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Abstract Typhoid fever is a systemic infection caused by Salmonella Typhi and
occurs predominantly in association with poor sanitation and lack of clean drinking
water. Despite recent progress in water and sanitation coverage, the disease remains
a substantial public health problem in many developing countries. A mathematical
model for the spread of typhoid has been formulated using non linear ordinary dif-
ferential equations. The model includes a special treatment function to assess the
effects of limited treatment resources on the spread of typhoid. It is shown that
the model has multiple equilibria and using the center manifold theory, the model
exhibits the phenomenon of backward bifurcation whose implications are discussed.
The results suggest the need for comprehensive and accessible treatment facilities to
curtail typhoid infection.
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1 Introduction

Typhoid fever is a bacterial infection caused by Salmonella Typhi. It is usually spread
by ingestion of contaminated food or water. Symptoms include lasting high fevers,
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weakness, stomach pains, headache and loss of appetite. Those infected may also have
constipation or a rash. However, it is possible to be a carrier of typhoid without exhibit-
ing symptoms, such as the infamous case of “Typhoid Mary,” a cook in New York
City in the early 1900s believed to have infected dozens of people as an asymptomatic
carrier of the disease. In rare cases, typhoid can lead to internal bleeding and even
death (Center for Disease Control and Prevention). Factors such as poor sanitation
and lack of clean drinking water are predominantly associated with typhoid (World
Health Organization (WHO) 2016).

Despite recent progress in the provision of clean water and good sewage systems
especially in developed nations, typhoid is still endemic in many developing coun-
tries and remains a substantial public health problem with approximately 21 million
cases and 222,000 typhoid-related deaths annually worldwide (World Health Orga-
nization (WHO) 2016). The progressive deterioration of public health infrastructure
especially in developing countries have seen such rare diseases like typhoid becoming
more commonly encountered within the population. For instance, a deadly typhoid
outbreak was confirmed in Zimbabwe’s capital Harare starting in early November
2011. More recently in 2016, Zimbabwe has been hit with several cases of typhoid
fever where some confirmed typhoid cases were reported in most urban areas and
other parts of the country such as Hopley, Glen Norah and Hatfield suburbs in Harare,
and Redcliffe Kwekwe. The rise and return of typhoid fever in Zimbabwe especially
in Harare is believed to have been triggered by the water problems in the city and, as
a result, many residents lack access to clean water. Impoverished residents often rely
on water from open, shallow wells that are likely to be contaminated. Some have been
without access to filtered, piped water for months as a result of Zimbabwe’s economic
turmoil. The lack of water, combined with record high temperatures, has created a
perfect environment for infectious diseases such as typhoid. The same poor water and
sanitation conditions in Harare prevail in most of Zimbabwe’s urban areas and other
parts of the country. The government in response sent teams to assess the situation in
affected areas, particularly in Hopley, where there is strong suspicion that people could
be sick from their homes. The teams were responsible for interviewing and treating
all suspected cases. However, as noted in the 2011 typhoid outbreak in Zimbabwe
where the number of cases surpassed 1500 within weeks, the local hospitals were
congested and incapacitated to cater for all typhoid patients. This negatively impacted
the control efforts aimed at eradicating typhoid as was observed then that patients who
were not timely treated contributed in spreading the disease to uninfected individu-
als. In recent years, mathematical models describing the spread of typhoid fever in
a community have been proposed, see for example, González-Guzmán (1989), Ade-
tunde (2008), Mushayabasa et al. (2013), Mushayabasa et al. (2014), Mushayabasa
(2014), Pitzer et al. (2014), Bakach et al. (2015), Omame et al. (2015), Mutua et al.
(2015), Nthiiri et al. (2016), Kgosimore and Kelatlhegile (2016). In all these models, it
is assumed that the rate of entering treatment is proportional to the number of infected
individuals present. This is reasonable approximation to the truth when the number
of infected individuals in need of treatment is not too large and below the capacity of
health care services. However, in reality, every community or country has an appro-
priate or limited capacity for treatment. In fact, the resources for treatment maybe
limited, for example, medicines are not sufficient, hospital beds are limited and so on.
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So this approximation cannot reflect the real uptake into treatment. In other words, if
the number of patients exceed a fixed large size, then the rate of entering treatment is
independent of further changes in the size of the infected individuals’ class. Motivated
by the recent outbreak of typhoid in Zimbabwe which hit most parts of Zimbabwe by
surprise, an explosive surge in the number of typhoid patients was observed in local
treatment centers. In that time, the number of patients in need of treatment eventually
exceeded the carrying capacities of local treatment centers and patients could not be
timely treated because the capacity of local treatment centers had reached a maximum
(saturated). Thus, it is important to determine a suitable capacity for the treatment of
typhoid patients.

In this paper, we develop a mathematical model that takes into account the possi-
bility of the number of typhoid infected patients in need of treatment exceeding the
capacity of public health resources. We make use of the Hill function developed by
Hill (1910) to describe the relationship between the space available in treatment and
the number of patients in need of treatment tomodel the effects of limited public health
resources on the spread of typhoid. The Hill function has many different properties
of great interest in mathematical modelling, pharmacology and biosciences. When
related to protein-ligand binding where the Hill function has been used extensively,
the formation of a bond between a typhoid patient and a treatment centre is influenced
by free space in the treatment centre. The expectation from an effective treatment cen-
tre is that a bond formed by a typhoid patient and a treatment centre will lead to some
recovered person afterwards. Reaction kinetics processes, can be used to describe the
mechanism of entering into treatment. One such process is Cooperativity which refers
to situations where the binding of one (or more) molecules to the receptor enhances
(positive cooperativity) or weakens (negative cooperativity) the binding of additional
molecules to that same receptor. In relation to treatment, positive cooperativity relates
to the presence of other patients being a pull factor for other patients to attend treatment
whereas negative cooperativity does the opposite. Cooperative binding to a multisite
protein was first described in Hill (1910) using the equation

Θ = [L]n
Kd + [L]n (1)

where Θ is the fraction of the ligand-binding sites on the receptor protein which
are occupied by the ligand, [L] is the free (unbound) ligand concentration, Kd is the
dissociation constant and n is the Hill coefficient, describing cooperativity (or possibly
other biochemical properties, depending on the context in which the Hill equation is
being used). In the context of treatment for typhoid patients, theHill function describes
the relationship between the space available in treatment and the number of patients in
need of treatment. We define recruitment into treatment by the following expression:

H(I ) = r f (I )I (2)

where f (I ) =
(

1
1+ωI

)
. Here, r is the maximum treatment uptake per unit of time and

ω measures the extent of the effect of the problem of demand for treatment. Firstly,
observe that for small I , H(I ) ≈ r I , that is, when the number of patients in need
of treatment is not too large, then the rate of entering treatment is proportional to the
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number of patients present. Secondly, observe that for large I , H(I ) ≈ r/ω, thismeans
that the rate of entering treatment takes a maximum value r/ω. Finally, when ω = 0,
we again obtain the result as in the first case, H(I ) = r I , that is, the function returns to
a linear function. It is also important to note that epidemic models including treatment
functions of the form (2) are found inHu et al. (2012), Zhang and Liu (2008), Zhou and
Fan (2012) and Zhang et al. (2014). We also include direct and indirect transmission
to model the spread of typhoid in a given community. The model developed in this
paper fits well in the settings of most developing countries where treatment resources
may be limited. Compared to previous models of typhoid (González-Guzmán 1989;
Adetunde 2008; Mushayabasa et al. 2013, 2014; Mushayabasa 2014; Omame et al.
2015; Mutua et al. 2015; Nthiiri et al. 2016; Kgosimore and Kelatlhegile 2016), a key
novelty of our model is the inclusion of limited public health resources to model the
dynamics of typhoid.

The paper is arranged as follows; in Sect. 2, we formulate and establish the basic
properties of the model. The model is analysed for stability in Sect. 3. In Sect. 4, we
carry out some numerical simulations and sensitivity analysis. Parameter estimation
is also presented in this section. The paper is concluded in Sect. 5.

2 Model formulation

The typhoid model classifies the human population at time t , denoted by N (t) into
five classes; susceptible individuals (S), infected individuals (I ), carrier humans (C),
individuals under treatment (T ) and recovered individuals (R). The total human pop-
ulation is thus given by

N (t) = S(t) + I (t) + C(t) + T (t) + R(t).

An additional compartment, B(t), which represents the bacteria in the environment has
been incorporated in the model. Many previous models of typhoid dynamics assume
direct transmission of typhoid from infected individuals to susceptible individuals
(Adetunde 2008; Mushayabasa et al. 2013, 2014; Mushayabasa 2014; Omame et al.
2015; Nthiiri et al. 2016; Kgosimore and Kelatlhegile 2016) and a few have assumed
indirect transmission, that is, from environmental bacteria in contaminated water
and/or food and drinks to susceptibles (González-guzmán 1988; Mutua et al. 2015). In
this paper, we develop a more realistic model for typhoid that takes into account both
modes of transmission, that is, direct and indirect transmission. Direct transmission
(human-human) is very uncommon as compared to the indirect (environment-human)
which occurs by ingesting contaminated food or water (Brachman and Abrutyn 2009).
Susceptible individuals acquire typhoid infection either through person-to-person
transmission or by ingesting environmental bacteria from contaminated water and/or
food and drinks at the rates β1(I+ηC)

N and β2B
B+k respectively. Here, we assume that indi-

viduals under treatment are infectious but cannot infect susceptible individuals since
they will be confined to a certain place and separated from the general population
where they will be released upon successful treatment or due to mortality (natural or
disease related). The parameter β1 denotes typhoid transmission rate and is defined as
the product of the probability of typhoid transmission per contact and the effective con-
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tact rate for typhoid transmission to occur. The modification parameter η, accounts for
the relative infectiousness of carriers relative to infected individuals in class I . Here,
η = 1 signifies that the chance of acquiring typhoid infection upon contact with an
individual in the infectious class I or upon contact with a carrier is the same, η ∈ (0, 1)
signifies a reduced chance of acquiring typhoid infection upon contact with a carrier as
compared to an infectious individual in class I and η > 1 signifies an increased chance
of acquiring typhoid infection upon contact with a carrier as compared to an individual
in class I . The parameter β2 denotes the per capita contact rate for humans and the
contaminated environment and k denotes the saturation constant. Infected individuals
progress to the carrier class C at a rate σ or recover naturally at a rate ε1. Infected
individuals experience disease related death at a rate δ1. Individuals in the carrier state
recover naturally at a rate ε2 or experience disease related death at a rate δ2. Individuals
in the infectious state and carrier state excrete bacteria into the environment at rates
α1 and α2 respectively. Infected individuals enter into treatment at a rate given by
H(I ). Individuals under treatment can either die (naturally or due to disease related
death) or recover successfully. Individuals under treatment experience disease related
death at a rate given by δ3 or recover successfully at a rate given by γ . Individuals
in the recovered class are temporarily immune to typhoid infection and immunity to
reinfection wanes out at a rate ρ, leading to the individual being susceptible again. The
bacteria population is generated at a rate gB and its growth is enhanced by individuals
in the infectious and carrier state at rates α1 and α2 respectively. We assume that the
bacteria in the environment becomes non-infectious at a rate μb. The constant recruit-
ment into the susceptible population is represented by Λ, while the natural death rate
for the general population is represented by μ. We assume that individuals in each
compartment are indistinguishable and there is homogeneous mixing. The schematic
diagram below shows the movement of humans as their status with respect to typhoid
infection changes (Fig. 1).

Combining the parameters, assumptions and the schematic diagram, we have the
following general set of nonlinear ordinary differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= Λ − β1(I + ηC)S

N
− β2SB

B + k
− μS + ρR,

d I

dt
= β1(I + ηC)S

N
+ β2SB

B + k
− (μ + σ + δ1 + ε1)I − H(I ),

dC

dt
= σ I − (μ + δ2 + ε2)C,

dT

dt
= H(I ) − (μ + γ + δ3)T,

dR

dt
= γ T + ε1 I + ε2C − (μ + ρ)R,

dB

dt
= gB + α1 I + α2C − μbB,

(3)
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Fig. 1 Model flow diagram

with the initial conditions:

S(0) = S0 > 0, I (0) = I0 ≥ 0, C(0) = C0 ≥ 0, T (0) = T0 ≥ 0,

R(0) = R0 ≥ 0, B(0) = B0 ≥ 0.

