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Abstract
A recent parameter identification technique, the local lagged adapted generalized
method of moments, is used to identify the time-dependent disease transmission rate
and time-dependent noise for the stochastic susceptible, exposed, infectious, temporar-
ily immune, susceptible disease model (SE I RS) with vital rates. The stochasticity
appears in the model due to fluctuations in the time-dependent transmission rate of
the disease. All other parameter values are assumed to be fixed, known constants.
The method is demonstrated with US influenza data from the 2004–2005 through
2016–2017 influenza seasons. The transmission rate and noise intensity stochastically
work together to generate the yearly peaks in infections. The local lagged adapted
generalized method of moments is tested for forecasting ability. Forecasts are made
for the 2016–2017 influenza season and for infection data in year 2017. The forecast
method qualitatively matches a single influenza season. Confidence intervals are given
for possible future infectious levels.

Keywords Compartment disease model · Stochastic disease model · Local lagged
adapted generalized method of moments · Time-dependent transmission rate

Mathematics Subject Classification 60H10 · 60P10 · 92D30

1 Introduction

Knowledge about the transmission of an infectious disease can help control the spread
of disease, potentially mitigating disease related deaths and economic losses. The
transmission rate is time-dependent and depends on many disparate factors, such as
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weather, social behavior, and strain-specific factors. While some disease parameters,
such as the latency period, can be estimated from laboratory experiments or surveys
of infected populations, the transmission rate is difficult to estimate. In this work, we
describe a new parameter identification technique that can be used to determine the
transmission rate given infection data.

Parameter identification studies the inverse problem ‘under what conditions can
observations of a modeled system be used to identify the value of model parameters?’.
Focusing on an epidemic model for influenza, ‘how can infection data be used to
identify an unknown transmission rate?’. In epidemic models, the observed infected
data appears (almost) directly in the model, as a model state. However, the theory of
parameter identification applies more broadly to observations that are instead some
(possibly unknown) function of the model states. When parameters are unidentifiable,
using identifiability techniques may uncover combinations of dependent parameters.
Similarly, in the ideal scenario of noise-free data that is modeled with the statedmodel,
even if the parameter values can be theoretically uniquely determined, computational
limitation may prevent identifiability and may reveal dependent parameter combina-
tions.

Epidemic SI R-typemodels are typically non-linear and, as such, model parameters
are difficult to identify. (This is in contrast to linear models for which many analytical
techniques exist (Godfrey and DiStephano 1987)). The best known identification tech-
niques for non-linear deterministic models and constant parameter values use Taylor
series (Gunn et al. 1997; Pohjanpalo 1978), similarity transformations (Chappell et al.
1990; Evans et al. 2002; Vajda et al. 1989), or differential algebra (Audoly et al. 2001;
Eisenberg 2013; Eisenberg et al. 2013; Ljung and Glad 1994). For time-dependent
parameters, differential algebra approaches can also be used (Hadeler 2011; Mum-
mert 2013; Pollicott et al. 2012), as well as modulating functions methods (method of
moment functionals) (Ungarala et al. 2013).

Parameter estimation for stochastic models, also called model calibration, is a type
of statistical inference. Well-known estimation procedures for stochastic models are
least squares estimation (Banks et al. 2014; Escobar 2012), maximum likelihood esti-
mation (Heijmans andMagnus 1986;Bishwal 2008),Kalmanfiltering (linear quadratic
estimation) (Cazelles andChau 1995; Julier andUhlmann 2004;Kalman 1960) and the
generalizedmethod ofmoments (Hansen 1982; Jeisman 2005; Hurn et al. 2007). Some
of these techniques can be extended to estimate time-varying parameters, for example
using recursive least squares (with a forgetting factor) (Escobar 2012) or an expectation
maximization algorithm paired with Kalman filtering (Olama et al. 2009). We direct
interested readers to Bishwal (2008) for a compilation of well-known stochastic dif-
ferential equations and parameter estimation using the maximum likelihood estimate
and the Bayes estimate for both continuous and discrete observations.

Parameter estimation for stochastic epidemic models has a rich history. Some early
works includeBailey (1953) (and the referenceswithin), Becker (1976) using smallpox
data, and Longini et al. (1982, 1988) focusing on influenza. Becker (1989) provides
a summary of the current techniques for statistical analysis of epidemic models at the
time it was published.

More recently, increased computational power has allowed investigation of more
complicated and more timely models. In particular, Bayesian inference aided typi-
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cally by Markov Chain Monte Carlo (MCMC) algorithms allows estimation of model
parameter (posterior) distributions. SeeO’Neill (2002) for amethodological overview.
(Here we focus on epidemic models, but Bayesian techniques can be applied more
broadly, such as in health applications including designing clinical trials (Berry and
Stangl 2018), ecological modeling (Hobbs and Hooten 2015), and economics (Green-
berg 2013)). These techniques are applicable to estimate fixed (see O’Neill and Becker
2001) or timevaryingparameters estimates (seeArnold andLloyd2018). TheBayesian
approach naturally allows for data imputation via inclusion of missing data as an addi-
tional parameter (O’Neill and Roberts 1999; Cauchemez and Ferguson 2008). Data
imputation can also be done with other techniques, such as expectation maximization
(Becker 1997; Meng and van Dyk 1997).

