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Abstract
In this paper, we provide a complete mathematical construction for a stochastic leaky-
integrate-and-fire model (LIF) mimicking the interspike interval (ISI) statistics of a
stochastic FitzHugh–Nagumo neuron model (FHN) in the excitable regime, where the
unique fixed point is stable. Under specific types of noises, we prove that there exists
a global random attractor for the stochastic FHN system. The linearization method is
then applied to estimate the firing time and to derive the associated radial equation
representing a LIF equation. This result confirms the previous prediction in Ditlevsen
andGreenwood (JMathBiol 67(2):239–259, 2013) for theMorris-Lecar neuronmodel
in the bistability regime consisting of a stable fixed point and a stable limit cycle.
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1 Introduction

Mathematical modeling has emerged as an important tool to handle the overwhelming
structural complexity of neuronal processes and to gain a better understanding of their
functioning from the dynamics of their model equations. However, the mathematical
analysis of biophysically realistic neuron models such as the 4-dimensional Hodgkin–
Huxley (HH) (1952) and the 2-dimensional Morris–Lecar (ML) (1981) equations
is difficult, as a result of a large parameter space, strong nonlinearities, and a high
dimensional phase space of the model equations. The search for simpler, mathemati-
cally tractable (small parameter space, weaker nonlinearities, low dimensional phase
space) neuronmodels that still capture all, or at least some important dynamical behav-
iors of biophysical neurons (HH and ML) has been an active area of research.

The efforts in this area of research have resulted in easily computable neuronmodels
which mimic some of the dynamics of biophysical neuron models. One of the result-
ing models is the 2-dimensional FitzHugh–Nagumo (FHN) neuron model (FitzHugh
1961). The FHN model has been so successful, because it is at the same time mathe-
matically simple and produces a rich dynamical behavior that makes it a model system
in many regards, as it reproduces the main dynamical features of the HH model. In
fact, the HH model has two types of variables, and each type then is combined into a
single variable in FHN: The (V ,m) variables of HH correspond to the v variable in
FHN, whose fast dynamics represents excitability; the (h, n) variables correspond to
the w variable, whose slow dynamics represents accommodation and refractoriness.

The fact that the FHN model is low dimensional makes it possible to visualize
the solution and to explain in geometric terms important phenomena related to the
excitability and action potential generation mechanisms observed in biological neu-
rons. Of course, this comes at the expense of numerical agreement with the biophysical
neuron models (Yamakou 2018). The purpose of the model is not a close match with
biophysically realistic high dimensional models, but rather a mathematical explana-
tion of the essential dynamical mechanism behind the firing of a neuron. Moreover,
the analysis of such simpler neuron models may lead to the discovery of new phe-
nomena, for which we may then search in the biological neuron models and also in
experimental preparations.

There is, however, an even simpler model than FHN, the leaky integrate-and-fire
model (LIF). This is the simplest reasonable neuron model. It only requires a few
basic facts about nerve cells: they have membranes, they are semipermeable, and
they are polarizable. This suffices to deduce a circuit equivalent to that of the mem-
brane potential of the neuron: a resistor-capacitor circuit. Such circuits charge up
slowly when presented with a current, cross a threshold voltage (a spike), then slowly
discharge. This behavior is modeled by a simple 1D equation together with a reset
mechanism: the leaky integrate-and-fire neuron model equation (Gerstner and Kistler
2002). Combining sub-threshold dynamics with firing rules has led to a variety of 1D
leaky integrate-and-fire descriptions of a neuronwith a fixedmembrane potential firing
threshold (Gerstner and Kistler 2002; Lansky and Ditlevsen 2008) or with a firing rate
depending more sensitively on the membrane potential (Pfister et al. 2006). In contrast
to n−dimensional neuron models, n ≥ 2, such as the HH, ML, and FHN models, the
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LIF class of neuron models is less expensive in numerical simulations, which is an
essential advantage when a large network of coupled neurons is considered.

Noise is ubiquitous in neural systems and it may arise frommany different sources.
One source may come from synaptic noise, that is, the quasi-random release of
neurotransmitters by synapses or random synaptic input from other neurons. As a
consequence of synaptic coupling, real neurons operate in the presence of synaptic
noise. Therefore, most works in computational neuroscience address modifications in
neural activity arising from synaptic noise. Its significance can however be judged only
if its consequences can be separated from the internal noise, generated by the opera-
tions of ionic channels (Calvin and Stevens 1967). The latter is channel noise, that is,
the random switching of ion channels. In many papers channel noise is assumed to be
minimal, because typically a large number of ion channels is involved and fluctuations
should average out, and therefore, the effects of synaptic noise should dominate. Con-
sequently, channel noise is frequently ignored in themathematicalmodeling.However,
the presence of channel noise can also greatly modify the behavior of neurons (White
et al. 2000). Therefore, in this paper, we study the effect of channel noise. Specifically,
we add a noise term to the right-hand side of the gating equations (the equation for
the ionic current variable).

In the stochastic model, the deterministic fixed point is no longer a solution of the
system. The fixed point necessarily needs to vary and adapt to the noise. To account
for this, in the theory of random dynamical systems, the notion of a random dynamical
attractor was developed as a substitute for deterministic attractors in the presence of
noise. In the first part of this paper, we therefore prove that our system admits a global
random attractor, for both additive and multiplicative channel noises. This can be seen
as a theoretical grounding of our setting.

