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Abstract
Many infectious diseases have seasonal trends and exhibit variable periods of peak
seasonality. Understanding the population dynamics due to seasonal changes becomes
very important for predicting and controlling disease transmission risks. In order to
investigate the impact of time-dependent delays on disease control, we propose an
SEIRS epidemic model with a periodic latent period. We introduce the basic repro-
duction ratio R0 for this model and establish a threshold type result on its global
dynamics in terms of R0. More precisely, we show that the disease-free periodic solu-
tion is globally attractive if R0 < 1; while the system admits a positive periodic
solution and the disease is uniformly persistent if R0 > 1. Numerical simulations are
also carried out to illustrate the analytic results. In addition, we find that the use of
the temporal average of the periodic delay may underestimate or overestimate the real
value of R0.

Keywords Periodic SEIRS model · Time-dependent latent period · Basic
reproduction ratio · Periodic solution · Uniform persistence

Mathematics Subject Classification 34K13 · 37N25 · 92D30

1 Introduction

Mathematicalmodels provide powerful tools to explain and predict the spread of infec-
tious diseases, and to test control strategies. One of the earliestmodels in epidemiology
was introduced in 1927 (see Kermack and McKendrick 1991). Since then, numerous
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mathematical models for infectious diseases have been described by autonomous sys-
tems of differential equations, e.g., the dynamics of SIS, SIR, SIRS, SEI, SEIR and
SEIRS epidemic models was intensively investigated in the last few decades (see,
e.g., Anderson and May 1979; Cooke and van den Driessche 1996; Gao et al. 1995;
Hethcote 1976; Huang et al. 2010; Kermack and McKendrick 1932; Ma et al. 2004).

In fact, many diseases show seasonal behaviors (see, e.g., Altizer et al. 2006; Dow-
ell 2001; Fisman 2007; Grassly and Fraser 2006). From Fares (2011), Meyer et al.
(1983), Grassly and Fraser (2006), London and Yorke (1973) and Purse et al. (2005),
we have known that measles, diphtheria, chickenpox, tuberculosis, influenza, cholera
andmalaria in humans, bluetongue in cattle and sheep, viral haemorrhagic septicaemia
and furunculosis in fish, are recognized as having seasonal trends and show variable
periods of peak seasonality. The causes of seasonal patterns for different diseases are
complex, such as temperature, humidity, photoperiod, host aggregation and resource
availability. For example, there is a strong relationship between the seasonal outbreaks
of meningococcal meningitis disease and climate, e.g., wind speed and low absolute
humidity affect respiratory transmission (see Sultan et al. 2005).Asmentioned inDow-
ell et al. (2003), the seasonal patterns of invasive pneumococcal disease in humans
correlatewith the photoperiod-dependent variation in host susceptibility and fall aggre-
gation among school children. In Vaidya and Wahl (2015), a mathematical model of
low pathogenic avian influenza dynamics that includes both time-varying environmen-
tal effects and seasonal migration was considered. In addition, unlike warm-blooded
animals, temperature has a particularly important influence on fish diseases in areas
where there is a wide amplitude in daily and seasonal temperature changes because it
affects the rate of metabolism, immunologic response, reproduction, amount of oxy-
gen dissolved in water, biological oxygen demand, toxicity of pollutants, and growth
of fish pathogens and parasites (see, e.g., Meyer et al. 1983; Snieszko 1974).

Annual changes in host and parasite biology can generate outbreaks that occur
around the same time each year, and there is the growing awareness that seasonality
can cause population fluctuations ranging from annual cycles tomultiyear oscillations,
and even chaotic dynamics (see, e.g., Altizer et al. 2006; Aron and Schwartz 1984;
Greenmanet al. 2004). It thus becomesnatural tomodel these diseases by incorporating
periodic variations into epidemic models. For example, Liu et al. (2010) studied the
global dynamics of a non-autonomous SEIR system for tuberculosis with seasonality
by introducing a possible seasonal variation in pulmonary tuberculosis. Towers et al.
(2011) proposed an SIR epidemic model with periodic transmission rate to assess
the efficacy of control strategies via antiviral drug treatment during an outbreak of
pandemic influenza. Zhang and Teng (2007) considered a non-autonomous SEIRS
epidemic model and established some sufficient conditions for the permanence and
extinction of the disease. Later, Nakata and Kuniya (2010) improved the results in a
periodic environment.

Cooke and van den Driessche (1996) proposed an SEIRS epidemic model with
two time delays. Since then, a number of the dynamic behaviors of SEIRS epidemic
models with constant delays have been studied (see, e.g., Jiao et al. 2008; Qi and
Cui 2013; Wang 2002; Zhao 2017a). Meanwhile, many population models with time-
dependent delays have been developed (see, e.g., Beck-Johnson et al. 2013; Lou and
Zhao 2017; Omori and Adams 2011; Wang and Zhao 2017b). Recently, Lou and Zhao
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(2017) proposed a host-macroparasite model with seasonal developmental durations
and time-dependent delays, and studied the global dynamics by introducing a periodic
semiflow on a suitably chosen phase space.Wang and Zhao (2017b) studied the global
dynamics of a malaria transmission model with a time-dependent incubation period
by using the same theoretical approach as in Lou and Zhao (2017). Indeed, the latent
(or incubation) periods of quite a few diseases are related to seasonal changes. For
some vector-borne diseases, there is considerable evidence to show that the extrinsic
incubation period of the parasite is always sensitive to temperature. Similarly, for
the directly transmitted diseases, the length of the latent period depends not only
on the strength of the individual’s immune system, but also on the climate changes,
especially for the aquatic animal and plant disease epidemics (see, e.g., Meyer et al.
1983; Groberg et al. 1978; Lovell et al. 2004; Omori and Adams 2011). For example,
the incubation period for fish furunculosis ranges probably from 2 to 4 days. However,
at lower temperatures, the incubation period may be extended by several weeks (see
Groberg et al. 1978). Omori and Adams (2011) developed a mathematical model
with time-dependent delays to analyse the effect of seasonal temperature cycles on
koi herpes virus (KHV) in common carp due to the time delays depending on water
temperature. Therefore, it is more reasonable to incorporate this seasonally forced
latent period into the disease transmission models.

Motivated by the above works, the purpose of this paper is to develop a class
of periodic SEIRS epidemic models that, for the first time, incorporates the time-
dependent latent period. We will use the theoretical approach developed in Lou and
Zhao (2017) and the theory of uniform persistence for periodic semiflows to study our
model system.

The organization of the paper is as follows. In Sect. 2, we formulate the model
and give the underlying assumptions. In Sect. 3, we introduce the basic reproduction
ratio R0 for the model system and show that R0 acts as a threshold parameter for the
uniform persistence and global extinction of the disease. In Sect. 4, some numerical
simulations are presented to illustrate the main results.

2 Model formulation

In order to formulate the model, we first consider a classical SIRS epidemic model
in a population. Let N (t) be the total population number at time t which is divided
into three classes: susceptible population, infectious population, and recovered (or
removed) population (i.e., who have been infected and then removed from the possi-
bility of infection through the temporary immunity). Let S(t), I (t), and R(t)be the total
number of the susceptible, infectious, and recovered (or removed) populations at time
t , respectively. Anderson andMay (1979) proposed the following famous SIRSmodel:

dS(t)

dt
= Λ − βS(t)I (t) − μS(t) + αR(t),

d I (t)

dt
= βS(t)I (t) − (μ + d + γ )I (t),

dR(t)

dt
= γ I (t) − μR(t) − αR(t). (1)
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Here the constant Λ is the recruitment rate, β is the disease transmission coefficient,
μ is the natural death rate of the population, d is the disease-induced death rate, γ is
the recovery rate of the infectious population, and α is the lose of immunity rate.

