
Journal of Mathematical Biology (2019) 78:879–898
https://doi.org/10.1007/s00285-018-1295-x Mathematical Biology

Decoupledmolecules with binding polynomials of bidegree
(n, 2)

Yue Ren1 · Johannes W. R. Martini2 · Jacinta Torres1

Received: 21 December 2017 / Revised: 9 September 2018 / Published online: 3 October 2018
© The Author(s) 2018

Abstract
We present a result on the number of decoupled molecules for systems binding two
different types of ligands. In the case of n and 2 binding sites respectively, we show that
there are 2(n!)2 decoupled molecules to a generic binding polynomial. For molecules
with more binding sites for the second ligand, we provide computational results.
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1 Introduction

In biology, a ligand is a substance that binds to a target molecule to serve a given
purpose. A classical (Bohr et al. 1904; Hasselbalch 1917) and intensively studied
(Barcroft 1913; Hill 1913) example is oxygen, which binds reversibly to hemoglobin
to be transported through the bloodstream. Reversible mutual binding of different
molecules is also a key feature in biological signal transduction (Changeux and Edel-
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stein 2005; Cho et al. 1996; Gutierrez et al. 2009; Ha and Ferrell 2016) and gene
regulation (Gutierrez et al. 2012).

A commonmodel for describing equilibrium and steady states of a ligand L binding
to the sites of a target molecule M comes from the grand canonical ensemble of statis-
tical mechanics (Ben-Naim 2001; Hill 1985; Schellman 1975;Wyman and Gill 1990).
The grand partition function, in our context also known as the binding polynomial,
arises as the denominator of the rational function describing the average number of
occupied binding sites as a function of ligand activity. In the case of a target molecule
with only one binding site, this rational function is given by

�(Λ) = aΛ

aΛ + 1
,

where the variable Λ denotes the activity of the ligand in the environment, and a is a
transformation of the binding energy depending on the temperature, which is usually
assumed to be constant. This equation is also known as the (sigmoid) Henderson–
Hasselbalch titration curve. Titration refers to the laboratory method used to obtain
this curve. For systems of molecules with n binding sites it generalizes to the Adair
equation (Adair et al. 1925; Stefan and Le Novère 2013):

�(Λ) = nanΛn + (n − 1)an−1Λ
n−1 + · · · + a1Λ

anΛn + an−1Λn−1 + · · · + a1Λ + 1
.

In this model, the binding polynomial and its roots play an important role for the
characterization of the binding behavior of the ligand to the target molecule (Briggs
1983, 1984, 1985; Connelly et al. 1986), in particular in the context of cooperativity
(Abeliovich 2016; Stefan 2017). The rational functions of systems with n binding sites
can be represented as sums of n Henderson–Hasselbalch curves (Martini and Ullmann
2013; Onufriev et al. 2001; Onufriev and Ullmann 2004), which means that any given
system of interacting binding sites can be represented by a hypothetical molecule con-
sisting of stochastic independent binding sites (Martini et al. 2013a) with the same
titration curve. The roots of the binding polynomial determine the binding energies of
the independent pseudo-sites in this so-called decoupled sites representation.

For two different types of ligands, the binding polynomial has two variables (rep-
resenting the activities of both ligands in the environment) and (n1 + 1) · (m1 + 1)
coefficients

(
ai, j

)
i=0...n1; j=0,...,n2

.Given an arbitrary bindingpolynomial for two types
of ligands, it is not in general possible to find a molecule without interactions between
all binding sites and possessing this binding polynomial. However, molecules can be
found in which the binding sites for the same type of ligand do not interact and only
interactions between sites for different ligands are non-trivial (Martini et al. 2013b, c).
Contrary to the case of one type of ligand, where the decoupled sites representation is
unique up to permutation of the roots, there are several different decoupled molecules.
It has been shown previously that in the case of n and 1 binding sites for the two
ligands, respectively, there are n! decoupled molecules. The situation becomes more
complicated for general systems of n1 and n2 binding sites. The main goal of this
paper is to prove the following theorem.
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Decoupled molecules with binding polynomials of bidegree (n, 2) 881

red sites labelled 1, . . . , 4 for O2

binding energies gi

interaction
energies wi,j

Fig. 1 A molecule with 4 binding sites (e.g. hemoglobin)

Theorem 1.1 The decoupledmolecules of a fixed binding polynomial of bidegree (n, 2)
are the solutions to a system of 3n + 2 unknowns: the n + 2 binding energies and
the 2n interaction energies. For generic binding polynomials, the number of complex
solutions to this system equals 4(n!)3. These come in 2(n!)2 classes under relabeling
of the sites.

The article is structured as follows: In Sect. 2, we recall the definition of the binding
polynomial and formulate the central question addressed in this work. In Sect. 3,
we recall some results and techniques of numerical algebraic geometry, which are
necessary to prove the main theorem in Sect. 4. We conclude the article with some
experimental results in Sect. 5 and some open questions in Sect. 6.