In Ditlevsen and Greenwood (2013), it was shown that a stochastic LIF model
constructed with a radial Ornstein–Uhlenbeck process is embedded in the ML model
(in a bistable regime consisting of a fixed point and limit cycle) as an integral part of it,
closely approximating the sub-threshold fluctuations of the ML dynamics. This result
suggests that the firing pattern of a stochasticML can be recreated using the embedded
LIF together with a ML stochastic firing mechanism. The LIF model embedded in
the ML model captures sub-threshold dynamics of a combination of the membrane
potential and ion channels. Therefore, results that can be readily obtained for LIF
models can also yield insight about ML models. In the second part of this paper, we
here address the problem to obtain a stochastic LIF model mimicking the interspike
interval (ISI) statistics of the stochastic FHNmodel in the excitable regime, where the
unique fixed point is stable. Theoretically, we obtain such a LIF model by reducing
the 2D FHN model to the one dimensional system that models the distance of the
solution to the random attractor as shown in the first part of the paper. In fact, we
show that this distance can be approximated to the fixed point, up to a rescaling, as the
Euclidean norm Rt of the solution of the linearization of the stochastic FHN equation
along the deterministic equilibrium point, and hence the LIF model is approximated
by the equation for Rt . An action potential (a spike) is produced when Rt exceeds
a certain firing threshold Rt ≥ r0 > 0. After firing the process is reset and time
is back to zero. The ISI τ0 is identified with the first-passage time of the threshold,
τ0 = inf{t > 0 : Rt ≥ r0 > 0}, which then acts as an upper bound of the spiking time
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τ of the original system. By defining the firing as a series of first-passage times, the
1D radial process Rt together with a simple firing mechanism based on the detailed
FHN model (in the excitable regime), the firing statistics is shown to reproduce the
2D FHN ISI distribution. We also show that τ and τ0 share the same distribution.

The rest of the paper is organized as follows: Sect. 2 introduces the deterministic
version of the FHN neuron model, where we determine the parameter values for
which the model is in the excitable regime. In Sect. 3, we prove the existence of a
global random attractor of the random dynamical system generated by the stochastic
FHN equation; and furthermore derive a rough estimate for the firing time using the
linearization method. The corresponding stochastic LIF equation is then derived in
Sect. 4 and its distribution of interspike-intervals is found to numerically match the
stochastic FHN model.

2 The deterministic model and the excitable regime

In the fast time scale t , the deterministic FHN neuron model is

⎧
⎨

⎩

dvt =
(

vt − v3t

3
− wt + I

)

dt = f (vt , wt )dt,

dwt = ε(vt + α − βwt )dt = g(vt , wt )dt,
(2.1)

where vt is the activity of the membrane potential and wt is the recovery current
that restores the resting state of the model. I is a constant bias current which can
be considered as the effective external input current. 0 < ε := t/τ � 1 is a small
singular perturbation parameter which determines the time scale separation between
the fast t and the slow time scale τ . Thus, the dynamics of vt is much faster than that
of wt . α and β are parameters.

The deterministic critical manifold C0 defining the set of equilibria of the layer
problem associated to Eq. (2.1) (i.e., the equation obtained from Eq. (2.1) in the
singular limit ε = 0, see Kuehn (2015) for a comprehensive introduction to slow-fast
analysis), is obtained by solving f (v,w) = 0 for w. Thus, it is given by

C0 =
{

(v,w) ∈ R
2 : w = v − v3

3
+ I

}

. (2.2)

We note that for Eq. (2.1), C0 coincides with the v-nullcline (the red curve in Fig. (1)).
The stability of points on C0 as steady states of the layer problem associated to Eq. (2.1)
is determined by the Jacobian scalar (Dv f )(v,w) = 1 − v2. This shows that on the
critical manifold, points with |v| > 1 are stable while points with |v| < 1 are unstable.
It follows that the branch v∗−(w) ∈ (−∞,−1) is stable, v∗

0(w) ∈ (−1, 1) is unstable,
and v∗+(w) ∈ (1,+∞) is stable.

The set of fixed points (ve, we)which define the resting states of the neuron is given
by

{(v,w) ∈ R
2 : f (v,w) = g(v,w) = 0}. (2.3)
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The sign of the discriminant � = (1/β − 1)3 + 9
4 (α/β − I )2, determines the number

of fixed points. C0 can therefore intersect the w-nullcline (w = v+α
β

) at one, two or
three different fixed points. We assume in this paper that � > 0, in which case we
have a unique fixed point given by

⎧
⎨

⎩

ve = 3

√

−q

2
− √

� + 3

√

−q

2
+ √

�

we = 1
β
(ve + α).

(2.4)

where

p = 3
( 1

β
− 1

)
, q = 3

(α

β
− I

)
.

Here, we want to consider the neuron in the excitable regime (Ditlevsen and Green-
wood 2013). A neuron is in the excitable regimewhen starting in the basin of attraction
of a unique stable fixed point, an external pulse will result into at most one large excur-
sion (spike) into the phase space after which the phase trajectory returns back to this
fixed point and stays there (Izhikevich 2007).

In order to have Eq. (2.1) in the excitable regime, we choose I , α, and β such that
� > 0 (i.e., a unique fixed point) and ε such that the Jacobian (the linearization matrix
M) of Eq. (2.1) at the fixed point (ve, we) has a pair of complex conjugate eigenvalues

−μ ± iν = 1

2

(
1 − v2e − εβ

)
± i

2

√

4ε − (
1 − v2e + εβ

)2

with negative real part (i.e., a stable fixed point). In that case, (ve, we) is the only
stationary state and there is no limit cycle of system (2.1). In other words, (ve, we) is
the global attractor of the system (Izhikevich 2007). Moreover, to apply the averaging
technique (Baxendale and Greenwood 2011), it is necessary that μ � ν, we therefore
use throughout this paper the following parameters of the system: I = 0.265, α =
0.7, β = 0.75, ε = 0.08 so that (ve, we) = (−1.00125,−0.401665) is the unique
stable fixed point and μ

ν
= 0.111059 � 1. Figure (1) shows the neuron in the excitable

regime. Notice that although every trajectory finally converges to the fixed point, only
a small change in the location of the starting point will result in different behavior of
the trajectories (see the blue and purple curves).

