
Journal of Mathematical Biology (2019) 78:527–547
https://doi.org/10.1007/s00285-018-1282-2 Mathematical Biology

Finding a most parsimonious or likely tree in a network
with respect to an alignment

Steven Kelk1 · Fabio Pardi2 · Celine Scornavacca3 · Leo van Iersel4

Received: 13 July 2017 / Revised: 16 May 2018 / Published online: 19 August 2018
© The Author(s) 2018

Abstract
Phylogenetic networks are often constructed bymergingmultiple conflicting phyloge-
netic signals into a directed acyclic graph. It is interesting to explore whether a network
constructed in this way induces biologically-relevant phylogenetic signals that were
not present in the input. Here we show that, given a multiple alignment A for a set
of taxa X and a rooted phylogenetic network N whose leaves are labelled by X , it is
NP-hard to locate a most parsimonious phylogenetic tree displayed by N (with respect
to A) even when the level of N—the maximum number of reticulation nodes within a
biconnected component—is 1 and A contains only 2 distinct states. (If, additionally,
gaps are allowed the problem becomes APX-hard.) We also show that under the same
conditions, and assuming a simple binary symmetric model of character evolution,
finding a most likely tree displayed by the network is NP-hard. These negative results
contrast with earlier work on parsimony in which it is shown that if A consists of
a single column the problem is fixed parameter tractable in the level. We conclude
with a discussion of why, despite the NP-hardness, both the parsimony and likelihood
problem can likely be well-solved in practice.

Keywords Phylogenetic tree · Phylogenetic network · Maximum parsimony ·
Maximum likelihood · NP-hardness · APX-hardness

Mathematics Subject Classification 92D15 · 68Q25 · 92D20

1 Introduction

Rooted phylogenetic networks are generalizations of rooted phylogenetic trees that
allow horizontal evolutionary events such as horizontal gene transfer, recombination
and hybridization to be modelled (Huson et al. 2010; Morrison 2011; Gusfield 2014).
This is achieved by allowing nodes with indegree 2 or higher, known as reticulation

Kelk and Pardi have contributed equally to this article.

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-018-1282-2&domain=pdf
http://orcid.org/0000-0002-9518-4724

528 S. Kelk et al.

nodes. Recent years have seen an explosion of interest in constructing rooted phyloge-
netic networks, fuelled by the growing awareness that incongruence in phylogenetic
and phylogenomic datasets is not simply a question of evolutionary “noise”, but
sometimes the result of evolutionary phenomena more complex than speciation and
mutation (e.g. Zhaxybayeva and Doolittle 2011; Abbott et al. 2013; Vuilleumier and
Bonhoeffer 2015).

Although many modelling questions surrounding the construction of phylogenetic
networks are still to be answered, it is commonplace to associate a rooted phylogenetic
network with the set of rooted phylogenetic trees that it contains (“displays”). Infor-
mally speaking, a rooted phylogenetic network displays a rooted phylogenetic tree if
the tree can be topologically embedded inside the network. A network is not neces-
sarily defined by the set of trees it displays, but the notion of display is nevertheless
a recurring theme in the literature, since networks themselves are often constructed
by merging phylogenetic trees subject to some optimality criterion. It is well-known
that it is NP-hard to determine whether a network displays a given tree (Kanj et al.
2008), although on many restricted classes of phylogenetic networks the problem is
polynomial-time solvable (Van Iersel et al. 2010; Fakcharoenphol et al. 2015; Gam-
bette et al. 2015).

Although it is important to be able to determine whether a network displays a given
tree, we may also wish to ask what the “best” tree is within the network, subject to
some optimality criterion. For example, given a network N and a multiple alignment
A, we may wish to ask for a tree T displayed by N with lowest parsimony score with
respect to A. Similarly, if the network is decorated by edge lengths or probabilities,
we may wish to identify a most likely tree displayed by the network, that is, a tree
that maximizes the probability of generating A, under a given model of evolution.
Such questions are natural, as the two following examples show. First, phylogenetic
networks are often constructed by topologically merging incongruent phylogenetic
signals (e.g. Kelk and Scornavacca 2014), and it is insightful to ask whether the
network thus constructed displays trees which have interesting properties (such as a
low parsimony score or a high likelihood) which were not in the input. Second, we
may wish to perform classical phylogenetic tree construction under criteria such as
maximum parsimony or maximum likelihood (e.g. Jin et al. 2006, 2007), but within
the restricted space of trees displayed by a given network.

Problems of the above kind are already known to be NP-hard, since it is NP-
hard to determine a most parsimonious tree T displayed by a given network N even
when the alignment A consists of a single column and the network is binary (Fischer
et al. 2015). However, the gadgets used in that hardness reduction produce networks
with very high level, where level is the maximum number of reticulation nodes in a
biconnected component of the network. On the positive side, the same article shows
that the problem on an alignment consisting of a single column is FPT in the level of
the network. This means that, on a network with level k, the problem can be solved in
time f (k) · poly(n) where f is a function that depends only on k and n is the size of
the network. Such results are useful in practice, when (as is often the case) k is small.

The question emergeswhether the positive FPT result goes throughwhen A does not
consist of a single column, but potentially many columns – a problem introduced more
than one decade ago (Nakhleh et al. 2005). Here we show that this is not the case. We

123

Finding a most parsimonious or likely tree in a network. . . 529

prove the rather negative result that locating amost parsimonious tree in a rooted binary
network N is NP-hard, even under the following restricted circumstances: (1) each
biconnected component of the network contains exactly one reticulation node (i.e. is
“level-1”); (2) each biconnected component of the network has exactly three outgoing
arcs; (3) the alignment A consists of two states. If indel symbols are permitted then the
problem is not only NP-hard, but also difficult to approximate well (APX-hard). If any
of the conditions (1)-(3) are further strengthened (respectively: the network becomes a
tree; the reticulation nodes become redundant; the alignment becomes uninformative),
the problembecomes trivially solvable, so in some sense this is a “best possible” (or the
“worst possible”, depending on your perspective) hardness result. Next, we consider
the question of identifying a most likely tree in the network. We obtain NP-hardness
under the same restrictions (1)-(3), subject to the simple binary symmetric model of
character evolution. It is no coincidence that restrictions (1)-(3) again apply, since the
hardness of the likelihood question is established by reducing the parsimony variant of
the problem to it. Specifically, we show that a most likely tree displayed by a network
with sufficiently short branches is necessarily also a most parsimonious tree.

Although the main results in this paper are negative, some reasons for hope are
given in the conclusion.

2 Preliminaries

A rooted binary phylogenetic network N on a set X of taxa is a directed acyclic graph
where the leaves (nodes of indegree-1 and outdegree-0) are bijectively labelled by X ,
there is a unique root (a node of indegree-0 and outdegree-2) and all other nodes are
either tree nodes (indegree-1 and outdegree-2) or reticulation nodes (indegree-2 and
outdegree-1). For brevity we henceforth simply use the term network. A rooted binary
phylogenetic tree (henceforth tree) is a phylogenetic network without any reticulation
nodes.A cherry is a pair of taxa that share a commonparent.A rooted binary caterpillar
is a tree with exactly one cherry.

The level of a network N is the maximum number of reticulation nodes in a bicon-
nected component of the undirected graph underpinning N . In this articlewewill focus
exclusively on level-1 networks. In level-1 networks, maximal biconnected compo-
nents that are not single edges are simple cycles that contain exactly one reticulation
node; such biconnected components are called galls. An arc whose tail (but not head)
is a node of a gall is called an outgoing arc.