2 Background and framework

In this section, we briefly recap the algebraic framework as well as past results, and,
in doing so, fix various notations. Most importantly, we introduce some shorthand
notation for molecules with (n, 2) sites for Sects. 3 and 4.

2.1 Single type of ligand

The binding behavior of systems with one type of ligand is governed by the energies
required to bind to each site of the target molecule and the way different binding sites
interact with each other. Following the notation of Martini and Ullmann (2013), we
identify target molecules with these parameters.

Definition 2.1 A molecule M with n sites for one type of ligand is a point

M = (g1, . . . , gn, w1,2, w1,3, . . . , wn−1,n) ∈ (C∗)n × (C∗)(
n
2).

The gi are called the binding energies and the wi, j are called the interaction energies;
theymeasure, respectively, the energy at each site i and the interaction energy between
sites i and j (see Fig. 1). We call M decoupled if wi, j = 1 for all 1 ≤ i < j ≤ n.

We will consider the natural Sn action that corresponds to relabelling the sites:

σ · (g1, . . . , gn, w1,2, . . . , wn−1,n) := (gσ(1), . . . , gσ(n), wσ(1),σ (2), . . . , wσ(n−1),σ (n))

for σ ∈ Sn .
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Definition 2.2 Given a target molecule M with n sites, we refer to the power set
K := 2{1,...,n} as the set of all microstates. Each microstate I ∈ K describes a binding
state by indicating whether binding site i is occupied (i ∈ I ) or not (i /∈ I ). To each
microstate I we associate a microstate constant

a(I ) :=
∏

i∈I

⎛

⎜⎜
⎝gi

∏

j∈I ,
j>i

wi, j

⎞

⎟⎟
⎠ .

The binding polynomial is then defined as

PM (Λ) =
∑

I∈K
a(I )Λ|I | ∈ C[Λ].

It is a polynomial of degree n with constant term 1, and the map M �→ PM is

constant on the Sn orbits, i.e. PM(Λ) = Pσ(M)(Λ) for every M ∈ (C∗)
n(n+1)

2 and all
σ ∈ Sn .

The following theorem is also known as the decoupled sites representation. It
implies that any molecule with real binding and interaction energies can be uniquely
represented by a molecule with neutral interaction energy, provided that complex
binding energies are allowed. Its proof consists of a reformulation of Vieta’s formulas.

Theorem 2.3 (Martini and Ullmann 2013, Proposition 2) For any molecule N there
exists a decoupled target molecule M, unique up to relabelling of the sites, such that
PM = PN.

2.2 Multiple types of ligands

In case of d > 1 types of ligands, we consider each binding site to be only able to
take up to one type of ligand (Martini et al. 2013c). This is sensible, as we can model
a single binding site capable of binding to two types of ligands as two binding sites
with interaction energies set so that the two sites can never be saturated at the same
time.

For our purposes, let us assume that d = 2. We write n1 and n2 for the number of
sites capable of binding to the first and second ligand, respectively.

Definition 2.4 A molecule M with (n1, n2) sites is a point

M = (gT1, . . . , gTn1 , gS1, . . . , gSn2 , (wP )P⊂{Ti ,S j },|P|=2) ∈ (C∗)n1+n2 × (C∗)(
n1+n2

2 ),

where T1, . . . , Tn1 , S1, . . . , Sn2 represent the binding sites for ligand type T and S
respectively (see Fig. 2) and

• gT1, . . . , gTn1 and gS1, . . . , gSn2 are the binding energies,
• wP for P ⊂ {T1, . . . , Tn1 , S1, . . . , Sn2} with |P| = 2 are the interaction energies.
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red sites labelled T1, . . . , T4

blue sites labelled S1, . . . , S4

binding energies gTi

binding energies gSj

interaction
energies wTi,Sj

wTi,Tj

wSi,Sj

Fig. 2 A molecule with (4,4) sites

We call M decoupled, if wP = 1 for P ⊂ {T1, . . . , Tn1} and P ⊂ {S1, . . . , Sn2}.
Similar to the case d = 1, there is a natural Sn1 × Sn2 action that corresponds to

relabelling the sites.

Definition 2.5 Similar to the case d = 1, we can define the binding polynomial PM of
a molecule M. Explicitly, for decoupled molecules M, PM is a bivariate polynomial in
the two (ligand) variables Λ1 and Λ2,

PM(Λ1,Λ2) =
∑

i=1,...,n1

∑

j=1,...,n2

ai, jΛ
i
1Λ

j
2,

where the coefficients ai, j are given by

ai, j =
∑

I⊂{1,...,n1}
J⊂{1,...,n2}
|I |=i, |J |= j

∏

Ti∈I
gTi

∏

S j∈J

gS j
∏

S j∈I
Ti∈J

w{Ti ,S j }. (1)

It is a bivariate polynomial of bidegree (n1, n2) with constant term 1. Moreover,
the map M �→ PM is constant on the Sn1 × Sn2 -orbits, i.e. PM(Λ) = Pσ(M)(Λ) for

every M ∈ (C∗)n1+n2 × (C∗)(
n1+n2

2 ) and all σ ∈ Sn1 × Sn2 .

