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Abstract

Infectious diseases are among the most prominent threats to mankind. When preventive
health care cannot be provided, a viable means of disease control is the isolation of
individuals who may be infected. To study the impact of isolation, we propose a system
of delay differential equations and offer our model analysis based on the geometric
theory of semi-flows. Calibrating the response to an outbreak in terms of the fraction
of infectious individuals isolated and the speed with which this is done, we deduce
the minimum response required to curb an incipient outbreak, and predict the ensuing
endemic state should the infection continue to spread.

Keywords Epidemic spreading - Disease control via isolation - Delay differential
equations - Invariant manifolds
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1 Introduction

In the recent outbreaks of swine flu, SARS, bird flu, and Ebola, local health authori-
ties were not prepared to deal with the developing crisis. Reasons varied. In the case
of Ebola, it took a while to recognize the urgency of the situation and the affected
countries lacked the needed infrastructure. In the case of SARS, the means of trans-
mission was unknown and a vaccine was not available. In these situations and others,
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health authorities have recommended the isolation of individuals, who may be infected
(Siegel et al. 2007; CDC 2014, 2015). This is only natural: in the absence of other
means to curb the spreading of a disease, the only way to slow down its propagation
is to deny possible infection pathways. Strategies of this kind date back several cen-
turies and their usefulness has not diminished with time, as evidenced in recent events
(Kucharski et al. 2015; Donnelly et al. 2003).

In any isolation strategy, early identification of infectious individuals is crucial.
It is also a formidable task. Adequate infrastructure and constant preparedness is
costly to maintain; infected individuals themselves may fail to recognize the potential
danger they pose to others, for reasons of their own some may choose not to seek
medical attention; and coercive measures can be controversial. For these and other
reasons, it is important for health authorities to properly evaluate in advance the level
of response capabilities needed to combat outbreaks, to determine what fraction of
the infectious population must be identified, by which means and how quickly (Day
et al. 2006; Fraser et al. 2004; Peak et al. 2017). The optimal duration of isolation is
another question not well understood. Can, for example, longer isolation compensate
for slower identification?

While statistics have been collected and analyzed for a number of specific diseases,
the impact of isolation, in particular the human toll caused by failures or delays in its
implementation, has not received a great deal of attention (Zuzek et al. 2015; Pereira
and Young 2015). These papers used different models to shed light on the relation
between network structure, isolation, and propagation rate, relying on the theory of
branching processes to approximate early phases of the infection. The nonlinear effects
of isolation and the prediction of the endemic state when isolation fails were beyond
the scopes of these earlier studies.

This paper contains a theoretical study of the use of isolation to control the spreading
of infectious diseases, focusing on the consequences of imperfect implementation such
as failure to identify a fraction of the infected hosts and delays in isolating them from
the general public. Without limiting ourselves to specific diseases, we deduce, based on
general disease reproductive characteristics, the minimum response required to curb
a developing epidemic. When this minimum response is not met and the infection
becomes endemic, we offer predictions on the fraction of the population that can be
expected to fall ill. We believe an improved understanding of issues of this kind will
be of use to health authorities as they assess the costs and benefits of their policies.

Our study is carried out using a dynamical systems approach. The theory of non-
linear dynamical systems permits us both to carry out local, linear analyses and to
use global, geometric techniques to study the nonlinear effects of isolation and its
impact on the eventual endemic state. We started from a network in which each node
represents an individual. Under some simplifying assumptions, we derive a system
of delay differential equations describing the time course of an infection following
an outbreak. This system of differential equations give rise to an infinite dimensional
dynamical system that, as we will show, is amenable to detailed mathematical analy-
sis. Throughout the paper we give broad biological interpretations of our findings and
support them with technical results that we believe are of independent mathematical
interest.
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2 Model description

We study an extension of the SIS (susceptible—infectious—susceptible) model with
the additional feature that a fraction of the infectious individuals will be isolated.
Consider, to begin with, a network of N nodes; each node represents a host, and nodes
that are linked by edges are neighbors. Each host has two discrete states: healthy and
susceptible (5), and infectious (/). Infected hosts infect their neighbors until they
recover and rejoin the susceptible group. Models of this type have been studied a great
deal and require no further introduction. We refer the reader to Refs. (Anderson and
May 1991; Diekmann and Heesterbeek 2000; Brauer et al. 2008; Keeling and Rohani
2011) for a broad introduction.