A character f is a surjective mapping f : X → S where S is a set of discrete
states. When S contains two states we say that f is a binary character. Given a tree
T = (V , E) and a character f , both on X , we say that f̂ : V → S is an extension
of f to T if f̂ (x) = f (x) for all x ∈ X . The number of mutations induced by f̂ (on
T), denoted l f̂ (T), is the number of edges {u, v} ∈ E such that f̂ (u) �= f̂ (v). The
parsimony score of f with respect to T , denoted l f (T), is the minimum number of
mutations induced ranging over all extensions f̂ of f . Any extension that achieves
this minimum is called an optimal extension. An optimal extension can be computed
in polynomial time using Fitch’s algorithm (Fitch 1971), which for completeness

123

530 S. Kelk et al.

we describe in the appendix along with some of its relevant mathematical properties.
(Note that there potentially exist optimal extensions that cannot be generated by Fitch’s
algorithm.)

For a network N and a tree T , both on X , we say that N displays T if there exists
a subtree T ′ of N such that T ′ is a subdivision of T . An equivalent definition of
“displays” relies on the notion of a switching, where a switching is a subtree N ′ of N
obtained by, for each reticulation node u, deleting exactly one of u’s incoming edges.
N displays T if and only if there exists some switching N ′ of N and a subdivision T ′
of T such that T ′ is a subgraph of N ′. In both definitions we say that T ′ is an image
of T inside N .

The softwired parsimony score1 of a network N with respect to f is the minimum,
ranging over all trees T displayed by N , of l f (T).

We now extend the above concepts to alignments. An alignment A is simply a linear
ordering of characters. In this paper the linear ordering is irrelevant sowe can arbitrarily
impose an ordering and write f ∈ A without ambiguity. An alignment can naturally
be represented as a matrix with |X | rows and |A| columns; we therefore use the
terms characters and columns interchangeably (and, following the use of alignments
in practice, we sometimes refer to the rows of thematrix as sequences). The parsimony
score of a tree T with respect to A, denoted lA(T), is simply

∑
f ∈A l f (T).

When extending this concept to networks, two definitions have been proposed: the
parsimony score of a network with respect to an alignment A, denoted lA(N), can be
defined as

1.
∑

f ∈A

min
T ∈T (N)

l f (T)

or
2. min

T ∈T (N)

∑

f ∈A

l f (T)

whereT (N) is the set of trees displayedby thenetwork.According to thefirst definition
(introduced in Hein (1990)), each character can follow a different tree displayed by the
network, while in the second one (introduced in Nakhleh et al. (2005)) all characters
of the alignment follow the same tree. In this paper, we will adopt the latter definition,
and a tree T that is the minimizer of this sum is called a most parsimonious (MP) tree
displayed by N (with respect to A).

Note that in applied phylogenetics alignments often contain indels, encoded using
a gap symbol “-”. From the parsimony perspective it is not uncommon to treat these
symbols as wildcards that do not induce mutations; the taxon “does not care” what
state it is assigned. (Note however that extensions are not allowed to contain gap
symbols). To compute l f (T) when a character f : X → S maps some of its taxa to
the gap symbol, we can run Fitch’s algorithm with a slight modification to the bottom-
up phase: for each taxon x such that f (x) =“-”, we assign the entire set of states S
to x . Moreover, as the following observation shows, the use of “-” symbols does not
make the problem of identifying a most parsimonious tree displayed by a network
significantly harder.

1 Two other definitions of the parsimony score of a network exist in the literature: the hardwired parsimony
score (Kannan and Wheeler 2012) and parental parsimony score (van Iersel et al. 2018); see the latter
manuscript for a discussion about the differences of these three models.

123

Finding a most parsimonious or likely tree in a network. . . 531

Observation 1 Let A be an alignment for a set of taxa X and let N be a phylogenetic
network on X. Suppose A uses the states {0, 1, “-”}. Let k denote the total number
of gap symbols in A. In polynomial time we can construct an alignment A′ on 2|X |
taxa, which uses only states {0, 1}, and a network N ′ on 2|X | taxa, such that there
is a polynomial-time computable bjiection g mapping trees displayed by N to trees
displayed by N ′. This bijection g has the property that, for each tree T displayed by
N, lA′(g(T)) = lA(T)+ k. Consequently, T is a most parsimonious tree displayed by
N (wrt A) if and only if g(T) is a most parsimonious tree displayed by N ′ (wrt A′).

Proof To obtain N ′ from N we split each taxon xi into a cherry {x1i , x2i }. If, for a
given character, xi had state 0 (respectively, 1), we give both x1i and x2i the state 0
(respectively, 1). If xi had state “-” we give x1i state 0 and x2i state 1. The idea is
that by encoding a gap symbol as a {0, 1} cherry a single mutation is unavoidably
incurred (on one of the two edges leading into x1i and x2i) and thus the state of the
parent of the cherry in any (optimal) extension is irrelevant. The parent thus simulates
the original gap symbol: the bottom-up phase of Fitch’s algorithmwill always allocate
the subset of states {0, 1} to the parent. (The bijection g, and its inverse, are trivially
computable in polynomial time by splitting each taxon into a cherry, or collapsing
cherries, respectively). ��

We defer preliminaries relating to likelihood until Sect. 4.
Let G be an undirected graph. An orientation of G is a directed graph G ′ obtained

by replacing each edge {u, v} of G with exactly one of the two arcs (u, v) or (v, u).
Given an orientation G ′ of G, a source is a node that has only outgoing arcs, and a sink
is a node that has only incoming arcs. Let msso(G) denote the maximum, ranging
over all possible orientations G ′ of G, of the sum of the number of sources and sinks in
G ′. MAX-SOURCE-SINKS-ORIENTATION is the problem of computing msso(G).
A cubic graph is a graph where every node has degree 3.

The proofs of the following are deferred to the appendix. These two results form
the foundation of the hardness results given in the next section.

Lemma 1 MAX-SOURCE-SINKS-ORIENTATION is NP-hard on cubic graphs.

Corollary 1 MAX-SOURCE-SINKS-ORIENTATION is APX-hard on cubic graphs.

3 Hardness of finding amost parsimonious tree displayed by a
network

In this section we will build on Lemma 1 and Corollary 1 to prove that computing a
most parsimonious tree displayed by a rooted phylogenetic network N with respect
to an alignment A is NP-hard and APX-hard already for highly restricted instances.

Theorem 1 It is NP-hard to compute a most parsimonious tree displayed by a rooted
phylogenetic network N with respect to an alignment A, even when N is a binary
level-1 network with at most 3 outgoing arcs per gall and A consists only of two states
{0, 1} and does not contain gap symbols.

123

532 S. Kelk et al.

Fig. 1 Although each sequence
has length |V |, only columns u
and v are shown. For this edge,
the other |V | − 2 symbols are “-”

re

10
xe,1

01
xe,3

01
xe,4

10
xe,6

11
xe,2

00
xe,5

Ne

e = {u, v}

Proof LetG = (V , E)be a cubic instanceofMAX-SOURCE-SINKS-ORIENTATION.
We will start by building a binary level-1 network N with 6|E | taxa and 2|E | retic-
ulations, and an alignment A on states {0, 1, “-”} consisting of 6|E | sequences, each
sequence of length |V |. (We will remove the “-” symbols later). One can thus view A
as a {0, 1,−} matrix with 6|E | rows and |V | columns, or equivalently as a set of |V |
characters for the 6|E | taxa of N .