For (n1, n2) = (n, 1), the decoupled sites representation takes the following form:

Theorem 2.6 (Martini et al. 2013c, Corollary 2) For any molecule N with (n, 1) sites
there exist, up to relabelling of the sites, and counted with multiplicity, n! decoupled
molecules M of the same type such that PN = PM.

2.3 Decoupledmolecules with (n, 2) sites

The main focus of this article are decoupled molecules with (n, 2) sites, for which we
will simplify the notation as follows: instead of T1, . . . , Tn , we label the n binding
sites of the first type with 1, . . . , n, and, instead of S1, S2, we label the two binding
sites of the second type with A, B (see Fig. 3), so that
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A

B

1

2

...

n

gA

gB

g1

g2

gn

wi,A

wi,B

Fig. 3 A decoupled molecule with (n,2) sites

a1,0 = g1 + · · · + gn,
...

an,0 = g1 · · · gn,
a0,1 = gA + gB,

a1,1 = gA(g1w1,A + · · · + gnwn,A) + gB(g1w1,B + · · · + gnwn,B),

a2,1 = gA(g1g2w1,Aw2,A + · · · + gn−1gnwn−1,Awn,A)

+ gB(g1g2w1,Bw2,B + · · · + gn−1gnwn−1,Bwn,B),...
an,1 = gAg1 . . . gnw1,A . . . wn,A + gBg1 . . . gnw1,B . . . wn,B,

a0,2 = gAgB,

a1,2 = gAgB(g1w1,Aw1,B + · · · + gnwn,Awn,B),

a2,2 = gAgB(g1w1,Aw1,Bg2w2,Aw2,B + · · · + gn−1wn−1,Awn−1,Bgnwn,Awn,B),
...

an,2 = gAgBg1w1,Aw1,B . . . gnwn,Awn,B.

(2)

Fig. 4 Coefficients of the binding polynomial of bidegree (n,2)

• g1, . . . , gn, gA, gB represent the binding energies,
• w1,A, . . . , wn,A, w1,B, . . . , wn,B represent the non-trivial interaction energies.

The formulas for the coefficients of the binding polynomial then simplify to the
polynomials in System (2) (see Fig. 4). For an explicit instance of the equations and
their solutions, see Sect. 5.1.We denote the pair set of decoupledmolecules with (n, 2)
sites and their binding polynomials of bidegree (n, 2) (ignoring its constant term 1)

M =
{
(g, w; a) ∈ (C∗)n+2 × (C∗)n·2 × C

(n+1)·(2+1)−1
∣
∣∣ (g, w; a) satisfies System (2)

}
.

3 Numerical algebraic geometry

In this section we recall some basic notions of numerical algebraic geometry and its
main workhorse: homotopy continuation. For that, we regardM as the preimage of 0
of the polynomial map
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f : (C∗)n+2 × (C∗)n·2
︸ ︷︷ ︸

=:X
×C

(n+1)·(2+1)−1
︸ ︷︷ ︸

=:Y
→ C

(n+1)·(2+1)−1

with

f (g, w; a) =

⎛

⎜⎜
⎝

g1 + · · · + gn − a1,0
...
...

⎞

⎟⎟
⎠ ,

where g := (g1, . . . , gn, gA, gB) and w := (w1,A, . . . , wn,A, w1,B, . . . , wn,B) are
referred to as unknowns, and a = (a1,0, . . . , an,2) are regarded as parameters. We fix
the projection

πY : X × Y −→ Y .

One fundamental and important concept is that solutions vary continuously in the
parameters, which is summarized in the following theorem.

Theorem 3.1 (Sommese and Wampler 2005, Theorem A.14.1) If there is an isolated
solution (g∗, w∗; a∗) ∈ X ×Y of f (g, w; a∗) = 0, then there are euclidean open sets
U ⊂ X, V ⊂ Y containing (g∗, w∗), a∗ respectively such that

(1) (g∗, w∗) is the only solution of f (g, w; a∗) = 0 for (g, w) ∈ U;
(2) for fixed a′ ∈ V , f (g, w; a′) = 0 has only isolated solutions for (g, w) ∈ U;
(3) for fixed a′ ∈ V , the multiplicity of (g∗, w∗; a∗) as a solution of f (g, w; a∗) = 0

is the sum of the multiplicities of the solutions of f (g, w; a′) = 0 for (g, w) ∈ U .

Example 3.2 [Vieta’s Formula] Consider the first n components of our polynomial
map, which are given by (abbreviating ai := ai,0):

f (g1, . . . , gn; a1, . . . , an) :=

⎛

⎜⎜⎜
⎝

g1 + · · · + gn − a1
g1g2 + g1g3 + · · · + gn−1gn − a2

...

g1 · · · gn − an

⎞

⎟⎟⎟
⎠

.

Given any parameter a′ ∈ C
n , one can show that any solution g′ ∈ C

n to f (g; a′) =
0 consists of the roots of the univariate polynomial tn + a′

1t
n−1 + · · · + a′

n . This is
commonly known as Vieta’s formula (Hazewinkel 2013). Hence there exist a Zariski-
open set U := C

n \ Discx (xn + a1xn−1 + · · · + an) such that for any a′ ∈ U there
are n! distinct simple solutions to f (g; a′) = 0. We say that there are generically n!
solutions and refer to a′ ∈ U as a generic choice of parameters.