3 The stochastic model

We consider this stochastic FHN model

{
dvt = f (vt , wt )dt,

dwt = g(vt , wt )dt + h(wt ) ◦ dBt ,
(3.1)
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Fig. 1 The critical manifold C0 (red curve) and thew-nullcline (green line) intersect at the unique and stable
fixed point (ve, we) = (−1.00125,−0.401665). Two deterministic trajectories are shown, the purple curve
starts at (−1.00125,−0.45) and the blue curve starts at (−1.00125,−0.46). Parameters of the system
I = 0.265, α = 0.7, β = 0.75, ε = 0.08 and the real time for trajectories T = 1000 (color figure online)

where the deterministic fields f and g are given in Eq. (2.1). There are two important
cases: either h(w) = σ0 (additive channel noise) or h(w) = σ0w (multiplicative
channel noise). ◦dBt stands for the Stratonovich stochastic integral with respect to the
Brownian motion Bt .

Figure 2 shows the phase portraits of Eq. (3.1) starting with the initial condition
(v0, w0) = (−1.00125,−0.4), which is in the vicinity of the stable fixed point. Given
an initial condition close to the stable fixed point (ve, we) = (−1.00125,−0.401665),
the trajectory of the stochastic systemmight first rotate around the stable fixed point but
then the noisemay trigger a spike, that is, a large excursion into the phase space, before
returning to the neighbourhood of the fixed point; the process repeats itself leading to
alternations of small and large oscillations. A similar behavior can be observed when
the deterministic system with an additional limit cycle is perturbed by noise (as seen
in the bistable system Ditlevsen and Greenwood 2013).

Figure 3 shows that the spiking frequency increases as the amplitude of the noise
increases. For a fixed simulation time T = 1000, the system spikes only rarely, if at
all, when the amplitude σ0 ≤ 0.005, but spikes more frequently when σ0 increases.
This is similar for multiplicative noise.

Let X = (v,w)T and F(X), H(X) ∈ R
2 be the drift and diffusion coefficients of

(3.1). The stochastic system is then of the form

dXt = F(Xt )dt + H(Xt ) ◦ dBt , (3.2)

where H(X) = (0, σ0)T for additive noise and H(X) =
(
0 0
0 σ0

)

X = BX for multi-

plicative noise. It is easy to check that F is dissipative in the weak sense, i.e.
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Fig. 2 Random trajectory of Eq. (3.1) in the excitable regime with chosen parameters of the system and
the initial condition (v0, w0) = (−1.00125,−0.4) for both additive and multiplicative noise (we use the
StochasticRungeKutta method in Mathematica with the real time T = 1000 and the step size h = 0.01)

〈X1 − X2, F(X1) − F(X2)〉
= (v1 − v2)

2
[
1 − 1

3

(
v21 + v1v2 + v22

) ]

−(1 − ε)(v1 − v2)(w1 − w2) − εβ(w1 − w2)
2

≤ (v1 − v2)
2
[
1 − 1

12
(v1 − v2)

2
]

+ (1 − ε)2

2εβ
|v1 − v2|2 + εβ

2
|w1 − w2|2 − εβ(w1 − w2)

2

≤ − 1

12

(

|v1 − v2|2 − 6

(

1 + εβ

2
+ (1 − ε)2

2εβ

) )2

(3.3)

+3

(

1 + εβ

2
+ (1 − ε)2

2εβ

)2

− εβ

2
(|v1 − v2|2 + |w1 − w2|2)

≤ a − b‖X1 − X2‖2 (3.4)

where

a := 3

(

1 + εβ

2
+ (1 − ε)2

2εβ

)2

, b := εβ

2
.

On the other hand, we have

|H(X1) − H(X2)| ≤ σ0

∣
∣
∣w1 − w2

∣
∣
∣ ≤ σ0‖X1 − X2‖, (3.5)

for multiplicative noise, while |H(X1) − H(X2)| ≡ 0 for additive noise, so H is
globally Lipschitz continuous.
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Fig. 3 The components (left column:Vt , right column:Wt ) of a random trajectory ofEq. (3.1) in the excitable
regime with chosen parameters of the system and the initial condition (v0, w0) = (−1.00125,−0.4) for
additive noise with σ0 ∈ {0.005, 0.008, 0.01, 0.02}, T = 1000, h = 0.01

3.1 The existence of a random attractor

In the sequel, we are going to prove that there exists a unique solution X(·, ω,X0) of
(3.1) and the solution then generates a so-called random dynamical system (see e.g.
Arnold 1998, Chapters 1–2).
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More precisely, let (�,F ,P) be a probability space on which our Brownian motion
Bt is defined. In our setting,� can be chosen asC0(R,R), the space of continuous real
functions onRwhich are zero at zero, equipped with the compact open topology given
by the uniform convergence on compact intervals in R, F as B(C0), the associated
Borel-σ -algebra and P as the Wiener measure. The Brownian motion Bt can then be
constructed as the canonical version Bt (ω) := ω(t).