To construct N , we start by taking a rooted binary caterpillar on |E | taxa. For each
e ∈ E replace the taxon xe of the caterpillar with a copy Ne of the network shown in
Fig. 1. The 6 taxa within Ne are denoted xe,i , i ∈ {1, . . . , 6}. We use re to refer to the
root of Ne.

To construct the alignment, we write Ae,i (e ∈ E, i ∈ {1, . . . 6}) to refer to the
sequences, and write Ae,i,v to refer to the state in its vth column. These states are
assigned as follows. For each edge e = {u, v} ∈ E , we set the states of the 6 taxa Ae,i,u

(i ∈ {1, . . . , 6}) to be 1, 1, 0, 0, 0, 1, the states of the 6 taxa Ae,i,v (i ∈ {1, . . . , 6})
to be 0, 1, 1, 1, 0, 0, and for each w /∈ {u, v}, we set the states of the 6 taxa Ae,i,w

(i ∈ {1, . . . , 6}) to all be “-”. Given that each edge is incident to exactly 3 edges, there
are exactly k := 6|V |(|E | − 3) “-” symbols in A.

Given that each Ne contains 2 reticulations, there are 22 = 4 different switchings of
these reticulations possible, shown in Fig. 2. Note that switchings 1 and 3 both induce
5 mutations, while switchings 2 and 4 both induce 4 mutations. (Here by “induce
mutations” we are referring to properties (i) and (ii) of Fitch’s algorithm, described
in the appendix). We now claim that there exists an optimum solution in which only
switchings 2 and 4 are used. Suppose, for some e = {u, v} ∈ E , switching 1 or 3 is
used. Let T be the tree induced by this switching. Fix any optimal extension of A to
T . Let Te be the subtree of T rooted at re; at least 5 mutations will be incurred on
the edges of Te (with respect to the extension; see property (i) of Fitch’s algorithm).
Consider now the states allocated to re in columns u and v. There are four such uv

combinations: 00, 01, 10, 11. If it is combination 01 or 10, we could replace Te with
the subtree corresponding to switching 2 or 4 (respectively). This replacement subtree
incurs only 4 mutations on its edges, so the total number of mutations in T decreases.
If it is combination 00 or 11 we can use switching 2. This might induce a newmutation
(on the edge incoming to re) but we again save at least onemutation on the edges of the
subtree (because at most 4, rather than at least 5 mutations are incurred there), so the

123

Finding a most parsimonious or likely tree in a network. . . 533

∪∪
{0,1}1

∪
{0,1}{0,1}

{0,1}0
1{0,1} 0{0,1}

10
xe,1

01
xe,3

01
xe,4

10
xe,611

xe,2

00
xe,5

Switching 1
5 mutations

∪∪

∪∪∪∪

{0,1}1

01

0{0,1}
1{0,1} {0,1}0

10
xe,1

01
xe,3

01
xe,4

10
xe,611

xe,2

00
xe,5

Switching 2
4 mutations

∪∪

∪∪
1{0,1}

∪
{0,1}{0,1}

0{0,1}
{0,1}1 {0,1}0

10
xe,1

01
xe,3

01
xe,4

10
xe,611

xe,2

00
xe,5

Switching 3
5 mutations

∪∪

∪∪
1{0,1}

10

{0,1}0
{0,1}1

0{0,1}

10
xe,1

01
xe,3

01
xe,4

10
xe,611

xe,2

00
xe,5

Switching 4
4 mutations

Fig. 2 The four switchings possible for Ne . The interior nodes are labelled by the output of the bottom-up
phase of Fitch’s algorithm, for the two characters concerned. The ∪ symbol denotes where union events
occur (i.e. mutations are incurred). The critical point is that both switching 2 and 4 incur the fewest number
of mutations, and these select for 01 and 10 at the root, respectively, representing the choice of which way
to orient edge e

overall number of mutations does not increase. Summarizing, whichever combination
00, 01, 10, 11 occurs at re, we can replace it with switching 2 or 4 without increasing
the total number of mutations. Iterating this procedure proves the claim. Henceforth
we can thus assume that for each e ∈ E either switching 2 or 4 is used.

Observe that if, for a given e = {u, v}, the network Ne uses switching 2, the
bottom-up phase of Fitch’s algorithm will allocate 01 (in columns u and v) to re. If, on
the other hand, switching 4 is used, Fitch’s algorithm will allocate 10. In both cases,
exactly 4 union events are generated on the nodes (of the subtree of Ne induced by the
switching). See Fig. 2 for elucidation.

The central idea is that, since, for an edge e = {u, v}, a state 0 (resp. 1) in v

implies a state 1 (resp. 0) in u and vice versa, we can use the choice of whether to use
switching 2 or 4 (for each of the |E | reticulation pairs) to encode a choice as to which
way to orient the corresponding edge. Without loss of generality we use state 0 to
denote incoming edges, and state 1 to denote outgoing edges. Consider the bottom-up
phase of Fitch’s algorithm. Observe that, if a vertex v incident to three edges e1, e2, e3
becomes a sink, the states at the roots of Ne1, Ne2 , Ne3 (in column v) will all be 0,
and for each e′ /∈ {e1, e2, e3} the states at the root of Ne′ (in column v) will be “-”
i.e. “don’t care”2. Continuing Fitch’s algorithm along the backbone of the caterpillar

2 Fitch’s algorithm is not well-defined on “-” symbols, but the intuition is that it behaves exactly like the
subset of states {0, 1} behaves in Fitch’s algorithm. This, in fact, is exactly how the construction described
in Observation 1 removes “-” symbols from the alignment.

123

534 S. Kelk et al.

shows that no mutations will be incurred on the edges of the caterpillar in column v. A
completely symmetrical situation holds if a vertex becomes a source: the states at the
roots of Ne1 , Ne2 , Ne3 (in column v) will all be 1, and again no mutations are incurred
on the edges of the caterpillar. On the other hand, if a vertex v is neither a source nor a
sink, then the states assigned by the bottom-up phase of Fitch’s algorithm to the roots
of Ne1 , Ne2 , Ne3 (in column v) will consist of 0 (twice) and 1 (once) or 1 (twice) and
0 (once). Either way exactly 1 mutation is then incurred on the edges of the caterpillar
(as can be observed by running the top-down phase of Fitch’s algorithm).

This means that the parsimony score is minimized by creating as many sources and
sinks as possible. Specifically we have

lA(N) = 6|V | + (|V | − msso(G)).

Each edge in the graphwill induce 4mutations (within the Ne part), and |E | = 3|V |/2,
which explains the term 6|V |. As argued above, sources and sinks to do not increase
the parsimony score, and all other vertices increase the parsimony score by exactly 1,
hence the term (|V | − msso(G)).

Clearlymsso(G) can easily be calculated from lA(N). Finally, we can apply Obser-
vation 1 to obtain a network N ′ and A′ without “-” symbols such that

lA′(N ′) = 6|V |(|E | − 3) + 6|V | + (|V | − msso(G))

The transformation does not raise the level of the network or the number of arcs
outgoing from any biconnected component. NP-hardness follows. ��
If we do allow “-” symbols then the following slightly stronger result is obtained:APX-
hardness implies NP-hardness but additionally excludes the existence of a Polynomial
TimeApproximationScheme (PTAS), unless P=NP.APX-hardness does not obviously
hold ifwe encode the gap symbols usingObservation 1 because the additive O(|V ||E |)
term thus created distorts the objective function.