In fact, upon infection, the susceptible individuals become exposed for some dis-
eases (e.g., tuberculosis, influenza, measles, KHV epidemiology); that is, infected but
not yet infective. These individuals remain in the exposed class for a certain latent
period before becoming infective. Thus it is natural to introduce a latent delay into
system (1) and consider an SEIRS epidemicmodel. Let E(t) be the total number of the
exposed population at time t , and M(t) be the number of newly occurred infectious
population per unit time at time t . We assume that the latent period of the disease
is time-periodic due to the seasonal weather changes, denoted by τ(t). Motivated by
Liu et al. (2010), Lou and Zhao (2017), Mateus and Silva (2017), Nakata and Kuniya
(2010), Omori and Adams (2011), Towers et al. (2011), Wang and Zhao (2017b)
and Zhang and Teng (2007), we propose the following evolution system with general
incidence rate:

dS(t)

dt
= Λ(t) − f (t, S(t), I (t)) − μ(t)S(t) + α(t)R(t),

dE(t)

dt
= f (t, S(t), I (t)) − μ(t)E(t) − M(t),

d I (t)

dt
= M(t) − (μ(t) + d(t) + γ (t))I (t),

dR(t)

dt
= γ (t)I (t) − μ(t)R(t) − α(t)R(t), (2)

where Λ(t), μ(t), α(t), d(t), and γ (t) have the same biological meanings as Λ, μ,
α, d, and γ in system (1), respectively. The incidence function f (t, S, I ) depends on
time t and variables S and I . In the following, we will use the arguments similar to
those in Omori and Adams (2011) and Nisbet and Gurney (1983).

Let q represent the development level of infection such that q increases at a time-
dependent rate κ(t), and assume that q = qE = 0 at the transition from S to E , and
q = qI at the transition from E to I . The variable q describes how complete the latent
stage is. Let ρ(q, t) be the density of individuals with infection development level q
at time t . Then M(t) = κ(t)ρ(qI , t).

Let J (q, t) be the flux, in the direction of increasing q, of individuals with infection
development level q at time t . Thus, we have the following equation (see, e.g., Kot
2001)

∂ρ(q, t)

∂t
= −∂ J

∂q
− μ(t)ρ.

Since J (q, t) = κ(t)ρ(q, t), we have

∂ρ(q, t)

∂t
= −∂[κ(t)ρ(q, t)]

∂q
− μ(t)ρ(q, t). (3)

123



A periodic SEIRS epidemic model with a time-dependent… 1557

For the state E , system (3) has the boundary condition

ρ(qE , t) = f (t, S(t), I (t))

κ(t)
.

In order to solve equation (3) with the above boundary condition, we introduce a new
variable

η = h(t) := qE +
∫ t

0
κ(s)ds.

Let h−1(η) be the inverse function of h(t), and denote

ρ̂(q, η) = ρ(q, h−1(η)), μ̂(η) = μ(h−1(η)), κ̂(η) = κ(h−1(η)).

From (3), we have

∂ρ̂(q, η)

∂η
= −∂ρ̂(q, η)

∂q
− μ̂(η)

κ̂(η)
ρ̂(q, η).

Let V (s) = ρ̂(s + q − η, s). Then

dV (s)

ds
= − μ̂(η)

κ̂(η)
V (s).

Since η − (q − qE ) ≤ η, we have

V (η) = V (η − (q − qE ))e
− ∫ η

η−(q−qE )
μ̂(s)
κ̂(s) ds .

Then

ρ̂(q, η) = ρ̂(qE , η − (q − qE ))e
− ∫ η

η−(q−qE )
μ̂(s)
κ̂(s) ds .

Let τ(q, t) be the time taken to grow from infection development level qE to
level q by a individual who arrives at infection development level q at time t . Since
dq/dt = κ(t), we have

q − qE =
∫ t

t−τ(q,t)
κ(s)ds, (4)

and hence,

h(t − τ(q, t)) = qE +
∫ t−τ(q,t)

0
κ(s)ds = h(t) −

∫ t

t−τ(q,t)
κ(s)ds = h(t) − q + qE .
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Letting s = h(r), we then obtain

∫ η

η−(q−qE )

μ̂(s)

κ̂(s)
ds =

∫ t

t−τ(q,t)
μ(r)dr .

It follows that

ρ(q, t) = ρ̂(q, h(t))

= ρ(qE , t − τ(q, t))e− ∫ t
t−τ (q,t) μ(r)dr

= f (t − τ(q, t), S(t − τ(q, t)), I (t − τ(q, t)))

κ(t − τ(q, t))
e− ∫ t

t−τ (q,t) μ(r)dr
.

Let τ(t) = τ(qI , t). Then we have

κ(t)ρ(qI , t) = f (t − τ(t), S(t − τ(t)), I (t − τ(t)))
κ(t)

κ(t − τ(t))
e− ∫ t

t−τ (t) μ(r)dr
.

Letting q = qI and qE = 0 in (4), we then obtain

qI =
∫ t

t−τ(t)
κ(s)ds,

where κ(s) is ω-periodic in s. Clearly, τ(t) is an implicitly defined function of t . The
periodicity of κ(s) in s implies the periodicity of the delay τ(t) in time variable t .
Taking the derivative with respect to t , we have

1 − τ ′(t) = κ(t)

κ(t − τ(t))
> 0.

Substituting M(t) = κ(t)ρ(qI , t) into system (2), we obtain the following system:

dS(t)

dt
= Λ(t) − f (t, S(t), I (t)) − μ(t)S(t) + α(t)R(t),

dE(t)

dt
= f (t, S(t), I (t)) − μ(t)E(t) − (1 − τ ′(t))e− ∫ t

t−τ (t) μ(r)dr f (t − τ(t),

S(t − τ(t)), I (t − τ(t))),
d I (t)

dt
= (1 − τ ′(t))e− ∫ t

t−τ (t) μ(r)dr f (t − τ(t), S(t − τ(t)),

I (t − τ(t))) − (μ(t) + d(t) + γ (t))I (t),
dR(t)

dt
= γ (t)I (t) − μ(t)R(t) − α(t)R(t). (5)
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We assume that f (t, S, I ) and all these time-dependent coefficients are ω-periodic
in t for some real number ω > 0. Then it is easy to see that the function

a(t) := e− ∫ t
t−τ (t) μ(r)dr

is also ω-periodic, and system (5) is an ω-periodic functional differential system.
In view of biological meanings, we should impose the following compatibility

condition:

E(0) =
∫ 0

−τ(0)
e− ∫ 0

s μ(r)dr f (s, S(s), I (s))ds. (6)

By the uniqueness of solutions, we then have

E(t) =
∫ t

t−τ(t)
e− ∫ t

s μ(r)dr f (s, S(s), I (s))ds.

To study the evolution dynamics of system (5), wemake the following assumptions:

(A1) Λ(t), μ(t), α(t), d(t), and γ (t) are all non-negative and continuous functions
with Λ(t) > 0,

∫ ω

0 μ(t)dt > 0, and
∫ ω

0 γ (t)dt > 0;
(A2) f (t, S, I ) is a C1-function with the following properties:

(i) f (t, S, 0) ≡ 0, f (t, 0, I ) ≡ 0, and ∂ f (t,S,0)
∂ I is positive and non-decreasing

for all S > 0.
(ii) ∂ f (t,S,I )

∂S ≥ 0 and f (t, S, I ) ≤ ∂ f (t,S,0)
∂ I I for all (t, S, I ) ∈ R × R

2+.