On this probability space we construct a dynamical system θ as the Wiener shift

θtm(·) = m(t + ·) − m(t), ∀t ∈ R,∀m ∈ �̄. (3.6)

Then θt (·) : � → � satisfies the group property, i.e. θt+s = θt ◦ θs for all t, s ∈ R,
and is P-preserving, i.e. P(θ−1

t (A)) = P(A) for every A ∈ F , t ∈ R. The quadruple
((�,F ,P, (θt )t∈R) is called a metric dynamical system.

Given such a probabilistic setting, Theorem 3.1 below proves that the solution
mapping ϕ : R × � × R

2 → R
2 defined by ϕ(t, ω)X0 := X(t, ω,X0) is a random

dynamical system satisfying ϕ(0, ω)X0 = X0 and the cocycle property

ϕ(t + s, ω)X0 = ϕ(t, θsω) ◦ ϕ(s, ω)X0, ∀t, s ∈ R, ω ∈ �,X0 ∈ R
2 (3.7)

To investigate the asymptotic behavior of the system under the influence of noise,
we shall first check the effect of the noise amplitude on firing. Under the stochastic
scenario, the fixed pointXe = (ve, we) is no longer the stationary state of the stochastic
system (3.1). Instead, we need to find the global asymptotic state as a compact random
set A(ω) ∈ R

2 depending measurably on ω ∈ � such that A is invariant under ϕ,
i.e. ϕ(t, ω)A(ω) = A(θtω), and attracts all other compact random sets D(ω) in the
pullback sense, i.e.

lim
t→∞ d(ϕ(t, θ−tω)D(θ−tω)|A(ω)) = 0,

where d(B|A) is the Hausdorff semi-distance. Such a structure is called a random
attractor (see e.g. Crauel et al. 1997 or Arnold 1998, Chapter 9).

The following theorem ensures that the stochastic system (3.1) has a global random
pullback attractor. The proof is provided in the “Appendix”.

Theorem 3.1 There exists a unique solution of (3.2)which generates a randomdynam-
ical system. Moreover, the system possesses a global random pullback attractor.

Theorem 3.1 shows that every trajectory would in the long run converge to the
global random attractor. The structure and the inside dynamics of the global random
attractor are still open issues which might help understand the firing mechanism.

3.2 The normal form at the equilibrium point

One way to study the dynamics of the stochastic system (3.1) is through its lineariza-
tion. Therefore, in this section, we shall study the dynamics of (3.1) in a small vicinity
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of the fixed point Xe = (ve, we). To do that, consider the shift system w.r.t. the fixed
point Xe which has the form

d(Xt − Xe) = [F(Xt ) − F(Xe)]dt + H(Xt ) ◦ dBt

=
[
DF(Xe)(Xt − Xe) + F̄(Xt − Xe)

]
dt + H(Xt ) ◦ dBt , (3.8)

with initial point X0 − Xe, where DF(Xe) is the linearized matrix of F at Xe, F̄ is
the nonlinear term such that

‖F̄(X − Xe)‖ =
∥
∥
∥
∥

( 1
3 |v + 2ve|(v − ve)

2

0

) ∥
∥
∥
∥

≤ γ (r)‖X − Xe‖, ∀‖X − Xe‖ ≤ r

for an increasing function γ (·) : R+ → R+, r �→ r2
3 + |ve|r , which implies that

lim
r→0

γ (r) = 0. Since H(X) is either a constant or a linear function, we prove below

that system (3.8) can be well approximated by its linearized system

dX̄t = DF(Xe)X̄t dt + H(X̄t + Xe) ◦ dBt , X̄0 = X0 − Xe. (3.9)

Theorem 3.2 Given ‖X0 − Xe‖ < r and equations (3.8), (3.9), define the stopping
time τ = inf{t > 0 : ‖Xt − Xe‖ ≥ r}. Then there exists a constant C independent of
r such that for any t ≥ 0, the following estimates hold

• For additive noise
sup
t≤τ

‖Xt − Xe − X̄t‖ ≤ Cγ (r)r . (3.10)

• For multiplicative noise

E‖Xt∧τ − Xe − X̄t∧τ‖2 ≤ Cγ 2(r)r2. (3.11)

The proof is provided in the “Appendix”. In practice we can even approximate (3.8)
by the following linear system with additive noise

dX̃t = DF(Xe)X̃t dt + H(Xe) ◦ dBt , X̃0 = X0 − Xe. (3.12)

By the same arguments as in the proof of Theorem 3.2, we can prove the following
estimate

E‖Xt∧τ − Xe − X̃t∧τ‖2 ≤ Cr20 , (3.13)

for the same stopping time τ = inf{t > 0 : ‖Xt − Xe‖ ≥ r0}.
Another comparison between the processes {Xt −Xe}t and {X̄t }t can be obtained by

using power spectral density estimation (see, for example, Fan and Yao 2003, Chapter
7). In Fig. 4, the estimated spectral densities of the shifted original and the linearized
process are plotted. The spectral densities are estimated from paths started from 0 to
50 ms of subthreshold fluctuations, and scaled to have the same maximum at 40.
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Fig. 4 The process {Xt −Xe}t (3.8) and the process {X̄t }t (3.9) with the chosen parameters of the system,
σ0 = 0.01 and the same starting point (v0−ve, w0−we) are compared by using the power spectral density.
Their spectrum densities are well approximated

4 The embedded LIF model

In this section, we present two constructive methods to obtain 1-D LIF models corre-
sponding to the stochastic FHN in the excitable regime in Eq. (3.1). The first method
follows Baxendale and Greenwood (2011) (see also Ditlevsen and Greenwood 2013)
by constructing the so-called radial Ornstein–Uhlenbeck equation. More precisely,
we rewrite the linearized system (3.9) in the form

dX̄t = MX̄t dt +
(
0 0
0 σ0

)

dBt , (4.1)

where M = DF(Xe) and Bt =
(
B ′
t

Bt

)

is a 2-D standard Brownian motion. For

chosen parameters, M has a pair of complex conjugate eigenvalues −μ ± iν with
μ = 0.0312496, ν = 0.281378. By transformation Ȳt = Q−1X̄t with Q =(−ν m11 + μ

0 m21

)

we obtain

dȲt = AȲt dt + CdBt , (4.2)

where

A =
(−μ ν

−ν −μ

)

=
(−0.0312496 0.281378

−0.281378 −0.0312496

)

;

C = Q−1
(
0 0
0 σ0

)

.