Should xn+a′
1x

n−1+· · ·+a′
n = (x−1)n , then the only solution is g′ = (1, . . . , 1).

Theorem 3.1 implies that this solution is of multiplicity n!. This will be important in
the proof of Lemma 4.2.
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a

x

<

<

10

Fig. 5 A converging and a diverging solution path

The arguably most essential tool in numerical algebraic geometry is path tracking:
Given

• a starting solution (g′, w′; a′) ∈ X × Y ,
• a target parameter a∗ ∈ Y ,
• a continuous path φ : [0, 1] → Y with φ(1) = a′ and φ(0) = a∗,

there exist under good circumstances (Sommese and Wampler 2005, Theorem 7.1.6)
a solution path

z : (0, 1] → X with z(1) = (g′, w′) and f (z(t), φ(t)) = 0.

However, the solution path might diverge, which is why these problems are commonly
studied in projective space.

Example 3.3 (solutions at infinity) The simplest example of diverging solution path is
the function

f : C × C −→ C, f (x; a) = ax2 − x,

with two starting solutions (0; 1), (1; 1), the target parameter 0 and the continuous,
straight-line path φ : [0, 1] → C, t �→ 1 − t , see Fig. 5.
The two solution paths are

z1 : [0, 1) −→ C, t �−→ 0,

z2 : [0, 1) −→ C, t �−→ 1

1 − t
,

of which the first obviously converges, while the second diverges. Note that diverging
paths can only appear if parameters occur in the coefficients of non-constant mono-
mials, which is not the case in System (2), see proof of Theorem 4.4.

4 Generic decoupledmolecules with (n, 2) sites

In this section, we show that a generic binding polynomial represents 4 · (n!)3 decou-
pled molecules with (n, 2) sites. Due to the complexity of the system of polynomial
equations, the proof is split in two parts. First, we study a special class of decoupled
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Decoupled molecules with binding polynomials of bidegree (n, 2) 887

molecules and their binding polynomials. In a second step, we study their implication
to the generic case.

4.1 Normalizedmolecules

In this subsection, we restrict ourselves to a special class of decoupled molecules and
their binding polynomials. This simplifies our system of equations and allows us to
show that a generic binding polynomial of such molecules represents 2n! molecules,
each of multiplicity 2(n!)2.
Definition 4.1 Recall thatM consists pairs of molecules and their binding polynomi-
als (see Sect. 2.3). We define the set of all normalized molecules to be

Mnorm :=
{
(g, w; a) ∈ M

∣
∣∣∣
gi = 1 for i = 1, . . . , n and gA = gB = 1

wi,Awi,B = 1 for i = 1, . . . , n

}
.

Lemma 4.2 The projection

M πnorm−→ (C∗)n × C
n, (g, w; a) �−→ (w1,A, . . . , wn,A; a1,1, . . . , an,1)

maps Mnorm bijectively onto the affine variety V cut out by

a1,1 = (w1,A + · · · + wn,A) +
(

1

w1,A
+ · · · + 1

wn,A

)
,

...

an,1 = w1,A . . . wn,A + 1

w1,A . . . wn,A
.

(3)

Moreover, M has multiplicity 2(n!)2 along Mnorm.

Proof The bijection follows directly from the conditions onMnorm and the equations
of System (2): If (g, w; a) is normalized, then by definition g = (1, . . . , 1) and

w1,B = w−1
1,A. Additionally, the following parameters are uniquely determined by the

following equations of System (2):

a0,1 = gA + gB, a0,2 = gAgB,

a1,0 = g1 + · · · + gn, a1,2 = gAgB(g1w1,Aw1,B + · · · + gnwn,Awn,B),

...
...

an,0 = g1 · · · gn, an,2 = gAgBg1w1,Aw1,B . . . gnwn,Awn,B .

The multiplicity follows from the fact that:

• any solution (gA, gB; a0, j ) to the two equations in the first row is of multiplicity
2 (see Example 3.2),
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• the solution (g1, . . . , gn; ai,0) = (1, . . . , 1; (n
i

)
) to the latter equations in the first

column is of multiplicity n!,
• given gA = gB = gi = 1, the solution (wi,A, wi,B; ai,2) = (1, . . . , 1; (n

i

)
) to the

latter equations in the second column is of multiplicity n!.
and from the fact that the multiplicity of the entire system equals the product of the
multiplicities of the three smaller systems in our case (Eisenbud and Harris 2016,
Proposition 1.29). 	