Corollary 2 It is APX-hard to compute a most parsimonious tree displayed by a rooted
phylogenetic network N with respect to an alignment A, even when N is a binary
level-1 network with at most 3 outgoing arcs per gall and A consists only of states
{0, 1, “-”}.
Proof We give a (14, 1) L-reduction from msso, which is APX-hard, to the parsimony
problem. L-reductions preserve APX-hardness so the result will follow. An (α, β) L-
reduction (Papadimitriou andYannakakis 1991),whereα, β ≥ 0, is defined as follows.

Definition 1 Let A, B be two optimization problems and cA and cB their respective
cost functions.Apair of functions f , g, both computable in polynomial time, constitute
an (α, β) L-reduction from A to B if the following conditions are true:

1. For every instance x of A, f (x) is an instance of B,
2. For every feasible solution y of f (x), g(y) is a feasible solution of x ,
3. For every instance x of A, O PTB(f (x)) ≤ αO PTA(x),

123

Finding a most parsimonious or likely tree in a network. . . 535

4. For every feasible solution y′ of f (x) we have |O PTA(x) − cA(g(y′))| ≤
β|O PTB(f (x)) − cB(y′)|

where O PTA is the optimal solution value of problem A and similarly for B.

For brevity we refer to the optimum size of the parsimony problem as mp(N , A).
We use the reduction described in the proof of Theorem 1 (before the gap symbols
have been removed) with some slight modifications. The forward-mapping function f
(condition 1 of the L-reduction) is the same mapping used in the proof of Theorem 1.
The back-mapping function g (i.e. condition 2) will be described below. To establish
condition 3 for a given (α, β) we need to prove that mp(N , A) ≤ α · msso(G). Now,
we know thatmsso(G) = maxcut(G)−|V |/2 (see appendix) and thatmaxcut(G) ≥
2/3|E | = |V | (because every cubic graph has a cut at least this large simply bymoving
nodes which have more neighbours on their side of the cut, to the other side). Hence,
msso(G) ≥ |V |/2. We know that mp(N , A) = 7|V | − msso(G). Trivially therefore
mp(N , A) ≤ 7|V |. Hence taking α = 14 is sufficient. For the other direction, we
need to show that for an arbitrary solution to the parsimony problem, which induces
p mutations, the back-mapping function yields an orientation of G with s sources and
sinks such that |msso(G) − s| ≤ β|p − mp(N , A)|. The back-mapping function g
first ensures that all the Ne gadgets are using type 2 or type 4 switchings, which might
reduce the number of mutations to p′ ≤ p, and then extracts an orientation of G (thus
establishing condition 2). Now, s = 7|V | − p′ and mp(N , A) = 7|V | − msso(G) so

msso(G) − s = msso(G) − (7|V | − p′)
= msso(G) − 7|V | + p′

= p′ − (7|V | − msso(G))

= p′ − mp(N , A)

≤ p − mp(N , A).

So taking β = 1 is sufficient to establish condition 4. ��

4 Hardness of finding amost likely tree displayed by a network

The likelihood of a tree. We now introduce the basic concepts and notation that are
necessary to define the likelihood of a tree with respect to an alignment. We largely
follow the simple formulation by Roch (2006). First, we need a probabilistic model
describing how sequences evolve along a tree. Here we assume the simplest model
available, known as the Cavender-Farris model (Farris 1973; Cavender 1978), which
can be described as follows. Let T = (V , E) be a rooted binary phylogenetic tree on
X . We associate probabilities p = (pe)e∈E ∈ [0, 1/2]|E | to the edges of T and denote
this (T ,p). Under the Cavender-Farris model, each character evolves independently,
as follows: at the root pick randomly a state between 0 and 1, each with probability
1/2, and then, for each vertex v below the root, either copy the state of the parent of
v or flip it, with probabilities 1 − pe and pe, respectively. The restriction pe ≤ 1/2

123

536 S. Kelk et al.

corresponds to the fact that, in a symmetric model, no amount of time can make a
character more likely to change state than to remain in the same state.

The process described above eventually associates a state to each element of X at
the leaves of the tree, that is, it generates a random binary character. The probability
of generating the binary character f is called the likelihood of (T ,p) with respect to
f , denoted L f (T ,p), and can be calculated as follows:

L f (T ,p) =
∑

f̂

1

2

∏

e=(u,v)∈E

p| f̂ (v)− f̂ (u)|
e (1 − pe)

1−| f̂ (v)− f̂ (u)|

Here f̂ ranges over all extensions of f to T . Because the model assumes that the
characters in a sequence evolve independently, the probability of generating the binary
sequences in an alignment A, named the likelihood of (T ,p)with respect to A, denoted
L A(T ,p), can be obtained as

L A(T ,p) =
∏

f ∈A

L f (T ,p)

(Here, and in the rest of this section, we assume that alignments do not contain gap
symbols.)

We now introduce some more notation that will be useful in the following. An
extension Â of an alignment A to a tree T = (V , E) is a set of functions f̂ : V →
{0, 1} obtained by taking exactly one extension of each character in A. In practice,
Â can be represented as a matrix with |V | rows and |A| columns, in which the rows
corresponding to the leaves of T are identical to the rows of A. For e = (u, v) ∈ E , we
denote by he(Â) the number of differences (that is, the Hamming distance) between
the sequences that Â associates to u and v. Finally, let l Â(T) denote

∑
e∈E he(Â) =∑

f̂ ∈ Â l f̂ (T). Note that the parsimony score lA(T) is the minimum of l Â(T) over all
extensions of A. Given these notations, we can express the likelihood of (T ,p) as
follows, where m = |A| = | Â|, and Â ranges over all extensions of A:

L A(T ,p) =
∑

Â

2−m
∏

e∈E

phe(Â)
e (1 − pe)

m−he(Â) (1)

Each term in the sum in Eqn. (1) expresses the product of the probabilities of transi-
tion between the sequences associated by Â to the endpoints of the edges, times the
probability of the sequence at the root.

Networks with edge probabilities. It is possible to extend the Cavender-Farris model
to describe the evolution of binary sequences on a binary rooted network N . For every
edge e of N , we define a probability p′

e ∈ [0, 1/2]which represents again the probability
of change between 0 and 1 along edge e. The evolution of a single character follows
the same rules as in the case of a tree, except that when setting the state at a reticulation
vertex v, one of its two parents is randomly selected with a probability γv ∈ (0, 1) (and
1 − γv for the other parent), also given as a parameter of the model. The state at v is
generated as if the selected parent of vwere the only parent of v, as in the tree case. That

123

Finding a most parsimonious or likely tree in a network. . . 537

v

w

a b c d e

0.2

0.1
0.1

0.3

0.1

0.1

0.1
0.2

0
0

0.1
0.2 0.2

0.3

v

w

v2v1

a b c d e

0.2
0.1 0.1

0.3

0.1

0.1

0.1
0.2

0.1
0.2 0.2

0.3

Fig. 3 Alternative representations of a phylogenetic network having some reticulation edges with strictly
positive lengths. A reticulation edge with positive length should be interpreted as ending in a node that
undergoes a reticulation event, but leaves no descendant in the network, other than the reticulation node
itself. Both edges entering node v in the network on the left are an example of this. The representation
on the right, which strictly speaking is not a phylogenetic network, makes the biological interpretation of
these edges explicit. In this representation, dashed edges denote an instantaneous event, and their length is
necessarily 0 (not shown)

includes taking into account the probability of change p′
e along the edge connecting

the selected parent to v. The inheritance probability parameters γv (e.g. Yu et al. 2012;
Wen et al. 2016; Zhang et al. 2017), and mechanisms to correlate inheritance between
neighboring characters in a sequence will not be discussed in the remainder of this
paper. These aspects of themodel are necessary to define the likelihood of the network,
but they are irrelevant for the likelihood of the trees displayed by the network, which is
all that concerns us here. In the following, we denote a network N and the probabilities
of change along its edges as (N ,p′).