We note that μ
ν

= 0.111059 � 1, therefore, by applying the technique of time
average from (Baxendale and Greenwood 2011, Theorem 1), Ȳt can be approximated
by an Ornstein-Uhlenbeck process up to a rotation, i.e.

Ȳt ∼ Ȳapp
t := σ√

μ
Rot−νt S̄μt ,
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where σ =
√

1
2 tr(CC

∗) =
√ −m12

2ν2m21
σ0, the rotation

Rots :=
(
cos s − sin s
sin s cos s

)

,

and S̄t is the unique solution of the 2-D SDE

dS̄t = −S̄t dt + dBt ,

with the initial value S̄0 =
√

μ

σ
Ȳ0. Therefore, ‖Ȳt‖ can be approximated by Rt :=

‖Ȳapp
t ‖ = σ√

μ
‖S̄μt‖ which by Ito calculus satisfies the SDE

dRt =
[ σ 2

2Rt
− μRt

]
dt + σd B̃t . (4.3)

The second method is to consider Ȳt in polar coordinates with

dȲt = AȲt dt + hedBt ,

where he = Q−1
(
0
σ0

)

. Its norm R̄t := ‖Ȳt‖ and its angle θ t = Ȳt
R̄t

satisfy

d R̄t =
[‖he‖2 − 〈he, θ t 〉2

2R̄t
− μR̄t

]
dt + 〈θ t ,he〉dBt ,

dθ t =
[
(A + μI )θ t − ‖he‖2 − 〈he, θ t 〉2

2R̄2
t

θ t

]
dt + 1

R̄t

[
he − 〈he, θ t 〉θ t

]
dBt .

By the averaging technique from (Baxendale and Greenwood 2011, Theorem 1) one

can approximate θ t =
(
sin νt
cos νt

)

, hence

d R̄t =
[
157.881σ 2

0 − (1.27722 sin νt + 12.5 cos νt)2σ 2
0

2R̄t
− μR̄t

]

dt

+ (1.27722 sin νt + 12.5 cos νt)σ0dBt .

(4.4)

Thus, by using the averaging technique, we proved that both Eqs. (4.3) and (4.4)
are good approximations of the radial process {‖Ȳt‖}t = {‖Q−1X̄t‖}t . This can also
be tested by using the power spectral density estimation (see Fig. 5).

Firingmechanism

A spike in Eq. (3.1) occurs when there is a transition of a random trajectory from the
vicinity of the stable fixed point Xe = (ve, we) located on the left stable part of C0 to
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Fig. 5 The norm of the process {Ȳt } (4.2), the process {Rt }t (4.3), and the process {R̄t }t (4.4) with the
chosen parameters of the system, σ0 = 0.01 and the same starting point ‖Q−1X̄0‖ are compared by using
the power spectral density. Their spectrum densities are well approximated (color figure online)

its right stable part and back to the vicinity of Xe. This spike happens almost surely
when a random trajectory with the starting point X0 in the vicinity of Xe crosses the
threshold line v = 0. From the phase space of Eq. (3.1) (see Fig. 2), the probability
of a spike increases as the starting point X0 moves farther away from Xe.

In order to construct the firingmechanism of Eq. (4.3)matching that of Eq. (3.1), we
will calculate the conditional probability that Eq. (3.1) fires given that the trajectory
crosses the line L = {(ve, w) : w ≤ we}. Denote by Li = (ve, we − li ) with
li = iδ = i |we+0.453|

20 for i = 0, 1, . . . , 34, then the distance between the equilibrium
and Li is li . The value |we + 0.453| can be considered as the distance between the
fixed point (ve, we) and the separatrix (see also Fig. 1) along L . For a given pair
(σ0, li ), a short trajectory starting in Li was simulated from (3.1), it was recorded
whether a spike occurred (crossing the threshold v = 0) in the first cycle of the
stochastic path around (ve, we). This was repeated 1000 times and we counted the
ratio of the number of spikes, denoted by p̂(li , σ0), which is an estimate for the
conditional probability of firing p(l, σ0). The estimation was, furthermore, repeated
for σ0 = 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.015.

