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Abstract Angiogenesis is the process by which new blood vessels form from exist-
ing vessels. During angiogenesis, tip cells migrate via diffusion and chemotaxis, new
tip cells are introduced through branching, loops form via tip-to-tip and tip-to-sprout
anastomosis, and a vessel network forms as endothelial cells, known as stalk cells,
follow the paths of tip cells (a process known as the snail-trail). Using a mean-field
approximation, we systematically derive one-dimensional non-linear continuummod-
els from a lattice-based cellular automaton model of angiogenesis in the corneal assay,
explicitly accounting for cell volume. We compare our continuum models and a well-
known phenomenological snail-trail model that is linear in the diffusive, chemotactic
and branching terms, with averaged cellular automaton simulation results to distin-
guish macroscale volume exclusion effects and determine whether linear models can
capture them. We conclude that, in general, both linear and non-linear models can be
used at low cell densities when single or multi-species exclusion effects are negligi-
ble at the macroscale. When cell densities increase, our non-linear model should be
used to capture non-linear tip cell behavior that occurs when single-species exclusion
effects are pronounced, and alternative models should be derived for non-negligible
multi-species exclusion effects.
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1 Introduction

Angiogenesis is the process by which new blood vessels develop from existing blood
vessels. Angiogenesis is important in developmental processes, such as embryogene-
sis, in wound healing and in pathological conditions, including cancer. Solid tumors
initiate angiogenesis by secreting tumor angiogenic factors (TAFs) such as vascular
endothelial growth factor (VEGF) (Klagsbrun and Moses 1999; Folkman and Klags-
brun 1987; Carmeliet and Jain 2011). These TAFs diffuse from the tumor towards the
vasculature, creating a spatial concentration gradient between the two. On reaching
the nearby blood vessels, the TAFs stimulate the endothelial cells lining the vessels
to degrade the basement membrane (Klagsbrun and Moses 1999; Carmeliet and Jain
2011; Potente et al. 2011), and migrate via chemotaxis up spatial gradients towards
the TAF source (Ausprunk and Folkman 1977). Tip cells (TCs) at the head of a sprout
use filopodia to sense environmental cues and direct the movement of the sprout
(Potente et al. 2011; Carmeliet and Jain 2011; Benitez and Heilshorn 2013) (see
Fig. 1). Endothelial cells (ECs), also known as stalk cells (Carmeliet and Jain 2011;
Potente et al. 2011), behind the TCs, follow the TCs and proliferate and elongate to
form longer sprouts (Klagsbrun and Moses 1999; Potente et al. 2011; Carmeliet and
Jain 2011), a process that has been termed a “snail-trail”. Sprouts connect to form
loops through anastomosis (Carmeliet and Jain 2011; Potente et al. 2011), which is
essential for establishing blood flow. New TCs are created via branching, a process
stimulated by TAFs (Carmeliet and Jain 2011) and mediated by Delta-Notch signaling
(Carmeliet and Jain 2011; Potente et al. 2011).

Fig. 1 A schematic of angiogenesis. Tip cells (TCs)move via chemotaxis in response to a tumor angiogenic
factor (TAF) to direct sprout movement. Endothelial cells (ECs), known as stalk cells, follow the paths of
TCs and proliferate and elongate behind the leading TCs. Sprouts connect through anastomosis and new
TCs are introduced through branching
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The corneal assay, in which a TAF source is implanted into the cornea of a mouse
or small animal, is widely used to study angiogenesis in vivo as the cornea is avascular
(Auerbach et al. 2003). In the cornea, sprouting occurs from vessels located at the
limbus, situated approximately 1–2 mm from the TAF source (Muthukkaruppan et al.
1982; Gimbrone et al. 1974), marking the separation between the cornea and white of
the eye. Since the cornea is thin, approximately 100 µm thick in mice (Schulz et al.
2003; Zhang et al. 2013), angiogenesis in the corneal assay is typically modeled as a
two-dimensional process. As the vascular network approaches the tumor, experimental
results in the corneal assay indicate that the vessel density, in particular, the TC density,
increases, a phenomenon known as the brush-border effect (Muthukkaruppan et al.
1982).

The importance of angiogenesis in biology is mirrored by the numerous mathe-
matical models that have been developed to increase understanding of the processes
by which it is regulated [for details, see the reviews of Mantzaris et al. (2004) and
Scianna et al. (2013), and references therein]. In this work, we focus on systematically
deriving continuum snail-trail models from discrete, agent-based models, and, there-
fore, review only literature directly relevant to such approaches. Continuum models,
known as snail-trail models (Balding andMcElwain 1985; Byrne and Chaplain 1995),
describe the spatio-temporal evolution of the TC and EC densities in the corneal assay
using partial differential equations (PDEs). They are typically one-dimensional and
account for two-dimensional effects by considering vessel densities averaged in the
direction perpendicular to that in which the vascular front propagates (Balding and
McElwain 1985; Byrne and Chaplain 1995; Connor et al. 2015). Other continuum
models focus on the TC population only (Anderson and Chaplain 1998; Chaplain
1995, 1996, 2000; Chaplain and Stuart 1993). Agent-based models, which account
for the behavior of individual cells (Anderson and Chaplain 1998; Chaplain 2000;
Stéphanou et al. 2005), cell-cell interactions and sub-cellular processes such as sig-
naling (Bentley et al. 2008, 2009; Jakobsson et al. 2010), have been developed to reveal
emergent behavior at the macroscale. Hybrid models (Tong and Yuan 2001; Harring-
ton et al. 2007), which combine aspects of both continuum and discrete models, have
been developed to integrate dynamics that operate across multiple scales.

Recently, several authors havederived continuummodels fromstochasticmicroscale
(Pillay et al. 2017) or mesoscale models (Spill et al. 2015; Bonilla et al. 2014; Ter-
ragni et al. 2016) using a mean-field approach, in order to facilitate a more complete
understanding of angiogenesis, especially with regards to how microscale processes
(e.g. cell-level behavior that influences vessel structure) affect population-behavior
(nutrient and drug transport). For example, Bonilla et al. (2014) used a stochastic,
mesoscale framework to derive an integro-differential PDE for the TC population.
Spill et al. (2015) used a mesoscale, mean-field approach to reproduce the snail-trail
model of Byrne and Chaplain (1995) (hereafter refered to as BC). In contrast, Pillay
et al. (2017) used a microscale mean-field approach to show that the BC model qual-
itatively captures angiogenesis in two dimensions but must be modified by a scaling
factor to accurately account for cell densities.

Continuum models that neglect volume exclusion, the reduced space available to
cells as a result of their finite size, are generally linear and, therefore, more amenable
to analysis. Volume exclusion has been neglected inmany continuummodels of angio-
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genesis (Balding and McElwain 1985; Byrne and Chaplain 1995; Connor et al. 2015;
Spill et al. 2015; Pillay et al. 2017; Chaplain and Stuart 1993; Chaplain 1995, 1996),
while discrete models account for the volume of cells (Anderson and Chaplain 1998;
Chaplain 2000; Bonilla et al. 2014; Tong and Yuan 2001; Bentley et al. 2008, 2009;
Jakobsson et al. 2010) naturally. In Balding and McElwain (1985), Byrne and Chap-
lain (1995) and Connor et al. (2015), volume exclusion from both the TC and EC
populations is neglected. Only the TC population is modeled in Anderson and Chap-
lain (1998), Chaplain (1995, 1996, 2000) and Chaplain and Stuart (1993) and, as a
result, the impact of volume exclusion on interactions between TCs and ECs, and on
TCmotility is neglected. Spill et al. (2015) incorporate TC crowding effects in the dif-
fusive motion, but neglect crowding effects due to ECs. In Pillay et al. (2017), TC and
EC volume exclusion is neglected in order to derive, from a lattice-based microscale
model, a model that is comparable to the BC model.

Simple exclusion processes that account for volume exclusion are frequently used
to model cell movement in discrete models (see Penington et al. 2011; Simpson et al.
2007, 2009a, b, 2010; Callaghan et al. 2006 and references therein): they allow atmost
one motile agent to occupy a lattice site and, thereby, allow for biologically realistic
interactions. Symmetric exclusion processes, such as lattice-based, unbiased random
walks, can be described at the macroscale by a linear diffusion equation (Liggett
1999; Simpson et al. 2009a, b, 2010). While agents interact with each other, the inter-
actions cancel due to the symmetry of the system and, therefore, do not appear in the
macroscopic description (Penington et al. 2011; Simpson et al. 2009a). In contrast,
asymmetric exclusion processes (see Penington et al. 2011 and references therein),
such as biased random walks, or multi-species exclusion processes (Simpson et al.
2009a), give rise to non-linear advection-diffusion equations. For example, Simpson
et al. (2009a) derived a system of non-linear advection-diffusion equations describing
asymmetric exclusion processes (biased random walks), which can be interpreted in
terms of fluxes for interacting subpopulations. Dyson and Baker (2015) considered
two interacting subpopulations in an off-lattice framework and then used a mean-field
approximation to derive non-linear advective-diffusive equations for each population.
They also explored the importance of volume exclusion in migratory cell models, and
found that volume exclusion effects are most important in biased movement, such
as chemotactic migration. In these cases, continuum models that account for exclu-
sion effects more accurately capture individual-based simulations than those which
do not (Dyson and Baker 2015). Corrections to mean-field descriptions (based on a
moment dynamics approach) for a variety of exclusion-process-based models have
been investigated by Simpson and Baker (2011).

In this work, we aim to determine how exclusion processes, specifically TC and EC
volume exclusion, affect angiogenesis. To this end, we extend the framework in Pillay
et al. (2017) by explicitly incorporating cell volume. We systematically derive a one-
dimensional PDE model (using a mean-field approximation) from a two-dimensional
cellular automaton (CA) model of corneal angiogenesis incorporating TC migration,
branching and anastomosis (loop formation) aswell as volume exclusion in themotility
and branching mechanisms. We derive two models, one in which TCs do not interact
with ECs (Model 1), so that only TC volume exclusion is active, and a second model
(Model 2) which incorporates both TC and EC volume exclusion. The resulting PDEs
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are non-linear in the diffusive, chemotactic, branching and anastomosis terms. By
comparing Models 1 and 2, we can distinguish the macroscale effects of TC volume
exclusion and EC volume exclusion. We also compare the modified BC model (see
Pillay et al. 2017) to averaged simulation results from the CA model to determine
whether a snail-trail model that is linear in the diffusive, chemotactic and branching
terms can account for macroscale volume exclusion effects.

