α = 1, we recover the classical Fermi functions

pswi tch(i → j) = 1

1 + e−β(C(i)−C( j))
. (18)

The functional forms (16) and (17) are equivalent in the sense that they exhibit the
same directions of change and therefore produce the same equilibria with rescaled α

and the same β. More precisely, we make the following observation:

Lemma 3 Consider two models with the same parameters β,R0 and with parameters
α′ and α, respectively, that satisfy α′ = eγ α and α ≥ 1. Assume that these models are
constructed as the one described here, but in the first model the switching probabili-
ties qswi tch(i → j) are given by (16) for α′, while in the second model the switching
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Fig. 3 Numerical exploration of the stability of the interior equilibrium whenR0 = 13. Given that stability

is determined by quantity defined by I nt
(
H(V ∗)m dx

dV (V ∗)
)
in (14) and (15), parameter sets in the

blue/green region (see α = 1, β = 2 simulation) guarantee stability, parameter sets in the dark blue region
(see α = 1, β = 3 simulation) do not guarantee stability and parameter sets in the yellow region (see
α = 2, β = 2 simulation) guarantee monotone convergence (colour figure online)

probabilities pswi tch(i → j) are given by (17) for α. Then for any given vaccination
coverage Vn, the sign of Vn+1 − Vn in the second model will be the same as the sign
of Vn+1 − Vn in the first model.

Proof Let Vn be the vaccination coverage for season n, and letΔ(n) denote the change
of vaccination coverage from season n to season n + 1. Let us consider the second
model first, as it is the simpler one. In this model the switching probabilities are given
by (17), so that

Δmodel2(n) = Vn+1 − Vn = (1 − Vn)Vnsp, where

sp = xn
α + e−β(ci−cv)

+ 1 − xn
α + eβcv

− xn
α + e−β(cv−ci )

− 1 − xn
α + e−βcv

.

On the other hand, in the first model where the switching probabilities are given
by (16) with α replaced by α′ = eγ α,
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Δmodel1(n) = Vn+1 − Vn = (1 − Vn)Vnsq, where

sq = xn

(
μ + ν

α′ + e−β(ci−cv)+γ

)
+ (1 − xn)

(
μ + ν

α′ + eβcv+γ

)

− xn

(
μ + ν

α′ + eβ(ci−cv)+γ

)
− (1 − xn)

(
μ + ν

α′ + e−βcv+γ

)

= ν

(
1

eγ

)
sp.

Since ν > 0, the sign of Vn+1 − Vn in the two models is always the same. 	

The parameter β plays similar roles in our generalized Fermi functions (17) as in

the classical version (18). As the upper panel of Fig. 4 shows, when β increases, the
function pswi tch(i → j) becomes more like a binary switch that reacts to the sign of
the cost difference C( j) − C(i).

The parameter α has two effects. The first is that high values of α will make it less
likely for the focal player to switch to the other strategy. See the middle panel of Fig. 4
for an illustration. In particular, high values of α will have a stabilizing effect on the
interior equilibrium of our model; see Sect. 3.5. Less frequent imitation could also be
achieved by choosing low values of ν, and in view of Lemma 3 we can see that the
frequency of imitation alone does not change the location of the interior equilibrium.
The main result of this paper, that imitation with our generalized Fermi functions (17)
for sufficiently large α will give equilibria that are arbitrarily close to Vhit , can be
explained only by the second effect of α, which is a more subtle one. To illustrate this
second effect, let us think of a two-step process for making the decision to imitate. In
the first step, the focal player would make a decision on whether to consider imitating
another player (with probability pimitate = α−1) or simply do the same as in the last
season (with probability 1 − α−1). In the first case, the focal player i would then
compare costs C(i) and C( j) for one randomly chosen player j and switch with
conditional probability

pswi tch | imitate(i → j) = α

α + e−β(C(i)−C( j))
. (19)

This two-step-procedure is equivalent to the one-step decision given by (17). The
lower panel of Fig. 4 shows how the function given by (19) depends on α. We can
see that for large α, the focal player is very likely to switch to the other strategy once
a decision to consider imitating has been made, even if that other strategy might be
slightly worse than the focal player’s current strategy.