A prototypical example for incidence function is f (t, S, I ) = β(t)SI
1+ε(t)I with ε(t)

≥ 0.

3 Threshold dynamics

In this section, we first introduce the basic reproduction ratio R0 and then study the
global dynamics of system (5). Since the second equation of system (5) is decoupled
from the other equations, it suffices to study the following system:

dS(t)

dt
= Λ(t) − f (t, S(t), I (t)) − μ(t)S(t) + α(t)R(t),

d I (t)

dt
= (1 − τ ′(t))e− ∫ t

t−τ (t) μ(r)dr f (t − τ(t), S(t − τ(t)),

I (t − τ(t))) − (μ(t) + d(t) + γ (t))I (t),
dR(t)

dt
= γ (t)I (t) − μ(t)R(t) − α(t)R(t). (7)

It is easy to see that the scalar linear periodic equation

dS(t)

dt
= Λ(t) − μ(t)S(t) (8)
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has a unique positive ω-periodic solution

S∗(t) =
[∫ t

0
Λ(r)e

∫ r
0 μ(s)dsdr +

∫ ω

0 Λ(r)e
∫ r
0 μ(s)dsdr

e
∫ ω
0 μ(s)ds − 1

]
e− ∫ t

0 μ(s)ds,

which is globally attractive in R.

Linearizing system (7) at the disease-free periodic solution (S∗(t), 0, 0), we obtain
the following periodic linear equation for the infective variable I :

d I (t)

dt
= c(t)I (t − τ(t)) − b(t)I (t), (9)

where c(t) = (1 − τ ′(t))a(t) ∂ f (t−τ(t),S∗(t−τ(t)),0)
∂ I and b(t) = μ(t) + d(t) + γ (t).

Let τ̂ = max0≤t≤ωτ(t), C = C([−τ̂ , 0],R), and C+ = C([−τ̂ , 0],R+). Then
(C,C+) is an orderedBanach space equippedwith themaximumnormand the positive
coneC+. For any given continuous function v : [−τ̂ , σ ) −→ Rwith σ > 0, we define
vt ∈ C by vt (θ) = v(t+θ),∀θ ∈ [−τ̂ , 0], for any t ∈ [0, σ ).Let F : R −→ L (C,R)

be a map and V (t) be a continuous function on R defined as follows:

F(t)φ = c(t)φ(−τ(t)), V (t) = b(t).

Then the linear system (9) can be written as

dv(t)

dt
= F(t)vt − V (t)v(t).

Then the internal evolution of infective compartment I is described by the following
evolution system

dv(t)

dt
= −V (t)v(t).

Let Φ(t, s), t ≥ s, be the evolution operator of the above linear system; that is,
Φ(t) satisfies

∂

∂t
Φ(t, s) = −V (t)Φ(t, s), ∀t ≥ s, and Φ(s, s) = I , ∀s ∈ R.

It then easily follows that

Φ(t, s) = e− ∫ t
s b(r)dr , ∀t ≥ s, s ∈ R.

Let Cω be the ordered Banach space of all continuous and ω-periodic functions
from R to R, equipped with the maximum norm and the positive cone C+

ω = {v ∈
Cω : v(t) ≥ 0,∀t ∈ R}.
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Suppose that v ∈ Cω is the initial distribution of infectious individuals. Then for
any given s ≥ 0, F(t − s)vt−s is the distribution of newly infectious individuals at
time t − s, which is produced by the infectious individuals who were introduced over
the time interval [t − s − τ̂ , t − s]. Then Φ(t, t − s)F(t − s)vt−s is the distribution
of those infectious individuals who newly became infectious at time t − s and remain
in the infectious compartments at time t . It follows that

∫ ∞

0
Φ(t, t − s)F(t − s)vt−sds =

∫ ∞

0
Φ(t, t − s)F(t − s)v(t − s + ·)ds

is the distribution of accumulative new infectious at time t produced by all those
infectious individuals introduced at all previous time to t .

We define the next generation operator L : Cω −→ Cω by

[Lv](t) =
∫ ∞

0
Φ(t, t − s)F(t − s)v(t − s + ·)ds, ∀t ∈ R, v ∈ Cω.

Following Zhao (2017a), we define R0 = r(L), the spectral radius of L . For any given
t ≥ 0, let P̂(t) be the solution map of system (9); that is, P̂(t)ψ = ut (ψ), where
u(t, ψ) is the unique solution of system (9) with u0 = ψ ∈ C . Then P̂ := P̂(ω) is
the Poincaré (period) map associated with linear system (9). Let r(P̂) be the spectral
radius of P̂ . In view of Zhao (2017a, Theorem 2.1), we have the following result.

Lemma 1 R0 − 1 has the same sign as r(P̂) − 1.

Let Pλ be the Poincaré map on C of the following linear periodic system with
parameter λ ∈ (0,∞):

du(t)

dt
= 1

λ
F(t)ut − V (t)u(t), t ≥ 0.

The following observation comes from Zhao (2017a, Theorem 2.2).

Lemma 2 If R0 > 0, then λ = R0 is the unique solution of r(Pλ) = 1.

For any given λ ∈ (0,∞), we choose v0 ∈ I nt(C+) and define

an = ‖Pλvn−1‖C , vn = Pλvn−1

an
, ∀n ≥ 1.

By Liang et al. (2017, Lemma 2.5), it follows that if limn→∞ an exists, then r(Pλ) =
limn→∞ an . Thus, we can solve r(Pλ) = 1 for λ numerically via the bisectionmethod.

Let X = C([−τ̂ , 0],R3+). Then we have the following result for system (7).

Lemma 3 For any ϕ ∈ X, system (7) has a unique nonnegative solution u(t, ϕ) with
u0 = ϕ for all t ≥ 0, and solution are also ultimately bounded.
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Proof For any ϕ = (ϕ1, ϕ2, ϕ3) ∈ X , we define

f̃ (t, ϕ)

=
⎛
⎜⎝

Λ(t) − f (t, ϕ1(0), ϕ2(0)) − μ(t)ϕ1(0) + α(t)ϕ3(0)

(1 − τ ′(t))e− ∫ t
t−τ(t) μ(r)dr f (t − τ(t), ϕ1(−τ(t)), ϕ2(−τ(t))) − (μ(t) + d(t) + γ (t))ϕ2(0)

γ (t)ϕ2(0) − μ(t)ϕ3(0) − α(t)ϕ3(0)

⎞
⎟⎠.

Note that f̃ (t, ϕ) is continuous in (t, ϕ) ∈ R+ × X and f̃ (t, ϕ) is Lipschitz in ϕ on
each compact subset of X . By Hale and Verduyn Lunel (1993, Theorems 2.2.1 and
2.2.3), it then follows that system (7) has a unique solution u(t, ϕ) on its maximal
interval [0, σϕ) of existence with u0 = ϕ.

Let ϕ = (ϕ1, ϕ2, ϕ3) ∈ X be given. If ϕi (0) = 0 for some i ∈ {1, 2, 3}, then
f̃i (t, ϕ) ≥ 0. By Smith (1995, Theorem 5.2.1), it follows that for any ϕ ∈ X , the
solution u(t, ϕ) of system (7) with u0 = ϕ is nonnegative for all t ∈ [0, σϕ). Define

D :=
{
ψ ∈ C

(
[−τ̂ , 0],R4+

)
: ψ2(0) =

∫ 0

−τ(0)
e− ∫ 0

s μ(r)dr f (s, ψ1(s), ψ3(s))ds

}
.

It then easily follows that for anyψ ∈ D, system (5) has a unique nonnegative solution
v(t, ψ) = (S(t), E(t), I (t), R(t)) satisfying v0 = ψ for all t ∈ [0, σϕ).