Proposition 4.3 A generic normalized binding polynomial represents 2n! decoupled
molecules, each of multiplicity 2(n!)2.
Proof By Lemma 4.2, it suffices to show that System (3) has 2n! simple solutions
for generic a = (a1,1, . . . , an,1) ∈ C

n , or rather for (a1,1, . . . , an,1) ∈ U for some
Euclidean open subset U ⊆ C

n . For the sake of simplicity, we abbreviate ai := ai,1
and wi := wi,A for i = 1, . . . , n. Next, we introduce n new variables μ1, . . . , μn

and consider the following equivalent system of 2n equations in the 2n variables
μ1, . . . , μn, w1 . . . , wn :

μ1 = (w1 + · · · + wn) (1)

...
...

μn = w1 . . . wn (n)

a1 − μ1 =
(

1

w1
+ · · · + 1

wn

)
(−1)

...
...

an − μn = 1

w1 . . . wn
(−n)

LetN be the variety cut out by the system above and let πμ and πa denote the three
projections onto μi and ai respectively.

N ⊆ (C∗)|{w1,...,wn}| × C
|{a1,...,an}| × C

|{μ1,...,μn}|

C
|{a1,...,an}| C

|{μ1,...,μn}|

πa πμ

ϕ

We will construct a dominant (i.e. its image is Zariski dense), 2:1 rational map

ϕ : Cn ��� C
n, (μ1, . . . , μn) �−→ (a1, . . . , an),

that maps μ to the unique a for which some w exists such that (w; a, μ) ∈ N . In
short, the diagram above commutes. The image of the complement Cn \ Discx (xn −
μ1xn−1 + · · · + (−1)nμn) will then contain an open set U ⊆ C

n , and for any a ∈ U
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the system will have 2n! solutions: 2 solutions inμ, both outside the discriminant, and
consequently also n! solutions in w for each μ.

To construct ϕ, observe that combining equations (−n) and (n) and obtain:

an − μn = 1

w1 . . . wn
= 1

μn
,

which is equivalent to

μ2
n − an · μn + 1 = 0 or an = μn + 1

μn
.

Moreover, multiplying equation (−(n − 1)) with x1 . . . xn yields

(an−1 − μn−1) · x1 . . . xn︸ ︷︷ ︸
Eq.(n)= μn

= x1 + · · · + xn︸ ︷︷ ︸
Eq.(1)= μ1

,

or, more generally, by multiplying Equation (−i) with x1 . . . xn :

(ai − μi ) · μn = μn−i or ai = μi − μn−i

μn
for i = 1, . . . , n − 1.

Set

ϕ : Cn ��� C
n,

(μ1, . . . , μn) �−→
(

μ1 − μn−1

μn
, . . . , μn−1 − μ1

μn
, μn − 1

μn

)

By construction, ϕ is 2 : 1 and commutes with the projections πμ, πa . Moreover, it is
dominant as its Jacobian,

J (φ) =

⎛

⎜⎜⎜⎜⎜
⎝

1 −1
1 −1

. . .

−1 1
μn−1
μ2
n

μn−2
μ2
n

. . .
μ1
μ2
n
1 + 1

μ2
n

⎞

⎟⎟⎟⎟⎟
⎠

is invertible at (1, . . . , 1). 	


4.2 A generic decoupled sites representation

In this subsection, we will infer from Proposition 4.3 the number of molecules a
generic binding polynomial represents.

Theorem 4.4 Ageneric binding polynomial of bidegree (n, 2) represents 4(n!)3 decou-
pledmoleculeswith (n, 2) sites. These come in 2(n!)2 classesmodulo the Sn×S2 action
that corresponds to relabelling of the sites.
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a∗
( )

a

πa

(g∗, w∗)
Mnorm ⊆ M

2n! pts

⊆ U

2(n!)2 pts each

Fig. 6 Perturbation of normalized binding polynomials

Proof Similar to the proof of Proposition 4.3, it suffices to show the claim in a
euclidean open set. For that consider a generic normalized binding polynomial
a∗ ∈ C

(n+1)(2+1)−1. Proposition 4.3 states that there are 2n! solutions (g∗, w∗; a∗)
to f (g, w; a∗) = 0 of multiplicity 2(n!)2, and we will now argue why each of them

yields 2(n!)2 solutions if we perturb a∗ slightly, see Fig. 6.
ApplyingTheorem3.1 to eachof the solutions,weobtain anopen subsetU ⊆ X×Y ,

where X := (C∗)n+2 × (C∗)n·2, Y := C
3n+2, such that

• for any a′ ∈ πa(U ),U ∩ X ×{a′}) has only isolated solutions of f (g, w; a′) = 0,

• the sum of the multiplicities of those isolated solutions is 4(n!)3.
It remains to show that U contains all isolated solutions of f (g, w; a′) = 0 for
a′ ∈ πa(U ) and that the solutions are simple. Both follow from the fact that our
parameters are exactly the constant terms, i.e. we can regard M as the graph of the
polynomial map

h : X −→ Y , (g, w) �−→

⎛

⎜
⎜
⎝

g1 + · · · + gn
...
...

⎞

⎟
⎟
⎠ ,

so that f (g, w; a) = 0 is equivalent to h(g, w) = a. Fix a′ ∈ πa(U ) and a path

φ : [0, 1] → Y , φ(0) = a∗ and φ(1) = a′.