It is interesting to note that in the limit of α → ∞, the absolute switching proba-
bility given by (17) approaches 0 while the conditional switching probability 19 will
approach 1 for each fixed setting of the cost parameters. This shows that Theorem 1
is due to a balance between these two effects of increasing α, as neither can produce
the result by itself.

We believe that high values ofα can be thought of as representing open-mindedness,
understood as a willingness to experiment with new strategies unless there is strong
evidence that they are not working well. While open-mindedness can be defined as
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Fig. 4 Dependence of the switching probabilities on the parameters and on the cost difference. Upper left
panel: pswi tch for α = 1.2. Upper right panel: pswi tch for β = 0.5. Lower panel: pswi tch | imitate for
β = 0.5

willingness to consider ideas and opinions that are new or different to your own (Cam-
bridge Academic Content Dictionary 2017), our working definition is more closely
tied to actions than to attitudes. Note that our parameter α has a straightforward trans-
lation into probabilities of adopting new courses of action. Probabilities of taking
certain courses of action might be more objectively measurable in an experimental
setting than attitudes. However, it remains an interesting open question beyond the
expertise of the authors how to design actual experimental protocols for estimating
these probabilities.

Let us also mention that the same effect of open-mindedness can be achieved by
considering large negative values for γ in (16). To see this, note that

qswi tch(i → j) = μ + ν

α + e−β(C(i)−C( j))+γ

= μ + νe−γ

αe−γ + e−β(C(i)−C( j))

and recall that by Lemma 3 the parameters μ and νe−γ do not influence the locations
of the equilibria in our models.

In Zhang et al. (2011), functional forms for the switching probabilities as in (16)
for μ = 0 and ν = α = 1 were considered. The authors suggested that positive values
of γ represent inertia and negative values of γ represent “eagerness to switch.” In
the context of (16), the relation between γ and inertia is not straightforward, as low
values of both μ and ν also give small overall switching probabilities. However, the
above calculations do show a direct correspondence between high values of α and
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negative values of γ , with both of them having a plausible interpretation in terms of
open-mindedness.

5 Summary and directions of future work

The problem of designing effective public policy for inducing people to vacci-
nate against vaccine-preventable diseases is of great societal urgency (Manfredi and
d’Onofrio 2013). To solve this problem, we need to understand how people really
make vaccination decisions and how certain factors that enter this process influence
the outcome.

The work presented here focuses on the role of imitation of successful others,
which has been well-documented to be an important component of human decision-
making (Apesteguia et al. 2007). Our model builds on the version of the model in Fu
et al. (2011a) that assumed uniform mixing in the population. The only difference
is including an additional parameter α in the functional form for the probability of
switching to another strategy. This parameter can be loosely interpreted as a degree
of open-mindedness and has similar effects as some of the parameters in functional
forms of these probabilities that were empirically derived in Traulsen et al. (2010).

Our results demonstrate that for sufficiently high values of α the predicted equilib-
rium coverage will be arbitrarily close to the societally optimal value Vhit that gives
herd immunity. They were independently confirmed in three different ways: analyt-
ically for large regions of the parameter space by way of proving Theorem 1, by
numerical explorations of the equilibria predicted in the proof of this theorem [see
Subsection 5.2 of Xin et al. (2018)] and by studying the equilibria that are being
approached in simulated evolution of the vaccination coverages (see Sect. 3.4). These
findings stand in stark contrast to the results reported in Fu et al. (2011a) for the stan-
dard Fermi functions (i.e. α = 1) in which imitation leads to vaccination coverage
even below the Nash equilibrium when the cost of vaccination is small relative to the
cost of infection and uniformmixing is assumed. As we deliberately kept our model as
basic as possible and excluded all other factors, such as community structure, incen-
tives, or misperceptions, these radical differences in the predictions can be due only
to choosing a high value of α. We conclude that “open-minded imitation,” based on
switching probabilities of the form (3) with suitable choices of α, provides a possible
avenue for attenuating the vaccination dilemma.

The findings presented here open up a number of avenues for future research, in at
least four directions. First, from the purely mathematical point of view it may be of
some interest to derive tighter bounds in Theorem 1 and also to find complete charac-
terizations of the local and global asymptotic stability of the interior equilibrium V ∗
that refine the partial results of Sect. 3.5.