Let N (t) = S(t) + E(t) + I (t) + R(t). Then we have

dN (t)

dt
= Λ(t) − μ(t)N (t) − d(t)I (t) ≤ Λ(t) − μ(t)N (t),

for all t ∈ [0, σϕ). Thus, S(t), E(t), I(t) and R(t) are bounded on t ∈ [0, σϕ).Therefore,
Hale and Verduyn Lunel (1993, Theorem 2.3.1) implies that σϕ = ∞. It follows that

dN (t)

dt
= Λ(t) − μ(t)N (t) − d(t)I (t) ≤ Λ(t) − μ(t)N (t), t ≥ 0. (10)

Then the global stability of S∗(t) for system (8), together with the comparison argu-
ment, implies that solutions of system (5) with initial data in D, and hence system (7)
in X , exist globally on [0,∞) and are also ultimately bounded. �


Let

Y := C
(
[−τ(0), 0],R2+

)
× R+.

Lemma 4 For any ϕ ∈ Y , system (7) has a unique nonnegative solution u(t, ϕ) with
u0 = ϕ for all t ≥ 0.

Proof Let τ̄ = mint∈[0,ω]τ(t). For any t ∈ [0, τ̄ ], since t − τ(t) is strictly increasing
in t , we have

− τ(0) = 0 − τ(0) ≤ t − τ(t) ≤ τ̄ − τ(τ̄ ) ≤ τ̄ − τ̄ = 0,

123



A periodic SEIRS epidemic model with a time-dependent… 1563

and hence,

S(t − τ(t)) = ϕ1(t − τ(t)) and I (t − τ(t)) = ϕ2(t − τ(t)).

Therefore, we have the following ordinary differential equations for t ∈ [0, τ̄ ] :

dS(t)

dt
= Λ(t) − f (t, S(t), I (t)) − μ(t)S(t) + α(t)R(t),

d I (t)

dt
= (1 − τ ′(t))e− ∫ t

t−τ (t) μ(r)dr f (t − τ(t), ϕ1(t − τ(t)),

ϕ2(t − τ(t))) − (μ(t) + d(t) + γ (t))I (t),
dR(t)

dt
= γ (t)I (t) − μ(t)R(t) − α(t)R(t).

Given ϕ ∈ Y , the solution (S(t), I (t), R(t)) of the above system exists for t ∈ [0, τ̄ ].
In other words, we have obtained the values of ψ1(θ) = S(θ), ψ2(θ) = I (θ) for
θ ∈ [− τ(0), τ̄ ] and ψ3(θ) = R(θ) for θ ∈ [0, τ̄ ].

For any t ∈ [τ̄ , 2τ̄ ], we have

− τ(0) = 0 − τ(0) ≤ τ̄ − τ(τ̄ ) ≤ t − τ(t) ≤ 2τ̄ − τ(2τ̄ ) ≤ 2τ̄ − τ̄ = τ̄ ,

and hence,

S(t − τ(t)) = ψ1(t − τ(t)) and I (t − τ(t)) = ψ2(t − τ(t)).

Solving the following ordinary differential equations for t ∈ [τ̄ , 2τ̄ ] with S(τ̄ ) =
ψ1(τ̄ ), I (τ̄ ) = ψ2(τ̄ ), R(τ̄ ) = ψ3(τ̄ ) :

dS(t)

dt
= Λ(t) − f (t, S(t), I (t)) − μ(t)S(t) + α(t)R(t),

d I (t)

dt
= (1 − τ ′(t))e− ∫ t

t−τ (t) μ(r)dr f (t − τ(t), ψ1(t − τ(t)),

ψ2(t − τ(t))) − (μ(t) + d(t) + γ (t))I (t),
dR(t)

dt
= γ (t)I (t) − μ(t)R(t) − α(t)R(t).

We then get the solution (S(t), I (t), R(t)) on [τ̄ , 2τ̄ ]. Repeating this procedure for
t ∈ [2τ̄ , 3τ̄ ], [3τ̄ , 4τ̄ ],…, it then follows that for any ϕ ∈ Y , system (7) has a unique
solution u(t, ϕ) with u0 = ϕ for all t ≥ 0. �


Remark 1 By the uniqueness of solutions in Lemmas 3 and 4, it follows that for any
ψ ∈ X and φ ∈ Y with ψ1(θ) = φ1(θ), ψ2(θ) = φ2(θ), for all θ ∈ [−τ(0), 0] and
ψ3 = φ3, we have w(t, ψ) = ν(t, φ) for all t ≥ 0, where w(t, ψ) and ν(t, φ) are
solutions of system (7) satisfying w0 = ψ and ν0 = φ, respectively.
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Let

W = C([−τ(0), 0],R), W+ = C([−τ(0), 0],R+).

For any given t ≥ 0, let P(t) be the solution map of the scalar linear periodic system
(9) onW ; that is, P(t)φ = vt (φ), t ≥ 0,where v(t, φ) is the unique solution of system
(9) satisfying v0 = φ ∈ W . By similar arguments to those in Lou and Zhao (2017,
Lemma 3.5), we have the following result.

Lemma 5 P(t) is an ω-periodic semiflow on W in the sense that (i) P(0) = I ; (ii)
P(t + ω) = P(t) ◦ P(ω) for all t ≥ 0; and (iii) P(t)φ is continuous in (t, φ) ∈
[0,∞) × W .

Let P := P(ω) be the Poincaré map associated with system (9) on W and r(P)

be its spectral radius. We first prove that the solution map P(t) is monotone for each
t ≥ 0. For any given ϕ,ψ ∈ W with ϕ ≥ ψ . Let v̄(t) = v(t, ϕ) and v(t) = v(t, ψ)

be the unique solution of system (9) with v̄0 = ϕ and v0 = ψ , respectively. Since

− τ(0) = 0 − τ(0) ≤ t − τ(t) ≤ τ̄ − τ(τ̄ ) ≤ τ̄ − τ̄ = 0, ∀t ∈ [0, τ̄ ],

we have

v̄(t − τ(t)) = ϕ(t − τ(t)) and v(t − τ(t)) = ψ(t − τ(t)), ∀t ∈ [0, τ̄ ].

Therefore, we have the following ordinary differential equations for ∀t ∈ [0, τ̄ ],

d I (t)

dt
= c(t)ϕ(t − τ(t)) − b(t)I (t),

d I (t)

dt
= c(t)ψ(t − τ(t)) − b(t)I (t).

Given ϕ,ψ ∈ W , the solution I (t) of the above equations exists for all t ∈ [0, τ̄ ].
In the view of v̄(0) = ϕ(0) ≥ ψ(0) = v(0), the comparison theorem for cooperative
ordinary differential systems implies that v̄(t) ≥ v(t) for all t ∈ [0, τ̄ ]. Repeating
this procedure for t ∈ [τ̄ , 2τ̄ ], [2τ̄ , 3τ̄ ],…, it follows that v(t, ϕ) ≥ v(t, ψ) for all
t ∈ [0,∞). This implies that the solution map P(t) is monotone for each t ≥ 0. Now
we show that the solution map P(t) is eventually strongly monotone.

