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Abstract The adult mammalian kidney has a complex, highly-branched collecting
duct epithelium that arises as a ureteric bud sidebranch from an epithelial tube known
as the nephric duct. Subsequent branching of the ureteric bud to form the collect-
ing duct tree is regulated by subcellular interactions between the epithelium and a
population of mesenchymal cells that surround the tips of outgrowing branches. The
mesenchymal cells produce glial cell-line derived neurotrophic factor (GDNF), that
binds with RET receptors on the surface of the epithelial cells to stimulate several sub-
cellular pathways in the epithelium. Such interactions are known to be a prerequisite
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for normal branching development, although competing theories exist for their role
in morphogenesis. Here we introduce the first agent-based model of ex vivo kidney
uretic branching. Through comparison with experimental data, we show that growth
factor-regulated growth mechanisms can explain early epithelial cell branching, but
only if epithelial cell division depends in a switch-like way on the local growth factor
concentration; cell division occurring only if the driving growth factor level exceeds
a threshold. We also show how a recently-developed method, “Approximate Approx-
imate Bayesian Computation”, can be used to infer key model parameters, and reveal
the dependency between the parameters controlling a growth factor-dependent growth
switch. These results are consistent with a requirement for signals controlling prolif-
eration and chemotaxis, both of which are previously identified roles for GDNF.

Keywords Organogenesis · Cellular automaton · Developmental processes ·
Mathematical modelling · Morphology

Mathematics Subject Classification 92B05

1 Introduction

The kidney is a complex organ with a highly branched structure. Its primary func-
tion is to filter urea and other waste products from the blood and metabolic system.
Kidney and urinary tract congenital disorders are amongst the most common birth
defects, with many of these conditions being caused by incomplete branching during
development (Airik and Kispert 2007). To understand how such disorders arise, we
must first address fundamental questions about the developing kidney, including how
branching is initiated, how it is regulated, and how cessation of branching is controlled.
These processes are complex and, as such, biological experiments that aim to answer
these questions are technically difficult to conduct. Furthermore, each experiment
typically investigates only a single facet of kidney morphogenesis. Mathematical and
computational models can assist in this endeavour by integrating multiple biological
hypotheses via a well-defined set of assumptions. Simulations of the resulting models
can be performed to test alternative hypotheses about the mechanisms that regulate
kidneymorphogenesis, and generate new predictions that can be tested experimentally
(Cebrian et al. 2014; Combes 2015; Murray et al. 1983; Packard et al. 2013; Short
et al. 2014; Zubkov et al. 2015).

Nephrons are the primary functional units of a kidney.A fully developed human kid-
ney has between 0.2 and 1.8million nephrons (Hughson et al. 2003), that are connected
by a system of collecting ducts to the ureter and bladder (Costantini 2006). Most of the
organ is formed during embryonic development, beginning 5 weeks post-gestation in
humans and embryonic day 10.5 (E10.5) in mice (Carlson 2013; Cebrian et al. 2004).
An outgrowth of epithelial cells from the nephric duct leads to the formation of the
ureteric bud epithelium (Little 2015). As the ureteric bud grows and branches, a cloud
of mesenchymal progenitor cells form caps at the tips, and eventually differentiate
into nephrons.
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In addition to their role as nephron precursors, mesenchymal cells release cytokines
that influence the growth and branching of epithelial cells as they form the col-
lecting tree structure. Glial cell line-derived neurotrophic factor (GDNF) is one
such growth factor. GDNF is expressed in the metanephric mesenchyme by E11.5,
and is thought to diffuse across to the epithelial cell layer, where its binding to
cell surface RET receptors transduces signals that are essential for morphogenesis
(Durbec et al. 1996). GDNF is known to be a chemoattractant, and also to stimu-
late the outgrowth of epithelial cells (Little and McMahon 2012). However, there
is no consensus about whether these mechanisms are sufficient to generate normal
branching, or whether additional chemical or mechanical mechanisms are needed.
For example, GDNF-independent signals involving members of the fibroblast growth
factor family and Activin are known to affect branching (Maeshima et al. 2007;
Michos et al. 2010; Miyazaki et al. 2000; Qiao et al. 2001; Tee et al. 2010, 2013).
Additionally, many of these other growth factors have chemical pathways that are
intrinsically linked to those of GDNF, meaning that their growth mechanisms may
not be entirely independent. As the roles of GDNF and other growth factors remain
to be fully elucidated, in this paper we focus on a single generic growth factor
which we term “GDNF” and attribute to it actions and effects that we acknowledge
are likely caused by a combination of different factors. Although the mechanical
forces between epithelium and mesenchyme may influence branching patterns, they
are not a prerequisite for branching. Indeed experiments performed by Qiao et al.
(1999) have revealed that cell–cell contact between mesenchyme and epithelium is
not required for branching; exposure of epithelial cells to soluble factors derived
from metanephric mesenchyme is sufficient. It is also possible that mechanical forces
between the epithelial cellsmay be an importantmechanism for branching and, indeed,
experimental and mathematical modelling work has demonstrated that this mecha-
nism can have a significant effect on branching morphogenesis (Varner and Nelson
2014).