Our model, like all models of this kind and in particular, our precursor Fu et al.
(2011a), makes a number of simplifying assumptions about disease transmission and
human decision-making. While many of these assumptions presumably don’t signifi-
cantly alter the predictions, at least at the qualitative level, we have demonstrated here
that the particular form of the smoothing function for the switching probabilities can
matter a lot. Thus the second direction would be to examine the effect of the param-
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eter α in extensions of our model that incorporate a number of additional aspects of
voluntary vaccination dynamics that have been deliberately set aside here. We have
already done some preliminary work on extending our model to the important and
biologically more realistic case when the vaccine has an efficacy of less than 100%
and found a similar pattern as the one reported here in that equilibrium coverage can
get arbitrarily close to the societal optimum. However, the dependence of the optimal
choice of α on β is more complicated than in Theorem 1 and still needs to be worked
out in more detail. Other aspects that might be incorporated into more detailed ver-
sions of our model are restrictions of disease transmission and/or imitation to edges of
contact networks, as has already been studied for the case of classical Fermi functions
in Fu et al. (2011a) and a number of related papers; seeWang et al. (2015) for a review.
Similarly, one can study the effects of amixture of rational decision-making and imita-
tion (d’Onofrio et al. 2012; NdeffoMbah et al. 2012), incentives (Li et al. 2017; Zhang
et al. 2013, 2014), misperceptions of costs (Bauch and Bhattacharyya 2012; Coelho
and Codeço 2009; Cojocaru et al. 2007; Reluga et al. 2006; Voinson et al. 2015),
altruism (Shim et al. 2012; Szolnoki et al. 2012; Zhang 2013), peer pressure (Ichi-
nose and Kurisaku 2017; Wu and Zhang 2013), presence of individuals who remain
committed to vaccinating or not vaccinating without ever imitating others (Fukuda
and Tanimoto 214; Liu et al. 2012), the effects of other available control measures
or treatment options (Andrews and Bauch 2015; Chen 2006; Ida and Tanimoto 2018;
Jijón et al. 2017; Li et al. 2017; Wang et al. 2014), or variability ofR0 from season to
season. Going further than varying R0 from season to season, we could even model
the seasonality of influenza continuously throughout the year rather than our current
on/off model for flu season (Buonomo et al. 2018). One can also study the effects of
our parameter α when imitation is based on comparison with the average cost of a
larger sample of other individuals (Fukuda et al. 2014; Ichinose and Kurisaku 2017;
Iwamura and Tanimoto 2018; Li et al. 2017), or when weighted averages of costs over
a number of previous seasons are being compared (Zhang et al. 2012).

The third direction would be to study applications of our functional form (3) to
domains other than vaccination games. The paper Zhang et al. (2011) considers pris-
oner’s dilemma games in a finite population with switching probabilities of the form

1
1+e−β(C(i)−C( j))−τs , where τs depends on the strategy of the focal player. Since −τs is
the same as γ in our notation, in view of our earlier observations we can consider
these as rescaled versions of (3). The authors of Zhang et al. (2011) obtained a num-
ber of analytical results, but their focus is on fixation probabilities, time to fixation,
and stochastic stability of the equilibria, which is different from ours. The literature
on applications of evolutionary games with the structure of a prisoner’s dilemma is
vast, and vaccination games are only a small part of it. So it seems likely that our
version of (3) or its counterpart in Zhang et al. (2011) could find many applications
outside of vaccination games. Let us also remark that there may be some applications
to evolutionary computation (Eiben and Smith 2015) as well. In this field the balance
between exploration and exploitation is of paramount importance, and our interpre-
tation of high α as open-mindedness bears some resemblance to shifting this balance
towards the former for high values of this parameter.

Finally, it would be important to get a better understanding of how our parameter α

relates to actual decision-making by real people. If the benefits of open-minded imi-
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tation in the sense of high values of this parameter can also be demonstrated in more
detailed and realistic models than the one studied here, then it will be of interest to
explore how public policy could enhance more “open-minded” decision-making. This
third direction of suggested follow-up work would require a multidisciplinary effort
that goes far beyond the realm of mathematical modeling.
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