Lemma 6 For any ϕ and ψ in W with ϕ > ψ (that is, ϕ ≥ ψ , but ϕ �= ψ), the
solutions v̄(t) and v(t) of system (9) with v̄0 = ϕ and v0 = ψ , respectively, satisfy
v̄(t) > v(t) for all t ≥ τ̂ , and hence, P(t)ϕ � P(t)ψ in W for all t ≥ τ̂ + τ(0).
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Proof Wefirst show that v̄(t0) > v(t0) for some t0 ∈ [0, τ̂ ]. Assume, by contradiction,
that v̄(t) = v(t) for all t ∈ [0, τ̂ ]. Then d v̄(t)

dt = dv(t)
dt for all t ∈ (0, τ̂ ), and hence,

d v̄(t)

dt
= (1 − τ ′(t))a(t)

∂ f (t − τ(t), S∗(t − τ(t)), 0)

∂v̄
v̄(t − τ(t))

− (μ(t) + d(t) + γ (t))v̄(t),
dv(t)

dt
= (1 − τ ′(t))a(t)

∂ f (t − τ(t), S∗(t − τ(t)), 0)

∂v
v(t − τ(t))

− (μ(t) + d(t) + γ (t))v(t),

that is,

(1 − τ ′(t))a(t)
∂ f (t − τ(t), S∗(t − τ(t)), 0)

∂v̄
[v̄(t − τ(t)) − v(t − τ(t))] = 0,∀t ∈ [0, τ̂ ].

It follows that v̄(t − τ(t)) = v(t − τ(t)) for all t ∈ [0, τ̂ ]. Since −τ(0) = 0− τ(0) ≤
t − τ(t) ≤ τ̂ − τ(τ̂ ),∀t ∈ [0, τ̂ ], and τ̂ − τ(τ̂ ) ≥ 0, we have ϕ(θ) = ψ(θ) for all
θ ∈ [−τ(0), 0], which is a contradiction to the assumption ϕ > ψ in W .

Let

g(t, ξ) := (1 − τ ′(t))a(t)
∂ f (t − τ(t), S∗(t − τ(t)), 0)

∂v
×v(t − τ(t)) − (μ(t) + d(t) + γ (t))ξ.

By (A2), ∂ f (t,S,0)
∂ I is non-decreasing for all S > 0. It then follows that for all t ≥ t0,

d v̄(t)

dt
= (1 − τ ′(t))a(t)

∂ f (t − τ(t), S∗(t − τ(t)), 0)

∂v̄
v̄(t − τ(t))

− (μ(t) + d(t) + γ (t))v̄(t)

≥ (1 − τ ′(t))a(t)
∂ f (t − τ(t), S∗(t − τ(t)), 0)

∂v
v(t − τ(t))

− (μ(t) + d(t) + γ (t))v̄(t)

= g(t, v̄(t)),

and hence,

d v̄(t)

dt
− g(t, v̄(t)) ≥ 0 = dv(t)

dt
− g(t, v(t)), ∀t ≥ t0.

Since v̄(t0) > v(t0), the comparison theorem for ordinary differential equations in
Walter (1997, Theorem 4) implies that v̄(t) > v(t) for all t ≥ t0. Since t0 ∈ [0, τ̂ ],
v̄(t) > v(t) for all t ≥ τ̂ , and hence, P(t)ϕ � P(t)ψ for all t ≥ τ̂ + τ(0). �


Let Q(t) be the solution maps of system (7) on Y ; that is, Q(t)φ = νt (φ), t ≥ 0,
where ν(t, φ) is the unique solution of system (7) satisfying ν0 = φ ∈ Y . By the
arguments similar to those in Lou and Zhao (2017, Lemma 3.5), we have the following
result.

123



1566 F. Li, X.-Q. Zhao

Lemma 7 Q(t) is an ω-periodic semiflow on Y in the sense that (i) Q(0) = I ; (ii)
Q(t + ω) = Q(t) ◦ Q(ω) for all t ≥ 0; and (iii) Q(t)φ is continuous in (t, φ) ∈
[0,∞) × Y .

We also need the following observation in our analysis of system (7).

Lemma 8 Assume that f (t) is a nonnegative continuous and ω-periodic function on
R+ with

∫ ω

0 f (t)dt > 0, and g(t) is a continuous function on R+. If limt→∞ g(t)
= 0, then any solution u(t) of the linear non-homogeneous equation

u′(t) = − f (t)u(t) + g(t), t ≥ 0 (11)

satisfies limt→∞ u(t) = 0.

Proof Let U (t, s) = e− ∫ t
s f (r)dr and M := 1

ω

∫ ω

0 f (t)dt . For any t ≥ s ≥ 0, letting
n = [ t−s

ω

]
, we then have

∫ t

s
f (r)dr =

∫ s+nω

s
f (r)dr +

∫ t

s+nω

f (r)dr

= n
∫ ω

0
f (r)dr +

∫ t

s+nω

f (r)dr

= nωM +
∫ t−nω

s
f (r)dr .

Let K := eMω. Since M > 0 and nω ≤ t − s < (n + 1)ω, it follows that

U (t, s) = e−nωMe− ∫ t−nω
s f (r)dr ≤ e−(t−s−ω)M = Ke−M(t−s), ∀t ≥ s ≥ 0.

Let ε > 0 be given. Since limt→∞ g(t) = 0, there exists a sufficiently large t0 > 0
such that |g(t)| < ε, ∀t ≥ t0. It then follows that the solution u(t) of (11) satisfies

u(t) = U (t, t0)u(t0) +
∫ t

t0
U (t, s)g(s)ds, ∀t ≥ t0,

and hence,

|u(t)| ≤ Ke−M(t−t0)|u(t0)| + ε

∫ t

t0
Ke−M(t−s)ds

≤ Ke−M(t−t0)|u(t0)| + εK

M
(1 − e−M(t−t0)), ∀t ≥ t0.

This implies that limt→∞ u(t) = 0. �

Now we are ready to prove the main result of this section.

Theorem 1 Let (A1) and (A2) hold. Then the following statements are valid:
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(i) If r(P) < 1, then the disease-free periodic solution (S∗(t), 0, 0) is globally
attractive for system (7) in Y.

(ii) If r(P) > 1, then system (7) admits a positive ω-periodic solution (S̄(t), Ī (t),
R̄(t)) and these exists a real number η > 0 such that the solution ν(t, φ) =
(S(t), I (t), R(t)) satisfies lim inf t→∞ I (t) ≥ η for any φ ∈ Y with φ2(0) > 0.

Proof Our proof ismotivated by the arguments in Zhao (2017a, Theorem 3.1). ByHale
and Verduyn Lunel (1993, Theorem 3.6.1), it follows that for each t ≥ τ̂ , the linear
operator P̂(t) is compact on C , and hence P(t) is also compact on W for any t ≥ τ̂ .
In view of Lemma 6, P(t) is strongly positive on W for any t ≥ τ̂ + τ(0). Thus, for
any t ≥ τ̃ = τ̂ + τ(0), P(t) is compact and strongly positive onW . Choose an integer
n0 > 0 such that n0ω ≥ τ̃ . Since Pn0 = P(n0ω), Liang and Zhao (2007, Lemma 3.1)
implies that r(P) is a simple eigenvalue of P having a strongly positive eigenvector,
and the modulus of any other eigenvalue is less than r(P). Let μ = ln r(P)

ω
. By Wang

and Zhao (2017a, Lemma 1), it then follows that there is a positiveω-periodic function
v(t) such that u(t) = eμtv(t) is a positive solution of linear equation (9).

In the case where r(P) < 1, let Pε(t) be the solution maps of the following
perturbed linear periodic equation on W :

d I (t)

dt
= (1 − τ ′(t))a(t)

∂ f (t − τ(t), S∗(t − τ(t)) + ε, 0)

∂ I
I (t − τ(t)) − (μ(t)

+ d(t) + γ (t))I (t), (12)

and Pε := Pε(ω). Since limε→0 r(Pε) = r(P) < 1, we can fix a sufficiently small
number ε > 0 such that r(Pε) < 1. It is easy to verify that Pε(t) is also compact
and strongly monotone on W for each t ≥ τ̃ . As discussed above, there is a positive
ω-periodic function vε(t) such that uε(t) = eμε tvε(t) is a positive solution of system
(12), where με = ln r(Pε )

ω
< 0. Clearly, limt→∞ uε(t) = 0.