The remainder of this work is structured as follows. In Sect. 2, we introduce our CA
model. In Sect. 3, we derive one-dimensional PDE models using transition probabili-
ties associated with the CA model, a mean-field approximation and column-averaged
difference equations for cell occupancy. In Sect. 4, we discuss the structure of these
non-linear continuum models. In Sect. 5, we evaluate the validity of the mean-field
approximation used to derive the continuum models. Based on these comparisons, we
conclude that we should estimate parameters in the continuum models that arise from
processes that lead to correlation effects by fitting the models to synthetic data from
averaged CA simulations. In Sect. 6, we compare solutions of our PDE models and
the BC model with averaged CA simulation results to distinguish macroscale volume
exclusion effects and determine whether linear continuum models can account for
these effects. We close with a discussion of our key findings in Sect. 7.

2 Cellular automaton

We use a regular two-dimensional, square lattice to represent the cornea. The lattice
sites are indexed by (i, j) with i, j,∈ Z

+ (0 ≤ i, j ≤ R). The lattice spacing repre-
sents the diameter of a cell. The limbus (border between the cornea and white of the
eye where blood vessels are situated) and TAF source are situated at i = 0 and i = R,
respectively. The variable K̄ represents discrete time in our CA model. The micro-
scopic and macroscopic variables are related via xi = ih, y j = jh, Rh = 1, t = K̄ τ ,
where h represents the lattice spacing and τ represents the time step.

We present our CA model in non-dimensionalized units, where we have rescaled
space with distance from the limbus to TAF source L , and time with the TAF diffusion
timescale, L2/DT AF , where DT AF is the TAF diffusion coefficient. We apply a linear
TAF field (non-dimensional) c(x, y, t) = x ∈ [0, 1] (discretized as ci, j = ih), derived
assuming a diffusion-dominated quasi-steady-state approximation (see Pillay et al.
2017 for details). We use this simplified TAF field as it allows us to focus on cell
dynamics. As there are two cell phenotypes involved in angiogenesis, migratory TCs
and ECs (stalk cells) which follow TCs, we define two agent types on our lattice:
active TCs and passive ECs.

We develop two CA models: for Model 1 TCs only interact with other TCs via tip-
to-tip anastomosis and TC volume exclusion; for Model 2, TCs also interact with ECs
via tip-to-sprout anastomosis and EC volume exclusion. Comparing these models will
enable us to distinguish the effects of TC volume exclusion and EC volume exclusion.
We define the state space (permitted occupancy of a lattice site), A, in each model as
follows. In Model 1, A = TC × EC = {0, 1} × {0, Z} where 0 indicates that the
site is unoccupied by the specified species, 1 indicates a site is occupied by a TC and
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Z indicates the site is occupied by integer values of ECs. In Model 2, A = {0, 1, 2},
where 0 indicates a vacant site, 1 indicates a TC is present and 2, that an EC is present.

Thepositions ofTCs are updatedusing a randomsequential update.At thebeginning
of the K̄ th discrete time step, a TC is selected independently at random from the N̄
TCs on the lattice. The chosen TC at site (i, j) is then given the opportunity to move
with probability Pm ∈ [0, 1]. The TC may move to sites within its von Neumann
neighborhood (i ±1, j ±1), and may undergo exclusion or anastomosis (see Sect. 2.1
for CA rules), based on the probabilities Px±

i, j and Py±
i, j (see Eqs. (1) and (2) below).

Specifically, Pm determines the probability with which a chosen TC may move in a
given time step, Px±

i, j and Py±
i, j determine the directional probability of the move, and

if the target site is occupied, then the move is aborted (exclusion). If a TC move is
allowed (due to vacancy of the target site or an anastomosis event), then an EC is left
behind at the original TC site, creating a snail-trail of vessels. Following N̄ sequential
motility attempts (N̄ TCs are selected independently at random from the TCs on the
lattice and each is given the opportunity to move), during the same discrete time step
K̄ , N̄ branching attempts are made by selecting N̄ TCs one at a time at random.
These agents are given the opportunity to branch, with daughter TCs placed at sites
(i, j ± 1) with probability Pb ∈ [0, 1] provided the target sites are unoccupied. ECs
are not actively updated in the CA model; rather, their evolution is determined by TC
movement.

2.1 Movement and anastomosis

The movement probabilities Px± and Py± describe a biased random walk and are
defined as follows

Px±
i, j = 1 ± k

(
ci+1, j − ci−1, j

)

4
, (1)

Py±
i, j = 1 ± k

(
ci, j+1 − ci, j−1

)

4
. (2)

In particular, Px± and Py± consist of a random motion term (1/4), and a term that
biases TC motion in the direction of increasing TAF concentration through a central
difference approximation to the TAF gradient at the location of the TC. The constant
parameter k > 0 scales the chemotactic response of TCs (and is also chosen such
that the probabilities lie between 0 and 1). For the linear TAF profile considered here,
ci, j = ci , and therefore Py± = 1

4 .
Anastomosis and exclusion (aborted TC moves due to occupancy) are processes

that are linked in our model. Anastomosis is the formation of loops that are created
when TCs connect with other TCs or ECs. We assume that anastomosis annihilates
TCs (as ECs are responsible for lumen formation once connections form (Potente et al.
2011; Carmeliet and Jain 2011; Blanco and Gerhardt 2013)). Tip-to-tip anastomosis
occurs if a TC at site (i, j) moves to a neighboring site occupied by another TC.
Both TCs are removed from the simulation and replaced with ECs (see Fig. 2a). Tip-
to-sprout anastomosis (defined in Model 2 only) occurs if a TC at (i, j) moves to a
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(a)

(b)

Tip-to-tip anastomosis

Tip-to-sprout anastomosis

Fig. 2 a Tip-to-tip anastomosis (Model 1 and 2): If a tip cell (TC) at site (i, j) moves to site (i, j + 1),
occupied by another TC, then both TCs are removed from the simulation and ECs are placed at sites (i, j)
and (i, j + 1) (due to TC movement). b Tip-to-sprout anastomosis (Model 2): If a TC at site (i, j) moves
to site (i, j + 1), occupied by an EC, then the TC is removed from the simulation, the EC at site (i, j + 1)
remains and an additional EC is placed at site (i, j) (due to TC movement)

neighboring site occupied by an EC. The TC is replaced by an EC and the original EC
remains (see Fig. 2b). Implicit in the aforementioned description is the assumption that
when an anastomosis event occurs, TC moves are not aborted due to occupancy of the
target site. We implement anastomosis using two variables, an and ae, defined as the
probability of a tip-to-tip and tip-to-sprout anastomosis event occurring, respectively.
Thus, 1−an and 1−ae are the probabilities that TC volume exclusion and EC volume
exclusion occur, respectively. To be specific, if a TC attempts to move to a site that
is occupied by a TC or EC, an anastomosis event occurs with probability an or ae,
respectively. Otherwise, the move is aborted. This differs from the CA framework in
Pillay et al. (2017) where anastomosis events occurred every time a TC encountered
another cell.

In all cases, once a TC moves from a site, an EC is left behind at that site creating
the trail of vessels associated with the snail-trail. Further, we prohibit self-loops (a
TC anastomosing with an EC in its own sprout, i.e. an EC it has left behind) during
tip-to-sprout anastomosis (see Pillay et al. 2017 for details). In such cases, the TC
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Fig. 3 A tip cell (TC) at site (i, j) may branch during a time step by placing daughter TCs at (i, j ± 1),
provided those sites are unoccupied by TCs (Models 1 and 2), or by ECs (Model 2)

move is aborted (EC volume exclusion). This outcome differs from Pillay et al. (2017)
where such moves were permitted without causing anastomosis.

2.2 Branching

We assume that branching occurs in the direction perpendicular (y-direction) to that of
propagation of the TCs (towards the TAF source, in the x-direction) as in Pillay et al.
(2017). Since branching is stimulated by TAFs (Carmeliet and Jain 2011), we assume
that the probability with which a TC at site (i, j) branches, Pb, increases linearly with
TAF concentration as follows: Pb = Ppc ∈ [0, 1] (Pp is a model parameter, assumed
constant, that scales the TAF concentration and ensures that Pb ≤ 1). This functional
form of the branching probability models the brush-border effect (Muthukkaruppan
et al. 1982), i.e. an increase in TC density as the TC front approaches the TAF source.
A TC at site (i, j) branches by placing daughter TCs at sites (i, j ± 1) provided those
sites are unoccupied (by TCs in Model 1; by TCs or ECs in Model 2) and the TC at
site (i, j) is removed (see Fig. 3), creating the patterning associated with Delta-Notch
signaling (Potente et al. 2011; Carmeliet and Jain 2011). We assume that ECs are not
created through branching. Our branching configuration is consistent with that used
in Pillay et al. (2017), and we note that other configurations are possible.

2.3 Initial conditions, boundary conditions and cell occupancy

Our initial conditions represent sprouting from the limbus following the initiation of
angiogenesis (i.e. once TCs become motile). We place TCs along i = 0 at alternating
lattice sites i.e.

TCs placed at (i = 0, j = 1, 3, . . . , R − 1). (3)

ECs are created once TCs begin to move, and thus, initially, there are no ECs on the
lattice. In practice, TAF (VEGF) and Delta-Notch signaling (Carmeliet and Jain 2011;
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Table 1 Summary of variables and rules used in CA Models 1 and 2

Model Volume exclusion Anastomosis Max occupancy an ae

1 TC Tip-to-tip 1 TC, ECs ≥ 1 [0,1] N/A

2 TC, EC Tip-to-tip, tip-to-sprout 1 TC or EC [0,1] [0,1]

Potente et al. 2011; Blanco and Gerhardt 2013) mediate TC selection at the limbus.
We prescribe the initial TC spacing in our model, as in Pillay et al. (2017).