3 Model analysis

3.1 Positivity of Solutions

We now consider the positivity of model system (3). We prove that all the state vari-
ables remain non-negative and the solutions of model system (3) with positive initial
conditions will remain positive for all t > 0. We thus state the following theorem.

Theorem 1 Given that the initial conditions of model system (3) are S(0) > 0,
I (0) > 0, C(0) > 0, T (0) > 0, R(0) > 0 and B(0) > 0. There exists
(S(t), I (t),C(t), T (t), R(t), B(t)) : (0,∞) → (0,∞) which solve model system
(3).

Proof Assume that

t̂ = sup{t > 0 : S > 0, I > 0, C > 0, T > 0, R > 0, B > 0} ∈ [0, t].
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Thus t̂ > 0, and it follows from the first equation of model system (3) that

dS

dt
= Λ − (λ + μ)S + ρR where λ = β1(I + ηC)

N
+ β2B

B + k
.

We thus have

d

dt

[
S(t) exp

{
μt +

∫ t

0
λ(s) ds

}]
= (Λ + ρR(t)) exp

[
μt +

∫ t

0
λ(s) ds

]
.

So

S(t̂) exp

[
μt̂ +

∫ t̂

0
λ(s) ds

]
− S(0) =

∫ t̂

0
(Λ + ρR(t̂)) exp

[
μt̂ +

∫ t̂

0
λ(ν) dν

]
dt̂,

giving

S(t̂) = S(0) exp

[
−

(
μt̂ +

∫ t̂

0
λ(s) ds

)]

+ exp

[
−

(
μt̂ +

∫ t̂

0
λ(s) ds

)] ∫ t̂

0
(Λ

[
+ρR(t̂)) exp

[
μt̂ +

∫ t̂

0
λ(ν) dν

]
dt̂

]
> 0.

From the second equation of model system equations (3), we obtain

d I

dt
= λS − (μ + σ + δ1 + ε1)I − r I

1 + ωI
≥ −(μ + r + σ + δ1 + ε1)I,⇒ I (t̂)

≥ I0e
−(μ+r+σ+δ1+ε1)t̂ > 0.

In a similar fashion it can also be shown that C(t) > 0, T (t) > 0, R(t) > 0 and
B(t) > 0 for all t > 0, and this completes the proof. �	

3.2 Invariant region

Theorem 2 Let (S(t), I (t),C(t), T (t), R(t), B(t)) be the solution of the system (3)
with initial conditions (S0, I0,C0, T0, R0, B0). The compact set,

Φ =
{
(S, I,C, T, R, B) ∈ R

6+,WH ≤ Λ

μ
,WB ≤ (α1 + α2)Λ

μ(μb − g)

}

is positively invariant and attracts all solutions in R
6+.
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Proof Consider, W (t) = (WH ,WB) = (S + I +C + T + R, B). The time derivative
of W (t) is given by

dW

dt
=

(
WH

dt
,
WB

dt

)
=

(
dS

dt
+ d I

dt
+ dC

dt
+ dT

dt
+ dR

dt
,
dB

dt

)

= (Λ − μWH − δ1 I − δ2C − δ3T, (g − μb)B + α1 I + α2C) .

This gives

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

dWH

dt
= Λ − μWH − δ1 I − δ2C − δ3T ≤ Λ − μWH ≤ 0, forWH ≥ Λ/μ,

dWB

dt
=(g − μb)B+α1 I + α2C ≤ (g − μb)WB + (α1 + α2)WH ≤ 0, forWB ≥ (α1 + α2)Λ

μ(μb − g)
with WH ≥ Λ/μ and μb > g.

(4)
From (4) we have dW

dt ≤ 0 which implies that Φ is a positively invariant set. We also
note that by solving (4) we have;

0 ≤ (WH (t),WB(t)) ≤
(

Λ

μ
+ WH (0)e−μt ,

(α1 + α2)Λ

μ(μb − g)
+ WB(0)e−(g−μb)t

)
,

where WH (0) and WB(0) are the initial conditions of WH (t) and WB(t) respectively.

Thus, 0 ≤ (WH (t),WB(t)) ≤
(

Λ
μ

,
(α1+α2)Λ
μ(μb−g)

)
as t → ∞ and hence Φ is an attractive

set. �	

3.3 Disease-free equilibrium and the basic reproduction number

The model has a disease-free equilibrium given by

D0 =
(
S0, I 0,C0, T 0, R0, B0

)
=

(
Λ

μ
, 0, 0, 0, 0, 0

)
,

a scenario depicting a disease-free state in the community or society. The basic repro-
duction number R0 of the model measures the average number of new infections
generated by a single infected individual in a completely susceptible population. Usu-
ally, R0 < 1 implies that the disease will die out, whereas R0 > 1 implies that the
disease will persist within a community and R0 = 1 requires further investigation.
The determination ofR0 is done using the next generationmatrix approach (Driessche
andWatmough 2002). This method has been explored in many papers, see for instance
(Hsier and Wang 2006; Driessche and Zou 2007; Capistrna et al. 2009; Kodaira et al.
2010; Mastroberardino 2014). Using this method we have
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F =

⎛
⎜⎜⎜⎜⎝

β1 ηβ1 0 0 Λβ2
kμ

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

and V =

⎛
⎜⎜⎜⎜⎝

g1 0 0 0 0
−σ g2 0 0 0
−r 0 g3 0 0
−ε1 −ε2 −γ μ + ρ 0
−α1 −α2 0 0 μb − g

⎞
⎟⎟⎟⎟⎠

where

g1 = μ + r + σ + δ1 + ε1, g2 = μ + δ2 + ε2, g3 = μ + γ + δ3.

Thus, the basic reproduction number of model system (3) is given by
⎧
⎨
⎩
R0 = RH + RE where

RH = β1(ησ + g2)

g1g2
and RE = Λβ2(σα2 + g2α1)

kμg1g2(μb − g)
.