In this work, we consider a model as above with the additional feature of isolation
of infected hosts. Specifically, if a host remains infectious for 7 units of time without
having recovered, it enters a new state, Q (for isolation or quarantine) with probability
p-

We are aware that the term ‘quarantine’ in the literature refers to the isolation of
individuals who may be infected but are not yet symptomatic (Siegel et al. 2007; CDC
2014). The letter ‘Q’ here, is solely used to clearly distinguish it from the infectious
class 1.

The hosts that do not enter state Q at time t remain infectious until they recover on
their own. A host that enters state Q remains in this state for « units of time, at the end
of which it is discharged and rejoins the healthy and susceptible pool. We define r to
be the reproductive number of the disease in the absence of isolation, i.e. for p = 0.
Note that this deviates from the canonical choice of the capital letter R, which we will
use for the reproductive number of the disease including isolation, i.e. when p > 0.

The numbers r, 7,k > 0 and p € [0, 1] are to be viewed as parameters of the
model, with t representing the identification time between the infection and isolation,
and « the isolation time. The number p can be interpreted as the probability of an
infectious host being diagnosed and isolated, we call it identification probability.
Table 1 summarizes the main parameters of the SIQ model and their meaning. See
Fig. 1 for a schematic of the model.

We now go to a mean field approximation of this process. Let S(¢), /() and Q(¢)
denote the fractions of individuals in the corresponding states at time ¢, so that S(¢) +
I(t) + Q(t) = 1 and the size of the population is assumed to be constant. Assuming
the independence of the susceptible and infectious groups, we arrive at the following
system of delay differential equations:

SO ==rSOIO+I@)+reSt—1—1)I(t—T—kK), (1
[ =rSOI@)—T1G)—reSt—1)I(t—1), )
OW)=re[St—)I(t—-1)—St—71—K)I{t—7—K)], 3)

where ¢ := pe™7 can be interpreted as the effectiveness of the identification process.
Detailed explanations of the modeling leading to system (1)—(3) are given in the
“Appendix”.
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Table 1 Main parameters of the SIQ model

Parameter Meaning
r Reproductive number of the disease in the absence of isolation (p = 0)

P Pprobability to identify an infectious individual

T Time elapsed between infection and identification
K Time spent in isolation after identification
e Effectiveness of the identification process (¢ = pe™7)

rate rI(t)
susceptible . .
infectious
and healthy S (t) 1 (t)
rate 1 \
with probability 1 Q ( ‘ with probability p
after isolation time < after identification time 7

in isolation (quarantine)

Fig. 1 Illustration of the SIQ model. The resulting SIQ model is an extension of the SIS model with the
additional feature that with probability p individuals that have been infectious for a time 7 are identified
and isolated for « units of time at the end of which they are healthy again

This model neglects several aspects of epidemic scenarios, such as the acquisition
of immunity or delays in the development of infectiousness. To demonstrate that the
model described above is generalizable, we will, in Sect. 8, introduce an latency period
o to become infectious after being infected to the model above, and show how much
of the analysis carries over. For conceptual clarity, we will first treat the o = 0 case
in Sects. 3-7.

3 Non-technical overview of the main results

In this section, we describe the main results leaving precise technical formulations
for later sections. Recall that without the isolation strategy our SIQ model reduces
to the SIS model with disease reproduction number 7, so that an infection spreads if
and only if » > 1. Of interest in this paper is the case r > 1, so that if no measures
are taken the infection will spread. Consider a history (¢s(t), ¢;(t), po()),t < O,
corresponding to the sudden appearance of a small infection at time ¢+ = 0. For
definiteness, let ¢g(t) = O forallr <0, ¢;(t) =0forallt < 0,0 < ¢;(0) K 1,
and ¢s + ¢; + ¢g = 1. In particular, this implies the conditions of Lemma 1 to hold.
Unless otherwise stated, this history will be assumed in the discussion below. Our
main results can be summarized as follows:

1. Required minimum identification probability We prove that an outbreak can be
prevented only if
p>pe=1-=1/r, “)
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Table 2 Critical response capability p. and critical identification time 7, (in days) for various diseases
with basic reproductive number r as well as 1/y (in days). The critical 7. (before rescaling) is calculated
using (4)—(6) assuming that 80% of infectious individuals are identified and isolated. The values of r and
1/y are taken from the references given in the first row

r 1/y Pe T.
HINI 2016 [Brazil] (WHO 2016; Miiller and Kuttler 2015) 1.7 7.0 0.41 4.7
Ebola 2014 [Guin./Lib.] (Althaus 2014) 1.5 12.0 0.33 10.5
Ebola 2014 [Sierra Leone] (Althaus 2014) 2.5 12.0 0.6 3.5
Spanish Flu 1917 (Miiller and Kuttler 2015) 2 7.0 0.5 3.3
Influenza A (Miiller and Kuttler 2015) 1.54 3.0 0.35 2.5
Hepatitis A (Peak et al. 2017) 2.25 13.4 0.56 4.89
SARS (Peak et al. 2017) 2.90 11.8 0.66 4.31
Pertussis (Peak et al. 2017) 4.75 68.5 0.79 0.91
Smallpox (Peak et al. 2017) 4.75 17.0 0.79 0.26

that is, to have a chance to stop the outbreak, one must be able to identify a
sufficiently large fraction of infectious individuals.

2. Critical identification time Possessing the ability to detect individuals with prob-
ability p > p. alone is not enough; one must be prepared to act with sufficient
speed: we prove that for each p > p., there is a critical identification time

w(p)=n £ 5)

Pc

Specifically, for p > p. and T < 7., the infection dies out. In this case, the
time k that infectious individuals spend in isolation is of no consequence. These
results are presented in Sect. 5.

We can readily compute the critical identification time . for various diseases once
we have the reproductive number r and identification probability p. In Egs. (1)-(3),
we have done the usual rescaling r — t/y where y is the rate of recovery (see the
“Appendix” for a full discussion). This means that 7. is also rescaled. While that is
convenient mathematically, it is also interesting to compare critical identification times
without rescaling, so that we can analyze diseases in their natural time spans. To that
end, we define

T.= =, (©)
14
and show, in Table 2, the critical response capability p. and critical identification time
T, for p = 0.8.

As shown in Table 2, even when the fraction of identified individuals is as high as
80% the critical identification time 7, can be as short as 3 days for severe outbreaks such
as the Spanish Flu and the Ebola in Sierra Leone. Of major concern is what happens
if such an identification time is not met. Our next result addresses this scenario.

3. Prediction of endemic state as function of ¢ and k From Items 1 and 2, we
know that when p < p.ort > t.,sothate = pe " < 1 — %, the infection
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will persist. When that happens, we prove that if the system tends to an endemic
equilibrium, the fraction of infectious individuals in the endemic state will be

Notice that increasing « leads to an endemic equilibrium with a smaller 7.

As an illustration consider a hypothetical response to the Ebola outbreak in Sierra

Leone with ¢ = 0.5. We obtain that the final fraction of infectious individuals in the
endemic state is / = 0.2/(1 + k).

4. Bifurcation analysis at endemic equlibria For each p and 7 with T < 1, we

performed a rigorous bifurcation analysis at each endemic equilibrium point
with « as bifurcation parameter. We proved that the equilibrium destabilizes
through a Hopf bifurcation as « is increased, and that it undergoes a cascade of
Hopf bifurcations as « is increased further.

. Effect of k on the course of an epidemic Item 4 described the dynamics near an

endemic equilibrium irrespective of how we arrived at such a situation. Here we
return to the setting of Item 3, i.e. the sudden appearance of a small infection
that gets out of control, and ask how the duration of isolation will influence
the course of events. Our results for this part are numerical. We show that the
infection will approach the endemic equilibrium predicted in Item 3, and that as
k increases, the equilibrium destabilizes through a Hopf bifurcation in a manner
similar to that described in Item 4. For large «, our simulations suggest that the
fraction of infectious individuals, can have periodic oscillations with nontrivial
amplitudes. These results are presented in Sect. 7.

To summarize, the SIQ model offers quantitative measures for critical response
capabilities and identification times needed to prevent outbreaks of infectious diseases.
For endemic infections, our analysis offers guidance to optimal choices of isolation
durations. The implications of these results on epidemics control are clear: Isolation of
infectious hosts is not without cost, both in terms of society and economics. These must
be weighed against the costs of an endemic infection, as well as strategies for disease
management. The SIQ model proposed here may assist in such costs-and-benefits
analysis.