Modern parameter estimation techniques and increased computational power allow
exploration of epidemics as they occur. See for example the dynamics and analysis of
bovine spongiform encephalopathy (BSE) epidemic in cattle in Great Britain (Ander-
son et al. 1996), the dynamics of the Foot and Mouth Disease (FMD) (Keeling et al.
2001) and Ferguson et al. (2001), pH1N1 (Fraser et al. 2009; Yang et al. 2009), esti-
mation analysis of pandemic risk of Middle East Respiratory Syndrome coronavirus
(MERS) (Breban et al. 2013), andEbola (Rivers et al. 2014). (Deterministicmodels can
also be used to study epidemics in real-time. Examples include SARS (Lipsitch et al.
2003), cholera (Tuite et al. 2011), and Ebola (Fisman et al. 2014)). See Cauchemez
et al. (2006a) for proof of concept of real-time estimation techniques.

We direct readers interested in statistical epidemic models to the papers of Britton
(2010) and Allen (2017), and for modeling and parameter estimation to the books of
Andersson and Britton (2000) and Becker (2015).

In addition to identifying model parameters, it is equally important to understand
and quantify the uncertainty in these parameter estimates. For simple linear regression
with normally distributed errors, the standard error can be calculated directly, leading
to confidence intervals for the parameter estimates. For more complicated stochastic
models, several techniques exist to estimate the standard error of the resulting parame-
ter estimates, including bootstrapping and asymptotic theory (Efron 1979; Banks et al.
2010). We direct interested readers to Banks (Banks et al. 2014) for a thorough review
of uncertainty in modeling, including uncertainty propagation through time due to
uncertainty in the model formulation and uncertainty in measurement error during
data collection (the observation process); standard error calculations are included.

Here we describe a recent parameter identification technique for time-dependent
parameters in stochastic dynamic models (Otunuga 2014; Otunuga et al. 2017, 2019),
the local lagged adapted generalized method of moments (LLGMM), an extension of
the generalized method of moments (Hansen 1982) (see also Sect. 3). The LLGMM
was developed in the context of energy commodity spot prices, which are subject to
response time delay and random environmental perturbations. The main advance of
the LLGMM is to use some number of the past state values to construct local moment
equations which are used estimate model parameters. In real world dynamic modeling
problems, current and future states of continuous time dynamic processes can be
influenced by the past state history. Therefore, the LLGMM technique is applicable to
dynamic processes in the biological, financial, physical, chemical, and social sciences.
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The LLGMMmethod is composed of the following components: (1) development
of a stochastic mathematical model of continuous time dynamic process, (2) construc-
tion of an equivalent time series model, (3) development of generalized method of
moment/observation equations, (4) introduction of a conceptual and computational
parameter estimation scheme, (5) introduction of a conceptual and computational
state estimation scheme, and (6) derivation of ε-best sub-optimal state and parameter
estimates. In this work, we use the Monte-Carlo method and implicit Euler scheme
(Kloeden and Platen 1995) for stochastic differential equation (SDE) to construct local
moments equations and describe theoretical parameter estimation procedure for the
SDE.

We demonstrate the local lagged adapted generalized method of moments param-
eter identification procedure (LLGMM) for the time-dependent transmission rate in a
stochastic susceptible-exposed-infectious-recovered-susceptible (SE I RS) epidemic
model, usingUS influenza data from2004–2017.We assume the data is noise-free. The
deterministic and corresponding stochastic SE I RS models are described in Sect. 2.
The LLGMM is described in Section 3 and its application to the SE I RS model in
Sect. 3.1. The identification procedure is applied to US influenza data in Sect. 4.
The technique is evaluated with goodness-of-fit measures described in Sect. 4.1. The
LLGMM is evaluated for forecasting ability in Sect. 4.2.

2 SEIRSmodel

The deterministic susceptible-exposed-infectious-recovered-susceptible (SE I RS)
model with vital rates (Fig. 1) is given by the equations

d S

dt
= δ − β(t)S(t)I (t) + γ R(t) − δS(t), S(t0) = S0

d E

dt
= β(t)S(t)I (t) − (α + δ)E(t), E(t0) = E0

d I

dt
= αE(t) − (ν + δ)I (t), I (t0) = I0

d R

dt
= ν I (t) − (γ + δ)R(t), R(t0) = R0, (1)

where S(t), E(t), I (t), R(t) are the fractions of the total population that are susceptible,
infected but not infectious (exposed), infectious, and temporarily immune (temporarily
recovered), respectively, at time t ≥ t0 = 0. We assume every individual is in one of
these compartments at t0 with 1 = S0 + E0 + I0 + R0. Adding the equations shows
1 = S(t)+ E(t)+ I (t)+ R(t) for all t . The transmission rate is β(t), assumed to be a
positive, bounded and continuous functionof time t .Wealso assume that all susceptible
individuals are exposed at the same transmission rate,β(t). The parametersα, ν, γ , and
δ are each positive constants. Individuals are exposed for time 1/α, infectious for 1/ν,
and temporarily immune for 1/γ . The demographic birth and death rate is δ; there are
no disease related deaths. We direct readers interested in a review of epidemiological
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Fig. 1 SE I RS model schematic with time-dependent transmission rate β(t)

compartment modeling with systems of differential equations to Edelstein-Keshet
(2005), Kong et al. (2015) and Vynnycky and White (2010).