(5)

Here, R0 is the sum of two sub-reproduction numbers RH and RE representing
the contributions of humans and the contaminated environment respectively. We can
clearly note thatRE is non-negative when μb > g. Consequently,R0 is non-negative
provided μb > g. We now show that typhoid can be eliminated from the community
(whenR0 < 1) if the initial sizes of the sub-populations of the model are in the basin
of attraction of the disease-free equilibrium. We thus have the following theorem
(Theorem 3).

Theorem 3 The disease-free equilibrium D0 is locally asymptotically stable when
R0 < 1 and is unstable when R0 > 1.

Proof The Jacobian matrix of model system equations (3) at D0 is given by

J (D0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−μ −β1 −ηβ1 0 ρ −Λβ2
kμ

0 β1 − g1 ηβ1 0 0 Λβ2
kμ

0 σ −g2 0 0 0
0 r 0 −g3 0 0
0 ε1 ε2 γ −μ − ρ 0
0 α1 α2 0 0 g − μb

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where g1, g2 and g3 are defined as before. The local stability of the disease-free
equilibrium is determined by the following submatrix of J (D0),

J̄ (D0) =

⎛
⎜⎜⎜⎜⎝

β1 − g1 ηβ1 0 0 Λβ2
kμ

σ −g2 0 0 0
r 0 −g3 0 0
ε1 ε2 γ −μ − ρ 0
α1 α2 0 0 g − μb

⎞
⎟⎟⎟⎟⎠

.
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Since all off-diagonal elements are positive, we now consider matrix − J̄ (D0). We
claim that− J̄ (D0) is an M−matrix. Multiplying matrix− J̄ (D0) by the positive 5×1
matrix

W1 =

⎛
⎜⎜⎜⎜⎝

g2g3
σg3
rg2

(σε2g3 + rγ g2 + ε1g2g3)/(μ + ρ)

(σα2g3 + α1g2g3)/(μb − g)

⎞
⎟⎟⎟⎟⎠

,

we have

− J̄ (D0) · W1 = (1 − R0) · W2

where W2 is a positive 5 × 1 matrix given by

W2 =

⎛
⎜⎜⎜⎜⎝

g1g2g3
0
0
0
0

⎞
⎟⎟⎟⎟⎠

.

Then, it follows from M−matrix theory that all eigenvalues of J̄ (D0) have negative
real parts, which implies the local asymptotic stability of the disease-free equilibrium
ifR0 < 1. On the other hand, it can be shown that the determinant of J̄ (D0) is given
by

det J̄ (D0) = g1g2g3(R0 − 1).

Thus, if R0 < 1, then matrix J̄ (D0) has eigenvalues with negative real parts, which
implies the stability of the disease-free equilibrium. This completes the proof. �	

3.4 The endemic equilibrium

The endemic equilibrium D∗ = (S∗, I ∗,C∗, T ∗, R∗, B∗) always satisfies
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = Λ − β1(I ∗ + ηC∗)S∗

N∗ − β2S∗B∗

B∗ + k
− μS∗ + ρR∗,

0 = β1(I ∗ + ηC∗)S∗

N∗ + β2S∗B∗

B∗ + k
− (μ + σ + δ1 + ε1)I ∗ − H(I ∗),

0 = σ I ∗ − (μ + δ2 + ε2)C∗,
0 = H(I ∗) − (μ + γ + δ3)T ∗,
0 = γ T ∗ + ε1 I ∗ + ε2C∗ − (μ + ρ)R∗,
0 = α1 I ∗ + α2C∗ + (g − μb)B∗.

(6)
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From the third and fourth equations of (6) we have that

C∗ = σ I ∗

g2
and T ∗

i p = r I ∗

(1 + ωI ∗) g3
. (7)

Substituting expressions (7) into the fifth and sixth equations of (6), we get

R∗ = rγ I ∗

(μ + ρ) (1 + ωI ∗) g3
+ (ε1g2 + σε2)I ∗

(μ + ρ)g2
and B∗ = (σα2 + α1g2)I ∗

(μb − g)g2
. (8)

From the first equation of (6) we have that

Λ − μS∗ + ρR∗ = β1(I ∗ + ηC∗)S∗

N∗ + β2S∗B∗

B∗ + k
. (9)

Substituting (9) into the second equation of (6) gives

Λ − μS∗ + ρR∗ − (μ + σ + δ1 + ε1)I
∗ − H(I ∗) = 0. (10)

Solving (10) for S∗ gives

S∗ = −I ∗ (δ1 + ε1) (I ∗ω + 1) − I ∗(I ∗ω(μ + σ) − (Λ + ρ1R∗)ω + μ + r + σ) + Λ + ρ1R∗

I ∗μω + μ
.

(11)

Substituting expressions (7), (8) and (11) into the first equation of (6) leads to the
following fourth order polynomial equation

I ∗ (
χ3 I

∗3 + χ2 I
∗2 + χ1 I

∗ + χ0

)
= 0. (12)

Solving (12) gives I ∗ = 0 which corresponds to the disease-free equilibrium or

χ3 I
∗3 + χ2 I

∗2 + χ1 I
∗ + χ0 = 0, (13)

where the coefficients ξi , 1 ≤ i ≤ 3 are in “Appendix 1”.
We can clearly note that, χ0 > 0 ⇔ R0 < 1 and χ0 < 0 ⇔ R0 > 1. We now

determine the number of possible positive real roots of the polynomial (13) using
the Descartes Rule of Signs. The possibilities can be tabulated as shown in Table 1
below.

3.5 Backward bifurcation

We show the existence of a backward bifurcation through numerical example by
creating bifurcation diagram around R0 = 1 (Fig. 2). To draw a bifurcation curve
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Table 1 Number of positive roots

χ3 > 0

χ2 > 0 χ2 < 0

χ1 > 0 χ1 < 0 χ1 > 0 χ1 < 0

χ0 > 0 χ0 < 0 χ0 > 0 χ0 < 0 χ0 > 0 χ0 < 0 χ0 > 0 χ0 < 0

i∗ 0 1 2 1 2 3 2 1

Fig. 2 The figure showing a
backward bifurcation. The solid
lines denote stable states and the
dotted lines denote unstable
states
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(the graph of I ∗ as a function ofR0), we fix Λ = 0.25, μ = 0.085, μb = 0.9, β1 =
0.57, β2 = 0.43, η = 0.7, σ = 0.03, ω = 0.8, k = 0.65, r = 0.4, ε1 =
0.06, ε2 = 0.13, α1 = 0.5282, α2 = 0.3201, δ1 = 0.005, δ2 = 0.001, δ3 =
0.0009, γ = 0.7, g = 0.001, ρ = 0.02.