To see that U contains all solutions to f (g, w; a′) = 0, observe that any solution
(g′, w′; a′) has a solution path

z : (0, 1] −→ X with z(1) = (g′, w′)
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such that f (z(t);φ(t)) = 0 for all t ∈ (0, 1]. As limt→0 h(z(t)) = limt→0 φ(t) = a∗
and h is polynomial, limt→0 z(t) has to converge. Therefore (limt→0 z(t), a∗) is one
of our 2n! solutions, which implies (g′, w′; a′) ∈ U .

To see that solutions are simple for generic binding polynomial note that a solution
(g′, w′; a′) to f (g, w; a′) = 0 is singular if and only if the point (g′, w′) is a critical
point of h. Hence, any solution in the following open set will be simple

U := U ∩ π−1
a (Y \ S),

where S := {h(g′, w′) ∈ C
{ai, j } | (g′, w′) critical point} consists of the images of all

critical points of h. It remains to show that that S is not the entire ambient space Y , so
that the set of all critical points of h is a proper subvariety of X of positive codimension
and so is the Zariski-closure of S. This is equivalent to the fact that the Jacobian of h
has a non-zero determinant, which we will show defining an ordering on the set of all
monomials and proving that the determinant has a non-zero maximal monomial with
respect to it.

Let > be the monomial ordering defined by

gαA
A gαB

B gα1
1 · · · gαn

n w
α1,A
1,A · · · wαn,B

n,B > gβA
A gβB

B gβ1
1 · · · gβn

n w
β1,A
1,A · · ·wβn,B

n,B

⇐⇒
(
αw := (α1,A, . . . , αn,B) >lex βw := (β1,A, . . . , βn,B)

)
or

(
αw = βw and (αA, αB, α1, . . . , αn) >lex (βA, βB , β1, . . . , βn)

)
,

where >lex is the lexicographical ordering on Nk for arbitrary k, i.e.

(α1, . . . , αk) > (β1, . . . , βk)

⇐⇒ α1 = β1, . . . , αi−1 = βi−1 and αi > βi for some 0 < i < k.

Letting hi, j denote the component of h consisting of the polynomial on the right-
hand-side of ai, j in System (2), the Jacobian of h is of the form

(
Jg 0
∗ Jw

)
, where Jg :=

⎛

⎜⎜
⎜⎜⎜
⎝

∂gAh0,1 ∂gB h0,1
∂gAh0,2 ∂gB h0,2

∂g1h1,0 . . . ∂gn h1,0
...

...

∂g1hn,0 . . . ∂gn hn,0

⎞

⎟⎟
⎟⎟⎟
⎠

and Jw :=

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

∂w1,Ah1,1 . . . ∂wn,Ah1,1 ∂w1,B h1,1 . . . ∂wn,B h1,1
...

...
...

...

∂w1,Ahn,1 . . . ∂wn,Ahn,1 ∂w1,B hn,1 . . . ∂wn,B hn,1
∂w1,Ah1,2 . . . ∂wn,Ah1,2 ∂w1,B h1,2 . . . ∂wn,B h1,2

...
...

...
...

∂w1,Ahn,2 . . . ∂wn,Ahn,2 ∂w1,B hn,2 . . . ∂wn,B hn,2

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

,
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and it remains to show that both Jg and Jw have non-zero determinant.
Explicitly, Jg is of the form

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

1 1
gB gA

1 1 . . . 1∑

i1 �=1

gi1
∑

i1 �=2

gi1 . . .
∑

i1 �=n

gi1
∑

i1,i2 �=1
i1<i2

gi1gi2
∑

i1,i2 �=2
i1<i2

gi1gi2 . . .
∑

i1,i2 �=n
i1<i2

gi1gi2

...
...

...∏
j �=1 g j

∏
j �=2 g j . . .

∏
j �=n g j

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

.

The following monomial, which is contained in the product of all diagonal entries, is
maximal among the monomial appearing in the Leibniz formula for determinants:

sg := (1) · (gA) · (1)︸︷︷︸
s3

· (g1)︸︷︷︸
s4

· (g1g2)︸ ︷︷ ︸
s5

· · · (g1 · · · gn−1)︸ ︷︷ ︸
sn+2

Moreover, this monomial can only be obtained by multiplying the diagonal ele-
ments, because each si maximal in its row and and the earlier entries consists of
monomials strictly smaller than it. This implies that sg occurs only once in the Leib-
niz formula for determinants, making it the maximal monomial in the thus non-zero
determinant.

Ignoring gA, gB, g1, . . . , gn , which can be ignored in the search of the largest
monomial due to our choice of ordering, and abbreviating wi,AB := wi,Awi,B , the
matrix Jw is of the form:

⎛

⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

1 . . . 1 1 . . . 1∑

i1 �=1

wi1,A . . .
∑

i1 �=n

wi1,A

∑

i1 �=1

wi1,B . . .
∑

i1 �=n

wi1,B

...
...