We assume that the transmission rate is a function of time and is influenced by a
Gaussian white noise process causing the rate to fluctuate around the function β0(t).
The function β0(t) corresponds to known influences such as periodic weather patterns
or school terms; β0(t) could be constant. According to Méndez et al. (2012), external
fluctuations may be caused by variability in the number of contacts between infected
and susceptible individuals and such random variations can be modeled by a white
noise. Thus, we assume that external noise appears multiplicatively in the SEIRS
model as follows

β(t) = β0(t) (1 + σζ(t)) , (2)

and is able to modify the dynamical behavior of the model. The transmission rate
fluctuates rapidly so that we can model ζ(t) as a Gaussian white noise term with mean
0 and ζ(t)dt = dW (t), where W (t) is the standard Wiener process defined on a com-
plete filtered probability space (Ω,F , (Ft )t≥0, P), (Ft0) is measurable and (Ft )t≥0 is
right continuous. The noise intensity, σ(t) > 0, of the white noise due to variations in
infectivity is a function of time, measuring the amplitude of fluctuations in the trans-
mission rate. We also assume that (S0, E0, I0, R0) isFt0 -measurable and independent
of W (t)−W (t0). By substituting (2) into (1), we get a stochastic differential equation,
and in particular a Langevin equation. By construction, the resulting stochastic model
will be an adapted (non-anticipating) process.

The Itô approach on stochastic differential equation depends on Markovian and
Martingale properties. These properties donot obey the traditional chain rule.Whereas,
the Stratonovich approach obeys the traditional chain rule and allows white noise to
be treated as a regular derivative of a Brownian or Wiener process. West et al. (1979)
recommend that physical scientists avoid Itô calculus and claims that Stratonovich
calculus is appropriate for Langevin equations with both internal and external noise.
In their work, Moon andWettlaufer (2014) suggests that in most areas of physical sci-
encewherewhite noise is defined in terms of a δ-function autocorrelation, Stratonovich
calculus is preferred due to the fluctuation-dissipation theorem. Also, Méndez et al.
(2012) claim that any dynamics describing systems with real noise should be inter-
preted using Stratonovich equations. For these reasons, by substituting (2) into (1), we
extend the resulting SE I RS modelwith vital rates and stochasticity to theStratonovich
equations and obtain
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d S = (δ − β0SI + γ R − δS)dt − σβ0SI ◦ dWt , S(t0) = S0
d E = (β0SI − (α + δ)E)dt + σβ0SI ◦ dWt , E(t0) = E0

d I = (αE − (ν + δ)I )dt, I (t0) = I0
d R = (ν I − (γ + δ)R)dt, R(t0) = R0, (3)

where ◦ is the Stratonovich integral. The formation of β as in equation (2) and inter-
pretation of the stochastic dynamic system of equations as a Stratonovich system
of equations follow the work of Méndez et al. (2012), who investigated a stochastic
susceptible-infectious-susceptible (SI S) epidemicmodel.We direct readers interested
in a review of stochastic modeling with systems of differential equations to Ladde and
Ladde (2013).

The SE I RS stochastic differential equation (3) has a unique (up to equivalence)
global solution and the solution will remain within [0, 1]4 whenever it starts from
there. This follows from Witbooi (2017), since the model presented here is a special
case of the one presented there. (See also Parra et al. 2017 and Zhang and Teng 2007).

We assume that all model parameter values are known constants, except β0(t) and
σ(t). Also that the I (t) data is known and noise-free at discrete time points t j and
can be modeled with the SE I RS model. The goal is to identify the time-dependent
parameters β0(t) and σ(t), specifically β0(t j ) and σ(t j ) at each time t j when I is
known.

3 The LLGMMparameter identification procedure

The local lagged adapted generalized method of moments (LLGMM) builds on the
generalized method of moments (GMM) (Hansen 1982) and we begin with a brief
review of GMM. (See DeGroot and Schervish (DeGroot and Schervish 2011) for a
review of the method of moments and other parameter estimation techniques.) Using
the classical method of moments, one parameter is estimated by equating the model
estimated expectation of y and the data estimated expectation of y. Assuming that y is
generated by themodel, themodel estimated expectation is the populationmean, while
the data estimated expectation is the samplemean.Thegeneralizedmethodofmoments
constructs themoment conditions, also called orthogonality conditions,more generally
as some function of the model parameters and data. The parameters are estimated by
minimizing a certain norm of the sample averages of the moment conditions. If the
model contains more than one parameter to be identified, the second moment, and
higher if needed, would be used to construct the required moment conditions. Note
that the minimization process in the GMMmethod uses the entire data set to estimate
the constant parameters.

The LLGMM identifies time-dependent parameters using a limited number of past
data points to form the moment conditions, not the entire data set. Thus the method
is lagged. Also, the number of points used varies for each time estimate. Thus the
method is local and adaptive.
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Let

dy = f (t, y, α)dt + g(t, y, α)dWt

be an Itô stochastic model for y, with time-dependent parameter α j . The LLGMM
parameter identification procedure estimates the expectation of Δy using an average
of more than one past data point. The number of past data points used at a particular
time point in the LLGMM is allowed to vary between 2 and some fixed maximum
M . By defining mk as the local admissible sampled data observation size at time
tk , the parameters and states at time tk are estimated using past data on the interval
[tk−mk+1, tk]. The expected value of Δy is estimated from the data as

E[Δy j | F j−1] ≈ 1

m j
(Δy j−(m j −1) + · · · + Δy j−1 + Δy j ) = 1

m j

j∑

k= j−(m j −1)

Δyk

and from the stochastic model as

E[Δy j | F j−1] = 1

m j

j∑

k= j−(m j −1)

f (tk−1, yk−1, αk−1)Δt,

where 2 ≤ m j ≤ M for each time t j . Here, F j−1 is the filtration process up to
time t j−1 and for simplicity we assume Δt = t j − t j−1 is constant. We call M the
maximum delay constant and m j the delay constant; m j may also be thought of as the
observation size. We derive appropriate moment equations, for example by equating
the two expectations above, then solve for the parameter estimate of α j−1 at time t j−1
using the well known integral mean value theorem (Khalili and Vasiliu 2010). The
computed time-dependent parameter depends on the number of past data points used
in the average, so the parameter α j is more accurately expressed as α j,m j .