From the numerical simulation, for each σ0, the estimate of the conditional proba-
bility is close to zero when we start in the immediate neighborhood of the stable fixed
point and close to one when we start at the L34, i.e., sufficiently far from the fixed
point. Theses estimates appear to depend in a sigmoidal way on the distance from the
stable fixed point. Therefore we assumed the conditional probability of firing to be of
the form

p(l) = 1

1 + e
a−l
b

. (4.5)

The parameters a and b then are estimated by using a non-linear regression from the
above simulation data and are plotted in Fig. 6 for some different values of the noise
amplitude σ0 = 0.003, 0.005, 0.007, 0.009, 0.01, and 0.015.We see that the family of
estimates, p̂, fits the fitted curve quite well for each value of σ0. Regression estimates
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Fig. 6 Conditional probability of spiking when crossing the line L = {(ve, w) : w ≤ we} for different
values of the noise amplitude σ0. The red dots are individual nonparametric estimates and the blue curve
are the fitted curves given by (4.5) (color figure online)

are reported in Table 1. Note that p(a) = 1/2, i.e., a is the distance along L from we

at which the conditional probability of firing equals one half. For all values of σ0, the
estimate of a is close to the distance along L between we and the separatrix, which
equals 0.05. In other words, the probability of firing, if the path starts at the intersection
of L with the separatrix, is about 1/2. The estimate of b increases with respect to σ0,
and the conditional probability approaches a step function as the amplitude of the
noise goes to zero. A step function would correspond to the firing being represented
by a first passage time of a fixed threshold.

To simplify calculations we will work on the transformed coordinates Ȳt . Then the
distance l between (0, l) and (0, 0) in X̄t transforms to the distance
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r =
∣
∣
∣
∣Q

−1
(
0
l

) ∣
∣
∣
∣ =

√

− m12

m21ν2
l.

and the conditional probability of firing Eq. (4.5) transforms to

p(r) = 1

1 + e
a∗−r
b∗

(4.6)

where a∗ =
√

− m12
m21ν2

a and b∗ =
√

− m12
m21ν2

b.

ISI distributions

The comparison of the original stochastic FHN model (3.1) and the two LIF models
(4.3) and (4.4) can be performed by studying the ISI statistics. Namely, one first
simulates the trajectories of the system (3.1) with starting points X0 close to the fixed
point Xe until the first spiking time, and thereafter resets to the starting points. Due to
Theorem 3.2, we can simplify the simulation by choosing the starting point at exactly
Xe. Thiswas done 1000 times, and the time of the first firingwas recorded.A histogram
for this data is shown in Fig. 7. The ISI-distribution of Eq. (4.3) is computed as follows
(the ISI-distribution of Eq. (4.4) is computed similarly). Let τ1 be the first firing time.
We computed the density of the distribution of τ1 in terms of the conditional hazard
rate (Ditlevsen and Greenwood 2013),

α(r , t) = lim
�t→0

1

�t
P(t ≤ τ1 < t + �t |τ1 ≥ t, Rt = r).

This function is the density of the conditional probability, given the position on L is r
at time t , of a spike occurring in the next small time interval, given that it has not yet
occurred.
Notice that the estimated conditional probability of firing (4.6) is calculated in one
cycle of the process, which on average takes 2π/ν time units. Therefore, we estimate
the hazard rate as

α(r , t) = α(r) = ν

2π

1

1 + e
a∗−r
b∗

. (4.7)

On the other hand, from standard results from survival analysis, see e.g. Aalen and
Borgan (2008) we know that the density of the firing time can be calculated as

g(t) = d

dt
P(τ1 ≤ t) = E

(

α(Rt )e
− ∫ t

0 α(Rs )ds
)

. (4.8)

Due to the law of large numbers, for fixed t , we can numerically determine the
density (4.8) up to any desired precision by choosing n and M large enough through
the expression
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Fig. 7 The estimated ISI distributions from our approximate LIF models (4.3) and (4.4) with the firing
mechanism compare well with the estimated ISI histogram of FHN (3.1) reset to 0 after firings. σ0 =
0.01, M = 1000, n = 10 (color figure online)

g(t) ≈ 1

M

M∑

m=1

α(R(m)
t )e

− t
n

n∑

i=1

α

(
R(m)
i t/n

)
+α

(
R(m)
(i−1)t/n

)

2
.

Here (R(m)
0 , . . . , R(m)

i t/n, . . . , R
(m)
t ) are M realizations of Rit/n, i = 0, 1, . . . , n, and

the integral has been approximated by the trapezoidal rule. The results are illustrated
in Fig. 7 for σ0 = 0.01, using M = 1000, n = 10. The estimated ISI distributions
from our approximate LIF models (4.3) and (4.4) with the firing mechanism compare
well with the estimated ISI histogram of FHN (3.1) reset to 0 after firings.
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Appendix

Proof of Theorem 3.1 We are going to prove that there exists a random pullback attrac-
tor for the general Eq. (3.2). Consider two cases:

• Additive noise: In this case, the proof follows similar steps as in Garrido-Atienza
et al. (2009). We define Yt = Xt − ηt where ηt is the unique stationary solution
of

dηt = −ηt dt + (0, σ0)
T dBt .
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System (3.2) is then tranformed to

Ẏt = F(Yt + ηt ) + ηt . (5.1)

Observe that

d

dt
‖Yt‖2 = 2〈Yt , F(Yt + ηt ) − F(ηt )〉 + 2〈Yt , F(ηt ) + ηt 〉

≤ 2(a − b‖Yt‖2) + b‖Yt‖2 + 1

b
‖F(ηt ) + ηt‖2

= 2a + 1

b
‖F(ηt ) + ηt‖2 − b‖Yt‖2.

Hence by the comparison principle, ‖Yt‖ ≤ Rt whenever ‖Y0‖2 ≤ R0 where Rt

is the solution of

Ṙt = 2a + 1

b
‖F(ηt ) + ηt‖2 − bRt , (5.2)

which can be computed explicitly as

Rt (ω, R0) = e−bt R0 +
∫ t

0
e−b(t−s)

[

2a + 1

b
‖F(ηs) + ηs‖2

]

ds.