Conditions for the existence of backward bifurcation follow from Theorem 4.1
proven in Castillo-Chavez and Song (2004). We deliberately avoid rewriting the the-
orem and focus on its application. The theorem has been duplicated by many authors
(Garba et al. 2008; Nyabadza and Hove-Musekwa 2010; Buonomo and Lacitignola
2011).

Let us make the following change of variables: S = x1, I = x2, C = x3, T =
x4, R = x5, B = x6, so that N = ∑6

n=1 xn . We now use the vector notation
X = (x1, x2, x3, x4, x5, x6)T . Then, model system (3) can be written in the form
dX
dt = F(t, x(t)) = ( f1, f2, f3, f4, f5, f6)T , where
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dx1
dt

= Λ − β1(x2 + ηx3)x1
N

− β2x1x6
x6 + k

− μx1 + ρx5 = f1,

dx2
dt

= β1(x2 + ηx3)x1
N

+ β2x1x6
x6 + k

− (μ + σ + δ1 + ε1)x2 − r x2
1 + ωx2

= f2,

dx3
dt

= σ x2 − (μ + δ2 + ε2)x3 = f3,

dx4
dt

= r x2
1 + ωx2

− (μ + γ + δ3)x4 = f4,

dx5
dt

= γ x4 + ε1x2 + ε2x3 − (μ + ρ)x5 = f5,

dx6
dt

= α1x2 + α2x3 + (g − μb)x6 = f6.

(14)
We now define

β2 = θβ1 (15)

with θ = 1 signifying that the chance of acquiring typhoid infection through person-
to-person transmission or by ingesting environmental bacteria is the same, θ ∈ (0, 1)
signifying a reduced chance of acquiring typhoid infection by ingesting environmen-
tal bacteria as compared to infection through person-to-person transmission, θ > 1
signifies an increased rate of acquiring typhoid infection by ingesting environmental
bacteria as compared to infection through person-to-person transmission. However,
typhoid is largely contracted from environmental bacteria through contaminated water
and/or food and drinks as compared to transmission through direct person-to-person
contact. Thus, the case θ > 1 is more realistic.

Let β1 be the bifurcation parameter, R0 = 1 corresponds to

β1 = β∗
1 = kμ(μb − g)g2g2

α1θΛg2 + α2θΛσ + kμ(μb − g) (ησ + g2)
. (16)

The Jacobian matrix of model system (3) at D0 when β1 = β∗
1 is given by

J ∗(D0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−μ −β∗
1 −ηβ1 0 ρ − θΛβ∗

1
kμ

0 β1 − g1 ηβ∗
1 0 0

θΛβ∗
1

kμ
0 σ −g2 0 0 0
0 r 0 −g3 0 0
0 ε1 ε2 γ −μ − ρ 0
0 α1 α2 0 0 g − μb

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where g1, g2 and g3 are defined as before.
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Model system (14), with β1 = β∗
1 has a simple eigenvalue, hence the cen-

ter manifold theory can be used to analyse the dynamics of model system (3)
near β1 = β∗

1 . It can be shown that J ∗(D0), has a right eigenvector given by
w = (w1, w2, w3, w4, w5, w6)

T , where

w1 = (g − μb)(−(g2(g3(ρε1 − g1(μ + ρ)) + γρr) + g3ρσε2)),

w2 = μg2g3(μ + ρ)(μb − g), w3 = μσg3(μ + ρ)(μb − g),

w4 = μrg2(μ + ρ)(μb − g), w5 = μ(μb − g)(g2(g3ε1 + γ r) + g3σε2),

w6 = g3μ(μ + ρ) (α2σ + α1g2) .

Further, the left eigenvector of J ∗(D0), associated with the zero eigenvalue at β1 = β∗
1

is given by v = (v1, v2, v3, v4, v5, v6)
T , where

v1 = v4 = v5 = 0, v2 = α1θΛg2 + α2θΛσ + kμ(μb − g) (ησ + g2) ,

v3 = g1 (α2θΛ + ηkμ(μb − g)) , v6 = θΛg1g2.

The computations of a and b are necessary in order to apply Theorem 4.1 in Castillo-
Chavez and Song (2004). For system (14), the associated non-zero partial derivatives
of F at the disease-free equilibrium are in “Appendix 2”. It thus follows that

a =
5∑

i=2

v2w2wi
∂2 f2

∂x2∂xi
+

5∑
i=2

v2w3wi
∂2 f2

∂x3∂xi
+

3∑
i=2

v2w4wi
∂2 f2

∂x4∂xi

+
3∑

i=2

v2w5wi
∂2 f2

∂x5∂xi
+ v2w6w1

∂2 f2
∂x6∂x1

+ v2w
2
6
∂2 f2
∂x26

= v2

k2Λμ

(
2k2Λμrw2

2ω − β1

(
2k2μ2 (w2 + w3 + w4 + w5) (ηw3 + w2)

− θkΛμw1w6 + 2θΛ2w2
6

))

= ξ1 − ξ2 = ξ2 (Δ − 1)

(
ξ1

ξ2
= Δ

)
,

where

ξ1 = 2k2rΛμωw2
2 + kθΛμβ∗

1w1w6,

ξ2 = 2β∗
1 k

2μ2(w2 + ηw3)(w2 + w3 + w4 + w5) + 2θΛ2β∗
1w2

6 .

Note that if Δ > 1, then a > 0 and a < 0 if Δ < 1. Lastly,

b = g3(μ + ρ) (α1θΛg2 + α2θΛσ + kμ(μb − g) (ησ + g2)) 2

k
> 0.

We thus have the following result
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Theorem 4 If Δ > 1, then model system (3) has a backward bifurcation at R0 = 1.
Otherwise, if Δ < 1 the endemic equilibrium is locally asymptotically stable for
R0 > 1 but close to one.

Remark When the model exhibits backward bifurcation, reducing R0 below unit is
not sufficient to control the typhoid epidemic.