4 Basic properties of the model

4.1 Mathematical framework

Equations (1)—(3) define adynamical system on the phase space C := C ([—t — «, 0],
R3), the Banach space of continuous functions with the norm

l¢ll=sup [¢ (),

Oe[—1t—«,0]
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| - | being the Euclidean norm in RR3. Given an initial function ¢ € C, the solution
x(t, ¢), t > 0, of the initial value problem to (1)— (3) exists and is unique (Hale and
Lunel 1993). We use the standard notation

X (@) =x(t+06;¢), 0e[—1t—«k,0]

This solution defines a C! semiflow 7" : ¢ +— x;(¢p) on C (Hale and Lunel 1993).

Observe that the conservation of mass property of Egs. (1)—(3), namely S'(¢) +
I'(t) + Q'(r) = 0, implies that if ¢ = (¢s. ¢1, po) and x(1; ¢) = (S(1), I(1), Q(1)),
then S(t) + 1(¢) + Q(t) = ¢s(0) + ¢7(0) 4 ¢ (0) for all + > 0. In particular, the
manifold

={p e C([—7 — «, 0], R3) | ¢s(0) +¢1(0) + pp(6)=1forall 6 € [-T—«, 0]}

is positively invariant with respect to the semiflow 7.
In the context of our epidemiological model, all solutions of interest have the
property that for each 7, x(¢; ¢) takes value in the 2-simplex

A2={u:(u1,u2,u3)eR3:Zui=1,u,-20,i=1,2,3},

i

ie., x:(¢) € C = {y €C:y@®) € A’forall® € [—1 —«k, 0]} for all + > 0. In
Sect. 4.3 we show that biologically relevant initial conditions that belong to a certain
subset of C lead to solutions that belong to C for all t > 0. When studying T as
a dynamical system, it is conceptually simpler to work with C as the phase space.
We will therefore do that in our theoretical investigations, and focus on trajectories
with T'(¢) € C in biological interpretations. Observe that the dynamics on C are
completely determined by any two of Egs. (1)—(3) together with the conservation of
mass.

4.2 Equilibrium solutions and @-limit sets

Recall that the w-limit set w(¢p) of ¢ € C under the semi-flow 7" is defined to be
w(@) = (¥ € C| T"¢p — y for some sequence t,, — o0}.

For a solution that is bounded, x;(¢) is C' with a uniform bound on its derivatives for
all t > t + «. Thus, by the Arzela—Ascoli Theorem, w(¢) is nonempty and compact
in C (with its C° norm).

In particular, consider an equilibrium solution ¢ of Egs. (1)—(3), which means that
x (t;¢) = ¢ (0) for all 7, and ¢ is a constant function. For u = (uy, u2, u3) € R3
with ), u; = 1, we will use the notation & to denote the constant function in C with
u(9) = u for all 6. The equilibria of Egs. (1)~(3) can be computed as follows. If
¢ (¢>S d),, ¢Q) is an equilibrium, then it must satisfy
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O0=0d-e)ds—1¢r. (N

Thus any QA& with ¢; = 0 or ¢s = 1/r(1 — €) is an equilibrium solution. We define
& = {$GC|¢1=O} and go:zé'oﬂé

to be the sets of disease-free equilibria. Analogously we define the sets

o 1 ~ -
&= {¢€C|¢)S=m} and E; IZSIHC,

which we refer to as endemic equilibria in the case ¢; # 0. For ¢ € C, it is possible
that T7(¢) will approach one of the equilibria above as ¢ — o0, but this need not be
the only possible long-time behavior (and we will show that it is not).

4.3 Biologically relevant solutions and their positivity

We consider a solution x(¢; ¢) as biologically relevant if x;(¢) € Cforallt > 0.In
this section we give sufficient conditions for positivity. More specifically, we show
that any initial condition corresponding to an infection that started just prior to t = 0
leads to a biologically relevant solution.

We start with a function y : [—t — «, 0] — R3 (that may or may not be in C). Think
of it as a situation we find ourselves in—without knowledge of how we arrive at the
situation. From this initial condition, we evolve the system according to Egs. (1)-(3).
The next lemma gives conditions on i that will lead to biological solutions.