Branching morphogenesis is a characteristic feature of many mammalian organs
including the kidney, lung, vasculature, the saliva and mammary glands, and in limb
development (Affolter et al. 2009). In each of these tissues, branched structures arise
due to repetition of three cellular motifs: bud formation followed by bud exten-
sion, and bud splitting, with these processes being facilitated by regulation at the
tips and stalks of individual buds. Similar pathways and network topologies per-
form this regulation in vastly different systems; for example, fibroblast growth factor
signalling in combination with Delta/Notch signals regulate branching of both tra-
chea and vertebrate vasculature (Affolter et al. 2009; Ochoa-Espinosa and Affolter
2012). Several alternative theories have been proposed to explain how such signalling
generates branched structures. For example, Turing’s reaction-diffusion mechanism
can give rise to branched structures (Menshykau and Iber 2013). Mechanical the-
ories have also been proposed (Varner and Nelson 2014). To distinguish between
competing theories, simple systems are needed, whose variability can be controlled.
Explant models of branching have a valuable role to play here as they can recapitulate
branching morphogenesis, and are amenable to image analyses that are difficult or
impossible to perform in vivo (Basson et al. 2006; Serls et al. 2005; Watanabe and
Costantini 2004). Additionally, it is possible not only to monitor the structure of an
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explant as it evolves over time but also to determine for example how these dynam-
ics change when the composition of the culture medium that bathes the explant is
altered.

A variety of mathematical models have been developed to study different aspects
of branching morphogenesis, including physical cellular processes, such as prolif-
eration and migration (Hirashima et al. 2009), the underlying molecular processes
(Zubkov et al. 2015), or a combination of the two (Adivarahan et al. 2013; Clément
and Mauroy 2014; Menshykau and Iber 2013). A recent study used ordinary differen-
tial equations to describe how the dynamics of the growing epithelial cell populations
at the tips of branches are regulated by mesenchymal cells (Zubkov et al. 2015). Com-
parison of simulation results and experimental data revealed that the mathematical
model could recapitulate the observed dynamics for the ratio of epithelial to mes-
enchymal cells at the branch tips. In other studies a Turing system (Turing 1952)
involving the diffusion of the secreted ligands GDNF (produced by mesenchyme)
and Wnt11 (produced by the epithelium in response to the presence of GDNF), as
well as RET receptors, is proposed to be the primary driver of branching (Menshykau
and Iber 2013; Clément and Mauroy 2014). Predictions generated by these models
include the need for cooperative receptor-ligand binding (Menshykau and Iber 2013),
and a mechanism for self avoidance (so that growing tips do not come into contact)
(Clément and Mauroy 2014), which recent experiments suggest may be orchestrated
by signalling via BMP7 that is produced by neighbouring branches (Davies et al.
2014).

Whilst a fewmodels of developmental processes consider individual cell behaviour
(McLennan et al. 2012, 2015; Fletcher et al. 2014), the majority treats cell pop-
ulations as a continuum (Clément and Mauroy 2014; Menshykau and Iber 2013;
Scialdone et al. 2013; Zubkov et al. 2015). While these models have generated valu-
able insight into different aspects of organ development, they are limited in their
ability to investigate the influence of cellular and subcellular mechanisms. Agent-
based frameworks thatmodel individual cell behaviour can offer significant advantages
here.