In view of (10) and the global stability of S∗(t) for system (8), there exists a
sufficiently large integer N1 > 0 such that N1ω ≥ τ̂ and S(t) ≤ S∗(t) + ε, ∀t ≥
N1ω − τ̂ . By assumption (A2), we then have

d I (t)

dt
≤

(
(1 − τ ′(t))a(t)

∂ f (t − τ(t), S∗(t − τ(t)) + ε, 0)

∂ I
I (t − τ(t))

)

− (μ(t) + d(t) + γ (t))I (t),

for all t ≥ N1ω. Choose a sufficiently large number k > 0 such that I (t) ≤ kuε(t),
∀t ∈ [N1ω, N1ω + τ̂ ]. Thus, the comparison theorem for delay differential equations
(see Smith 1995, Theorem 5.1.1) implies that I (t) ≤ kuε(t), ∀t ≥ N1ω + τ̂ . Thus,
limt→∞ I (t) = 0. By Lemma 8 with f (t) = μ(t) + α(t) and g(t) = γ (t)I (t), as
applied to the third equation of system (7), it then follows that limt→∞ R(t) = 0. Let
w(t) := S(t) − S∗(t). In view of (7) and (8), we have

w′(t) = −μ(t)w(t) + (α(t)R(t) − f (t, S(t), I (t))).
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Since limt→∞ I (t) = 0 and limt→∞ R(t) = 0, it follows that

lim
t→∞(α(t)R(t) − f (t, S(t), I (t))) = 0.

Now Lemma 8 implies that limt→∞ w(t) = 0; that is, limt→∞(S(t) − S∗(t)) = 0.
This proves statement (i).

In the case where r(P) > 1, we will apply the persistence theory for periodic
semiflows. Let Y0 = {φ = (φ1, φ2, φ3) ∈ Y : φ2(0) > 0} and ∂Y0 := Y\Y0 = {φ =
(φ1, φ2, φ3) ∈ Y : φ2(0) = 0}. Let Q(t)φ = νt (φ), ∀φ ∈ Y . Then Q := Q(ω) is the
Poincaré map associated with system (7) on Y and Qn = Q(nω), ∀n ≥ 0.

From the second equation of system (7), it is easy to see that Q(t)Y0 ⊆ Y0 for all
t ≥ 0. By Lemma 3 and Remark 1, the discrete-time system {Qn : Y → Y }n≥0 is
point dissipative. By Hale and Verduyn Lunel (1993, Theorem 3.6.1) and Remark 1,
for each t ≥ τ̂ , Q(t) is compact, and hence Qn is compact for sufficiently large n. It
then follows fromZhao (2017b, Theorem 1.1.3) that Q admits a strong global attractor
in Y . Now we prove that Q is uniformly persistent with respect to (Y0, ∂Y0).

Let Mδ be the Poincaré map of the following perturbed linear periodic equation:

d I (t)

dt
= (1 − τ ′(t))a(t)

(
∂ f (t − τ(t), S∗(t − τ(t)), 0)

∂ I
− δ

)
I (t − τ(t)) − (μ(t)

+ d(t) + γ (t))I (t). (13)

Since limδ→0 r(Mδ) = r(P) > 1, we can fix a sufficiently small δ such that r(Mδ) >

1. It follows that there is a small number η0 > 0 such that

f (t − τ(t), S∗(t − τ(t)) − η0, I ) ≥
(

∂ f (t − τ(t), S∗(t − τ(t)), 0)

∂ I
− δ

)
I ,∀I ∈ [0, η0].

LetM1 = (S∗
0 , 0, 0), where S

∗
0 (θ) = S∗(θ) for all θ ∈ [−τ(0), 0]. Then Q(t)M1 =

(S∗
t , 0, 0), ∀t ≥ 0, and Q(M1) = M1. Since limφ→M1 ‖Q(t)φ − Q(t)M1‖ = 0

uniformly for t ∈ [0, ω], there exists η1 = η1(η0) > 0 such that for any φ ∈ Y0 with
‖φ −M1‖ < η1, we have ‖Q(t)φ − Q(t)M1‖ < η0 for all t ∈ [0, ω]. We further have
the following claim.

Claim lim supn→∞ ‖Qn(φ) − M1‖ ≥ η1 for all φ ∈ Y0.
Suppose, by contradiction, that lim supn→∞ ‖Qn(ψ)−M1‖ < η1 for someψ ∈ Y0.

Then there exists an integer N2 ≥ 1 such that ‖Qn(ψ) − M1‖ < η1 for all n ≥ N2.
For any t ≥ N2ω, we have t = nω + t ′ with n ≥ N2 and t ′ ∈ [0, ω], and hence,

‖Q(t)ψ − Q(t)M1‖ = ‖Q(t ′)(Qn(ψ)) − Q(t ′)M1‖ < η0,∀t ≥ N2ω.

It follows that S(t−τ(t)) > S∗(t−τ(t))−η0 for all t ≥ N2ω+ τ̂ . In view of (A2), we
see that f (t, S, I ) is nondecreasing in S. Thus, ν(t, ψ) = (S(t), I (t), R(t)) satisfies
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d I (t)

dt
= (1 − τ ′(t))a(t) f (t − τ(t), S(t − τ(t)),

I (t − τ(t))) − (μ(t) + d(t) + γ (t))I (t)

≥ (1 − τ ′(t))a(t) f (t − τ(t), S∗(t − τ(t)) − η0,

I (t − τ(t))) − (μ(t) + d(t) + γ (t))I (t)

≥ (1 − τ ′(t))a(t)

(
∂ f (t − τ(t), S∗(t − τ(t)), 0)

∂ I
− δ

)
I (t − τ(t))

− (μ(t) + d(t) + γ (t))I (t),

for all t ≥ N2ω + τ̂ . Note that r(Mδ) > 1. As discussed earlier, there is a positive
ω-periodic function vδ(t) such that uδ = eμδ tvδ(t) is a positive solution of system
(13), where μδ = ln r(Mδ)

ω
> 0. Since Q(t)Y0 ⊆ Y0, I (t) > 0 for all t ≥ 0. We can

choose a sufficiently small k > 0 such that I (t) ≥ kuδ(t), ∀t ∈ [N2ω+ τ̂ , N2ω+2τ̂ ].
By the comparison theorem for delay differential equations (see Smith 1995, Theorem
5.1.1), it follows that I (t) ≥ kuδ(t), ∀t ≥ N2ω + 2τ̂ . Clearly, limt→∞ uδ(t) = ∞.

Thus, limt→∞ I (t) = ∞, which is a contradiction.
The above claim implies that M1 is an isolated invariant set for Q in Y and

WS(M1)
⋂

Y0 = ∅, where WS(M1) is the stable set of M1 for Q. Define

M∂ := {φ ∈ ∂Y0 : Qn(φ) ∈ ∂Y0,∀n ≥ 0}.

Since

d I (t)

dt
≥ −(μ(t) + d(t) + γ (t))I (t),∀t ≥ 0,

it is easy to see that if I (t0) > 0 for some t0 ≥ 0, then I (t) > 0 for all t ≥ t0. This
implies that I (t) = 0, ∀t ≥ 0, whenever φ ∈ M∂ . It then follows that ω(φ) = M1
for any φ ∈ M∂ , and M1 cannot form a cycle for Q in ∂Y0. By the acyclicity theorem
on uniform persistence for maps (see Zhao 2017b, Theorem 1.3.1 and Remark 1.3.1),
Q : Y → Y is uniformly persistent with respect to (Y0, ∂Y0).