4 Numerical simulations

Numerical simulations of model system (3) are carried out using matlab together with
a set of parameter values given in Table 2 to support our theoretical findings.

4.1 Sensitivity analysis

We examine which model parameter has the greatest effect on the value of the basic
reproduction number R0. Determining these parameters is useful in reducing human
mortality and morbidity related to typhoid infection given that R0 is directly related
to typhoid transmission. Following Chitnis et al. (2008), we calculate the sensitivity
indices of the basic reproduction number R0, to the parameters in the model. These
indices indicate how sensitive R0 is to a change in each parameter, in other words,
this tells us how crucial each parameter is to typhoid transmission. Since there are
usually errors in data collection and presumed parameter values, sensitivity analysis is
commonly used to determine the robustness of model predictions to parameter values
(Chitnis et al. 2008). Sensitivity indices allow us to measure the relative change in a
state variable when a parameter changes. The normalized forward sensitivity index
(NFSI) of the basic reproduction numberR0 to a parameter is the relative change in the
variableR0 to the relative change in a given parameter. A directly proportional normal-
ized sensitivity index indicates that an increase/decrease in the parameter value brings
about an increase/decrease respectively, in the value of R0, whereas, an inversely
proportional normalized sensitivity index indicates that an increase in the parameter
value brings about a decrease in the value ofR0. WhenR0 is a differentiable function
with respect to each of its parameters, then the sensitivity index may be alternatively
defined using partial derivatives as follows;

Definition 1 LetR0 : V → W andR0 ∈ C1(V ), where V,W ⊆ 1304R+. Then, for
every parameter p ∈ V , the NFSI ofR0 is defined as:

Υ R0
p = ∂R0

∂p
× p

R0
. (17)

Using an explicit formula forR0 (5) and Definition 1, the sensitivity indices ofR0
with respect to each of the parameters given in Table 2 are calculated and shown in
“Appendix 3”.

Recall thatμ is the natural death rate of the population, δ1 is the disease-related death
rate for individuals in class I and δ2 is the disease-related death rate for individuals in
class C . It is clear that increases in any of these rates is neither ethical nor practical,
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thus their sensitivity indices are not evaluated. Parameters Λ, β1, β2, α1, α2, g and
η have a direct proportional relationship withR0, an increase in any of them results in
an increase inR0 and a decrease in any of themwill bring about an equivalent decrease
in the value of R0. Parameters ε1, ε2, r, k and μb have an inversely proportional
relationship withR0, an increase in any of themwill bring about a decrease inR0. For
almost all parameters, the sign of the sensitivity indices ofR0 agrees with an intuitive
expectation. Of interest is the sensitivity index of σ . Here, we note that the parameter
σ can have a direct proportional relationship or an inversely proportional relationship
withR0 under certain conditions. These threshold conditions are of great importance
to policy makers as they inform what levels of treatment will be helpful in reducing
typhoid transmission in a given community. Observe from the sensitivity index of σ

that when

r > max

{
1

η
[μ(1 − η) + (δ2 − ηδ1) + (ε2 − ηε1)] ,

1

α2
[μ(α1 − α2)

+ (α1δ2 − α2δ1) + (α1ε2 − α2ε1)]

}
(18)

then σ has a direct proportional relationship withR0. Also, when

r < min

{
1

η
[μ(1 − η) + (δ2 − ηδ1) + (ε2 − ηε1)] ,

1

α2
[μ(α1 − α2)

+ (α1δ2 − α2δ1) + (α1ε2 − α2ε1)]

}
(19)

then σ has an inversely proportional relationship with R0. These results entail that
when treatment demand exceed some level given in (18), then due to limited capacity
of treatment this will lead to some untreated typhoid cases and thereby increasing the
transmission of typhoid. Also, we note that when treatment demand is below some
level prescribed in (19), then public health resources will be sufficient enough for the
treatment of typhoid patients and thereby reducing transmission of typhoid in a given
community.

Sensitivity analysis assesses the amount and type of change inherent in themodel as
captured by the terms that define the reproductive number. If the reproductive number
is very sensitive to a particular parameter, then a perturbation of the conditions that
connect the dynamics to such a parameter may prove useful in identifying policies or
intervention strategies that reduce epidemic prevalence. Now, we use Latin Hypercube
Sampling (LHS) technique to perform sensitivity analysis of the reproductive number
R0. In this section the Partial rank correlation coefficients (PRCCs) were calculated to
estimate the correlation between values of the reproductive number and the associated
model parameters across 1000 random draws from the empirical distribution of R0
and its associated parameters.

Figure 3 shows partial rank correlation coefficients (PRCCs),whichwere calculated
to estimate the correlation betweenR0 and constituent parameters. The results concur
with those from the NFSI.
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Fig. 3 Partial rank correlation coefficients showing the effects of parameter variation onR0, using param-
eter values in Table 2. Parameters with positive PRCCs will increaseR0 when they are increased, whereas
parameters with negative PRCCs will decrease R0 when they are increased

4.2 Numerical results

We carry out detailed numerical simulations using matlab to support our theoretical
findings. Numerical solutions of a model depend on the values of all its parameters.
The initial conditions used are: S(0) = 10,000, I (0) = 10, C(0) = 10, T (0) = 1,
R(0) = 0, B(0) = 100,000.

4.2.1 Parameter estimation

The average life expectancy in sub-Saharan Africa is 50years (Jamison et al. 2006)
and thus the corresponding mortality rate is postulated to be equal to the inverse of
the life expectancy, that is, μ = 1/50 = 0.02. The recruitment rate of the susceptible
population, Λ, has been obtained from Song et al. (2002). The per capita rate at which
the bacteria in the environment becomes non-infectious is set to be μb = 0.0345
(Mutua et al. 2015). The other parameter values used in this study have been extracted
from literature as indicated in Table 2. However, not all parameters in literature have
exactly the same meaning as the parameters contained in the present study. Therefore,
some of the few remaining parameters will be estimated for illustrative purposes.
Parameter values used for numerical simulations are given in Table 2.