In a biological context, agent-based models treat cells as individual agents, whose
behaviour is specified by a predefined set of rules that can be deterministic and/or
stochastic. First developed to study the dynamics of replication (von Neumann 1966),
simple agent-based models such as cellular automata (CA), and generalisations of
these such as cellular Potts and hybrid models are now used widely to study a range of
biological systems that include biochemical reaction networks, stem cell proliferation
and differentiation, tumour angiogenesis and metastasis (Alarcón et al. 2003; Gerlee
and Anderson 2015; Macklin et al. 2012; Roeder et al. 2006; Scott et al. 2014). Such
“lattice-based” models restrict agents to sites on a fixed lattice. As such they are
typically simpler in design and faster to simulate than alternative off-lattice models,
which place fewer restrictions on the movement of cells (or agents) (Bentley et al.
2009; Pathmanathan et al. 2009; Perfahl et al. 2016).

In this paper we investigate a series of experiments performed by Watanabe and
Costantini (2004) in which kidneys from mouse embryos were grown in culture. We
develop an agent-based framework to model the growth of these explants, and focus
on interactions between epithelial cells and growth factors (referred to as “GDNF”)
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present in the culture medium. Since the experimental data we have available is lim-
ited in detail we formulate an idealised model that contains the minimal number of
assumptions necessary to recapitulate key branching features. Whilst the model does
not explicitly account for mesenchyme cells, local levels of the generic growth factor,
which we term GDNF, serve as a proxy for their influence. We use a CA approach
which does not require specific assumptions about the nature of cell–cell forces that
cannot (as yet) be experimentally verified. In more detail, our agent-based epithelial
cells reside on a regular, two-dimensional grid, their rates of migration and prolif-
eration being regulated by (and, in turn, regulating) the local distribution of GDNF.
The length scale of our computational agents is considerably smaller than biological
agents, yet we believe that, based on the assumptions which we make, the compu-
tational agents’ behaviour qualitatively mimics their biological counterparts. When
not made explicit, readers should understand that we mean “computational agents”
whenever we refer to “agents” or “epithelial cells”.

Typically the parameters of computationalmodels cannot be directlymeasured; they
must be inferred from experimental data. Inference can be comparatively expensive
in agent-based models, with the stochastic nature of the models requiring multiple
simulations for each choice of parameter values. This cost can preclude parameter
estimation even with state-of-the-art techniques, such as approximate Bayesian Com-
putation (ABC) (Johnson et al. 2014a; Liepe et al. 2014; Toni et al. 2009). ABC
compares simulations from a model with experimental data, and—using statistics that
summarise the system behaviour—accepts simulations (and the parameters that gen-
erated them), if the statistics for model and data lie within an acceptable distance
threshold (see for example, Johnston et al. 2014b; Vo et al. 2015). ABC relies on the
ability to simulate a model relatively quickly (typically faster than one second per
one stochastic realisation of the model). In situations where this condition is not met,
new methods are required for parameter inference. One such method is “Approxi-
mate Approximate Bayesian Computation” (AABC) (Buzbas and Rosenberg 2015).
With AABC actual model simulations are used to generate pseudo-replicates of the
model that can be compared with the data. Since these pseudo-data are generated in a
fraction of the time needed to perform real simulations, this method can exhibit sig-
nificant speed up compared to ABC. Our agent-based CA model takes approximately
a minute to generate a single simulation on a desktop computer, and hence we chose
to use AABC for parameter inference.

We analyse themodel first by direct simulation across a range of parameter regimes,
in each case comparing model outputs and experimental data. We next use AABC to
quantitatively fit the model to data, and reveal its dependence on key parameters. In
doing so, we show how AABC can be used to integrate the agent-based model (ABM)
and the experimental data to answer the following questions:

1. Does the mechanism of GDNF-dependent cellular growth (that is, where cell
proliferation rates increase with increases in the local concentration of GDNF)
lead kidney explants to develop branches as seen ex vivo?