Define

X0 = {ψ = (ψ1, ψ2, ψ3) ∈ X : ψ2(0) > 0},
∂X0 := X\X0 = {ψ = (ψ1, ψ2, ψ3) ∈ X : ψ2(0) = 0}.

Let Q̂(t) be the solution maps of system (7) on X ; that is, Q̂(t)ψ = wt (ψ),∀t ≥ 0,
where w(t, ψ) is the unique solution of system (7) satisfying w0 = ψ ∈ X . Then
Q̂ := Q̂(ω) is the Poincaré map associated with system (7) and Q̂n := Q̂(nω),
∀n ≥ 0.

FromHale andVerduynLunel (1993,Theorem3.6.1),weknow that Q̂(t) is compact
on X for each t ≥ τ̂ , and hence Q̂n is compact for sufficiently large n. By Lemma 3,
solutions w(t, ψ) are ultimately bounded on [0,∞), and hence, the discrete-time
system {Q̂n : X → X}n≥0 is point dissipative. By Remark 1, it follows that Q̂ is
uniformly persistent with respect to (X0, ∂X0).
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Note that for any integer n̂0 with n̂0ω ≥ τ , Q̂n̂0 = Q̂(n̂0ω) : X → X is compact.By
Zhao (2017b, Theorem 3.5.1), Q̂(t) is an α-contraction with respect to an equivalent
norm in C([−τ̂ , 0],R3) for any t > 0. It then follows from Zhao (2017b, Theorem
1.3.10) that there exists a global attractor A for Q̂ : X0 → X0 and Q̂ has a fixed point
ψ∗ ∈ A, and hence,w(t, ψ∗) = (S̄(t), Ī (t), R̄(t)) is an ω-periodic solution of system
(7) with ψ∗ ∈ X0. By Remark 1, ν(t, φ∗) = (S̄(t), Ī (t), R̄(t)) is also an ω-periodic
solution of system (7) with φ∗ ∈ Y0, where φ∗

1 (θ) = ψ∗
1 (θ), φ∗

2 (θ) = ψ∗
2 (θ), for all

θ ∈ [−τ(0), 0] and φ∗
3 = ψ∗

3 . Then S̄(t) ≥ 0, Ī (t) > 0 and R̄(t) ≥ 0.
We claim that there exists some t̄ ∈ [0, ω] such that S̄(t̄) > 0. If not, then S̄(t) ≡ 0

for all t ≥ 0, due to the periodicity of S̄(t). Since Λ(t) > 0 and f (t, 0, I ) ≡ 0, we
see from the first equation of system (7) that 0 = Λ(t) + α(t)R̄(t) > 0, which is a
contradiction. Since S̄(t̄) > 0 for some t̄ ∈ [0, ω], and

d S̄(t)

dt
|S̄(t)=0 = Λ(t) − f (t, S̄(t), Ī (t)) − μ(t)S̄(t) + α(t)R̄(t)

= Λ(t) + α(t)R̄(t) > 0,∀t ≥ t̄,

it follows that S̄(t) > 0 for all t ≥ t̄ .Now the periodicity of S̄(t) implies that S̄(t) > 0
for all t ≥ 0.We claim that there exists some t̂ ∈ [0, ω] such that R̄(t̂) > 0. If not, then
R̄(t) ≡ 0 for all t ≥ 0, due to the periodicity of R̄(t). Since γ (t) ≥ 0 and

∫ ω

0 γ (t)dt >

0, γ (t) �≡ 0, the third equation of system (7) implies that 0 = γ (t)I (t) �≡ 0 for all
t ≥ 0, which is a contradiction. Since R̄(t̂) > 0 for some t̂ ∈ [0, ω] and

d R̄(t)

dt
≥ −(μ(t) + α(t))R̄(t),

it follows that R̄(t) > 0 for all t ≥ t̂ .Now the periodicity of R̄(t) implies that R̄(t) > 0
for all t ≥ 0. Therefore, ν(t, φ∗) = (S̄(t), Ī (t), R̄(t)) is a positive ω-periodic solution
of system (7) with φ∗ ∈ Y0.

By Zhao (2017b, Theorem 1.3.6), it then follows that Q : Y0 → Y0 has a global
attractor A0. Since A0 = Q(A0) = Q(ω)A0, we have φ2(0) > 0,∀φ ∈ A0. Let
B0 := ⋃

t∈[0,ω] Q(t)A0. Then ψ2(0) > 0 for all ψ ∈ B0. Moreover, B0 ⊆ Y0, and
Zhao (2017b, Theorem 3.1.1) implies that limt→∞ d(Q(t)φ, B0) = 0 for all φ ∈ Y0.
Define a continuous function p : Y → R+ by

p(φ) = φ2(0),∀φ ∈ Y .

Since B0 is a compact subset of Y0, we have infφ∈B0 p(φ) = minφ∈B0 p(φ) > 0.
Consequently, there exists η > 0 such that

lim inf
t→∞ I (t, φ) = lim inf

t→∞ p(Q(t)φ) ≥ η,∀φ ∈ Y0.

This completes the proof. �
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By the same arguments as in Lou and Zhao (2017, Lemma 3.8), we have r(P) =
r(P̂). Combining Lemma 1 and Theorem 1, we have the following result on the global
dynamics of system (7).

Theorem 2 Let (A1) and (A2) hold. Then the following statements are valid for system
(7):

(i) If R0 < 1, then the disease-free periodic solution (S∗(t), 0, 0) is globally attrac-
tive for system (7) in Y.

(ii) If R0 > 1, then system (7) admits a positiveω-periodic solution (S̄(t), Ī (t), R̄(t))
and these exists a real number η > 0 such that ν(t, φ) = (S(t), I (t), R(t))
satisfies lim inf t→∞ I (t) ≥ η for any φ ∈ Y with φ2(0) > 0.

In the rest of this section, we derive the asymptotic behavior of the variable E(t)
in system (5). We have known that

E(t) =
∫ t

t−τ(t)
e− ∫ t

s μ(r)dr f (s, S(s), I (s))ds. (14)

In the case where R0 < 1, we have

lim
t→∞[(S(t), I (t), R(t)) − (S∗(t), 0, 0)] = 0.

It then follows from equation (14) that limt→∞ E(t) = 0.
In the case where R0 > 1, we have known that system (7) admits a positive ω-

periodic solution (S̄(t), Ī (t), R̄(t)). By using the integral form (14), we obtain

Ē =
∫ t

t−τ(t)
e− ∫ t

s μ(r)dr f (s, S̄(s), Ī (s))ds

is also a positive ω-periodic function. Consequently, we have the following result on
the global dynamics of system (5).

Theorem 3 Let (A1) and (A2) hold. Then the following statements are valid for system
(5):

(i) If R0 < 1, then the disease-free periodic solution (S∗(t), 0, 0, 0) is globally
attractive for system (5) in D.

(ii) If R0 > 1, then system (5) admits a positiveω-periodic solution (S̄(t), Ē(t), Ī (t),
R̄(t)) and these exists a real numberη > 0 such that the solution (S(t), E(t), I (t),
R(t)) of system (5)with for anyφ ∈ Dwithφ3(0) > 0 satisfies lim inf t→∞ I (t) ≥
η.