Lemmal Let v = (Ys, ¥y, ¥g) 1 [-7 — «,0] — R3 be a piecewise continuous
function with values in A*>. We assume further that

0

vr(0) = rp/ ys(0)91(6)do, ®)

—-T

and
0

Vo(0) = FS/ Vs (0)y1(0)do. )
Then S(t),1(1), Q) =0, S(@)+1@)+ Q@) =1forallt >0, and x;(y) € c
forallt > t + k. In particular, if ¢ € C, then x,() € C forall t > 0.

The proof of Lemma 1 follows from the derivation in the “Appendix”. Note that the
conditions of Lemma 1 are satisfied for open sets of initial conditions corresponding to
the sudden uptick of an infection around time 0, described by ¥ with 17 (0), ¥¢(0) > 0
and 0 < ¥ (1), Yvo(t) K ¥1(0), ¥ (0) for all t < —6 for some § > O sufficiently
small.
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5 Neighborhood of disease-free equilibria

In Sects. 5.1 and 5.2, we fix r, p, T, and give a complete description of the dynamics
in a neighborhood of &y, the set of disease-free equilibria identified in Sect. 4.2. The
truly pertinent question, however, is what t and p need to be to curb the propagation
of small initial infections for a disease the intrinsic reproductive number of which is
r. These questions will be answered in Sect. 5.3, using the results from the first two
subsections.

5.1 Linear analysis at £

We parametrize & by 17(5 q € R, where u(q) = (1 —gq,0, g), and study the lin-
earized equation at each point. The following Lemma gives the characteristic equation
for a general equilibrium.

Lemma2 Lerw € C withw = (ws, wy, 1 — wg — wy) be an equilibrium solution of
Eqgs. (1)—(3). Then the characteristic equation at W is given by

x (n, ) =0, (10)
where
1 () = (4 1= rug (1= ee™™) 4y (1= ™))
+rwree”™ (1 —e ™).

Since & consists of a line of equilibria, O is clearly an eigenvalue for w; = 0 corre-
sponding to the direction along the line. The stability of these equilibria in directions
transverse to & is determined by the remaining eigenvalues.

Theorem 3 Let t and p be fixed, and assume ¢ = pe™* < 1. We denote

Ifq > q., then u/(q\) is linearly stable, and if ¢ < qc, thenu/(q\) is linearly unstable. In
more detail, at ¢ # q., the eigenvalue ). = 0 of the equilibrium u(q) has multiplicity
1, and there is no other eigenvalue on the imaginary axis. For ¢ > q., all nonzero

eigenvalues X have Re(L) < 0. For g < q., there is exactly one eigenvalue Ay with
Re(A1) > 0.

Proof Let u/(cB € &. Using Lemma 2, the characteristic equation has the form
AA+1—r(1—¢q) (1 —ee ™)) =0. (11)

The eigenvalue A = 0 of the first factor corresponds to the tangential direction along
the manifold & and the corresponding normal eigenvalues are remaining solutions
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of Eq. (11). The second factor has a solution A = 0, if and only if ¢ = ¢, and it is
easy to show that this root is simple. Next we show that ¢ = g, is the only value for
which an equilibrium can have a normal eigenvalue A with Re(A) = 0. The algebraic
bifurcation condition A = i implies

= (re(1 =) = (L= r(1 = )%, (12)
13
—_— =t . 13
—rd—q) an (wt) (13)
Equation (12) admits solutions * > 0if ¢ € (¢, g+), where g = 1 — - 1 + - Note

that the right hand side of Eq. (12) attains its global maximum for

1 1
Gmax = 1 — = 12
with the corresponding
2
2 8
Cinax = T g2

which satisfies |omax| < % and thus, we restrictto w € (—% E) It follows from (13)
that w = 0 is the only possible solution if and only if

1

—rl—q) " (19
since, in this case, the function tan (wt) — w/ (1 — r(1 — q)) is strictly monotone. In
fact, straightforward computation shows that Eq. (14) is satisfied for all ¢ € (g—, g+),
T > 0and g € [0, 1]. Thus, Egs. (12) and (13) do not admit solutions with v > 0
and consequently, there are no further bifurcations possible. In particular, there are no
Hopf-bifurcations.