In describing the LLGMM technique so far, we have at each time point, t j , an
average of m j past data points. The value of the delay constant m j is determined
using the following procedure. Fix m between 2 and M . At each time point, estimate
α j,m in the stochastic model and use the value to generate a time series for y, say, y j,m .
Compare the model output y j,m at time t j to the known value of y j , for example using
sum of square distances. Since the model is stochastic, repeat the comparison some
large number of times and compute the mean sum of square distances. Repeat for all
m. Select the m value with mean model output closest to the known value. Record the
value as m̂. Evaluate the state and parameter, y j,m and α j,m , at m̂ as y j,m̂ and α j,m̂ ,
respectively.

3.1 SEIRS parameter estimation derivation

In this section,wedetail how theLLGMMtechnique, explained in general terms above,
is used to estimate the state, parameters, and observation size for the SE I RS model.
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The method description is organized following the six components of the LLGMM
scheme outlined in the Introduction (Sect. 1).

3.1.1 Development of an Itô stochastic differential equations model

We use the Stratonovich-Itô conversion theorem given in Bernardi et al. (2001) and
Kloeden and Platen (1995) to convert the Stratonovich dynamical model (3) to its Itô
equivalent. We give the theorem below without proof.

Theorem 1 (Bernardi et al. 2001 and Kloeden and Platen 1995) The Itô stochastic
differential equation (SDE)

d X = f (t, X)dt +
M∑

j=1

g j (t, X)dW j (t), (4)

defined componentwise as

d Xi = f i (t, X)dt +
M∑

j=1

gi, j (t, X)dW j (t), i = 1, 2, . . . , N ,

having the same solution as the N-dimensional Stratonovich SDE with M−dimensional
Wiener process

d X = f (t, X)dt +
M∑

j=1

g j (t, X) ◦ dW j (t), (5)

has drift coefficient f (t, X) that is defined in terms of f (t, X), componentwise, by

f i (t, X) = f i (t, X) + 1

2

N∑

k=1

M∑

j=1

gk, j (t, X)
∂gi, j

∂xk
(t, X), i = 1, 2, . . . , N . (6)

To apply the LLGMM to the SE I RS model, we derive the corresponding Itô
equations from system (3) using Theorem 1 as

d S =
(

δ − β0SI + γ R − δS + 1

2
σ 2β2

0 SI 2
)

dt − σβ0SI dWt

d E =
(

β0SI − (α + δ)E − 1

2
σ 2β2

0 SI 2
)

dt + σβ0SI dWt

d I = (αE − (ν + δ)I ) dt

d R = (ν I − (γ + δ)R) dt, (7)

where the initial conditions S(t0) = S0, E(t0) = E0, I (t0) = I0, and R(t0) = R0 are
each between 0 and 1. Together they satisfy 1 = S0 + E0 + I0 + R0. As it is well
known, the Itô model (7) rests upon the Markovian and Martingale properties.
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3.1.2 Construction of the time series model and generalized method of moment
equations

As part of the components of the LLGMM scheme, we construct the time series model
from the Itô equations (7) and develop generalized method of moment equations
(orthogonality conditions) used to estimate parameters β0(t) and σ(t).

From the Itô Lemma,

〈d E, d E〉 = σ 2β2
0 S2 I 2 dt,

where 〈., .〉 is the quadratic variation symbol. Multiplying S and the d E equation from
(7) gives,

S d E =
(

β0S2 I − (α + δ)SE − 1

2
σ 2β2

0 S2 I 2
)

dt + β0σ S2 I dWt

=
(
β0S2 I − (α + δ)SE

)
dt − 1

2
〈d E, d E〉 + β0σ S2 I dWt . (8)

To estimate the parameters β0(t) and σ(t) at time t = t j , we first integrate (8) on
the interval [t j−m j +1, t j ] to give

∫ t j

t j−m j +1

S(t) d Et =
∫ t j

t j−m j +1

(
β0(t)S2(t)I (t) − (α + δ)S(t)E(t)

)
dt

− 1

2

∫ t j

t j−m j +1

〈d E, d E〉 +
∫ t j

t j−m j +1

σ(t)β0(t)S2(t)I (t) dWt

and generate moment equations from the integral equation. From the continuity of
β0(t) and positivity of S(t) and I (t), it follows from the integral mean value theorem
(Khalili and Vasiliu 2010) that there exist t∗j ∈ (t j−m j +1, t j ), with β0(t∗j ) = β∗

t j
such

that

∫ t j

t j−m j +1

S(t) d Et = β∗
t j

∫ t j

t j−m j +1

S2(t)I (t) dt − (α + δ)

∫ t j

t j−m j +1

S(t)E(t) dt

− 1

2

∫ t j

t j−m j +1

〈d E, d E〉 +
∫ t j

t j−m j +1

σ(t)β0(t)S2(t)I (t) dWt .