4 Numerical simulations

To illustrate our results, in this section we apply our results to a special case and reveal
the influence of the periodic time delay.
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Let us choose f (t, S, I ) = β(t)SI
1+ε(t)I and ω = 365 days. Based on the data of Mateus

and Silva (2017), we take the following parameter values,

Λ(t) = 1000/25550(1 + 0.2 cos(2π t/365))day−1,

μ(t) = 1/25550(1 + 0.2 cos(2π t/365))day−1,

α(t) = 1/7(1 + 0.5 cos(2π t/365))day−1,

γ (t) = 1/2.2(1 + 0.1 cos(2π t/365))day−1.

Anyperiodic function canbe expressed as a sumof harmonic terms. For the sakeof con-
venience, we assume that the periodic time delay is τ(t) = 23(1+ 0.8 cos(2π t/365))
day, the disease-induced death rate is d(t) = 0.00079(1 + 0.2 cos(2π t/365)) day−1,
the transmission coefficient is β(t) = 0.0015(1 + 0.2 cos(2π t/365)) day−1, and
ε(t) = 0.011. It should be pointed out these parameters are chosen for illustrative
purpose only, and may not be meaningful biologically.

Firstly, to computer the basic reproduction ratio R0 numerically, we apply Lemma 2
and Liang et al. (2017, Lemma 2.5). With the above set of parameters, we obtain
R0 = 3.1263 > 1. When the initial functions are chosen as S(θ) = 550, I (θ) = 1,
R(0) = 50 for all θ ∈ [−τ̂ , 0], we calculate E(0) ≈ 39.9441. In this case, all
compartments fluctuates periodically,which implies the diseasewill persist and exhibit
periodic fluctuations eventually. Figure 1 illustrates the result and is coincident with
Theorem 3 (ii). In order to understand the seasonal patterns of disease risk, we only
consider the number of the infectious population in one year. Figure 2 shows that the
number of infectious individuals is expected to peak between 840th day (April) and
910th day (June).Hence control strategies should aim to lower the number of infections
during the course of a pandemic and postpone the timing of the peaks so that people
have enough time to take appropriate measures. If we decrease the transmission
coefficient to 0.2β(t), and the initial functions are chosen as S(θ) = 550, I (θ) = 73,
R(0) = 50 for all θ ∈ [−τ̂ , 0], and hence E(0) ≈ 327.0103, then we calculate
R0 = 0.6253 < 1. In this case, from Theorem 3 (i), the susceptible population
exhibits periodic fluctuations (constant as a special case), and the exposed, infectious
and recovered populations all converge to zero, which means that the disease will be
eliminated. Figure 3 illustrates the results above.

Secondly, we explore the influence of the transmission coefficient on R0. Letβ(t) =
a(1+b cos(2π t/365)), 0 ≤ b ≤ 1, where a is themean contact rate, b is the amplitude
of fluctuations (or the strength of seasonal forcing). Fixed b = 0.2, R0 is strictly
increasing with respect to the mean contact a from Fig. 4. If fixed a = 0.0015, then
R0 is decreasing with respect to the amplitude of fluctuations b from Fig. 5. That is,
the basic reproduction ratio R0 depends not only on the mean contact rate, but also
on the amplitude of fluctuations. Then we see that R0 is highly sensitive to β(t). This
also shows that the transmission rate has an important role in the spread of the disease.
Clearly, by taking some control measures such as isolation or vaccination effort, we
assume that the control effort is k (0 ≤ k ≤ 1); that is, the transmission rate becomes
(1− k)β(t). If we can decrease the transmission coefficient to 0.31β(t), then R0 < 1,
which implies that the disease will die out, see Fig. 6.

123



A periodic SEIRS epidemic model with a time-dependent… 1573

0 1000 2000 3000 4000 5000
200

250

300

350

400

450

500

550

600

 t

 S

(a)

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

300

 t

 E

(b)

0 1000 2000 3000 4000 5000
0

5

10

15

20

25

30

35

40

45

50

 t

 I

(c)

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

140

160

180

200

 t

 R

(d)

Fig. 1 Long-term behavior of the solution of system (5) when R0 = 3.1263 > 1

Fig. 2 The curve of the number
of the infectious population of
system (5) when
R0 = 3.1263 > 1 in oneyear
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Fig. 3 Long-term behavior of the solution of system (5) when R0 = 0.6253 < 1

Fig. 4 The basic reproduction
ratio R0 as a function of a for
system (5) fixed b = 0.2
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Fig. 5 The basic reproduction
ratio R0 as a function of b for
system (5) fixed a = 0.0015
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Fig. 6 The basic reproduction
ratio R0 as a function of k for
system (5)
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Fig. 7 Comparison of the
long-term behavior of the
infectious population of system
(5) with different latent periods
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Fig. 8 The basic reproduction
ratio R0 as a function of a for
system (5) with τ(t) and [τ ]
when b = 0.2
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Fig. 9 The basic reproduction
ratio R0 as a function of b for
system (5) with τ(t) and [τ ]
when a = 0.0015
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Thirdly, we define the time-averaged latent period as

[τ ] := 1

ω

∫ ω

0
τ(t)dt .

It follows that [τ ] = 23 day. Figure 7 compares the long-term behavior of the
infectious population of system (5) with different values of the latent period: the
periodic τ(t) and the constant [τ ]. Furthermore, fixed b = 0.2 and a = 0.0015,
Figs. 8 and 9 compare the effect of periodic τ(t) and constant [τ ] on R0 in these
parameter values, respectively. This implies that the use of the time-averaged latent
period may underestimate or overestimate the value of R0.

5 Discussion

In this paper,wehaveproposed a class of periodicSEIRSepidemicmodelswith general
incidence rate by incorporating seasonality into the model so that the parameters are
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periodic functions and the time-dependent delay describes the latent period. By using
the theory developed in Zhao (2017a), we have derived the basic reproduction ratio
R0 for our model system. Following the theoretical approach in Lou and Zhao (2017),
we define a new phase space on which the periodic linear system (9) generates an
eventually strongly monotone periodic semiflow. By applying the theorem of uniform
persistence for periodic semiflows, we have obtained that the basic reproduction ratio
R0 acts as a threshold parameter for the uniform persistence and global extinction of
the disease. If R0 < 1, then the disease-free periodic solution is globally attractive and
the disease will be eliminated. If R0 > 1, then there is a positive periodic solution,
and the disease is uniformly persistent and exhibits seasonal fluctuations.

For periodic models with time-dependent delays, the numerical approximation of
R0 is challenging. We have numerically calculated R0 and explored the influences
of some key parameters in system (5) on R0. The numerical simulation about the
long-term behavior of solutions is consistent with the obtained analytic results. We
have observed that the increase of the transmission coefficient has a negative impact
for disease eradication. Therefore, we should make some measures to control disease
through decreasing the transmission coefficient for certain parameters.

Furthermore, we have found that there is a difference of the values of R0 between
the use of τ(t) and its average [τ ]. Using the time-averaged latent period may under-
estimate or overestimate the value of R0. Therefore, in order to find more effective
preventive measures during an outbreak of disease, the time-dependent latent delay
is important to be considered for some seasonal infectious diseases. Obviously, it is
important to acquire some epidemiologically realistic data and to investigate sensi-
tivity studies for the parameters. From the practical viewpoint, our proposed periodic
SEIRS epidemicmodelmay be used to understand and predict the outbreak of seasonal
infectious diseases.

A possible extension of our model is to consider the case where the incidence rate
also depends on the total population size N (t) (see, e.g., Mateus and Silva 2017).
As such, the incidence function is of the form f (t, S(t), I (t), N (t)), which makes
the mathematical analysis of the resulting model more challenging. We leave this
interesting problem for future investigation.
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