It is then easy to check that the vector field in (5.1) satisfies the local Lipschitz
property and the solution is bounded and thus of linear growth on any fixed [0, T ],
see e.g. Schenk-Hoppé (1996). Hence there exists a unique solution of (5.1) with
initial condition, which also proves the existence and uniqueness of the solution
of (3.2). The cocycle property (3.7) follows automatically from (Arnold 1998,
Chapter 2).
A direct computation shows that there exists a random radius

R∗(ω) =
∫ 0

−∞

[

2a + 1

b
‖F(ηs) + ηs‖2

]

ebsds,

which is the stationary solution of (5.2), such that Xt (ω,X0) ∈ B(ηt , R∗(θtω))

whenever X0 ∈ B(η0, R∗(ω)) by the comparison principle, and furthermore,

lim sup
t→∞

‖Yt (θ−tω,Y0)‖2 ≤ lim sup
t→∞

Rt (θ−tω, R0) = R∗(ω).

Hence the random ball B(η, R∗) is a forward invariant pullback absorbing set
of the random dynamical system generated by ϕ(t, ω)X0 (3.2). By the classical
theorem Crauel et al. (1997), there exists the global random pullback attractor for
(3.2).

• Multiplicative noise: In this case, we introduce the transformation

Yt = (vt , ω̄t )
T :=

(
1 0
0 e−σ0zt

)

Xt = T (zt )Xt (5.3)
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where zt is the unique stationary solution of the Ornstein–Uhlenbeck equation

dzt = −ztdt + dBt . (5.4)

This transforms system (3.2) into a random differential equation.

v̇t = vt − v3t

3
− eσ0zt ω̄t + I

˙̄ωt = e−σ0zt εvt + (σ0zt − εβ)ω̄t + εαe−σ0zt . (5.5)

or equivalently,

Ẏt = G(zt ,Yt )

where G satisfies G(zt , 0) = (I , εαe−σ0zt )T and

〈Y1 − Y2,G(zt ,Y1) − G(zt ,Y2)〉
= (v1 − v2)

2
[

1 − 1

3

(
v21 + v1v2 + v22

)]

+(εe−σ0zt − eσ0zt )(v1 − v2)(w̄1 − w̄2)

+(σ0zt − εβ)(w̄1 − w̄2)
2

≤ (v1 − v2)
2 − 1

12
(v1 − v2)

4 + 1

2εβ

(
εe−σ0zt − eσ0zt

)2
(v1 − v2)

2

+
(

σ0zt − εβ

2

)

(w̄1 − w̄2)
2

≤ − 1

12
(v1 − v2)

4 +
[

1 + 1

2εβ

(
εe−σ0zt − eσ0zt

)2

−σ0zt + εβ

2

]

(v1 − v2)
2

+
(

σ0zt − εβ

2

)

‖Y1 − Y2‖2

≤ − 1

12

(
(v1 − v2)

2 + 6

[

1 + 1

2εβ

(
εe−σ0zt − eσ0zt

)2

−σ0zt + εβ

2

] )2

+3

[

1 + 1

2εβ

(
εe−σ0zt − eσ0zt

)2 − σ0zt + εβ

2

]2

+
(
σ0zt − εβ

2

)
‖Y1 − Y2‖2

≤ 3

[

1 + 1

2εβ

(
εe−σ0zt − eσ0zt

)2 − σ0zt + εβ

2

]2
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+
(
σ0zt − εβ

2

)
‖Y1 − Y2‖2.

Thus,

d

dt
‖Yt‖2 = 2〈Yt − 0,G(zt ,Yt ) − G(zt , 0)〉 + 2〈Yt ,G(zt , 0)〉

≤ 3

[

1 + 1

2εβ

(
εe−σ0zt − eσ0zt

)2 − σ0zt + εβ

2

]2

+
(
σ0zt − εβ

2

)
‖Yt‖2 + 2〈Yt ,G(zt , 0)〉

≤ 3

[

1 + 1

2εβ

(
εe−σ0zt − eσ0zt

)2 − σ0zt + εβ

2

]2

+ 4

εβ
‖G(zt , 0)‖2 +

(
σ0zt − εβ

4

)
‖Yt‖2

≤ 3

[

1 + 1

2εβ

(
εe−σ0zt − eσ0zt

)2 − σ0zt + εβ

2

]2

+ 4

εβ

[
I 2 + ε2α2e−2σ0zt

]
+ (σ0zt − εβ

4
)‖Yt‖2

≤ p(zt ) + q(zt )‖Yt‖2.

Hence by the comparison principle, ‖Yt‖2 ≤ Rt whenever ‖Y0‖2 ≤ R0 where Rt

is the solution of
Ṙt = p(zt ) + q(zt )Rt , (5.6)

which can be computed explicitly as

Rt (ω, R0) = e
∫ t
0 q(zu(ω))du R0 +

∫ t

0
p(zs(ω))e

∫ t
s q(zu(ω))duds.

Using similar arguments as in the additive noise case, there exists a unique solution
of (5.5) and (3.2). Also, the solution generates a random dynamical system.
On the other hand, observe that by the Birkhorff ergodic theorem, there exists
almost surely

lim
t→−∞

1

t

∫ 0

t
q(zu)du = lim

t→−∞
1

t

∫ 0

t
q(z(θuω)) = E

[
σ0z(·) − εβ

4

]
= −εβ

4
< 0,

therefore there exists a unique stationary solution of (5.6) which can be written in
the form

R̄(ω) =
∫ 0

−∞
p(zs(ω))e

∫ 0
s q(zu(ω))duds.
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Moreover, ‖Yt (ω,Y0)‖2 ≤ R̄(θtω) whenever ‖Y0‖2 ≤ R̄(ω) and

lim sup
t→∞

‖Yt (θ−tω,Y0)‖2 ≤ lim sup
t→∞

Rt (θ−tω, R0) = R̄(ω).