TCs are not permitted to cross lattice boundaries (no flux boundary conditions).
This is justified by the fact that TCs cannot cross the boundaries of the cornea, and
at the TAF source (i = R, 0 ≤ j ≤ R), our model does not account for interactions
between TCs and the TAF source/tumor fragment.

We summarize Models 1 and 2, and the corresponding variables and rules, in Table
1. The CA algorithm is outlined in Appendix B.

2.4 Ensemble averages

In order to relate the discrete models to a continuum, macroscopic description, we
average the TC and EC occupancy of site (i, j) over M realizations of the discrete
model at discrete times 1, 2, . . . , K̄ . We introduce averaged quantities ni, j (K̄ ) and
ei, j (K̄ ), respectively, where

ni, j (K̄ ) = 1

M

M∑

m=1

nmi, j (K̄ ), ei, j (K̄ ) = 1

M

M∑

m=1

emi, j (K̄ ), 0 ≤ i, j ≤ R. (4)

Here nmi, j (K̄ ) and emi, j (K̄ ) are the TC and EC occupancies at site (i, j) after K̄
discrete time steps of the mth realization of the discrete model. The TC occupancy
is defined as nmi, j (K̄ ) ∈ {0, 1} (either 1 (occupied) or 0 (unoccupied)). The EC occu-

pancy in Model 1 is defined as emi, j (K̄ ) ∈ {0, Z}, where Z indicates positive integer

occupancy, while in Model 2 it is defined as emi, j (K̄ ) ∈ {0, 1}. We also define column

averaged TC and EC occupancies, Ni (K̄ ) and Ei (K̄ ), as follows:

Ni (K̄ ) = 1

M(R + 1)

M∑

m=1

R∑

j=0

nmi, j (K̄ ), (5)

Ei (K̄ ) = 1

M(R + 1)

M∑

m=1

R∑

j=0

emi, j (K̄ ), (6)

where R is the number of columns on the lattice.
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3 The continuum model

We now derive mean-field equations for the expected TC and EC densities in Models
1 and 2. For Model 2, we derive a PDE model for which ae = 1 (tip-to-sprout
anastomosis occurs with probability 1, unless a self-loop is prohibited). In Sect. 5.2,
we will estimate ae by fitting the Model 2 PDEs to averaged CA simulation results
to account for prohibited self-loops. Thus, we retain ae in the derivation below. We
distinguish betweenModels 1 and 2 (seeTable 1 formodel definitions) in the derivation
by introducing a variable, B, such that

B =
{
0, Model 1,

1, Model 2.
(7)

The variable B allows us to control the volume exclusion incorporated in the branching
term (EC volume exclusion in Model 2, only TC volume exclusion in Model 1),
as well as either include or exclude tip-to-sprout anastomosis in Models 2 and 1,
respectively. We derive continuum models by formulating difference equations that
relate ni, j (K̄ + 1) and ei, j (K̄ + 1), the average TC and EC occupancies, respectively,
at site (i, j) at time K̄ + 1, defined in Eq. (4), to the average occupancies at site (i, j)
at time K̄ . Defining δni, j and δei, j as

δni, j = ni, j (K̄ + 1) − ni, j (K̄ ), (8)

δei, j = ei, j (K̄ + 1) − ei, j (K̄ ), (9)

we formulate difference equations for the TC and EC occupancies as follows:

δni, j = Pm

×

⎛

⎜⎜
⎜
⎝

(
Px+
i−1, j ni−1, j + Px−

i+1, j ni+1, j + Py+
i, j−1ni, j−1 + Py−

i, j+1ni, j+1

)
(1 − ni, j − Baeei, j )

︸ ︷︷ ︸
movement into (i, j)

−
(
Px+
i, j (1 − (1 − an)ni+1, j ) + Px−

i, j (1 − (1 − an)ni−1, j )
︸ ︷︷ ︸

movement out of (i, j)

+Py+
i, j (1 − (1 − an)ni, j+1) + Py−

i, j (1 − (1 − an)ni, j−1)
)
ni, j

︸ ︷︷ ︸
movement out of (i, j)

⎞

⎟⎟⎟
⎠

+Ppci, j−1
(
ni, j−1(1 − ni, j − Bei, j )(1 − ni, j−2 − Bei, j−2)

)

︸ ︷︷ ︸
branching into site (i, j) from site (i, j−1)

+Ppci, j+1
(
ni, j+1(1 − ni, j − Bei, j )(1 − ni, j+2 − Bei, j+2)

)

︸ ︷︷ ︸
branching into site (i, j) from site (i, j+1)

−Ppci, j
(
ni, j (1 − ni, j+1 − Bei, j+1)(1 − ni, j−1 − Bei, j−1)

)

︸ ︷︷ ︸
branching out of site (i, j)

, (10)
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and

δei, j = Pmni, j

⎛

⎜
⎜
⎝

(
Px+
i, j (1 − (1 − an)ni+1, j ) + Px−

i, j (1 − (1 − an)ni−1, j )
︸ ︷︷ ︸

movement out of (i, j)

+Py+
i, j (1 − (1 − an)ni, j+1) + Py−

i, j (1 − (1 − an)ni, j−1)
)

︸ ︷︷ ︸
movement out of (i, j)

+an
(
Px+
i−1, j ni−1, j + Px−

i+1, j ni+1, j + Py+
i, j−1ni, j−1 + Py−

i, j+1ni, j+1

)

︸ ︷︷ ︸
tip−to−tip anastomosis

⎞

⎟⎟
⎠ .

(11)

We have formulated Eqs. (10) and (11), which describe how TC and EC occu-
pancies, respectively, change during a time step, using a mean-field approximation
i.e assuming that the occupancy of lattice sites is independent.

The first line on the right-hand side of Eq. (10) represents TC movement from
neighboring sites (i±1, j) and (i, j±1) into site (i, j). When interpreting this term, it
is convenient to decompose (1−ni, j−Baeei, j ) as ([1−(1−an)ni, j ]−anni, j−Baeei, j ).
The term (1 − (1 − an)ni, j ) describes movement from neighboring sites into (i, j)
where TC volume exclusion occurs with probability (1− an) if site (i, j) is occupied
by a TC. The penalty terms−anni, j and−Baeei, j represent tip-to-tip and tip-to-sprout
anastomosis (as in Pillay et al. 2017), respectively, which occur with probability an
and ae, respectively. In particular, if a TC moves from neighboring sites into (i, j),
which is occupied by a TC or EC, then a tip-to-tip or tip-to-sprout anastomosis event
occurs, respectively, and the TC is removed (see anastomosis rules in Sect. 2.1). Thus,
the term (1 − ni, j − Baeei, j ) implies that a TC can only move into site (i, j) and
remain a TC if that site is vacant.

Anastomosis and volume exclusion affect TC movement out of a site differently.
TCs move out of a site into neighboring sites where TC volume exclusion occurs with
probability 1 − an [see lines 2 and 3 of Eq. (10)] if the target site is occupied by a
TC. If an = 1, then TCs are always allowed to move out of a site, and the outcome
depends on the occupancy of the target site.

Branching incorporates volume exclusion; it can only occur if neighboring sites
are unoccupied by TCs (Model 1 and 2) or ECs (Model 2) [see lines 4–6 of Eq. (10)].
The branching terms in Eq. (10) represent branching into site (i, j) from a TC located
at (i, j ± 1) (source terms), and the loss of a TC from site (i, j) that branches into
neighboring sites (sink term).

ECs are created by TC movement out of a site and via tip-to-tip anastomosis,
which is represented in Eq. (11). Thus, the source terms in Eq. (11) are the positive
counterparts of sink terms in Eq. (10) (representing TC movement out of a site and
tip-to-tip anastomosis). Tip-to-sprout anastomosis does not affect the EC population.

We formulate the difference equations in terms of column averages, so that the
resulting PDEswill be one-dimensional. Therefore, wemultiply both sides of Eqs. (10)
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and (11) by 1/(R + 1) and sum over the column index j . We then apply a mean-field
approximation for column averages (see Simpson et al. 2009a; Pillay et al. 2017), by
approximating products of occupancy terms by products of column averages. Under
these approximations and given that Py±

i, j = Py±
i (TAF concentration is linear in x),

the column-averaged difference equations for the TCs and ECs are, respectively,

δNi = Pm

⎛

⎜
⎝

(
Px+
i−1Ni−1 + Px−

i+1Ni+1
)
(1 − (1 − an)Ni )

︸ ︷︷ ︸
movement into column i

− (
Px+
i (1 − (1 − an)Ni+1) + Px−

i (1 − (1 − an)Ni−1)
)
Ni

︸ ︷︷ ︸
movement out of column i

−(anNi + BaeEi )
(
Px+
i−1Ni−1 + Px−

i+1Ni+1 + Py+
i Ni + Py−

i Ni

)

︸ ︷︷ ︸
tip−to−tip/sprout anastomosis

⎞

⎟⎟
⎠

+Ppci (Ni (1 − Ni − BEi )(1 − Ni − BEi ))︸ ︷︷ ︸
branching

, (12)

and

δEi = PmNi

⎛

⎜
⎝Px+

i (1 − (1 − an)Ni+1) + Px−
i (1 − (1 − an)Ni−1)︸ ︷︷ ︸

movement out of column i

+(Py+
i + Py−

i )(1 − (1 − an)Ni )︸ ︷︷ ︸
movement out of column i

+an
(
Px+
i−1Ni−1 + Px−

i+1Ni+1 + (Py+
i + Py−

i )Ni

)

︸ ︷︷ ︸
tip−to−tip anastomosis

⎞

⎟⎟
⎠ . (13)

When considering column averages formotility terms (excluding anastomosis), move-
ments in y do not affect the TC density and, thus, only TC motility terms between
columns remain [see Eq. (12)]. By contrast, for anastomosis, movement within a col-
umn may affect the TC density through TC annihilation and, therefore, movements
within and between columns are accounted for. Given that branching occurs in the
y-direction, the branching terms describe processes that are localized within a single
column; they are derived by summing the branching terms in Eq. (10) over j and
applying a mean-field approximation for column averages.