Next we show that Re (A) < O for all nontrivial eigenvalues of all ¢ > g.. We
choose g = 1 — % > ¢., then (11) takes the form A + ge~™ =0, where ¢ < 1. The
latter equation only attains solutions with Re (A) < 0, see e.g. (Smith 2011). Due to
continuity, we have Re (A) < Ofor all nontrivial eigenvalues forallg € (¢g., 11N[0, 1].

For any g € [0, g.) N [0, 1], there is exactly one real positive eigenvalue. Indeed,
for ¢ = q., the eigenvalue crosses the imaginary axis transversely at A = 0 with the
corresponding derivative

3 (Re (L))

aq 2=0,9=¢c
In the context of the epidemic model, of interest is & C C. We observe that u(qge)
may or may not lie in &. In particular, if g. < 0, then all equilibria in & are linearly
stable.

< 0. O
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Corollary 4 For fixed p, q € (0, 1), the disease-free equilibrium i (q) is linearly stable
if T satisfies the inequality

1
Tffc(p,q) = ]np—ln <l—m> (15)

Otherwise, it is linearly unstable.

5.2 The nonlinear picture near &

As the semi-flow 7" is C! (Sect. 4.2), we may appeal to invariant manifolds theory.
The next theorem follows immediately from results in Bates et al. (2000).

Theorem 5 The hypotheses are as in Theorem 3. Then the following holds:

(1) Through every u/(a with q > q. passes a codimension 1 stable manifold
w* (u/(q\)), with uniform estimates away from u(q.). These manifolds foliate
a uniform size neighborhood of any compact K C {u/(B, q > qc}

(2) Through every @ with q < q. passes a codimension 2 stable manifold
w* (@) and a I-dimensional unstable manifold W" (u/(cB), with uniform esti-
mates away from @

We remark that the W*- and W*-manifolds above are strong stable and unstable
manifolds, i.e., there exist ¢ = c(g) and A = A(g) > O such that

¢ e Wi(g) = IIT'() — i) < ce™

for all + > 0. The dynamical picture can therefore be summarized as follows: We
partition & into

Eo=EYUESUES,
where
EY = (u(g). q <qc). E=1{ulg)}, and & = (u(q).q > qc} .

For ¢ sufficiently near &, 1(tf) — 0 exponentially fast, i.e., the infection dies
out quickly; while for ¢ sufficiently near &, unless ¢ lies in the codimensional 1

submanifold U, W* (@), I () will increase, i.e., the infection will spread, beyond a
level depending on the distance of ¢ to &.

5.3 Critical values of p and 7: scalings and biological implications
We can think of 7, the time between infection and isolation, as identification time, and

p, the probability of an infectious host to be properly identified and put into isolation,
as isolation probability. With these interpretations, a question of practical importance
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is the following: When presented with a scenario in which a small fraction of the
population is infectious, i.e., given an initial condition near &, what values must p
and t take to prevent an outbreak, or better yet, to wipe out the infection altogether?

Consider first an initial condition near the equilibirum (S, I, Q) = (i, 6 6) as in
Sect. 3. In a model with no isolation, the disease reproductive number is known to be
Ro := r. Theorem 3 shows that our isolation procedure reduces R to the effective
disease reproductive number R, := (1—¢)r;thisisa dilrect rephrasing of the statement

that the equilibrium at (i, 6, 6) isstableifg. = 1 — %E < 0. Thus starting from near

(i, 6, 6), to beat the infection we have to have (1 — ¢)r < 1, equivalently ¢ > 1 — %
We now decipher what this means for p and t. Ase = pe™ %, e > 1 — % imposes

immediately a lower bound on the isolation probability p, namely we must have

1
p>pC::l—;. (16)

Having the capability to identify and properly isolate infectious hosts alone, however,
is insufficient. Response time is of the essence: for each p > p,, there is a critical

identification time

T.(p) =1n L (17)

Pe

such that if T > 7., the infection spreads for most initial conditions, whereas t < .
guarantees that the infection will abate. If p = p,, then clearly . = 0; this implies
that isolation has to be immediate upon infection. The farther p is from p., the larger
7.(p), so that there is a trade-off between probability of isolation and the delay in its
implementation.