Discretizing the above equation and applying expectation gives

j∑

k= j−m j +1

E
[
Sk−1 ΔEk | Fk−1

] = β∗
j

j∑

k= j−m j +1

S2
k−1 Ik−1 Δt − (α + δ)

j∑

k= j−m j +1

Sk−1Ek−1 Δt − 1

2

j∑

k= j−m j +1

E

[
(ΔEk)

2 | Fk−1

]
, (9)
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714 A. Mummert, O. M. Otunuga

where Sk = S(tk), Ek = E(tk), Ik = I (tk), ΔEk = Ek − Ek−1 and β∗
j ≡ β j,m j is

defined as the estimate of β0(t) at time t = t j using delay constant m j .

3.1.3 Conceptual and computational parameter estimation scheme

We use the moment equation in (9) to derive parameter estimate for β0(t). Let β j,m j

be a parameter estimate of β0(t) that is estimated using m j past data points at time
t = t j . It follows from (9) that

β∗
j

=
∑ j

k= j−m j +1

[
E

[
Sk−1 ΔEk | Fk−1

]+ 1
2E

[
(ΔEk)2 | Fk−1

]
+(α+δ)Sk−1Ek−1 Δt

]

∑ j
k= j−m j +1 S2k−1 Ik−1 Δt

.

(10)

Using the variance ofΔE , the second parameterσ ∗
j ≡ σ j,m j can be estimated similarly

as

σ ∗
j =

√√√√√
∑ j

k= j−m j +1 E
[
(ΔEk)

2 | Fk−1
]

(β∗
j )

2
∑ j

k= j−m j +1 S2
k−1 I 2k−1 Δt

. (11)

The parameter estimates for the transmission rate β0 and noise intensity σ are well-
defined. If {Ik−1} j

k= j−m j +1 = {0}, then there are no infectious individuals during the
time period t = t j−m j +1 and t = t j . From the discretized equations governing the
disease spread (7), one can verify that with no infectious individuals there are also no
exposed individuals. In particular, the disease spread has ended and at that time we
no longer estimate the transmission rate. Also note, we do not have the case where
{Sk−1} j

k= j−m j +1 = {0}. If this happens, then it follows from the discretized equation
governing S in (7) that 0 = ΔSk = (δ + γ Rk−1)Δt for k = j − m j + 1, . . . , j − 1,
that is, Rk−1 < 0 for k ∈ [ j − m j + 1, j − 1]. In (11), if β∗

j = 0, then there is no
disease transmission at time t j and therefore the noise intensity σ j in the transmission
rate is also zero.

We assume that the infection data It j is known at each point t j and that the data can
be modeled with the SE I RS model. Using a simple discretization of the deterministic
model equations (1) and the known initial conditions, it is possible to identify St j+1 ,
Et j+1 , and Rt j+1 . In particular, R can be determined from (1) as

Rt j+1 = Rt j + (δ It j − (γ + δ)Rt j )Δt,

E can be determined as

Et j+1 = It j+2 − It j+1 + (ν + δ)It j+1Δt

αΔt
,
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Parameter identification for a stochastic SEIRS… 715

and finally S = 1 − E − I − R. These values are used as the known data values in
the LLGMM estimation.

3.1.4 Conceptual and computational state estimation scheme

When using a traditional explicit forward Euler-type discretization to construct solu-
tions to the SE I RS model, we encountered negative solutions. Such unrealistic
negative solutions is a common numerical artifact in solutions of systemswith stochas-
ticity. Schurz (1996) developed an implicit Euler method to ensure nonnegativity of
solutions to SDE. Solutions to the SE I RS model are nonnegative (Sect. 2). There-
fore, to estimate the state value at time t j , we discretize the Itô equations using the
implicit Euler scheme described in Schurz (1996). (See also Cyganowski and Grune
2001.) Namely, for a stochastic model with time-dependent parameters Θ , using an
Itô interpretation,

dy = f (t, y,Θ(t))dt + g(t, y,Θ(t))dWt ,

the implicit Euler scheme gives that y j+1 satisfies

yl
j+1−yl

j =ε f (t j+1, yl
j+1,Θ

l
j+1)Δt+(1 − ε) f (t j , yl

j ,Θ
l
j )Δt+g(t j , yl

j ,Θ
l
j )ΔW l

j ,

for 0 ≤ ε ≤ 1, where j = 0, 1, 2, . . . , N for sample size N , l = 1, 2, . . . , L for
L simulations in the Monte-Carlo method. For the SE I RS model, Θ l

j ≡ Θ l
j,m j

represents {β∗
j , σ

∗
j }, the transmission rate and noise intensity described in (10) and

(11), respectively. The simulated state for the l-th simulation at time t j using m j past
data set is yl

j ≡ yl
j,m j

. The solution yl
j+1 can be determined iteratively. A value of

ε = 1 is used when solving I ; a value of ε = 0.9 is used for S, E , and R.