ECs are created either when a TC leaves a site or through tip-to-tip anastomosis.
Thus, in Eq. (13), TC movement in the y-direction (i.e. within a column) is retained,
and the tip-to-tip anastomosis term is the positive counterpart of the corresponding
term in Eq. (12).
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We note that as the initial TC occupancies in the CA depend on j [see Eq. (3)], our
column-averaging procedure is not exact, and assumes further mean-field approxima-
tions as discussed. However, we will show in Sects. 5 and 6, when comparing our PDE
solutions to averaged simulation results, that when the mean-field approximations
hold, our approximations are reasonable.

We now expand the dependent variables, N , E and c, in Eqs. (12) and (13) in a
Taylor series about the site i in order to relate the column-averaged difference equations
to a continuum model. By setting xi → x, Ni (K̄ ) → N (x, t), Ei (K̄ ) → E(x, t),
dividing the resulting expressions by τ , which relates the discrete and continuum time
scales (t = τ K̄ ), taking the limit as τ → 0, and neglecting terms of O(h4) and higher,
we can relate our difference equations to the following PDEs for N (x, t) and E(x, t):

∂N

∂t
= D(1 − anN − BaeE)

∂2N

∂x2

−χ

(
∂

∂x

(
N (1 − N )

∂c

∂x

)
+ anN

∂N

∂x

∂c

∂x
− BaeE

∂

∂x

(
N

∂c

∂x

))

−μ
(
anN

2 + BaeN E
)

+ λcN (1 − N − BE)2, (14)

and

∂E

∂t
= μN (1 − N + 2anN ) − D(1 − 2an)N

∂2N

∂x2

−χN

(
(1 − an)

∂c

∂x

∂N

∂x
+ an

∂

∂x

(
N

∂c

∂x

))
,

(15)

In Eqs. (14) and (15), the diffusion and chemotactic coefficients, D and χ , are defined
by

D = μh2

4
= lim

τ→0

Pmh2

4τ
, χ = μkh2 = lim

τ→0

Pmkh2

τ
, (16)

and μ and λ are defined as

μ = lim
τ→0

Pm
τ

, λ = lim
τ→0

Pp

τ
. (17)

We remark that the expressions for D, χ and λ are consistent with those derived in
existing literature (Pillay et al. 2017; Simpson et al. 2009a, 2010; Codling et al. 2008),
although we have not taken the limit τ, h → 0 with h2/τ held constant (see Pillay
et al. 2017). Furthermore, as we use small, non-zero, finite values for h and τ in the
CA model simulations, and in the definitions of the continuum model parameters,
retaining the O(h2) terms and neglecting higher-terms (used in Davies et al. 2014;
Ross et al. 2015; Hywood et al. 2013) is reasonable.
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As in Pillay et al. (2017), we use the column-averaged CA simulation results for
the TCs and ECs at some later discrete time step K̄ IC > 0, Ni (K̄ IC ) and Ei (K̄ IC )∀i
[ensemble averages defined in Eqs. (5 and (6)], respectively, as the initial conditions
in the continuum model as follows:

N (x, tIC ) ∀x, = Ni (K̄ IC ) ∀i, (18)

E(x, tIC ) ∀x, = Ei (K̄ IC ) ∀i, (19)

where tIC = τ K̄ IC . In so doing, we avoid using the discontinuous TC initial condition
[see Eq. (3)] in the discrete model at K̄ = 0 to initialize the PDE model.

We approximate the boundary conditions by imposing no flux boundary condi-
tions on Eq. (14), assuming only TCmotility incorporating TC volume exclusion with
probability 1 − an as follows

D
∂N

∂x
− χN (1 − (1 − an)N )

∂c

∂x
|x=0,1= 0. (20)

In other words, we assume that branching and TC annihilation via anastomosis are
negligible at the boundaries. Given that we use initial conditions from the discrete
model at a later time point once TCs have moved away from the boundary at x = 0,
and secondly, in the discrete model, TC movement at the TAF source is restricted,
and no branching or anastomosis occurs at x = 1, no flux boundary conditions are
a reasonable approximation. Equations (14)–(20) define a one-dimensional model of
angiogenesis that accounts for motility, anastomosis and branching.

4 Structure of continuum models

We first consider Model 1 (see Table 1) by setting B = 0 in Eq. (14). When an = 0,
the motility terms for the TC density reduce to well-known results for biased motility
incorporating TC volume exclusion; the diffusion term is linear, while the chemotactic
term is non-linear (Simpson et al. 2009a, 2010; Penington et al. 2011; Liggett 1999)
as follows:

∂N

∂t
= D

∂2N

∂x2
− χ

∂

∂x

(
N (1 − N )

∂c

∂x

)
+ λcN (1 − N )2. (21)

The chemotactic term can be written as −χ(1 − 2N ) ∂N
∂x , since

∂c
∂x = 1 and ∂2c

∂x2
= 0.

We note that the resulting PDE for N (x, t) resembles a viscous Burgers’ equation
(excluding the source term).

When an = 1, Eqs. (14) and (15) reduce to the non-volume excluding model
derived in Pillay et al. (2017). In this case, tip-to-tip anastomosis gives rise to the
usual non-linear sink term −μN 2, and leads to pre-multiplication of the diffusion and
chemotactic terms by 1 − N as follows:
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∂N

∂t
= D(1 − N )

∂2N

∂x2
− χ(1 − N )

∂

∂x

(
N

∂c

∂x

)
− μN 2 + λcN (1 − N )2. (22)

When an ∈ (0, 1) our equation for the TC density is a combination of the diffusive
and chemotactic terms that represent TC volume exclusion and tip-to-tip anastomosis
[see Eq. (14)]. In Model 1, the non-linear branching term λcN (1 − N )2 incorporates
volume exclusion from TCs (and is consistent with a result derived previously by
Simpson et al. 2010).

InModel 2, tip-to-sprout anastomosis gives rise to the term−aeE that pre-multiplies
the diffusive and chemotactic terms, and a sink term −μNE . Thus, we recover the
tip-to-sprout anastomosis terms derived in Pillay et al. (2017). The branching term in
Model 2, λcN (1 − N − E)2, also accounts for EC volume exclusion.

ECs are created via TC movement and tip-to-tip anastomosis. In Eq. (15), restated
below:

∂E

∂t
= μN (1 − N + 2anN ) − D(1 − 2an)N

∂2N

∂x2

−χN

(
(1 − an)

∂c

∂x

∂N

∂x
+ an

∂

∂x

(
N

∂c

∂x

))
,

μ can be interpreted as the TC motility rate, and, in effect, the source term μN (1 −
N + 2anN ) is a proliferation term. Tip-to-tip anastomosis also creates ECs, and this
process is represented by the positive counterparts of the tip-to-tip anastomosis terms
that appear in Eq. (14), as found in Pillay et al. (2017). The source term incorporates TC
volume exclusion through the 1− N term, and there are additional negative flux terms
that account for TC volume exclusion [see terms multiplied by 1 − an in Eq. (14)].
Fewer ECs are produced when TC volume exclusion is active, as opposed to a non-
volume exclusion model (see Pillay et al. 2017) where EC evolution is described
entirely by μN . Given the form of the equations for E(x, t), we need only specify an
initial condition for E .

Density restrictions are imposed through volume exclusion and anastomosis. In
Model 1, 0 ≤ N ≤ 1 and in Model 2, 0 ≤ N + E ≤ 1 (see Table 1). With appropriate
initial conditions, allmodels remainwell-posed (providedwe setλ = 0oncemaximum
density has been reached i.e. N = 1 in Model 1 and N + E = 1 in Model 2, so that
branching ceases). Thus, in contrast to the non-volume excluding model in Pillay et al.
(2017), inModel 2,we can also account for tip-to-sprout anastomosis,while neglecting
tip-to-tip anastomosis (B = 1, an = 0, ae = 1). We note that population behavior
produced by averaged CA simulation results will always respect density restrictions,
as occupancy restrictions can never be violated in the CA model.

5 Mean-field approximation and behavior of PDE models

To compare the discrete and continuummodels, we set micro- and macroscale param-
eters, related through Eqs. (16) and (17). Values of six (of the nine) independent
microscale parameters, R, h, Pm, τ, k, KIC are specified in Table 2, while Pp (branch-
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Table 2 Summary of dimensionless values of microscale and macroscale model parameters

CA parameters R h Pm k τ KIC Px±
i, j P y±

i, j

200 1/200 1 100 1/160 32 1
2 , 0

1
4

PDE parameters D χ μ tIC

10−3 0.4 160 0.2

Px±
i, j and Py±

i, j are calculated using Eqs. (1) and (2)

ing probability), an (Model 1 and 2) and ae (Model 2 only), are fixed for each CA
model case we consider. The movement probabilities are calculated using Eqs. (1) and
(2), and also specified in Table 2.

The macroscale parameters D, χ, μ, tIC can be calculated directly [using Eqs. (16)
and (17)] from the microscale parameters; their values are stated in Table 2. The
parameter λ can be calculated, using Eq. (17), once Pp is set. The variables an and
ae also appear in the macroscale description, and may vary between CA model cases.
A discussion justifying the choice of values for the microscale parameters, and the
corresponding dimensionalmacroscale parameters, can be found in Pillay et al. (2017).

We now solve our PDE models and compare their outputs to column-averaged
discrete simulation results, averaged over M = 200 realizations. In Appendix B, we
detail the methodology used to solve the PDEs.