Figures 4 and 5 illustrate the effect of varying parameters ω, β1, β2, r , ε1, ε2, g
and ρ on the prevalence of typhoid. An arrow pointing upwards indicates that as the
parameter value increases, the prevalence of typhoid infection also increases and an
arrow pointing downwards indicates that as the parameter value increases, the preva-
lence of typhoid infection decreases. We can observe that increasing parameters ω,
β1, β2, g and ρ results in an increase in the prevalence of typhoid. The percentage
increase is especially higher for parameters g and ρ. This is evidence that typhoid
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Table 2 Parameter values used in numerical simulations

Parameter Range Value Source

β1 0–1 0.75 Mushayabasa (2014)

η 0–5 1.2 Mushayabasa (2014)

β2 0–1 1.97 × 10−11 Mutua et al. (2015)

k 0–1 0.62 Assumed

ω 0–1 0.62 Assumed

r 0.19–0.8 0.2827 Kgosimore and Kelatlhegile (2016)

δ1 0.001–1 0.06 Mushayabasa (2014)

δ2 0–1 0.004 Mushayabasa (2014)

δ3 0–1 0.0033 Mushayabasa (2014)

σ 0–1 0.04 Adetunde (2008)

ε1 0–1 0.1 Mushayabasa (2014)

ε2 0–1 0.001 Assumed

α1 0–20 10 Mutua et al. (2015)

α2 0–10 1 Mutua et al. (2015)

μb 0–1 0.0345 Mutua et al. (2015)

γ 0–0.06012 0.002485 Kgosimore and Kelatlhegile (2016)

Λ 0.0028–1 μ × 41 Song et al. (2002)

μ 0.019–0.021 0.020 Jamison et al. (2006)

ρ 0–1 0.0013 Okosun and Makinde (2011)

g 0–1 0.014 Mutua et al. (2015)

infection is largely spread through contact with environmental bacteria as compared
to person-to-person contact. Also, there is need to increase treatment efficacy so as to
improve and lengthen the recovery of infected individuals.We also note that increasing
the parameter ω results in an increase in the prevalence of typhoid. This is a reflection
that saturation in treatment is of great concern in the fight against typhoid. Typhoid
patients can be delayed access to treatment, for instance, when there is limited avail-
ability of treatment services or when disadvantaged individuals have limited access
to treatment facilities due to difficulties in paying for transport to facilities located in
urban centres. This will in the long run lead to many untreated individuals who may in
turn infect other susceptible individuals. This, thereby will lead to an increase in the
prevalence of typhoid. Thus, limited treatment capacity can result in the spread of the
typhoid epidemic and is responsible for the disproportionate increase in the prevalence
of typhoid. We also observe that increasing parameters r , ε1 and ε2 leads to a decrease
in the prevalence of typhoid infection. The percentage decrease is considerably higher
for ε2. This indicates that recovery of individuals in the carrier class C can reasonably
decrease the prevalence of typhoid infection. In fact, a recovery rate of 20% can result
in approximately 40% decrease in the prevalence of typhoid infection.
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Fig. 4 Effects of varying ω, (a), β1, (b), β2, (c) and r , (d) on the prevalence of typhoid starting from 0.1
up to 1.0 with a step size of 0.1 across all the parameters

5 Conclusion

Amathematical model that describes the spread of typhoid has been formulated using
nonlinear ordinary differential equations. Some treatment function that describes the
effect of typhoid patients delayed access to treatment has been incorporated in the
model. The model developed in this paper applies mostly to developing countries
where there is usually a large shortfall in the provision of treatment services. Inclusion
of a treatment function increase the realism of the model and seem to be responsible
for interesting dynamical aspects such as the occurrence of a backward bifurcation.
Compared with previous typhoid models, the work contained in this study is the first
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Fig. 5 Effects of varying ε1, (a), ε2, (b), g, (c) and ρ, (d) on the prevalence of typhoid starting from 0.1
up to 1.0 with a step size of 0.1 across all the parameters

attempt to model the impact of limited resources of the health care system on the
spread of typhoid. The model takes into account both modes of transmission, that is,
direct and indirect transmission on the spread of typhoid.

The reproduction number R0 has been computed. Sensitivity analysis has been
performedand results entail thatwhen treatment demandexceed some level, thendue to
limited capacity of treatment this will lead to some untreated typhoid cases and thereby
increasing the transmission of typhoid. Also, it was observed that when treatment
demand is below some level, then public health resources will be sufficient enough
for the treatment of typhoid patients and thereby reducing transmission of typhoid in
a given community. In this study, it has been shown that the classical R0−threshold
is not the key to control typhoid within a population when treatment resources are
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limited. In fact typhoid infection may persist in the population even with subthreshold
values of R0. The centre manifold theory has been used to establish conditions for
the existence of backward bifurcation. Our results suggest that considerable effort
should be directed towards reducing saturation in treatment, this done by increasing
the capacity of treatment so as to avoid backward bifurcation. It is advisable that
communities should have suitable capacity for the treatment of typhoid patients.
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Appendix 1: Coefficients of polynomial (13)

⎧
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χ0 = kμ(μ + ρ)(μb − g)g1g23 (1 − R0) ,

χ1 = g2
g3

(−g3σ 2(α2(β1ηΛ(μ + ρ) + β2ρε2) + β1ηkρε2(μb − g))

+ g2σ(γρr(β1ηk(g − μb) − α2β2) + g3(−α1β2ρε2
+ β1(k(μb − g)(η(μ + ρ)(δ1 − Λω + μ + r + σ)

+ ημε1 − ρε2) − α1ηΛ(μ + ρ)) + α2(με1(β2 + μ + ρ)

+ (μ + ρ)(β1(−Λ) + β2(δ1 − Λω + μ + r + σ)

+ μ(δ1 + μ + r + σ))))) + g22(γρr(β1k(g − μb) − α1β2)

+ g3(α1(με1(β2 + μ + ρ) + (μ + ρ)(β1(−Λ) + β2(δ1 − Λω + μ + r + σ)

+ μ(δ1 + μ + r + σ))) − k(g − μb)(μω(μ + ρ)(δ1 + μ + σ + ε1)

+ β1((μ + ρ)(δ1 − Λω + μ + r + σ) + με1))))),

χ2 = 1

g3
(g2σ 2(α2(β1η(g3((μ + ρ)(δ1 − Λω + μ + r + σ) + με1) − γρr)