Consider next an initial condition near the equilibrium (l/—\q, 0, q) for some fixed
g > 0. Theorem 3 together with an argument analogous to that above shows that in
this case, the effective disease reproductive number is R, ; := (1 —g)(1 — &)r. Then
Req < lisequivalentto e > 1 — ﬁ From this, we deduce the corresponding
critical isolation probability p.(q) and critical identification time 7.(p, q) for each p
as before, as in Corollary 4.

An alternate way to understand the effective disease reproductive number R 4

for g > 0 is as follows: For initial conditions near ( 1/—\q, 0, q), a fraction ¢ of the
population will never leave isolation, and therefore will not participate in the dynamics.
Removing this part of the population from the system changes nothing other than that
we will have S + I + Q = 1 — g. Now such a system can be rescaled to one with
S+1+0Q=1,bysetingS =5S/(1—q).] =1/1—-¢)and 0 = Q/(1 — q),
but observe from Eqs. (1)—(3) that in this rescaling r is changed as well; it becomes
7 = (1 — g)r, consistent with the relation between R and R, , above.

Finally, we remark that the value of ¢, which fully dictates the stability properties
of the disease-free equilibria, depends only on p and t and not on k. That is to
say, response capabilities matter, but isolation duration does not, with regard to the
prevention of outbreaks.
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6 Away from disease-free equilibria

We now move away from &, the set of disease-free equilibria, to explore dynamics
on a more global scale. The condition p > 0 is assumed throughout.

6.1 An integral of motion

It has been pointed out that by construction epidemiological models including delayed
terms oftentimes satisfy some secondary invariant integral condition (Busenberg and
Cooke 1980). It turns out that in addition to mass conservation, Egs. (1)—(3) possess
a second conserved quantity. Let r and « be fixed. We define H = H™* : C — R by

0
H(¢) :=1—¢s5(0) — ¢1(—x) + /(1 —rgs(s))pr(s)ds (18)

where ¢ = (¢s, ¢1, Pp).

Proposition 6 For each fixed r, k,
d
ZH(x;(d))) =0 forall¢p eCandt >0,

and the level sets of H define a smooth foliation on C.

Proof Writing x(t; ¢) = (S(t), I(t), Q(¢)) for t > 0, we have

d . .
EH(x,(qS)) ==-SO)—-It—)+A—=rSOI@)— A —=rS{t—K))I({t — k),

which one checks is equal to 0 by plugging into Egs. (1)—(3). To show that the level sets
of H are codimension 1 submanifolds, it suffices to check, by the Implicit Function
Theorem, that Dy H, the derivative of H, is surjective at each ¢. This is true, as for
any ¢ there exits a v = (s, ¥y, ¥¢) such that

0 0
(DgH)Yr = =5 (0) — Y1 (=) +r /(1 —r¢s(s)yi(s)ds —r / ¢1(s)Ys(s)ds # 0,

For example, choose ¥/; = 6 Ys(@) = 0foralld € [—t—«, —§]and Y5(0) = 1—-60/6
for 6 € [—6, 0], where 0 < ré < 1/sup ¢y. O

For fixed r and «, we let 7 = F"* denote the foliation given by Proposition 11,
and let 7, := H -1 (¢). Then F, is invariant under the semi-flow, i.e., for ¢ € F,
x;(¢) € Fy for all t > 0. We consider below the intersection of F, with the set of
equilibrium points for arbitrary « and g.
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Theorem 7 For fixedr, k, q, we let F = F"*, and consider F.

(1) Then F, N & = {u(q)}, where u(q) = (1 — q,0, q).
(2) Fixing additionally p, T, which determines £ = {¢s = [r(1 — S)]_l}, we have

Fq N Er = {v(q@)}, where v(g) = (vs, vi(q), vo(q)) and

l—¢
vi(g) = T eter (Ge —q)
V@) = T e~ ). (19)

These assertions follow from straightforward computations.

We remark on how the leaves of F"* vary with k. Setting x = 0, we see from (18)
that 7, = {¢o(0) = g}. For small « > 0, it is easy to see that the leaves qu’K are
“close” to those of ]-"(; 0 Observe from the formulas above that with p and t fixed,
v7(g) decreases monotonically as k increases. Indeed the leaf F;™* “bends” away from

]—'g -0 increasingly, its intersection with & tending to (1 — g, f), gc) as k —> 00.