5.1 Model 1

When Pp = 10−3 and an = 0, 1, there is good agreement between the PDE solutions
and averaged CA simulation results (see Fig. 12 in Appendix C). When the branching
probability is increased from Pp = 10−3 to Pp = 10−2, we find agreement when
an = 0 (see Fig. 4). However, for an = 1 and an = 0.2, the agreement is poor (see
Fig. 4). We postulate, therefore, that it is the increase in the branching probability
to Pp = 10−2, relative to the motility probability Pm = 1, along with tip-to-tip
anastomosis interactions, that leads to poor agreement between the PDEmodel and the
CA simulation results (see Fig. 4c–f, we note that the agreement is poorer for an = 0.2
than for an = 1, possibly due to the way in which we have modeled anastomosis in
the difference equations). We explain these results as follows: The PDEs were derived
using a mean-field approximation which places constraints on the interactions that
can occur in the CA, and their probabilities. For example, the branching probability,
Pp, should be small compared to the motility probability, Pm , for the mean-field
approximation to hold (Simpson et al. 2010; Baker and Simpson 2010; Davies et al.
2014). Further, the mean-field approximation may break down due to anastomosis,
as the chances of an anastomosis event increases when agents are in close proximity
to each other (Pillay et al. 2017). Other studies (Simpson and Baker 2011; Baker
and Simpson 2010) have shown that high birth (branching) and death (anastomosis)
rates (relative to the motility rate) enhance correlations between lattice sites. Thus,
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Fig. 4 Model 1: effect of branching and anastomosis on agreement between PDE solutions and averaged
CA simulation results. (Left panel) Tip cell (TC) density, (Right panel) Endothelial cell (EC) density. In
the CA model, tip-to-tip anastomosis occurs with probability an , TC volume exclusion with probability
1 − an and branching with probability Pp . a, b When an = 0, there is good agreement between the PDE
solutions (blue dashed-dot curves), Eqs. (14) and (15) with B = 0, and averaged CA simulation results
(black solid curves). c–f If an = 0.2, 1, the agreement is poor, likely due to a break down of the mean-field
approximation. Averaged CA simulation results and PDE solutions are shown at times t = 0.2, 0.4, . . . , 2.0
(color figure online)
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(a) Pp = 10−2, an = 0.2 (b) Pp = 10−2, an = 0.2

(c) Pp = 10−2, an = 1 (d) Pp = 10−2, an = 1

Fig. 5 Model 1: agreement improved by fitting the PDE models to averaged CA simulation results. (Left
panel) Tip cell (TC) density, (Right panel) Endothelial cell (EC) density. In the CA model, tip-to-tip
anastomosis occurs with probability an , TC volume exclusion with probability 1 − an and branching with
probability Pp . a, b For an = 0.2, we estimate both λ̃ and ãn , and the PDE model solutions agree well with
the averaged CA simulation results when λ̃ = 1.1821 ± 0.0041 and ãn = 0.3001 ± 0.0008. c, d There is
good agreement between the PDEmodel solutions (blue dashed-dot curves) and discrete model simulations
(black solid curves) when λ̃ = 0.8582 ± 0.0083. Averaged CA simulation results and PDE solutions are
shown at times t = 0.2, 0.4, . . . , 2.0 (color figure online)

we postulate that it is a break down in the mean-field assumption that causes the
discrepancy between our PDE solutions and averaged CA simulation results. Since it
is intractable to correct our mean-field PDEs by accounting for correlations (see Baker
and Simpson 2010; Markham et al. 2014; Simpson and Baker 2011) in our difference
equation framework, we instead use the structure of the PDEs generated from the
mean-field approximation and estimate parameters in the PDE model (by fitting the
PDE models to the averaged CA simulation results) to account for the complexity
of interactions. That is, we estimate through fitting those parameters that arise from
processes that lead to correlations, namely λ and an , the branching rate and parameter
controlling tip-to-tip anastomosis, respectively. For clarity, we indicate by λ̃ and ãn the
continuum parameters that have been estimated by fitting the PDEmodels to averaged
CA results.

The results presented in Fig. 5 reveal that when we estimate parameters in the
continuum model, good agreement between the solutions of the PDE model and the
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CA simulation results can be found. When an = 0 (minimum value) or an = 1
(maximum value), we estimate only λ̃ in the continuum model. When 0 < an < 1,
both ãn and λ̃ must be estimated in the continuum model to find good agreement.
(Details of the fitting procedure can be found in Appendix B.)

5.2 Model 2

Following Pillay et al. (2017), we estimate the parameter controlling tip-to-sprout
anastomosis, ae, now renamed ãe, by fitting the PDEmodel to averaged CA simulation
results. As mentioned in the PDE derivation, this enables us to account for prohibited
self-loops, which are not explicitly accounted for in the difference equations. For
Pp = 10−3, an = 1 or 0, and ae = 1 in the CA model, the PDE model solutions agree
well with the averaged CA simulations when we estimate ãe (see Fig. 13 in Appendix
C).

Thus far, we have not derived a PDE model for which ae < 1 in the CA model. In
the CA model, as ae is decreased below 1, the probability of aborted TC moves due to
EC volume exclusion, 1−ae, increases. This leads to amulti-species exclusion process
(exclusion from TCs and ECs). Mean-field derivations of PDE models accounting for
multi-species exclusion processes lead to highly non-linear advective-diffusion equa-
tions (see Simpson et al. 2009a). From the previous discussion on the break-down of
the mean-field, it is likely that introducing further interactions (EC volume exclusion)
will yield continuum models that cannot capture averaged CA simulation results. As
we are already estimating the parameter ãe by fitting the PDE model to averaged CA
simulation results, we will also attempt to capture averaged CA simulation results
generated with 0 < ae ≤ 1 through this methodology. Thus, we account for EC vol-
ume exclusion through parameter estimation, instead of using the difference equation
framework to derive more detailed non-linear PDEs.

Setting ae = 0 in the CA corresponds to total EC volume exclusion and neglect
of tip-to-sprout anastomosis. In reality, this is unlikely, as networks produced via
angiogenesis show connections between sprouts. Therefore, we consider averaged
CA simulations for an = 1, 0 and ae ∈ (0, 1] in Model 2. To reproduce the brush-
border effect (see Sect. 1), we use a high branching probability of Pp = 10−1 in the
CA model. Guided by the discussion on potential mean-field break-down in Model
1, in Model 2, we estimate λ̃ in addition to ãe, as we have increased the branching
probability. We expect there will be a threshold value of ae in the CA model below
which the Model 2 PDEs fail to capture the population behavior due to the increasing
effects of EC volume exclusion.

In Sect. 6, we compare solutions to Eqs. (14) and (15) with parameters estimated
through fitting to column-averaged CA simulation results to assess agreement.

5.3 BC model

Wewill also compare (in Sect. 6) themodified BCmodel (see Appendix A) to the aver-
aged CA simulation results. We estimate the BC model parameters (Dbc, χbc, λbc, βe

and βn) by fitting the model to averaged CA simulation results. In so doing, we
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determine whether non-linear interactions and volume exclusion can be accounted for
through the parameters in a linear model (linear in N ).

6 Discrete-continuum comparisons in one dimension with parameters
estimated through fitting

In Table 3, we outline the CA (see Table 1) and PDE model cases we will compare
(see Table 2 for values of other model parameters). The fitted parameter values for the
PDE models are stated in Appendix D (see Tables 4, 5, 6, 7). For Models 1 and 2, we
have used high branching probabilities (relative to the motility probability Pm = 1) to
ensure that the TC density increases as the TC front approaches the TAF source and
thereby qualitatively reproduce the brush border effect (see Sect. 1).

We will compare the solutions of the one-dimensional Eqs. (14)–(20) and the BC
model [Eqs. (23) and (24)] to averaged CA simulation results [see Eqs. (5) and (6)],
where lattice site occupancy has been averaged over M = 200 realizations and R =
200 columns. We also present simulation results from individual realizations of the
CA model to illustrate the effects of volume exclusion on network morphology.

6.1 Model 1 Comparisons

In Fig. 7, we compare Model 1 PDEs and the BC model to averaged CA simulation
results for which tip-to-tip anastomosis occurs with probability an , and TC volume
exclusion with probability 1− an . We use a branching probability of Pp = 10−2 and
Pp = 4 × 10−2 for each of an = 0.02, 0.05, 0.1, 0.15, 0.2. We see that as the proba-
bility of tip-to-tip anastomosis decreases, and the branching probability increases, the
TC and EC densities at later time points increase due to reduced TC death rate and
increased TC birth rate (compare Fig. 6c, d, g, h). The larger population of TCs causes
the TC density (see Fig. 6f–h) to steepen at the back and extend to the left as forward
TC movement is prevented by TC volume exclusion (contrast this behavior with that
depicted in Fig. 6b–d). Steepening of the TC front can be understood by considering
the PDE for the TC density. When an = 0, a factor of 1 − 2N pre-multiplies the

Table 3 Cases for CA and PDE models: we give the CA model parameters, and the corresponding param-
eters in the continuum model

CA model an ae Pp

1 [0, 1] N/A 10−2, 4 × 10−2

2 0 or 1 (0, 1] 10−1

PDE model ãn ãe λ̃

1 [B = 0 in Eq. (14)] [0,1] N/A [0, 1.6], [0, 6.4]
2 [B = 1 in Eq. (14)] 0 or 1 (0, 1] [0, 16]
In the PDE models, the parameters are estimated by fitting the PDE models to averaged CA simulation
results, with the exception of ãn in Model 2, which is the direct analogue of an in the CA model
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Fig. 6 Model 1: comparisons between PDE solutions and averaged CA simulation results. TC and EC
densities increase as the probability of tip-to-tip anastomosis,an , decreases and the branchingprobability, Pp
increases. a, b, e, f Individual simulations from the CA shown at t = 1 and t = 2, red dots= ECs, light blue
circles = TCs. Forward TC movement is prevented by TC volume exclusion, resulting in a wider TC front
in (f) than in (b). c, d, g, h Column-averaged CA simulation results (black solid curves) are shown at times
t = 0.2, 0.4, . . . , 2.0 (arrow shows direction of increasing time). TheTC front steepens at the back (see g), as
TCvolume exclusion prevents the forwardmovement of TCs as the TCdensity increases. TheCA simulation
results at tIC = 0.2 are used as the initial conditions in the Model 1 PDEs (blue dashed-dot curves) and the
BC model (red dashed curve) with the PDE solutions shown from t = 0.4 to t = 2.0 (color figure online)
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Fig. 7 Model 1: comparisons between PDE solutions and averaged CA simulation results. TC and EC
densities increase as the probability of tip-to-tip anastomosis, an , decreases and the branching probability,
Pp increases. a, b The relative difference between the root mean square error (RMSE) for each model
increases as mass (integral of cell densities over x) at t = 2.0 increases. c, d Mass from the PDE models at
t = 2.0 agrees with mass from the CA model (black line), except when TC volume exclusion takes effect
at high TC density. The PDE models agree with the CA simulation results when the total cell density/mass
is low, but the BC model deviates from the CA simulation results as the cell density increases, seen in (a),
(c) and Fig. 6g. Boxed data points correspond to annotated parameter values, Model 1 PDEs = blue circles,
BC Model = red squares (color figure online)

chemotactic term ∂N
∂x in Eq. (14). We can approximate the wave speed as 1 − 2N ,

which decreases as N increases, causing the TC front to steepen at the back. This is
analogous to the steepening behavior that occurs in Burgers’ equation (see Whitham
1974). Thus, as we reduce an in our CA model, if the cell density is high, a front that
steepens at the back will develop. A model that is linear in the chemotactic term will
not generate this behavior. Thus, the BC model, in which the chemotactic term ( ∂N

∂x )
is linear in N cannot capture this steepening behavior and, therefore, deviates from
the averaged CA simulation results (see Fig. 6g).