We note that in some cases, the edges entering a reticulation node (the reticulation
edges) may represent an event of instantaneous combination between the sequences
at the tails of the reticulation edges. The probabilities of change p′

e for these reticula-
tion edges will necessarily equal 0, as they represent an immediate transfer of genetic
information, and there is no time for sequence changes along these edges. The edges
entering node w in the network of Fig. 3 are an example of this. Not all edges entering
a reticulation, however, need be of this type. For the sake of generality, the networks
we consider here may have “non-istantaneous” reticulation edges, that is reticulation
edges with p′

e > 0. For example, consider the edges entering node v in the network
of Fig. 3. Edges like these simply mean that before the reticulate event happened,
the sequence in the edge leading to the reticulation evolved independently of the rest
of the tree, potentially accumulating changes. At the end of the edge, the sequence
that underwent the reticulate event left no descendant leading to a leaf, other than
the sequence at the reticulation itself. Figure 3 also displays a different representa-
tion of the same network, showing separately the nodes v1 and v2 that underwent the
reticulation event. Neither of these nodes left any other descendant than v within the
network. In somebiological contexts (for examplewhen reticulations represent homol-
ogous recombinations), reticulation edges representing lineages that have existed for a
strictly positive amount of time are the norm, and not the exception. Examples of this
are the phylogenetic networks generated by the coalescent with recombination model
(e.g. Griffiths and Marjoram 1997; Nordborg 2001), or by the birth-hybridization

123

538 S. Kelk et al.

a b c d e

0.18
0.26

0.32

0.2

0.3

0.1

0.1

0.3

a b c d e

0.18

0.18

0.2 0.20.2

0.3

0.1

0.3

a b c d e

0.26

0.38

0.18 0.2

0.2

0.1

0.1

0.3

a b c d e

0.1

0.1

0.38
0.356

0.2 0.2

0.1

0.3

Fig. 4 The four trees with edge probabilities displayed by the network in Fig. 3. Note that the edge
probability 0.356 in the fourth network is obtained by two applications of Eqn. (2)

process (Zhang et al. 2017) where reticulate edges of zero length are practically impos-
sible.

Trees displayed by a network with edge probabilities. We say that a network (N ,p′)
displays a tree (T ,p), if N displays T in the usual topological sense (i.e. some sub-
division T ′ of T is a subtree of N) and (T ,p) can be obtained from T ′ by repeatedly
suppressing vertices with indegree-1 and outdegree-1, where here suppression also
updates the probabilities. Specifically, if T ′ contains two edges e1 = (u, v) and
e2 = (v,w), where v has indegree-1 and outdegree-1, the suppression operation
replaces these two edges with a single edge e = (u, w) and assigns it the probability

pe = pe1(1 − pe2) + (1 − pe1)pe2 . (2)

This expresses the probability of having different states at the endpoints of a two-edge
path, under the Cavender-Farris model.

It is important to observe that, as a result of the definitions above, if a network
(N ,p′) describes the evolution of a set of characters, then any of these characters
taken separately evolves according to the Cavender-Farris model for one of the trees
(T ,p) displayed by (N ,p′). Figure 4 shows, as an example, the four trees displayed
by the network in Fig. 3.

Note that, in general, a tree T can have multiple distinct images T ′ in the network,
so it can occur that (N ,p′) displays (T ,p) for multiple different p. Also note that
because p′

e ≤ 1/2 for all edges in the network, the same will hold for the edges of
the trees it displays, as no repeated application of Eqn. (2) can produce a probability
pe > 1/2 from edge probabilities that are at most 1/2. It is also easy to see that if

123

Finding a most parsimonious or likely tree in a network. . . 539

0 < pe1, pe2 < 1/2, then max{pe1, pe2} < pe < pe1 + pe2 . These observations lead
to the following one, which will be useful later on:

Observation 2 Let (N ,p′) be such that for every edge of N , 0 < p′
e < 1/2. Let (T ,p)

be a tree displayed by (N ,p′) and e an edge of T . Finally, let E ′(e) be the subset of
the edges of N whose probabilities contribute to pe. Then, pe < 1/2 and

max
e′∈E ′(e)

pe′ < pe <
∑

e′∈E ′(e)
pe′

We say that (T ∗,p∗) is a most likely (ML) tree displayed by (N ,p′) (with respect
to A) if it maximizes L A(T ,p), ranging over all (T ,p) displayed by (N ,p′). In the
remainder of this section we consider the problem of finding such a most likely tree
given a network with edge probabilities and an alignment.

A link between likelihood and parsimony. There are well-known relationships
between the likelihood and the parsimony of a tree that imply that under some con-
ditions a most likely tree is also a most parsimonious one (Tuffley and Steel 1997).
We now illustrate one such relationship (Corollary 3 below), which is based on the
observation that as we reduce the scale of a tree, its likelihood converges to zero at a
rate that only depends on its parsimony score. Although it shares similarities with the
results by Tuffley and Steel, we are not aware that it has been explicitly stated in the
literature. This result is not necessary to obtain the other results in this section, but it
provides the intuition behind them.

In the following statements, we assume that c ∈ (0, 1), so the form c → 0 is to
be understood as c approaches 0 to the right. Also, cp simply denotes the product
between the scalar c and vector p.

Lemma 2 The function f (c) = L A(T , cp) is �(clA(T)) as c → 0.

Proof Write L A(T , cp) using Eqn. (1):

L A(T , cp) =
∑

Â

2−m
∏

e∈E

(cpe)
he(Â)(1 − cpe)

m−he(Â)

=
∑

Â

2−mclÂ(T) ·
∏

e∈E

phe(Â)
e (1 − cpe)

m−he(Â),

where we have used
∑

e∈E he(Â) = l Â(T). Note that the products in the second
expression tend to a constant as c → 0. As a consequence, the term for Â in the
sum has order �(clÂ(T)) as c → 0. Since the lowest degree dominates, their sum is
�(clA(T)). ��
Corollary 3 Let A be an alignment and T1 and T2 two trees such that lA(T1) < lA(T2).
Then, for any p1 and p2,

L A(T1, cp1) > L A(T2, cp2) for c sufficiently close to 0.

123

540 S. Kelk et al.

Proof As c → 0, L A(T1, cp1) is �(clA(T1)), while L A(T2, cp2) is �(clA(T2)). That
is, L A(T1, cp1) converges to 0 at a lower rate than L A(T2, cp2). Thus there exists a
neighborhood of 0 in which L A(T1, cp1) > L A(T2, cp2) holds. ��

The corollary above can be extended to any collection of trees: irrespective of the
edge probabilities assigned to them, if the trees are rescaled by a sufficiently small
c, the most parsimonious trees will have likelihoods greater than all the other trees,
meaning that a most likely tree in the collection of rescaled trees will necessarily also
be most parsimonious.

Proving the NP-hardness of finding an ML tree in a network. In the remainder of
this section, namely in the statements of the next two formal results, we are implicitly
given a network N on X with |X | = n and an alignment A with m characters on X .
The height of a network N is the maximum number of edges in a directed path in N .