6.2 Discussion

Fixing r, k and starting from ¢ with ¢; < 1, one asks what the future holds. For fixed
p, T,suppose ¢ € F, forsome g.If g > g, then x,(¢) — u/(cB e FyNépast — o0
by Theorem 3, if ¢ was chosen in some sufficiently small neighborhood of &,. We
focus therefore on the case g < ¢, for which we have to expect x(¢; ¢) to move away
from the set of disease-free equilibria &.

One possibility is for x;(¢) to tend to @, the unique pointin 7, N &y, ast — oo.
It is difficult to determine if, or under what conditions, this occurs; such nonlocal
dynamical behaviors are very challenging to analyze. We have some evidence that this
is not an unreasonable expectation, at least for smaller values of «, and confirmed this
with numerical simulations; see Fig. 2.

Not all endemic equilibria identified in Sect. 4.2 are reachable if one starts from an
initial condition ¢ near 50, For eachr, p, t, k, we define the set of reachable endemic
equilibria ;""" to be those equilibrium points in &; that are, in principle, reachable
starting from a biologically realistic initial condition, i.e.,

EPPTE =, v = (vs, v1(q), vo(@)). q €10, 11, g < gc},

where vg, v;(g) and , vp(q) are as in Theorem 7.

In the scenario that x;(¢) tends to 9, Theorem 7 tells us it is advantageous to
use a larger «, for the longer one keeps infectious hosts in isolation, the smaller the
I-component vy of the asymptotic state 0. If 0 is unstable, then convergence to it is
unlikely, and the structures that emerge from o after it loses stability become candidates
for the w-limit set of ¢, which we know is nonempty if x(¢; ¢) is bounded (by the
remark at the end of Sect. 4.2). This motivates the eigenvalue analysis of the equilibria
in &7 in the next section.
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Fig. 2 Convergence to &; for initial conditions close to &. Here p = %, v = 0.5. Initial conditions are
of the form ¢(0) = (1,0, 0) for all & < 0 and ¢(0) = (0.999 — ¢, 0.001, g) for 10 equidistant values of
0 <¢q <gc.ax =0.5.bk = 5. Curves show trajectories in direction of arrows projected onto (Q, I)-space

7 The case of an endemic infection

In Sects. 7.1 and 7.2, we study the dynamics close to &;, the set of endemic equilibria
defined in Sect. 4.2. For fixed » > 1, p € (0, 1) and T = 0, we give in Sect. 7.1 a
complete bifurcation analysis of each equilibrium point in £ as « increases. These
results remain valid for small T > 0. In Sect. 7.2, we deduce from the linear analysis
above nonlinear behaviors in neighborhoods of these equilibria.

While Sects. 7.1 and 7.2 are concerned with the dynamical picture near an endemic
equilibrium. How we arrived at such a situation is of no concern. Sect. 7.3 addresses
the following very pertinent question: Given an initial condition ¢ with small ¢; > 0,
if one is unable to control the outbreak, which «, i.e., what durations of isolation, will
best mitigate the severity of the infection? As we will show, the dynamical landscape
is quite complex. Results of numerical computations will be presented to clarify the
situation.

7.1 Linear analysis at &

Let r and ¢ be fixed throughout. We parametrize £; by @, q € R, where w (g) =
(1 —g¢, qc — g, q) and study the linearized equation at each point. Clearly, 0 is an
eigenvalue, as &7 is a line of equilibria. We have the following result for k = 0.

Proposition8 Ler t and p € (0, 1) be fixed, andk = 0. If ¢ < g, then u)/(a is linearly
stable; otherwise it is linearly unstable.

Specifically, for g < q., the eigenvalue A = 0 has multiplicity 1 and all other
eigenvalues satisfy Re (L) < 0, and one eigenvalue crosses the imaginary axis as q
increases past qc.

The proof of Proposition 8 is analogous to the proof of the stability of disease-free
equilibria in Theorem 3. More specifically, for the case k = 0, the corresponding
characteristic equation is
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AA+1—r(1—g—2gc—q) (1 —ege™™)) =0, (20)

which has the same form as Eq. (11) from Theorem 3. Therefore, the statement of
Proposition 8 can be proven by similar arguments.

We remark that the stability persists at least for small values of « for all points
1@, q # q.. Moreover, a uniform estimate for such « can be obtained by excluding
a neighborhood of the point w/(cE

For ¢ < q., even as Prop