The rootmean square error (RMSE, see Eqs. (26) and (27) inAppendix B), provides
a measure of the mismatch between the PDE solutions and the averaged CA results.
The RMSE increases for both models as the total cell mass (integral of cell densities
over x at t = 2.0) increases (see Fig. 7a, b). Therefore, the relative difference between

123



The impact of exclusion processes on angiogenesis models 1743

50 100 150 200

Distance from limbus i

50

100

150

200

Li
m

bu
s,

 T
A

F 
= 

0,
 j

Pp = 10-1

ae = 1

50 100 150 200

Distance from limbus i

50

100

150

200

Li
m

bu
s,

 T
A

F 
= 

0,
 j

Pp = 10-1

ae = 1

0 0.2 0.4 0.6 0.8 1

Distance from limbus x

0

0.005

0.01

0.015

0.02

0.025

0.03

N
(x

,t)

Pp = 10-1

ae = 1

t

0 0.2 0.4 0.6 0.8 1

Distance from limbus x

0

0.2

0.4

0.6

0.8

1

1.2

E
(x

,t)

Pp = 10-1

ae = 1

t

50 100 150 200

Distance from limbus i

50

100

150

200

Li
m

bu
s,

 T
A

F 
= 

0,
 j

Pp = 10-1

ae = 0.1

50 100 150 200

Distance from limbus i

50

100

150

200

Li
m

bu
s,

 T
A

F 
= 

0,
 j

Pp = 10-1

ae = 0.1

0 0.2 0.4 0.6 0.8 1

Distance from limbus x

0

0.005

0.01

0.015

0.02

0.025

0.03

N
(x

,t)

Pp = 10-1

ae = 0.1

t

0 0.2 0.4 0.6 0.8 1

Distance from limbus x

0

0.2

0.4

0.6

0.8

1

1.2

E
(x

,t)

t

Pp = 10-1

ae = 0.1

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Individual simulation, t = 1 Individual simulation, t = 2

TC density,an = 0 EC density, an = 0

Individual simulation, t = 1 Individual simulation, t = 2

TC density, an = 0 EC density, an = 0

Fig. 8 Model 2 (an = 0): comparisons between PDE solutions and averaged CA simulation results.
TCs interact with ECs through tip-to-sprout anastomosis and EC volume exclusion, and with TCs through
TC volume exclusion. TC and EC densities increase as the probability of tip-to-sprout anastomosis, ae ,
decreases. The branching probability is Pp = 10−1. a, b, e, f Individual simulations from the CA shown
at t = 1 and t = 2, red dots = ECs, light blue circles = TCs. The networks are sparser than in Fig. 6a, b,
e, f due to tip-to-sprout anastomosis and EC volume exclusion. c, d, g, h Column-averaged CA simulation
results (black solid curve) are shown at times t = 0.2, 0.4, . . . , 2.0 (arrow shows direction of increasing
time). The migrating TC front exhibits long tails (see g), as EC volume exclusion prevents movement of
TCs as the EC density increases. The CA simulation results at tIC = 0.2 are used as the initial conditions
in the derived PDE model (blue dashed-dot curve) and the BC model (red dashed curve), with the PDE
solutions shown from t = 0.4 to t = 2.0 (color figure online)
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the RMSE for each model should be used to determine which model is a better fit
(lower RMSE). When the mass is low and TC volume exclusion effects are negligible,
both theModel 1 PDEs and the BCmodel agree well with the averaged CA simulation
results, and thus theRMSEs for bothmodels are clustered together at lowvalues.As the
TC density increases, the BC model deviates from the averaged CA simulation results
(see Fig. 6g where TC volume exclusion effects are visible) and the relative difference
between the RMSEs increases. Both models capture total cell mass at t = 2.0 well
exceptwhenTCvolume exclusion effects are noticeable (seeFig. 7c, d). To summarize,
as the TC density increases (for higher branching rates), the Model 1 PDEs better
capture the non-linear behavior in the TCdensity that arises fromTCvolume exclusion
than the BC model.

6.2 Model 2 comparison

We compare theModel 2 PDEs and themodified BCmodel to averaged CA simulation
results where tip-to-sprout anastomosis occurs with probability ae, and EC volume
exclusion with probability 1− ae. Recall that in this case branching incorporates two
species exclusion. Additionally, any attempts at tip-to-sprout anastomosis within the
same sprout are aborted incorporating an additional EC volume exclusion effect. In
what follows, we consider two cases, one in which tip-to-tip anastomosis is neglected
(an = 0), and a second case in which tip-to-tip anastomosis occurs with probability 1
(an = 1). We use a branching probability of Pp = 10−1 for each of ae = 0.1, 0.2, 1
in the CA.

6.2.1 Case 1: TC volume exclusion occurs with probability 1 (an = 0 in the CA
model)

As the probability of tip-to-sprout anastomosis, ae, decreases, the cell densities/mass
at t = 2.0 (see Figs. 8, 9) increase as fewer TCs are annihilated via tip-sprout anasto-
mosis. Thus, there are more TCs available to interact with ECs via volume exclusion.
As TCs are excluded by ECs, long tails form in the TC density, as seen in Fig. 8g. This
behavior contrasts with TC volume exclusion in Model 1, where forward movement
of TCs is restricted by other TCs at the head of the migrating TC front.

The Model 2 PDEs and BCmodel are consistent with the averaged CA simulations
when ae = 1 (see Figs. 8c, d, 9a–d). As ae decreases (EC volume exclusion more
pronounced), the RMSE for the Model 2 PDEs increases more rapidly than for the BC
model. The Model 2 PDEs produce a TC front that is out of phase with the averaged
CA results at t = 2.0 (see Fig. 8g for an = 0.1; PDE solution is peaked ahead of the
averaged CA simulation results at t = 2.0). For t < 2.0, the Model 2 PDEs agree
better with the averaged CA simulation results. In terms of EC mass at t = 2.0, the
Model 2 PDEs and the BC model agree well with the CA EC mass (see Fig. 9d).
For Pp = 10−1, ae = 1 and Pp = 10−2, ae = 1 (see Fig. 14 in Appendix C), both
PDE models are in good agreement with the averaged CA simulation results. For
Pp = 10−1, ae = 0.2, 0.1, the BCmodel captures the averaged CA simulation results
better, according to the RMSE and TC mass metrics at t = 2.0 (see Fig. 9a–d). For
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Fig. 9 Model 2 (an = 0): comparisons between PDE solutions and averaged CA simulation results.
TCs interact with ECs through tip-to-sprout anastomosis and EC volume exclusion, and with TCs through
TC volume exclusion. TC and EC densities increase as the probability of tip-to-sprout anastomosis, ae ,
decreases. The branching probability is Pp = 10−1. a–d Model 2 PDEs = blue circles, BC Model = red
squares. a, b The relative difference between the root mean square error (RMSE) for each model increases
as mass (integral of cell densities over x) at t = 2.0 increases. c, d The Model 2 PDEs deviate from the CA
TC mass (black line) at t = 2.0 as stronger EC volume exclusion takes effect (ae = 0.1). The BC model
agrees better with the CA simulation results for ae = 0.1 (color figure online)

Pp = 10−2, ae = 0.2, 0.1, the Model 2 PDEs capture the averaged CA simulation
results better, according to the RMSE and TC mass metrics (see Fig. 14 in Appendix
C). For values of ae below 0.1, as the effects of EC volume exclusion increase, neither
model gives good agreement with the averaged CA simulation results (results not
shown).

The TC density for Model 2 is much lower than the TC density for Model 1 (see
Fig. 6, 7) for two reasons. Firstly, EC and TC volume exclusion in the branching
process mean that fewer TCs are produced, even though the branching probability is
higher than for Model 1. Secondly, TC-EC interactions annihilate many TCs via tip-
to-sprout anastomosis. As the TC mass remains low, the TC volume exclusion effect
seen in Model 1 (steepening of TC front) is not observed in Model 2.

123



1746 S. Pillay et al.

6.2.2 Case 2: tip-to-tip anastomosis occurs with probability 1 (an = 1 in the CA
model)

In Fig. 11, tip-to-tip anastomosis occurs with probability an = 1, and TC volume
exclusion is neglected. Both PDE models give good agreement with the averaged CA
simulation results. For ae = 0.1, EC volume exclusion produces short tails in TC
density (see Fig. 10g). However, TC annihilation caused by tip-to-tip anastomosis
means that EC volume exclusion effects are less pronounced than when tip-to-tip
anastomosis is inactive (see Fig. 8g). We have also confirmed that both PDE models
agree with the averaged CA simulation results for Pp = 10−2 (see Fig. 15 in Appendix
C). Based on the TC RMSE and TC mass metrics (see Fig. 11a, c, d), we conclude
that the Model 2 PDEs agree slightly better with the averaged CA simulation results
than the BC model. When 0 < ae < 0.1, neither model captures the long tails in the
TC density caused by EC volume exclusion (results not shown).