...
...∏

j �=1

w j,A . . .
∏

j �=n

w j,A

∏

j �=1

w j,B . . .
∏

j �=n

w j,B

w1,B . . . wn,B w1,A . . . wn,A

w1,B

∑

i1 �=1

wi1,AB . . . wn,B

∑

i1 �=n

wi1,AB w1,A

∑

i1 �=1

wi1,AB . . . wn,A

∑

i1 �=n

wi1,AB

...
...

...
...

w1,B

∏

j �=1

w j,AB . . . wn,B

∏

j �=n

w j,AB w1,A

∏

j �=1

w j,AB . . . wn,A

∏

j �=n

w j,AB

⎞

⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

.

The following monomial, contained in the product of all diagonal entries, is maximal
among the monomials appearing in the Leibniz formula for determinants:
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sw := (1) · (w1,A) · · · (w1,A · · · wn−1,A) · (w1,A) ·
(w1,Aw2,AB) · · · (w1,Aw2,AB · · · wn−1,AB)

As before, this polynomial can only be obtained bymultiplying all diagonal entries,
as the earlier entries in a row consists of strictly smaller monomials. This implies that
sw occurs only once in the Leibniz formula for determinants, making it the maximal
monomial in the thus non-zero determinant. 	


5 Further experimental results

In this section, we provide some experimental results for (n, 2) and beyond. For
simplicity, we will use randomly chosen a ∈ C

(n+1)(2+1)−1. Moreover, we will also
fix a choice of gS1, . . . , gSn1 , gT1 , . . . , gTn2 to factor out the natural Sn1 × Sn2 action
on the roots of System (1), see Sect. 5.1.

All computations are done using one of the following three programs:

bertini (https://bertini.nd.edu/): A solver for polynomial equations using numerical
algebraic geometry. It has built-in features for parallel path-tracking, which proved
to be particularly useful for big examples.

gfan (http://home.math.au.dk/jensen/software/gfan/gfan.html): A software package
for computing Gröbner fans and tropical varieties. It features a new algorithm for
computing mixed volumes using tropical homotopy methods (Jensen 2016).

Singular (Decker et al. 2016): A computer algebra system for polynomial com-
putations, with special emphasis on commutative and non-commutative algebra,
algebraic geometry, and singularity theory.

Scripts, tutorials and other auxiliary files for the computations are available at https://
software.mis.mpg.de.

5.1 Explicit solutions for (3, 2)

Consider the following equations of System (2) for n = 3:

a1,1 = gA(g1w1,A + g2w2,A + g3w3,A) + gB(g1w1,B + g2w2,B + gnw3,B),

a2,1 = gA(g1g2w1,Aw2,A + g1g3w1,Aw3,A + g2g3w2,Aw3,A)

+ gB(g1g2w1,Bw2,B + g1g3w1,Bw3,B + g2g3w2,Bw3,B),

a3,1 = gAg1g2g3w1,Aw2,Aw3,A + gBg1g2g3w1,Bw2,Bw3,B,

a1,2 = gAgB(g1w1,Aw1,B + g2w2,Aw2,B + g3w3,Aw3,B),

a2,2 = gAgB(g1g2w1,Aw1,Bw2,Aw2,B + g1g3w1,Aw1,Bw3,Aw3,B

+ g2g3w2,Aw2,Bw3,Aw3,B),

a3,2 = gAgBg1g2g3w1,Aw1,Bw2,Aw2,Bw3,Aw3,B .
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0.733175658157242746563365475886 e0 −0.525124949875722284087132912860 e0
0.261871644858051814095937009460 e0 −0.442937573433368024261374882297 e0
0.175843060588207991285330446970 e0 0.331651692189479173140340537837 e0
0.691545419943605655254684211883 e0 0.448271194339440245246537764856 e0
0.154572711574605557323732099093 e0 −0.483019502079697923238189339927 e0
0.104413557544869576753196043395 e0 0.326278707683474805854874986793 e0

0.733175658157242746563365475898 e0 0.525124949875722284087132912872 e0
0.261871644858051814095937009460 e0 0.442937573433368024261374882309 e0
0.175843060588207991285330446974 e0 −0.331651692189479173140340537843 e0
0.691545419943605655254684211896 e0 −0.448271194339440245246537764868 e0
0.154572711574605557323732099096 e0 0.483019502079697923238189339940 e0
0.104413557544869576753196043398 e0 −0.326278707683474805854874986799 e0

Fig. 7 Two complex conjugate solutions for (3, 2)

Choosing

g1 = 2, g2 = 3, g3 = 5, gA = 11, gB = 13,

a1,1 = 71, a2,1 = 73, a3,1 = 79, a1,2 = 101, a2,2 = 103, a3,2 = 107,

the system then simplifies to

71 = 11(2w1,A + 3w2,A + 5w3,A) + 13(2w1,B + 3w2,B + 5w3,B),

73 = 11(6w1,Aw2,A + 10w1,Aw3,A + 15w2,Aw3,A)

+ 13(6w1,Bw2,B + 10w1,Bw3,B + 15w2,Bw3,B),

79 = 330w1,Aw2,Aw3,A + 390w1,Bw2,Bw3,B,

101 = 143(2w1,Aw1,B + 3w2,Aw2,B + 5w3,Aw3,B),

103 = 143(6w1,Aw1,Bw2,Aw2,B + 10w1,Aw1,Bw3,Aw3,B

+ 15w2,Aw2,Bw3,Aw3,B),

107 = 4290w1,Aw1,Bw2,Aw2,Bw3,Aw3,B .