2. Which characteristics of GDNF-mediated mechanisms are necessary to generate
these branches?

3. Howsensitive is themodel to changes in those parameters that influencebranching?
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Fig. 1 Workflow used to extract data from the explant images. The same process is applied to simulation
results generated from the CA model. The raw image is reproduced with permission from Watanabe and
Costantini (2004)

We now briefly outline the structure of the paper. In Sect. 2.1 we introduce the
experimental data that we use in this study, and explain the details of how they are
processed to yield summary statistics that represent key features of explant branching.
In Sect. 2.2 we describe our CA model and, in doing so, explain how individual cell
behaviour depends on a field of GDNF that diffuses through the simulation domain.
In Sect. 2.3 we explain how we implemented the AABC method, and then use it to
investigate the factors that affect explant branching. In Sect. 3.1 we demonstrate how
our model is able to recapitulate the branching of kidney explants, and in Sect. 3.2
we use direct simulation to determine how branching of our model explants depends
on specific biological processes. Finally in Sect. 3.3 we use AABC to quantitatively
investigate how explant branching depends on three model parameters that quantify
the rate of cell motility and cell division.

2 Materials and methods

2.1 Kidney explant data experimental data and image processing

Watanabe and Costantini (2004) have developed an ex vivo assay to study epithelial
branching in murine embryonic development. Kidneys were dissected from E11.5
embryos from a Hoxb7/EGFP transgenic line expressing green fluorescent protein
(GFP) throughout the nephric duct and the ureteric bud (Srinivas et al. 1999). Kidneys
were cultured in fetal bovine serum and imaged every 30 min over a period of 96 h,
generating movies of the developing explants.

We processed videos of the experimental data (three explants in total) by extracting
the area of the epithelialmass and the number of branch points in each frame.All image
processing and analyses were performed usingMatlab (MathWorks, Natick, MA).We
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started by extracting the bulk epithelial mass and then used this to calculate the medial
axis skeleton (see Figs. 1, 3): this can be derived as the loci of centres of bi-tangent
circles that fit entirely within the epithelial region (Lee 1982). We then counted the
number of branch points on each skeleton and used this as a measure of the amount of
branching that had occurred. Calculation of the medial axis skeleton and counting of
branching points were carried out usingMatlab’s “bwmorph” function, together with a
third-party Matlab package (available from https://uk.mathworks.com/matlabcentral/
fileexchange/11123-better-skeletonization”). While this summary statistic captures
the aggregate number of branches, it does not explain other features such as whether
the branches are primary or secondary, nor does it provide information about the tip-
to-stalk ratio (Bush et al. 2014; Little 2015). However we consider the collection and
analysis of such detailed summary statistics to be overly sophisticated for comparison
with our CA model and, hence, we postpone this for future work.

For comparison with our model simulations we also monitored the area of the bulk
epithelium as a measure of the change in the number of cells over time. To facilitate
comparison of the data from each experiment we normalised the area of each epithelial
mass at time t by its initial mass (at t = 0).

For eachCA simulation (described below)we recorded the positions of all epithelial
cells over time. We then applied the same image processing methods to the CA data
as were applied to the experimental data, in order to generate comparable summary
statistics for branching and cell numbers.

2.2 Cellular automaton model development

Our model comprises a two-dimensional cellular automaton (CA) model in which
the behaviour of individual epithelial cells (i.e. their speed and direction, their rate of
division and consumption of GDNF) depends on the locations of nearby cells and the
local concentration of GDNF. Cell–cell interactions are governed by rules chosen to
replicate observed behaviour. Our model is admittedly an idealisation of the biological
processes that underpin kidneymorphogenesis. In the absence of suitable experimental
data, our model does not explicitly include mesenchyme cells even though they likely
surround the explanted epithelium (they are invisible in the experimental images).
Similarly our model does not account for a GDNF-Wnt11 positive feedback loop:
GDNF secreted by mesenchymal cells binds to RET receptors on epithelial cells and
stimulates them to produce Wnt11 which binds to mesenchymal cells, stimulating
further uptake of GDNF (Majumdar et al. 2003). However since the available experi-
mental data provides limited information we chose to formulate a simple model that
could reproduce key features of kidney morphogenesis.