Lemma 3 Let (N , c) be a network of height dN , where all the edges are assigned a
constant probability ce = c, with 0 < c < 1/2. Let (T ,p) be a tree displayed by
(N , c). Then,

2−2mn · clA(T) < L A(T ,p) < 2mn · d2mn
N · clA(T)

Proof Using Observation 2, we note that, for any edge e ∈ E of T = (V , E), c <

pe < min{cdN , 1/2}.
We begin by proving the upper bound in the statement. From Eqn. (1) and the fact

that (1 − pe)
m−he(Â) < 1, we get the first inequality in the following:

L A(T ,p) <
∑

Â

2−m
∏

e∈E

(cdN)he(Â)

=
∑

Â

2−md
lÂ(T)

N clÂ(T) < 2m(n−1)−mdm(2n−2)
N clA(T),

where the last inequality is obtained by noting that the sum has 2m(n−1) terms (there
are n − 1 internal nodes in a rooted binary tree, and thus 2m(n−1) different extensions
of A), and that lA(T) ≤ l Â(T) ≤ m(2n − 2) (there are 2n − 2 branches in a rooted
binary tree, and thus we cannot have more than 2n − 2 changes per character). The
upper bound in the statement is larger than the one above.

As for the lower bound, if we use c < pe < 1/2 in Eqn. (1):

L A(T ,p) >
∑

Â

2−m
∏

e∈E

che(Â)1/2m

=
∑

Â

2−mclÂ(T)2−m(2n−2) > 2−m(2n−1)clA(T),

where the last inequality is obtained by taking only one term in the sum. The lower
bound in the statement is smaller than the one above. ��

123

Finding a most parsimonious or likely tree in a network. . . 541

The lemma above shows the order of convergence to 0 of the likelihood L A(T ,p)

of a tree displayed by (N , c) as c → 0. The higher the parsimony score, the faster
the convergence. As a consequence, for c sufficiently close to 0, a tree with a lower
parsimony score than another will have a higher likelihood. The following lemma
shows how close is “sufficiently close”, by providing an explicit upper bound to c.

Proposition 1 Let (N , c) be a network of height dN , where all the edges are assigned
a constant probability ce = c, with 0 < c < d−2mn

N 2−3mn. If (T ∗,p∗) is a most likely
tree displayed by (N , c), then T ∗ is a most parsimonious tree displayed by N. ��
Proof Suppose that (T ∗,p∗) is a most likely tree displayed by (N , c), but not most
parsimonious. That is, there exists (T ,p)displayed by (N , c)with lA(T) ≤ lA(T ∗)−1.
But then, by using the lower bound in Lemma 3:

L A(T ,p) > 2−2mn · clA(T) ≥ 2−2mn · clA(T ∗)−1.

Now apply the upper bound in Lemma 3 to T ∗, and combine it with c < d−2mn
N 2−3mn :

L A(T ∗,p∗) < 2mn · d2mn
N · clA(T ∗) < 2mn · d2mn

N · clA(T ∗)−1 · d−2mn
N · 2−3mn

= 2−2mn · clA(T ∗)−1

The last terms of the two chains of inequalities above are equal, thus proving
L A(T ,p) > L A(T ∗,p∗). Since this contradicts the assumption that (T ∗,p∗) is a
most likely tree, the statement follows. ��

The proposition above shows that the NP-hard problem of finding a most parsimo-
nious tree in a network N with respect to an alignment A can be reduced to the problem
of finding a most likely tree in (N , c) with respect to A, where c = (ce) is such that
ce = c, and 0 < c < d−2mn

N 2−3mn . Since the reduction preserves the network and the
alignment, the main result of this section follows from Theorem 1:

Theorem 2 It is NP-hard to compute a most likely tree (T ,p) displayed by a rooted
phylogenetic network (N ,p′) with respect to an alignment A, even when N is a binary
level-1 network with at most 3 outgoing arcs per gall and A consists only of two states
{0, 1} and does not contain gap symbols.

5 Conclusions and open problems

We have shown that, given a phylogenetic network with a sequence for each leaf,
finding a most parsimonious or most likely tree displayed by the network is compu-
tationally intractable (NP-hard). Moreover, this is the case even when we restrict to
binary sequences and level-1 networks; the simplest networks that are not trees. How-
ever, many computational problems that can be shown to be theoretically intractable
can be solved reasonably efficiently in practice (see e.g. Cautionary Tales of Inap-
proximability by Budden and Jones (2017)). We end the paper by discussing whether
we expect this to be the case for our problem.

123

542 S. Kelk et al.

There is a dynamic programming algorithm, described in Theorem 5.7 of Fischer
et al. (2015), for finding a tree in a network that is most parsimonious with respect to
a single character. The running time is fixed-parameter tractable, with as parameter
the level of the network. Hence, this algorithm is practical as long as the level of the
network is not too large. This algorithm can easily be extended to multiple characters
(that all have to choose the same tree) when the number of characters is adopted as a
second parameter. Indeed, for every root of a biconnected component, we introduce
a dynamic programming entry not just for every possible state but for every possible
sequence of states. However, the running time of this algorithm would be exponential
in the number of characters, which makes it useless for almost all biological data.
Similarly, the Integer Linear Programming (ILP) solution presented in the same paper
can also be easily extended to multiple characters. However, there does not seem to be
an easy way to do that without having the number of variables growing linearly in the
number of characters. Hence, this approach is also unlikely to be useful in practice.

In contrast, consider the simple algorithm that loops through the at most 2r trees
displayed by the network, with r the number of reticulation nodes in the network,
and computes the parsimony or likelihood of each tree (this naïve FPT algorithm
was presented in Nakhleh et al. (2005), where it is named Net2Trees). Ironically, this
simple algorithm would outperform the approaches mentioned above for any kind of
data with a reasonably large number of characters. Hence, the main open question
that remains is whether there exists an algorithm whose running time is linear (or at
least polynomial) in the number of characters and whose dependency on r is better
than 2r (for example recently an algorithm with exponential base smaller than 2 was
discovered for the tree containment problem (Gunawan et al. 2016), although this
algorithm does not obviously extend to generating all trees in the network). Another
question of interest that remains open is the following: does the parsimony problem
under restrictions (1)-(3) listed in the introduction permit good (i.e. constant factor)
approximation algorithms, and possibly even a PTAS, when the alignment A does not
contain any indels?