Using bertini, we see that it has 72 roots, all of which are non-real and simple, 12 of
which have strictly positive real component. Figure 7 shows a pair of complex conju-
gate solutions with lexicographically largest real part. The ordering on the variables
is w1,A, w1,B , w2,A, w2,B , w3,A, w3,B , so that the first lines corresponds to the real
and imaginary part of w1,A.

5.2 Mixed volumes

The Newton polytope of a polynomial is the convex hull of all exponent vectors of
all monomials with non-zero coefficients. Given a polynomial system f1, . . . , fN in

123



Decoupled molecules with binding polynomials of bidegree (n, 2) 895

1 2 3 4 5 6

1 1 2 6 24 120 720

2 8 72 1 152 28 800 1 036 800

3 1 944 162 432 24 624 000 1 349 713 408

4 52 862 976 - -

5 - -

6 -

Fig. 8 Mixed volumes of the Newton polytopes of (1), numbers in red resp. blue were verified symbolically
using Gröbner bases resp. numerically using homotopy continuation (color figure online)

N variables and with only finitely many solutions, the mixed volume of their Newton
polytopes is an upper bound on the number of solutions that is attained provided
the non-zero coefficients are generic. This is known as the Bernstein–Khovanskii–
Kushnirenko Theorem (Bernstein 1975), or BKK Theorem in short.
Figure 8 shows a table with the mixed volume for various (n1, n2) computed using
gfan. We see that the number for (n1, 1) and (n1, 2) corresponds with the theoretical
results. Sadly, there is no apparent pattern for (n1, n2) with n2 > 2.
Note that there exist criteria on so-called Newton-degeneracy which guarantee that
the mixed volume equals the number of roots (Huber and Sturmfels 1995). However,
due to the high dimension of the Newton polytopes, these were infeasible to verify for
the cases of interest such as (4, 3).

5.3 Counting solutions using Gröbner bases

Given a zero-dimensional polynomial ideal I � C[x], the dimension of C[x]/I as
a C-vector space equals the number of solutions counted with multiplicity, though
in our specific case we only have solutions with multiplicity 1. The vector space
dimension can be easily read off any Gröbner basis, but computing the Gröbner basis
itself is a highly challenging task (Greuel and Pfister 2008, Section 1.8.5). In Fig. 8, red
numbers mark all cases for which Gröbner bases were computable in Singular. The
respective vector space dimensions (computed using the Singular command vdim)
all coincided with the mixed volume. This shows that their coefficients are generic
in the context of the BKK Theorem, though for all cases but (3, 3) this was already
proven.

5.4 Explicit solutions for (5, 2) and (4, 3)

For the cases (5, 2) and (4, 3), highlighted blue in Fig. 8, we also tried to compute
explicit roots using bertini. However, numerical instabilities arose in both cases
during the computation, so that the roots computed are most likely incomplete.

For (5, 2) we obtained 28,737 roots, 63 short or 99.8% of the proven 28,800 roots.
For (4, 3) we obtained 156,966 roots, 5466 short or 97% of the conjectured 162,432
roots.
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6 Open questions

We close with three open questions.

Question 6.1 What is the number of solutions for (n1, n2)?

For binding polynomials of bidegree (n, 1) and (n, 2), the number of decoupled
molecules is given by relatively simple expressions. Assuming that the mixed volumes
of the Newton polytopes equals the number of solutions, Table 8 indicates a more
complicated pattern in the number of decoupled molecules for (n, 3). The smallest
interesting example is the case (4, 3) for which we conjecture that the number equals
162432.

Question 6.2 How many solutions with real, positive values for gi and wi, j exist?

For univariate binding polynomials, the existence of complex roots suggests that the
system does strongly interact and cannot be represented by a real decoupled system.
In particular it is an indicator for “cooperativity” (Martini et al. 2016). It is neither
clear how this concept can be translated to decoupled molecules for two types of
ligands nor which characteristic different decoupled molecules share. To develop an
understanding, it would be helpful to determine the number of real, positive solutions
for small examples.

Question 6.3 Find an algorithm to compute the minimal interaction energy that a
molecule with prescribed binding polynomial has.

For univariate binding polynomials, a quantitative measure for “cooperativity” is
mapping the polynomial to the minimal interaction energy which is required to gen-
erate it (Martini 2017). In more detail, the norm of a molecule is the product of all the
absolutes of its interaction energies,

|M| =
∏

|wi, j |, where |w| := max
(
w,w−1

)
,

while the norm of a polynomial 
 is the minimal norm of all molecules that give
rise to this polynomial. How can we calculate |
|? It would be interesting to investi-
gate whether the machinery that has been developed for Euclidean distance degree is
applicable in our setting (Draisma et al. 2016).
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