3.1.5 Derivation of�-best sub-optimal state and parameter estimates

Finally, there is a need to find, among the estimated values {yl
j ≡ yl

j,m j
}M
m j =2 at time

t j , the value closest to the known real value. Specifically, the correct delay constantm j

must be determined. Let Sl
j,m j

, El
j,m j

, I l
j,m j

and Rl
j,m j

be the simulated susceptible,
exposed, infectious and recovered estimate for the l-th simulation at time t j using m j

past data set. We take the average

S j,m j = 1

L

L∑

l=1

Sl
j,m j

; E j,m j = 1

L

L∑

l=1

El
j,m j

;

I j,m j = 1

L

L∑

l=1

I l
j,m j

; R j,m j = 1

L

L∑

l=1

Rl
j,m j

, (12)
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as the simulated value of S(t), E(t), I (t) and R(t) at time t j using m j past data set.
Define

Ξ j,m j = (
St j − S j,m j

)2 + (
Et j − E j,m j

)2 + (
It j − I j,m j

)2 + (
Rt j − R j,m j

)2

(13)

as the quadratic mean square error between the known data {St j , Et j , It j , Rt j } and
the averaged realizations {S j,m j , E j,m j , I j,m j , R j,m j }M

m j =2. For any arbitrary small
positive number ε and for each time t j , we define the ε-sub-optimal admissible set of
m j at t j as

M j = {m j : Ξ j,m j < ε}. (14)

Ifm j ∈ M j gives theminimumvalue forΞ j,m j , thenwe recordm j as m̂ j . If condition
(14) is not met at time t j , then the value of m j where the minimum min

m j
Ξ j,m j is

attained is recorded as m̂ j . The ε-best sub-optimal parameter and state estimates at
time t j are now recorded asΘ j,m̂ j = {β j,m̂ j , σ j,m̂ j } and {S j,m̂ j , E j,m̂ j , I j,m̂ j , R j,m̂ j },
respectively.

4 Case study influenza

We apply the LLGMM to the SE I RS epidemic model and influenza data. The
influenza data ‘Influenza Positive Tests Reported to CDC by Public Health Labo-
ratories’ was collected from the Center for Disease Control and Prevention (CDC) Flu
View for the thirteen influenza seasons 2004–2005 through 2016–2017.1 The number
of positive tests is given weekly starting from week 40 of 2004 through week 39 of
2017. Our goal is to use the CDC data in the SE I RS model as a proxy for the infec-
tious class I , however, there is an obvious mismatch between the number of infectious
and the number of positive tests. We make several adjustments to the data to account
for the main differences—underreporting by the laboratories and underreporting due
to people who do not seek health care. The details are described in the next paragraph.

Following the general adjustment procedure in Bresee et al. (2013), we multiply
the number of positive tests by 2.74 to account for underreporting by the laboratories.
Additionally, we divide by 44.1556% to account for individuals not seeking medical
care. This value is the weighted average of the percentage of individuals who seek
medical care by age group (weighted by percent of each age group in the U.S. popula-
tion) as listed in Bresee et al. (2013). Finally, the data is scaled so that the total attack
rate for each season is within known estimates. We use the weighted average of the
estimates computed by Molinari et al. (2007), by age group. The resulting attack rate
is 8.44%. (This matches well withWHO estimates of 5–10% of adults and 20–30% of
children are infected with influenza each year worldwide,2 when these estimates are

1 http://gis.cdc.gov/grasp/fluview/fluportaldashborad.html, accessed 7.5.2017.
2 https://www.who.int/biologicals/vaccines/influenza/en, accessed 6.28.2016
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weighted by US population age group, the attack rate is estimated at 8.867–15.156%.)
After the underreporting and non-medical seeking adjustments, we determine the sea-
sonal attack rates. A scale factor is determined to guarantee that the smallest attack rate
is at the minimum 8.44% rate. The scale factor is determined by dividing the estimated
attack rate (8.44% of the total population) by the minimum number infected over one
season. This scale factor is applied to all influenza data; in particular, the adjusted data
is multiplied by 231.53. We assume the total U.S. population is fixed at 311,749,110
people. The adjusted number of positive tests is divided by the total population to get
the fraction of the population infectious each week (I j in the model).

The CDC influenza data is given weekly, so that Δt = 1 week. According to
the CDC,3 influenza has a latency period between 1 and 4 days, with an average of
2 days, and an infectious period of 5 to 7 days after symptoms appear and 1 day
before symptoms. Therefore, with t measured in weeks, α and ν should be selected
in the ranges [1.75, 7] and [0.875, 1.4] per week, respectively. The annual US birth
rates for the years 2004–2016 range from 13.42 to 14.18 per 1000, while the death
rates range from 8.14 to 8.39 per 1000.4 Therefore, δ should be selected in the range
[0.000157, 0.000277]. No good information is known about how long an individual
remains temporarily immune from influenza after having the disease. Xu et al. (2010),
suggested that prior infection with the 1918 Spanish flu provided protection during
the 2009 influenza pandemic, a span of almost 100 years. However, here we consider
all influenza types as one ‘disease’, and given the conglomeration of virus strains, we
assume it is possible for individuals to become infected each year. (In fact, it is possible
to become infected more than once a year, though this is rare.) Kucharski et al. (2015),
estimate that adults 30 years or older become infected with influenza approximately
twice each decade. Therefore, γ could range from around 0.000192, corresponding
to 100 years temporarily immune, through to 0.04, corresponding to 1/2 year, though
likely the value should be closer to 0.00385, corresponding to 5 years, than to the 100
year value. A complete list of values used in the simulation is given in Table 1.