Acknowledgements Leo van Iersel was partly supported by the Netherlands Organization for Scientific
Research (NWO), including Vidi grant 639.072.602, and partly by the 4TU Applied Mathematics Institute.
Celine Scornavacca was partly supported by the French Agence Nationale de la Recherche Investissements
d’Avenir/Bioinformatique (ANR-10-BINF-01-02, Ancestrome).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

A Appendix: Fitch’s algorithm

Fitch’s algorithm (Fitch 1971) has two phases. In the first phase, known as the bottom-
up phase, we start by assigning the singleton subset of states { f (x)} to each taxon x .
The internal nodes of T are assigned subsets of states recursively, as follows. Suppose
a node p has two children u and v, and the bottom-up phase has already assigned
subsets F(u) and F(v) to the two children, respectively. If F(u) ∩ F(v) �= ∅ then

123

http://creativecommons.org/licenses/by/4.0/

Finding a most parsimonious or likely tree in a network. . . 543

set F(p) = F(u) ∩ F(v) (in which case we say that p is an intersection node). If
F(u) ∩ F(v) = ∅ then set F(p) = F(u) ∪ F(v) (in which case we say that p is a
union node). The number of union nodes in the bottom-up phase is equal to l f (T).
To actually create an optimal extension f̂ , we require the top-down phase of Fitch’s
algorithm. Start at the root r and let f̂ (r) be any element in F(r). For an internal
node u with parent p, we set f̂ (u) = f̂ (p) (if f̂ (p) ∈ F(u)) and otherwise (i.e.
f̂ (p) /∈ F(u)) set f̂ (u) to be an arbitrary element of F(u).
For each node u of the tree, let ∪(u) be the number of union events in the sub-

tree rooted at u. The following well-known properties of Fitch’s algorithm are used
repeatedly in the main hardness proof of this article: (i) every extension (optimal or
otherwise) must incur at least ∪(u) mutations on the edges of the subtree rooted at u;
(ii) an extension created by Fitch’s algorithm induces exactly ∪(u) mutations on the
edges of the subtree rooted at u (and u is assigned a state from F(u) in this extension).

B Appendix: NP-hardness and APX-hardness of
MAX-SOURCE-SINKS-ORIENTATION

The following result is based on a sketch proof by Colin McQuillan3. We have been
unable to find an original reference and hence have reconstructed the proof in detail.
The APX-hardness proof is original.

Lemma 1. MAX-SOURCE-SINKS-ORIENTATION is NP-hard on cubic graphs.

Proof Recall that the classical MAX-CUT problem asks us to bipartition the vertex
set of an undirected graph G, such that the number of edges that cross the bipartition
is maximized. We reduce from the NP-hard problem CUBIC-MAX-CUT which is the
restriction of theMAX-CUTproblem to cubic graphs.Given an undirected cubic graph
G, we simply write maxcut(G) to denote the number of edges in the maximum-size
cut.

We reduceCUBIC-MAX-CUT toMAX-SOURCE-SINKS-ORIENTATION.Specif-
ically, given an undirected cubic graph G = (V , E) (i.e. an instance of CUBIC-MAX-
CUT) we will show that msso(G) = maxcut(G) − |V |/2, from which the hardness
will follow.

We start by proving that msso(G) ≥ maxcut(G) − |V |/2. Fix an arbitrary cut C
of G and let (U , W) be the corresponding bipartition. If some vertex of U or W has
more neighbours on the other side of the partition than its own, move it to the other
side of the partition: this will increase the size of the cut. We repeat this until it is
no longer possible and let C and (U , W) refer to the cut and its induced partition at
the end of this process. Note that now each vertex in U (respectively, W) will have
at most one neighbour in U (respectively, W). We proceed by orienting the edges in
the cut from U to W . Now, the remaining edges are either internal to U or internal
to W . These edges must form a matching (i.e. they are node disjoint). For each such

3 TCS Stack Exchange, 2010, URL: http://cstheory.stackexchange.com/questions/2307/an-edge-
partitioning-problem-on-cubic-graphs/.

123

http://cstheory.stackexchange.com/questions/2307/an-edge-partitioning-problem-on-cubic-graphs/
http://cstheory.stackexchange.com/questions/2307/an-edge-partitioning-problem-on-cubic-graphs/

544 S. Kelk et al.

edge in U (respectively, W), exactly one endpoint will become a source (respectively,
sink). Nodes in U (respectively, W) that are not adjacent to internal edges will already
be sources (respectively, sinks) due to the orientation of the cut edges from U to W .
Hence, if we write |C | to denote the number of edges in the cut C , we obtain an
orientation of G with at least

(|E | − |C |) + (|V | − 2(|E | − |C |))

sources and sinks. Hence,

msso(G) ≥ (|E | − maxcut(G)) + (|V | − 2(|E | − maxcut(G)))

= maxcut(G) + |V | − |E |
= maxcut(G) + |V | − (3/2)|V |
= maxcut(G) − |V |/2.

For the other direction, fix an arbitrary orientation of G and let s be the number of
sources and sinks created by the orientation. We write Vi (i ∈ {0, 1, 2, 3}) to denote
those vertices of G which have indegree i . Let U = V0 ∪ V1 and let W = V2 ∪ V3.
Whenever an edge of G has been oriented from W to U , reverse its orientation: this
only decreases the indegrees of the vertices inU and increases the indegrees of vertices
in W so it cannot destroy any sources or sinks and it cannot cause a node to be on the
“wrong” side of the bipartition. (In fact, it will cause the number of sources and sinks
to increase, so this situation can only occur if the orientation was not optimal). Let s
now refer to the number of sources and sinks once all arcs have been oriented from
U to W . The edges (u, w) such that u ∈ U and w ∈ W form a cut; it remains only to
count how many of these edges there are. We first count from the perspective of the
vertices inU . The nodes in V0 each generate 3 outgoing arcs. Let k be the total number
of edges of the form (u0, u1) where u0 ∈ V0 and u1 ∈ V1. Note that each node in V1
that does not receive any of these k arcs, must receive an arc which is outgoing from
some other node in V1. It follows that the number of edges in the cut is

(3|V0| − k) + (2|V1| − (|V1| − k)) = 3|V0| + |V1|.

If we count in a symmetrical fashion from the perspective of W , and let � be the
number of arcs of the form (u2, u3) where u2 ∈ V2 and u3 ∈ V3, it follows that the
number of edges in the cut is

(3|V3| − �) + (2|V2| − (|V2| − �)) = 3|V3| + |V2|.

If we sum these two equations, we obtain a cut with at least the following number of
edges:

≥ (3/2)(|V0| + |V3|) + (1/2)(|V1| + |V2|)
= (3/2)s + (1/2)(|V | − s)

= s + (1/2)|V |.

123

Finding a most parsimonious or likely tree in a network. . . 545

From this follows that msso(G) ≤ maxcut(G) − (1/2)|V |. ��
The hardness ofmsso can be strengthened to the following inapproximability result.

Note that one consequence of APX-hardness is that msso does not permit a PTAS,
unless P = N P .

Corollary 1 MAX-SOURCE-SINKS-ORIENTATION is APX-hard on cubic graphs.

Proof Note that the constructions and transformations used in the proof of Lemma 1
are all constructive and can easily be conducted in polynomial time. Moreover, they
apply to arbitrary cuts/orientations, and not just optimal ones. This allows us to easily
strengthen the described reduction to obtain a (1, 1) L-reduction from CUBIC-MAX-
CUT toMAX-SOURCE-SINKS-ORIENTATION (see the main text for the definition
of L-reduction). From this APX-hardness will follow, since CUBIC-MAX-CUT is
APX-hard (Alimonti and Kann 1997; Berman and Karpinski 1999) and L-reductions
are APX-hardness preserving. The (1, 1) means that the inapproximability threshhold
for MAX-SOURCE-SINKS-ORIENTATION is at least as strong as that for CUBIC-
MAX-CUT.