Hence, the ball B(0, R(ω)) is actually forward invariant under the random dynam-
ical system generated by (5.5) and is also a pullback absorbing set. Again by
applying Crauel et al. (1997), there exists a random attractor for (5.5). Due to the
fact that zt is the stationary solution of (5.4), it is easy to see that the random linear
transformation T (z) given in (5.3) is tempered (see Arnold 1998, pp. 164, 386),
i.e.

0 ≤ lim
t→∞

1

t
log ‖T (zt )‖ = lim

t→∞
1

2t
log(1 + e−2σ0zt ) ≤ lim

t→∞
1

2t
(1 + 2σ0|zt |) = 0.

Therefore, it follows from Imkeller and Schmalfuss (2001) that systems (3.2) and
(5.5) are conjugate under the tempered transformation (5.3), hence there exists
also a random attractor for system (3.2).

��
Proof of Theorem 3.2 Observe that the matrix

DF(Xe) =
(
m11 m12
m21 m22

)

has two conjugate complex eigenvalues with negative real part

λ1,2 = 1

2

(
1 − v2e − εβ

)
± i

2

√

4ε − (1 − v2e + εβ)2

= −0.0730077 ± 0.31615i = −μ ± νi .

Hence by using the transformation X − Xe = QY and X̄ = QȲ with

Q =
(−ν m11 + μ

0 m21

)

,

the equations (3.8) and (3.9) are transformed into the normal forms

dYt =
[
Q−1DF(Xe)QYt + Q−1 F̄(QYt )

]
dt

+Q−1H(QYt + Xe) ◦ dBt (5.7)

= [AYt + F1(Yt )]dt + Q−1H(QYt + Xe) ◦ dBt ,

Y0 = Q−1(X0 − Xe), (5.8)

and

dȲt = AȲt dt + Q−1H(QȲt + Xe) ◦ dBt ,

Ȳ0 = Q−1(X0 − Xe). (5.9)
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where

A = Q−1DF(Xe)Q =
(−μ ν

−ν −μ

)

; F1(Y) := Q−1 F̄(QY),

and

‖F1(Y)‖ ≤ γ (r)‖Q−1‖‖QY‖ ≤ ‖Q−1‖γ (r)r , ∀‖Y‖ ≤ r

‖Q‖ . (5.10)

Define the difference Zt := Yt − Ȳt , then Zt satisfies

dZt = [AZt + F1(Yt )]dt + B1Zt ◦ dBt

=
[
(A + 1

2
BT
1 B1)Zt + F1(Yt )

]
dt + B1Zt d Bt ,

where

B1 := 0 if H(X) = (0, σ0)
T and B1 := Q−1BQ if H(X) = BX.

We analyze these two cases separately.

• Additive noise: then the equation for Zt becomes deterministic, hence

d

dt
‖Zt∧τ‖2 = 2

〈
Zt∧τ , AZt∧τ + F1(Yt∧τ )

〉

≤ −2μ‖Zt∧τ‖2 + μ‖Zt∧τ‖2 + 1

μ
‖F1(Yt∧τ )‖2

≤ 1

μ
‖Q−1‖2γ (r)2r2 − μ‖Zt∧τ‖2.

Using the fact that Z0 = 0, it follows that

‖Zt∧τ‖2 ≤ 1

μ2 ‖Q−1‖2γ (r)2r2 + e−μ(t∧τ)
(
‖Z0‖2 − 1

μ2 ‖Q−1‖2γ (r)2r2
)
.

Therefore,

sup
t≤τ

‖Zt‖ ≤ 1

μ
‖Q−1‖γ (r)r

which proves (3.10) with C = 1
μ
‖Q‖‖Q−1‖.

• Multiplicative noise: By Ito’s formula for the stopping time,

d‖Zt∧τ‖2 = 2
〈
Zt∧τ , (A + 1

2
BT
1 B1)Zt∧τ + F1(Yt∧τ )

〉
d(t ∧ τ)

+‖B1Zt∧τ‖2d(t ∧ τ)

+2〈Zt∧τ , B1Zt∧τ 〉dBt∧τ ,
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hence taking the expectation on both sides and using (5.10) we have

d

dt
E‖Zt∧τ‖2 ≤ 2

(
− μ + ‖BT

1 B1‖
)
E‖Zt∧τ‖2 + 2‖Q−1‖γ (r)r E‖Zt∧τ‖

≤ (−μ + 2‖BT
1 B1‖)E‖Zt∧τ‖2

+
[

− μ
(
E‖Zt∧τ‖

)2 + 2‖Q−1‖γ (r)r E‖Zt∧τ‖
]

≤ (−μ + 2‖BT
1 B1‖)E‖Zt∧τ‖2 + 1

μ
‖Q−1‖2γ (r)2r2,

where the last inequality follows from the Cauchy inequality. Since

λ = μ − 2‖BT
1 B1‖ > 0, (5.11)

by noting that Z0 = 0, we get

E‖Zt∧τ‖2 ≤ E‖Z0∧τ‖2e−λ(t∧τ) + 1

μ
‖Q−1‖2γ (r)2r2

1

λ

[
1 − e−λ(t∧τ)

]

≤ 1

μ

1

λ
‖Q−1‖2γ (r)2r2,

which proves (3.11) by choosing C := 1
μ

1
λ
‖Q−1‖2‖Q‖2.

��
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