− g3ρε2(β2ω + β1)) − β1ηg3ρε2(α1 + kω(μb − g)))
+ g22σ(g3(−α1β2ρωε2 + β1(α1(η(μ + ρ)(δ1 − Λω + μ + r + σ)

+ ημε1 − ρε2) − kω(g − μb)(η(μ + ρ)(δ1 + μ + σ) + ημε1 − ρε2))

+ α2(με1(ω(β2 + μ + ρ) + β1) + (μ + ρ)(ω(β2 + μ)(δ1 + μ + σ)

+ β1(δ1 − Λω + μ + r + σ)))) − β1γρr(α1η + α2))

+ g32(g3(α1(με1(ω(β2 + μ + ρ) + β1) + (μ + ρ)(ω(β2 + μ)(δ1 + μ + σ)

+ β1(δ1 − Λω + μ + r + σ))) − β1kω(g − μb)((μ + ρ)(δ1 + μ + σ)

+ με1)) − α1β1γρr) + α2β1(−η)g3ρσ 3ε2),

χ3 = β1ω(α2σ + α1g2)(ησ + g2)(g2(μ(δ1 + μ + σ) + ρ(μ + δ1)) + ρσ(μ + δ2)).

(20)
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Appendix 2: Associated non-zero partial derivatives of F at the disease-
free equilibrium

∂2 f1
∂x1∂x6

= ∂2 f1
∂x6∂x1

= −β∗
1 θ

k
,

∂2 f1
∂x22

= 2β∗
1μ

Λ
,

∂2 f1
∂x2∂x3

= ∂2 f1
∂x3∂x2

= μβ∗
1 (1 + η)

Λ
,

∂2 f1
∂x2∂x4

= ∂2 f1
∂x4∂x2

= ∂2 f1
∂x2∂x5

= ∂2 f1
∂x5∂x2

= β∗
1μ

Λ
,

∂2 f1
∂x23

= 2β∗
1ημ

Λ
,

∂2 f1
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= ∂2 f1
∂x4∂x3

= ∂2 f1
∂x3∂x5

= ∂2 f1
∂x5∂x3

= β∗
1ημ

Λ
,

∂2 f2
∂x22

= 2rω − 2β1μ

Λ
,

∂2 f2
∂x2∂x3

= ∂2 f2
∂x3∂x2

= −μβ∗
1 (1 + η)

Λ
,

∂2 f2
∂x2∂x4

= ∂2 f2
∂x4∂x2

= ∂2 f2
∂x2∂x5

= ∂2 f2
∂x5∂x2

= −β∗
1μ

Λ
,

∂2 f2
∂x23

= −2β∗
1ημ

Λ

∂2 f2
∂x3∂x4

= ∂2 f2
∂x4∂x3

= ∂2 f2
∂x3∂x5

= ∂2 f2
∂x5∂x3

= −β∗
1ημ

Λ
,

∂2 f2
∂x26

= −2β∗
1 θΛ

k2μ
,

∂2 f4
∂x22

= −2rω,
∂2 f1

∂x2∂β∗
1

= −1,
∂2 f1

∂x3∂β∗
1

= −η,

∂2 f1
∂x6∂β∗

1
= −θΛ

kμ
,

∂2 f2
∂x6∂β∗

1
= θΛ

kμ
,

∂2 f2
∂x2∂β∗

1
= 1,

∂2 f2
∂x3∂β∗

1
= η.

Appendix 3: Sensitivity indices of R0 with respect to each of the param-
eters given in Table 2

Υ
R0
β1

= ∂R0

∂β1
× β1

R0
= β1kμ(μb − g) (ησ + g2)

β2Λ(α1g2 + α2σ) + β1kμ(μb − g) (ησ + g2)
,

Υ
R0
β2

= ∂R0

∂β2
× β2

R0
= β2Λ(α1g2 + α2σ)

β2Λ(α1g2 + α2σ) + β1kμ(μb − g) (ησ + g2)
,

Υ R0
α1

= ∂R0

∂α1
× α1

R0
= α1β2Λg2

β2Λ(α1g2 + α2σ) + β1kμ(μb − g) (ησ + g2)
,

Υ R0
α2

= ∂R0

∂α2
× α2

R0
= α2β2Λσ

β2Λ(α1g2 + α2σ) + β1kμ(μb − g) (ησ + g2)
,

Υ R0
ε1

= ∂R0

∂ε1
× ε1

R0
= − ε1

g1
,

Υ R0
ε2

= ∂R0

∂ε2
× ε2

R0
= − σε2 (α2β2Λ + β1ηkμ(μb − g))

g2 (β2Λ(α1g2 + α2σ) + β1kμ(μb − g) (ησ + g2))
,
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Υ R0
σ = ∂R0

∂σ
× σ

R0

= β1kμσ(μb − g) (η (μ + r + δ1 + ε1) − g2) + β2Λσ (α2 (δ1 + μ + r + ε1) − α1g2)

g1 (β2Λ(α1g2 + α2σ) + β1kμ(μb − g) (ησ + g2))
,

Υ R0
r = ∂R0

∂r
× r

R0
= − r

g1
,

Υ
R0
k = ∂R0

∂k
× k

R0
= − β2Λ(α1g2 + α2σ)

β2Λ(α1g2 + α2σ) + β1kμ(μb − g) (ησ + g2)
,

Υ R0
μb

= ∂R0

∂μb
× μb

R0
= − β2Λ(α1g2 + α2σ) μb

β2Λ(α1g2 + α2σ) + β1kμ(μb − g) (ησ + g2) (μb − g)
,

Υ R0
g = ∂R0

∂g
× g

R0
= β2Λ(α1g2 + α2σ) g

β2Λ(α1g2 + α2σ) + β1kμ(μb − g) (ησ + g2) (μb − g)
,

Υ R0
η = ∂R0

∂η
× η

R0
= β1ηkμσ(μb − g)

β2Λ(α1g2 + α2σ) + β1kμ(μb − g) (ησ + g2)
,

Υ
R0
Λ = ∂R0

∂Λ
× Λ

R0
= β2Λ(α1g2 + α2σ)

β2Λ(α1g2 + α2σ) + β1kμ(μb − g) (ησ + g2)
.
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