The scaled influenza data and simulated infectious values are shown in the top panel
of Fig. 2, assuming a maximum time delay (observation size) of M = 52 weeks (1
year).

The ‘scaled influenza data’ is the number of positive tests reported to the CDC for
thirteen influenza season scaled to account for underreporting, individuals not seeking
medical care, and to guarantee the attack rate is in known estimates, as detailed at
the start of Sect. 4. The ‘simulated infectious values’ are computed using the data by
applying the LLGMM allowing up to one year of past observations (M = 52) and
assuming the data is well-described by an SE I RS model, as derived in Sect. 3.1.

The algorithm does a very good job of capturing the data. The only discrepancies
lie at the peaks of the largest infections. The middle and bottom panels show the time-
dependent transmission rate and noise intensity, respectively. Both the transmission
rate and the noise intensity show modest fluctuations each season (note the difference
in scales of the two functions). Together these influence the peak and timing of the

3 https://www.cdc.gov/flu/professional/acip/clinical.htm, accessed 6.28.2016
4 CIA World Factbook, https://www.cia.gov/library/publications/the-world-factbook/, accessed
5.23.2016.
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Fig. 2 Scaled influenza data (solid) I (t) collected from the CDC Flu View for the thirteen influenza seasons
2004–2005 through 2016–2017 and simulated infectious values (dashed) I (t) with maximum time delay
M = 52 weeks (1 year). Time-dependent transmission rate β0 and noise intensity σ for the simulated
values; both are zero for the initial delay period of M = 52 weeks. β0 reaches a maximum value of 455.60
during the 2014–2015 influenza season

infections. The large peak in the 2009–2010 influenza season can be seen as a signif-
icant influence by the transmission rate; the noise intensity shows fluctuations only
after the peak. The large peak in the 2014–2015 season can be seen as a very significant
peak in the transmission rate, but no corresponding peak in the noise intensity. Similar
behavior is seen with all of the delay constants M tested (Table 1).
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720 A. Mummert, O. M. Otunuga

Fig. 3 Time-dependent delay constant determined using the LLGMM procedure, with maximum delay
M = 52 weeks (1 year). The delay constant is zero for the initial delay period of M = 52 weeks. Its
minimum value after that is 2

Figure 3 shows the number of past data values used in the LLGMM procedure, as
determined by the computation itself. Notice that the algorithm seems to prefer using
many past data points, except directly after the two large outbreaks during the 2009–
2010 and 2014–2015 seasons. This is an artifact of the high delay constant of M = 52.
As the maximum allowable number of past data points is decreased, the number of
large spikes in m j decreases. In particular, with a maximum delay constant M = 4
the algorithm uses the minimum value of 2 around 75% of the time, with M = 13 the
value of 2 is used around 50% of the time, and with M = 26 around 25%. Each of the
spikes in the determined delay constant comes around the largest peaks in infections.
The larger the allowed maximum delay, the more peaks appear in the delay function.

4.1 Goodness-of-fit measures

We find the goodness-of-fit measures for the simulated infectious values following
Czellar et al. (2007). We compute the root mean square error of the simulated path

̂R AM SE , the variability using the average median absolute deviation ÂM AD, and
the average median bias ÂM B:

̂R AM SE =
⎡

⎣ 1

N

N∑

t=1

1

J

J∑

j=1

(
y j

t − yt

)2
⎤

⎦

1
2

,

ÂM AD = 1

N

N∑

t=1

median
j

(∣∣∣∣y
j
t − median

i

(
yi

t

)∣∣∣∣

)
,

ÂM B = 1

N

N∑

t=1

(
|median

j

(
y j

t

)
− yt |

)
, (15)
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where yt is the data and
{

y j
t

}
is a simulated data set for each j = 1, 2, . . . , J at

the times t = 1, 2, . . . ., N . A small ̂R AM SE indicates that the estimated parameter
values can generate simulated paths similar to the actual data set. A small ÂM AD
indicates that there is small variability among all simulated paths.

The goodness-of-fit measures are computed for the LLGMM procedure with maxi-
mum delay constant M = 4, 13, 26, and 52, using J = 100 pseudo-data sets (Table 2).
The fit measures show that using a higher delay constant (more past data points) allows
for a better fit, though visually the infectious curves show almost no differences. In
order to statistically compare the estimation results using different delay constant, we
estimate the statistics ̂R AM SE , ÂM AD, and ÂM B defined in (15).

4.2 Forecasting

We test the efficacy of the LLGMM estimations in forecasting US influenza infection
levels. We assume infection data is known up to some time, and thus S, E , and R are
also known. Future data values are determined using the LLGMM technique in the
following way.

Each of S, E , I , R, β0, and σ are estimated from the past data values iteratively
using the implicit Euler method. These values depend on the random term dWt and so
we simulate each 100 times and compute the averages. These averages are summed
and compared with the known value 1. At each time t j , the value of m j is determined
as the value with sum closest to 1.

We perform two forecasts, one assuming data through the end of the 2015–2016
influenza season and forecasting the values for the entire 2016–2017 season (Fig. 4)
and the second assuming data through the end of 2016 and forecasting the values for
weeks 1 through 29 of 2017 (Fig. 5). The 95% confidence intervals are given around
the forecasted values; the confidence intervals grow as the number of data points in
the estimation increases. In both cases, the forecast shows a good qualitative fit.