Let G = (V , E) be an instance of CUBIC-MAX-CUT. The forward mapping
function f (from instances of CUBIC-MAX-CUT to MAX-SOURCE-SINKS-
ORIENTATION) is simply the identity function. To be an (α, β) L-reduction, where
α, β ≥ 0, we first have to show that msso(f (G)) = msso(G) ≤ α · maxcut(G).
We know that maxcut(G) − (1/2)|V | = msso(G), so α = 1 is trivially satisfied.
We next have to show a polynomial-time computable back-mapping function g (from
feasible solutions ofMAX-SOURCE-SINKS-ORIENTATION to feasible solutions of
CUBIC-MAX-CUT)with the following property: an orientation that induces s sources
and sinks ismapped to a cutwith k edges such that |maxcut(G)−k| ≤ β|msso(G)−s|.
The function g was already implicitly described in the NP-hardness reduction: reverse
any edges oriented from W to U (which possibly increases the number of sources and
sinks to s′ ≥ s) and extract a cut of size s′ + |V |/2. Observe,

maxcut(G) − (s′ + |V |/2) ≤ maxcut(G) − (s + |V |/2)
≤ (msso(G) + |V |/2) − (s + |V |/2)
≤ msso(G) − s.

So taking β = 1 is sufficient. ��

References

Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJ, Bierne N, Boughman J, Brelsford A, Buerkle CA,
Buggs R (2013) Hybridization and speciation. J Evol Biol 26(2):229–246

Alimonti P, Kann V (1997) Hardness of approximating problems on cubic graphs. In: Italian conference on
algorithms and complexity (CIAC), pp 288–298

Berman P, Karpinski M (1999) On some tighter inapproximability results (extended abstract). In: Inter-
national Colloquium on automata, languages and programming (ICALP), Lecture notes in computer
science, vol 1644, pp 200–209

Budden D, Jones M (2017) Cautionary tales of inapproximability. J Comput Biol 24(3):213–216

123

546 S. Kelk et al.

Cavender JA (1978) Taxonomy with confidence. Math Biosci 40(3–4):271–280
Fakcharoenphol J, Kumpijit T, Putwattana A (2015) A faster algorithm for the tree containment problem for

binary nearly stable phylogenetic networks. In: 2015 12th international joint conference on computer
science and software engineering (JCSSE), IEEE, pp 337–342

Farris JS (1973) A probability model for inferring evolutionary trees. Syst Biol 22(3):250–256
Fischer M, Van Iersel L, Kelk S, Scornavacca C (2015) On computing the maximum parsimony score of a

phylogenetic network. SIAM J Discret Math 29(1):559–585
Fitch W (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst

Biol 20(4):406–416
Gambette P, Gunawan AD, Labarre A, Vialette S, Zhang L (2015) Locating a tree in a phylogenetic network

in quadratic time. In: RECOMB, pp 96–107
Griffiths RC, Marjoram P (1997) An ancestral recombination graph. In: Donelly P, Tavaré S (eds) Progress

in population genetics and human evolution. Springer, Berlin, pp 257–270
Gunawan AD, Lu B, Zhang L (2016) A program for verification of phylogenetic network models. Bioin-

formatics 32(17):i503–i510
Gusfield D (2014) ReCombinatorics: the algorithmics of ancestral recombination graphs and explicit phy-

logenetic networks. MIT Press, Cambridge
Hein J (1990)Reconstructing evolution of sequences subject to recombination using parsimony.MathBiosci

98(2):185–200
Huson DH, Rupp R, Scornavacca C (2010) Phylogenetic networks: concepts, algorithms and applications.

Cambridge University Press, Cambridge
Jin G, Nakhleh L, Snir S, Tuller T (2006) Maximum likelihood of phylogenetic networks. Bioinformatics

22(21):2604–2611
Jin G, Nakhleh L, Snir S, Tuller T (2007) Efficient parsimony-based methods for phylogenetic network

reconstruction. Bioinformatics 23(2):e123–e128
Kanj IA, Nakhleh L, Than C, Xia G (2008) Seeing the trees and their branches in the network is hard. Theor

Comput Sci 401(1–3):153–164
Kannan L, Wheeler WC (2012) Maximum parsimony on phylogenetic networks. Algorithms Mol Biol

7(1):9
Kelk S, Scornavacca C (2014) Constructing minimal phylogenetic networks from softwired clusters is fixed

parameter tractable. Algorithmica 68(4):886–915
Morrison D (2011) Introduction to phylogenetic networks. RJR Productions, Uppsala
NakhlehL, JinG, ZhaoF,Mellor-Crummey J (2005)Reconstructing phylogenetic networks usingmaximum

parsimony. In: Computational systems bioinformatics conference, 2005. Proceedings. 2005 IEEE,
IEEE, pp 93–102

Nordborg M (2001) Coalescent theory. In: Balding, DJ , Bishop, M and Cannings, Christopher, Wiley,
Hoboken

Papadimitriou CH, Yannakakis M (1991) Optimization, approximation, and complexity classes. J Comput
Syst Sci 43:425–440

Roch S (2006) A short proof that phylogenetic tree reconstruction by maximum likelihood is hard.
IEEE/ACM Trans Comput Biol Bioinform 3(1):92–94

Tuffley C, Steel M (1997) Links between maximum likelihood and maximum parsimony under a simple
model of site substitution. Bull Math Biol 59(3):581–607

Van Iersel L, Semple C, Steel M (2010) Locating a tree in a phylogenetic network. Inf Process Lett
110(23):1037–1043

van Iersel L, Jones M, Scornavacca C (2018) Improved maximum parsimony models for phylogenetic
networks. Syst Biol 67(3):518–542

Vuilleumier S, Bonhoeffer S (2015) Contribution of recombination to the evolutionary history of hiv. Curr
Opin HIV AIDS 10(2):84–89

WenD,YuY,Nakhleh L (2016)Bayesian inference of reticulate phylogenies under themultispecies network
coalescent. PLoS Genet 12(5):e1006,006

Yu Y, Degnan J, Nakhleh L (2012) The probability of a gene tree topology within a phylogenetic network
with applications to hybridization detection. PLoS Genet 8(4):e1002,660

Zhang C, Ogilvie HA, Drummond AJ, Stadler T (2017) Bayesian inference of species networks from
multilocus sequence data. Mol Biol Evol 35(2):504–517

Zhaxybayeva O, Doolittle WF (2011) Lateral gene transfer. Curr Biol 21(7):R242–R246

123

Finding a most parsimonious or likely tree in a network. . . 547

Affiliations

Steven Kelk1 · Fabio Pardi2 · Celine Scornavacca3 · Leo van Iersel4

B Steven Kelk
steven.kelk@maastrichtuniversity.nl

Fabio Pardi
pardi@lirmm.fr

Celine Scornavacca
celine.scornavacca@umontpellier.fr

Leo van Iersel
l.j.j.v.iersel@gmail.com

1 Department of Data Science and Knowledge Engineering (DKE), Maastricht University, P.O.
Box 616, 6200 MD Maastricht, The Netherlands

2 LIRMM, Université de Montpellier, CNRS, Montpellier, France

3 Institut des Sciences de l’Evolution, CNRS, IRD, EPHE, Institut de Biologie Computationnelle
(IBC), Université de Montpellier, 34095 Montpellier Cedex 5, France

4 Delft Institute of Applied Mathematics, Delft University of Technology, Van Mourik
Broekmanweg 6, 2628 XE Delft, The Netherlands

123

http://orcid.org/0000-0002-9518-4724

	Finding a most parsimonious or likely tree in a network with respect to an alignment
	Abstract
	1 Introduction
	2 Preliminaries
	3 Hardness of finding a most parsimonious tree displayed by a network
	4 Hardness of finding a most likely tree displayed by a network
	5 Conclusions and open problems
	Acknowledgements
	A Appendix: Fitch's algorithm
	B Appendix: NP-hardness and APX-hardness of MAX-SOURCE-SINKS-ORIENTATION
	References