7 Discussion and conclusion

We have developed two-dimensional CA models of corneal angiogenesis based on
the snail-trail approach, explicitly accounting for cell volume. In Model 1, TCs inter-
act with TCs via tip-to-tip anastomosis and TC volume exclusion. In Model 2, in
addition to TC-TC interactions, TCs also interact with ECs through tip-to-sprout
anastomosis and EC volume exclusion. We used a mean-field approximation to derive
one-dimensional PDE models based on these CA models. We compared averaged CA
simulation results with our PDEmodels and an existing phenomenological model (the
BC model), which is linear in the diffusive, chemotactic and branching terms (assum-
ing a linear TAF concentration), in order to determine macroscale volume exclusion
effects and whether linear models can account for them.

We note that the PDE models are derived using a mean-field approximation, which
places constraints on the probabilities with which interactions can occur in the CA
model. It is well known that high birth (branching) and death (anastomosis) rates (rel-
ative to the motility rate) give rise to correlation effects that cannot be captured by
mean-field continuum models. Thus, we postulate that deviations of our PDE model
solutions from the averaged CA simulation results, which occur for high branch-
ing rates and/or active anastomosis, are caused by a break down in the mean-field
assumption. We rectified this discrepancy by fitting the PDE models to averaged CA
simulation results and estimating parameters in the PDE models that control pro-
cesses from which correlations arise. In particular, we estimated the branching rate,
and the parameters that control tip-to-tip anastomosis and tip-to-sprout anastomosis,
in Model 1 and 2, respectively. We also used this approach to capture EC volume
exclusion effects instead of deriving more complicated non-linear mean-field PDE
models, which are unlikely to capture the averaged CA simulation results without
estimating parameters through fitting.

We found that our Model 1 PDEs and the BC model were in good agreement with
averagedCA simulation results whenTCmass is low, andTCvolume exclusion effects
negligible. However, when the TCmass is high, averaged CA simulations indicate that
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Fig. 10 Model 2, TC volume exclusion neglected (an = 1): Comparisons between PDE solutions and
averaged CA simulation results. TCs interact with ECs through tip-to-sprout anastomosis and EC volume
exclusion, and TCs are annihilated through tip-to-tip anastomosis. TC and EC densities increase as the
probability of tip-to-sprout anastomosis, ae , decreases. The branching probability is Pp = 10−1. a, b,
e, f Individual simulations from the CA shown at t = 1 and t = 2, red dots = ECs, light blue circles =
TCs. The networks are sparser than when an = 0 (see Fig. 8a, b, e, f) due to tip-to-tip anastomosis. c, d,
g, h Column-averaged CA simulation results (black solid curve) are shown at times t = 0.2, 0.4, . . . , 2.0
(arrow shows direction of increasing time). The migrating TC front exhibits short tails at early time points
(t=0.4–0.8) (see g), as EC volume exclusion prevents movement of TCs. The CA simulation results at
tIC = 0.2 are used as the initial conditions for the Model 2 PDEs (blue dashed-dot curve), and the BC
model (red dashed curve), with the PDE solutions shown from t = 0.4 to t = 2.0 (color figure online)
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Fig. 11 Model 2, TC volume exclusion neglected (an = 1): Comparisons between PDE solutions and
averaged CA simulation results. TCs interact with ECs through tip-to-sprout anastomosis and EC volume
exclusion, and TCs are annihilated through tip-to-tip anastomosis. TC and EC densities increase as the
probability of tip-to-sprout anastomosis, ae , decreases. The branching probability is Pp = 10−1. a–d
Model 2 PDEs = blue circles, BCModel = red squares. a, b The relative difference between the root mean
square errors (RMSEs) are comparable for ae = 0.2 and ae = 0.1, but larger than for ae = 1. c, d The
mass (integral of cell densities over x) calculated from both models are comparable to the CA mass (black
line), though the TC mass for the BC model is slightly higher for ae = 0.1. Both models agree with the CA
simulation results in this case, though the Model 2 PDEs perform better according to TC RMSE, TC and
EC mass metrics (see a, c, d) (color figure online)

TC volume exclusion produces a front that steepens at the back as TCs are prevented
frommoving towards the TAF source by other TCs. As the TCmass increases, the BC
model is unable to capture the increasing effects of TC volume exclusion, while the
non-linear chemotactic terms in the Model 1 PDEs have been derived for this purpose.

In Model 2, both the BC Model and the Model 2 PDEs capture the averaged CA
simulation results when EC volume exclusion effects are negligible at the macroscale.
As we reduce the probability of tip-to-sprout anastomosis in the CA model, thus
increasing macroscale EC volume exclusion effects, long tails in the TC density form,
as TCs are rendered immobile behind the migrating TC front (within the EC front).
This behavior contrasts with TC volume exclusion effects, where forward movement
of TCs is restricted by other TCs located ahead of the EC front (therefore, TCs are
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located within the TC front). Neither PDEmodel captures the increasingly long tails in
the TC density due to EC volume exclusion. In the context of angiogenesis, however,
network connections are prevalent, and thus, strong EC volume exclusion effects,
which prevent connections via tip-to-sprout anastomosis, may not be relevant.

More generally,wenote thatTC-EC interactions in theCAandPDEmodels produce
less dense networks thanwhenTCs interactwithTCsonly, as tip-to-sprout anastomosis
annihilates TCs, and EC volume exclusion further prohibits TC movement. Further,
for vessel networks that are less dense, the pronounced effects of TC volume exclusion
do not arise (as the TC density is low). This should be considered when developing
angiogenesis models, as including or excluding TC-EC interactions has a marked
effect on the vessel densities.

Wenote that byfitting themean-field PDEmodels to averagedCAsimulation results
to estimate parameters, we are able to capture more complicated scenarios in the PDE
and CA models. For example, we could implement branching and/or anastomosis
when a sprout is of a certain length (i.e. length restrictions) in the CA model. Instead
of deriving more complicated non-linear PDE models to capture these interactions,
we exploit the structure of the mean-field PDEs and fit them to CA simulations to
estimate the branching rate and parameters controlling anastomosis. This approach
enables us to include a wider range of interactions in the CA model that would have
been intractable to include and generalize in our discrete to continuum framework.
We note, however, that a different approach is required to capture pronounced EC
volume exclusion effects, and in future work, we intend to derive such a model. We
will also consider how different discrete models, such as the cellular Potts model,
affect the form of the PDEs derived. In future work, we aim also to determine the
biological relevance of the parameter regimes in which our PDEs and the BC model
agree/disagree with the averaged simulation results.
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Appendices

A Review of Byrne and Chaplain’s snail-trail model 1995

We use the following modified version of Byrne and Chaplain’s dimensionless model
of angiogenesis (see Byrne and Chaplain 1995; Spill et al. 2015; Pillay et al. 2017 for
details):
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∂N

∂t
= DBC

∂2N

∂x2
− χBC
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∂x

(
N
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)
+ λBC Nc − βeN E − βnN
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∣∣∣
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− χBC N
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∣∣∣
∣ , (24)

DBC
∂N

∂x
− χBC N

∂c

∂x
|x=0,1= 0. (25)

Here, N (x, t) and E(x, t) are the TC and EC densities, respectively, c(x) is the TAF
concentration and h is the lattice spacing from the CA model. The TAF source is
located at x = 0 and the limbus at x = 1 with (x, t) ∈ [0, 1] × [0,∞). We impose
no flux boundary conditions [Eq. (25)], with initial conditions [Eqs. (18) and (19)] and
linear TAF profile, c(x) = x , taken from the CA model.

B Numerical schemes

B.1 CA algorithm

We outline the CA algorithm below.
While K̄ ≤ K̄final(= 320)

1. Choose N̄ TCs independently at random with replacement
Loop 1: For 1 to N̄
(a) Choose a random number, T̄ ∈ [0, 1]
(b) If T̄ ≤ Pm , then the TC attempts to move as follows:

– A random number S̄ ∈ [0, 1] is chosen
– The TC moves according to probabilities Px±, Py±
– Model 1 and Model 2: Choose a random number Ptt ∈ [0, 1]. If target site is
occupied by TCs and Ptt < an , tip-to-tip anastomosis occurs, else TC move
is aborted

– Model 2: Choose a random number Pts ∈ [0, 1]. Else if target site is occupied
by ECs and Pts < ae, tip-to-sprout anastomosis occurs (no self-loops), else
TC move is aborted

– Model 1 and 2: Else if target site is unoccupied, movement is allowed
– If a TC move has occurred, an EC is left behind

End Loop 1
2. Choose N̄ TCs at random with replacement

Loop 2: For 1 to N̄
(a) Choose a random number, R̄ ∈ [0, 1]
(b) If R̄ ≤ Pb, then branching occurs, provided neighboring sites are unoccupied

by TCs (Model 1 and 2) or by ECs (Model 2)
End Loop 2

3. Increment time step: K̄ = K̄ + 1
End While Loop
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B.2 PDE solvers

We solve Eqs. (14)–(20) and Eqs. (23)–(25) numerically using the method of lines
with finite differences in space. The resulting time-dependent ordinary differential
equations are solved using MATLAB’s ode15s solver, which implements adaptive
time-stepping (Shampine and Reichelt 1997).

B.3 Model fitting

We fit the models to the averaged CA simulation results by implementing non-linear
least squares using MATLAB’s lsqnonlin routine, which implements a trust-region-
reflective algorithm (Coleman and Li 1994, 1996). In particular, we perform the
fitting using 30 random start points generated using MATLAB’s optimization tool-
box (createOptimProblem) and lsqnonlin. The random start points are generated
within pre-defined bounds as follows: for Model 1 (Model 2) PDEs, λ̃ ∈ [0, 30]
and ãn ∈ [0, 1] (ãe ∈ [0.08, 1]). For the BC model: D̃BC ∈ [10−4, 10−2],
χ̃BC ∈ [0.2, 0.5], β̃n ∈ [0, 80] and β̃e ∈ [0, 80]. The confidence intervals are cal-
culated using nlparci and the Jacobian output from lsqnonlin. We fit the models to
averaged CA simulation results over t ∈ [0.4, 2] in intervals of 0.2 for both the TC
and EC densities.