The goodness-of-fit measures (Sect. 4.1) are computed for the forecasted values—
forecasting year 2017 only and forecasting the 2016–2017 season (Table 2). The
forecasted values begin with assuming the simulated values up to the end of 2016
or the end of the 2015–2016 influenza season, respectively, using a maximum delay
constant of M = 52 weeks. The forecasted values are computed with M = 4, 13, 26,
and 52, using J = 100 pseudo-data sets. The ÂM AD measure is 0 because the
simulated infectious data is estimated using ε = 1. Based on the goodness-of-fit
values, the forecast for the 2016–2017 influenza season is noticeably better than those
for just the year 2017. However, visually no benefit is seen to a higher or lower M
value in either forecast.

5 Discussion

The local lagged adapted generalized method of moments (LLGMM), a parameter
identification procedure for stochastic dynamic models, was described and demon-
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Fig. 4 Forecasted infectious influenza data It (thick blue dashed in forecast region) for year 2017 compared
with the known data (solid) and simulation carried out assuming data through the end of the 2015–2016
influenza season and forecasting the values for the entire 2016–2017 season; upper and lower 95% con-
fidence intervals (red dotted). Known infection data is shown for one year prior to forecasting. Simulated
transmission rate β0 and noise intensity σ also shown with forecasted values. Simulated data is generated
with maximum delay constant M = 52 (1 year); forecasted data is generated with M = 13 (3 months)
(color figure online)
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724 A. Mummert, O. M. Otunuga

Fig. 5 Forecasted infectious influenza data (thick dashed in forecast region) for year 2017 compared with
the known data (solid) assuming data through the end of 2016 and forecasting the values for weeks 1 through
29 of 2017; upper and lower 95% confidence intervals (dotted). Known infection data is shown for one
year prior to forecasting. Simulated transmission rate β0 and noise intensity σ also shown with forecasted
values. Simulated data is generated with maximum delay constant M = 52 (1 year); forecasted data is
generated with M = 13 (3 months)
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strated with case study of the SE I RS epidemic model. In the case study, influenza
data from theUS 2004–2005 to 2016–2017 influenza seasonswas used to identify both
the time-dependent transmission function and the time-dependent noise intensity. The
LLGMM provides a new technique for gaining valuable information about the spread
of diseases, namely identification of the complicated transmission rate.

As noted in Sect. 2, we follow the basic formation of our stochastic SE I RS model
as in Méndez et al. (2012). In particular, the model we consider here captures only the
stochastic nature of the transmission function with theWeiner process explicitly in the
formation of the function β(t). This is done for two reasons. First, the transmission rate
is the most difficult epidemiological parameter to estimate (Anderson and May 1991)
and it is highly variable, making it of paramount importance to determine. The latency
and recovery period can be measured from data and are well described by a constant
value, the population mean. Second, we offer here a proof of concept that the LLGMM
is a powerful tool for the inverse problem in epidemiological modeling by focusing on
a simple SE I RS model applied to influenza data. Future applications of the LLGMM
would include more realistic modeling of influenza outbreaks in the United States.
As a case in point, vaccination uptake is highly variable and important to the modern
control of influenza outbreaks, therefore influenza models should include vaccination.
See for example Kong et al. (2015) who investigate the effect of vaccination on a
SEIRA epidemic model with separate juvenile and adult groups. They introduce an
inverse method for extracting time-dependent transmission rate from pre-and-post
vaccination measles incident data.

The main technique for LLGMM involves computing the expected value of model
variables by averaging the values of some number of past data points. We have con-
sidered here all reported influenza infections as infections arising from one disease,
which is a gross generalization. Each year multiple influenza types, e.g. A and B,
and strains, e.g. influenza A H1N1 or H3N2, circulate and are constantly mutating.
By averaging the transmission patterns of several past weeks to determine a current
transmission rate, we allow explicit computation of β assuming previous transmission
patterns are influential on the transmission of current week. From a biological view,
averaging assumesmutated strains are likely to have similar transmission rates, among
other properties.

The last recorded influenza pandemic (pH1N1) occurred during the 2009–2010
season and the data (Fig. 2) clearly show the summer peak followed by the higher peak
in November. In the United States the 2014–2015 influenza season was moderately
severe, perhaps accounted for by a mutated (drifted) H3N2 strain that did not match
the vaccine Appiah et al. (2015). Again, this peak is noticeable in the data. These two
high peaks in the fraction of infectious individuals correspond to the largest spikes in
the transmission rate β, with rapid oscillations only seen for the 2009–2010 season.
Extreme oscillations in the noise intensity σ occur around these two influenza seasons,
though only the 2009–2010 season shows a larger than normal noise intensity. The
delay constant m shows a sharp decrease around both seasons. Thus, the LLGMM
procedure is able to identify that these two seasons are different than the other ‘normal’
influenza seasons. It is also able to capture some fundamental difference between these
two extreme seasons.
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Our main goal here was to describe the LLGMM technique. We use the SE I RS
model and influenzadata as a demonstrationof the technique.Therefore,we considered
only a basic epidemiological model and did only modest adjustments to the CDC
influenza data. The technique shows promise for future study given the differences it
is able to capture in and between the two ‘non-normal’ influenza seasons, even with
the simple model and data adjustments. Researchers with a goal of analyzing trends in
the identified transmission rate should consider a more realistic model for influenza,
accounting for influential aspects such as vaccination, asymptomatic infection, effects
based on age group, and changes in the total population size. More accurate initial
conditions and modifications to the CDC data should also be considered.
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