We measure the goodness of fit in terms of root mean square error, RMSE, which
is defined as

TCRMSE =
√∑P

i=1(N
i
PDE − Ni

CA)2

P
, (26)

ECRMSE =
√∑P

i=1(E
i
PDE − Ei

C A)2

P
, (27)

where P is the total number of points (all lattice points for times t = 0.4 − 2.0 in
increments of t = 0.2, P = 1809) and NPDE and EPDE and NCA and ECA are the
PDE and CA model TC and EC densities, respectively.

C Additional figures

Please see Figs. 12, 13, 14 and 15.
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Fig. 12 Model 1: effect of TCvolume exclusion (an = 0) and tip-to-tip anastomosis (an = 1) on population
behavior. (Left panel) TC density, (Right panel), EC density. There is good agreement between the PDE
solutions (blue dashed-dot curves), Eqs. (14) and (15)with B = 0, and averagedCAsimulation results (black
solid curves). Averaged CA simulation results and PDE solutions are shown at times t = 0.2, 0.4, . . . , 2.0
(color figure online)
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Fig. 13 Model 2: effect of TCvolume exclusion (an = 0) and tip-to-tip anastomosis (an = 1) on population
behavior with branching probability Pp = 10−3. (Left panel) TC density, (Right panel) EC density. There
is good agreement between the PDE solutions (blue dashed-dot curves), Eqs. (14) and (15) with B = 1, and
averaged CA simulation results (black solid curves). Averaged CA simulation results and PDE solutions
are shown at times t = 0.2, 0.4, . . . , 2.0 over 400 runs (color figure online)
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Fig. 14 Model 2 (an = 0): Model 2 PDEs = blue circles, BC Model = red squares. a, b For each value
of Pp , the relative difference between the RMSEs for each model increases as ae decreases. Note that the
RMSEs for each value of Pp are not directly comparable, as RMSEs are not normalized with respect to
mass. Instead, for each value of Pp , the difference between the RMSEs for the BC Model and Model 2
PDEs for each value ae indicates the goodness of fit. c, d The PDEmodels approximate the mass calculated
from the CA model (black line) well, except for Pp = 10−1, 10−2 and ae = 0.1. In these cases, for
Pp = 10−1, the BC model approximates the TC mass better than the Model 2 PDEs (higher TC RMSE),
while for Pp = 10−2, the Model 2 PDEs approximate the TC mass better (lower TC RMSE). Note that the
goodness of fit becomes poorer as ae decreases and EC volume exclusion becomes more important. Boxed
data: Pp = 10−1, Unboxed data: Pp = 10−2. Estimated parameter values are given in Tables 6 and 7
(color figure online)
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Fig. 15 Model 2, TC volume exclusion neglected, (an = 1): Model 2 PDEs = blue circles, BC Model =
red squares. a, b TC and EC RMSEs. For each value of Pp , the difference between the RMSEs for the BC
Model and Model 2 PDEs for each value ae indicates the goodness of fit. c, d All models overestimate the
true CA mass (black line). Generally, both PDE models approximate the averaged CA simulation results
well. Boxed data: Pp = 10−1, Unboxed data: Pp = 10−2. Estimated parameter values are given in Tables
6 and 7 (color figure online)
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D Tables of fitted parameter values

The estimated parameter values forModel 1 are given in Tables 4 and 5. The estimated
parameter values for Model 2 are given in Tables 6 and 7.

Table 4 Model 1: fitted parameter values. The CA model parameters an and the continuum analogue of
the branching probability Pp , λ, are also given. A branching rate of 1.6 corresponds to Pp = 10−2 and 6.4
corresponds to Pp = 4 × 10−2

λ an λ̃ ãn

1.6 0.02 1.4719 ± 0.0029 0.0333 ± 0.0003

1.6 0.05 1.3920 ± 0.0025 0.0811 ± 0.0003

1.6 0.1 1.3310 ± 0.0033 0.1606 ± 0.0005

1.6 0.15 1.2080 ± 0.0028 0.2297 ± 0.0005

1.6 0.2 1.1821 ± 0.0041 0.3001 ± 0.0008

6.4 0.02 5.4722 ± 0.0219 0.0216 ± 0.0010

6.4 0.05 4.9973 ± 0.0200 0.0574 ± 0.0013

6.4 0.1 4.4291 ± 0.0150 0.1039 ± 0.0014

6.4 0.15 4.0862 ± 0.0127 0.1590 ± 0.0016

6.4 0.2 3.8473 ± 0.0111 0.2164 ± 0.0017

Table 5 Model 1: BC model fitted parameter values. The CA model parameters an and the continuum
analogue of the branching probability Pp , λ are also given. A branching rate of 1.6 corresponds to Pp =
10−2 and 6.4 corresponds to Pp = 4 × 10−2. The continuum analogue of the diffusion and chemotactic
coefficient is D = 10−3 and χ = 0.4

λ an D̃BC χ̃BC λ̃BC β̃n

1.6 0.02 0.0011 ± 0.0000 0.3885 ± 0.0001 1.4698 ± 0.0085 5.7575 ± 0.1306

1.6 0.05 0.0011 ± 0.0000 0.3911 ± 0.0001 1.3744 ± 0.0084 13.1802 ± 0.1498

1.6 0.1 0.0010 ± 0.0000 0.3926 ± 0.0002 1.3265 ± 0.0094 25.9502 ± 0.2108

1.6 0.15 0.0010 ± 0.0000 0.3940 ± 0.0002 1.2025 ± 0.0089 36.5733 ± 0.2291

1.6 0.2 0.0010 ± 0.0000 0.3936 ± 0.0002 1.2000 ± 0.0088 48.0085 ± 0.2634

6.4 0.02 0.0006 ± 0.0000 0.3729 ± 0.0003 8.7030 ± 0.1141 31.1261 ± 0.7475

6.4 0.05 0.0009 ± 0.0000 0.3775 ± 0.0003 6.4969 ± 0.0969 28.4414 ± 0.9530

6.4 0.1 0.0012 ± 0.0000 0.3833 ± 0.0002 4.4815 ± 0.0508 20.6232 ± 0.7463

6.4 0.15 0.0012 ± 0.0000 0.3877 ± 0.0002 3.8890 ± 0.0268 24.6209 ± 0.4986

6.4 0.2 0.0011 ± 0.0000 0.3905 ± 0.0002 3.7604 ± 0.0202 34.9179 ± 0.4415
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Table 6 Model 2: fitted parameter values. The CA model parameters ae and the continuum analogue of
the branching probability Pp , λ, are also given. A branching rate of 16 (1.6) corresponds to Pp = 10−1

(Pp = 10−2)

λ ae λ̃ ãe

an = 0 ãn = 0

1.6 0.1 2.4145 ± 0.0756 0.1520 ± 0.0019

1.6 0.2 2.0548 ± 0.0560 0.1500 ± 0.0015

1.6 1 1.7080 ± 0.0408 0.1572 ± 0.0014

16 0.1 5.5277 ± 0.0705 0.1178 ± 0.0016

16 0.2 4.9136 ± 0.0528 0.1197 ± 0.0013

16 1 3.6257 ± 0.0346 0.1373 ± 0.0012

an = 1 ãn = 1

1.6 0.1 1.8305 ± 0.0578 0.1168 ± 0.0017

1.6 0.2 1.4894 ± 0.0449 0.1104 ± 0.0014

1.6 1 1.1739 ± 0.0384 0.1093 ± 0.0014

16 0.1 2.7588 ± 0.0581 0.1001 ± 0.0017

16 0.2 2.2644 ± 0.0434 0.0949 ± 0.0014

16 1 1.5406 ± 0.0344 0.1034 ± 0.0013

Table 7 Model 2: BC Model Fitted Parameter Values. The CA model parameters ae and the continuum
analogue of the branching probability Pp , λ are also given. A branching rate of 16 (1.6) corresponds
to Pp = 10−1 (Pp = 10−2). The continuum analogue of the diffusion and chemotactic coefficient is
D = 10−3 and χ = 0.4

an = 0 ãn = 0
λ ae D̃BC χ̃BC λ̃BC β̃e

1.6 0.1 0.0068 ± 0.0002 0.2921 ± 0.0027 2.4866 ± 0.0535 14.1592 ± 0.2273

1.6 0.2 0.0029 ± 0.0001 0.3443 ± 0.0020 2.2874 ± 0.0416 18.6796 ± 0.2261

1.6 1 0.0016 ± 0.0001 0.3713 ± 0.0012 1.9170 ± 0.0341 22.1619 ± 0.1872

16 0.1 0.0017 ± 0.0001 0.3610 ± 0.0022 5.4489 ± 0.0680 18.4322 ± 0.2562

16 0.2 0.0016 ± 0.0001 0.3721 ± 0.0017 4.6978 ± 0.0511 18.4056 ± 0.2089

16 1 0.0014 ± 0.0001 0.3856 ± 0.0012 3.3656 ± 0.0348 20.2419 ± 0.1794

an = 1 ãn = 1
λ ae D̃BC χ̃BC λ̃BC β̃e

1.6 0.1 0.0032 ± 0.0002 0.3539 ± 0.0022 1.9091 ± 0.0474 15.0411 ± 0.2189

1.6 0.2 0.0019 ± 0.0001 0.3738 ± 0.0015 1.5556 ± 0.0365 15.4742 ± 0.1615

1.6 1 0.0014 ± 0.0001 0.3819 ± 0.0011 1.2633 ± 0.0324 15.8269 ± 0.1599

16 0.1 0.0024 ± 0.0001 0.3655 ± 0.0023 2.7258 ± 0.0537 14.0966 ± 0.2207

16 0.2 0.0019 ± 0.0001 0.3844 ± 0.0016 2.0614 ± 0.0397 13.6286 ± 0.1651

16 1 0.0016 ± 0.0001 0.3907 ± 0.0011 1.3811 ± 0.0313 14.8300 ± 0.1516
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