The epithelial cells occupy a square domain which is discretised into N × N
equally-spaced grid points. Each lattice site is occupied by either an epithelial cell
or extracellular matrix (ECM). At t = 0, a mass of epithelial cells is introduced
towards the centre of the domain. Its shape and size (i.e. the number of cells) are
chosen to resemble those from the initial images of kidney explants from Watanabe
and Costantini (2004). All other sites are occupied by ECM at t = 0.
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GDNF field We assume that GDNF binds to receptors on the outer membrane of
epithelial cells at rate KG , and diffuses from the boundaries of the grid, where it
is maintained at a constant GDNF concentration, G∞. This implicitly represents a
far-field approximation of the experimental conditions, where the ECM area is large,
and the local concentration of GDNF is continuously replenished. These conditions
are chosen to mimic the effects of GDNF produced by mesenchymal cells (that are
likely present) as well as other growth factors that are present in the culture medium.
Assuming we adopt previously published estimates of the diffusion coefficient for
morphogens (Kicheva et al. 2007; Yu et al. 2009), the time scale for the diffusion of
GDNF from the outer border of the mesenchyme to the epithelium (minutes to hours)
is much shorter than the time scale for cell division (hours to tens of hours). We exploit
this separation of timescales to justifymaking a quasi-steady state approximation in the
2D reaction-diffusion equation which describes the distribution of GDNF, G(x, y, t),

∂G

∂t
≈ 0 = DG∇2G − �G, (1)

where DG denotes the assumed-constant diffusion coefficient for GDNF, and �G is
the local rate of GDNF consumption,

�G =
{
KGG(x, y, t), for an epithelial cell located at grid point (x, y) at time t,

0, for ECM.

(2)
In Eq. (2) we assume, for simplicity, that the rate of GDNF consumption depends lin-
early on the concentration of substrate (with rate parameter KG). In what follows, it is
convenient to recast Eq. (1) in terms of a dimensionless GDNF concentration g = G

G∞ ,
and non-dimensional spatial parameters, ηx = x

L , ηy = y
L , where 0 ≤ g ≤ 1 is the

GDNF concentration as a ratio of that at the boundaries, and 0 ≤ ηx,y ≤ 1 are spa-
tial coordinates as a fraction of the simulation domain size. Equation (1) can then be
written as,

dg∇2
ηg = φg, (3)

where ∇2
η is the Laplacian with respect to the non-dimensional spatial coordinates,

η; dg = DG
KGL2 is the non-dimensional diffusion coefficient; and φg = �G

KGG∞ is the
non-dimensional GDNF uptake term. In these coordinates the boundary conditions
are specified as,

g(0, ηy, t) = 1 = g(L , ηy, t),

g(ηx , 0, t) = 1 = g(ηx , L , t),
(4)

and the local rate of GDNF consumption is given by,

φg =
{
g(ηx , ηy, t), for epithelium at grid point (ηx , ηy) at time t,

0, for ECM.
(5)
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Fig. 2 A series of plots from a typical CA simulation illustrating the interaction between epithelial cell
positions (top) and GDNF level (bottom). Note: the GDNF level at the edges is not g∞ = 1 because the
panels only show the central 140×140 grid points of the domain (itself of size 400×400). The parameter
values used to generate these plots are shown in Table S1

In the absence of experimental estimates for the parameters DG and KG , preliminary
numerical experiments revealed that fixing dg = 0.006 lead to sufficient variation in
GDNF across the spatial domain for branching to occur. (See Table S1 for a summary
of the parameter values used in each simulation.)

At the end of each time step (see “Cell based rules” section) we solved Eqs. (3–5)
using the method of explicit finite differences (implemented in Matlab). Both the CA
model and the finite difference scheme are implemented on the same discrete grid,
so the local GDNF level used in the update rules is its value at the grid point where
the cell is located. The GDNF field affects the movement and behaviour of epithelial
cells, while their location and rates of GDNF uptake affect the evolution of the GDNF
field (Fig. 2).

Cell-based rules Simple rules are used to determine whether individual cells move
or divide (see Algorithm 1, and Table S1 for the parameter values used); cell death
is assumed to be negligible in line with previous experimental results (Hartman et al.
2007). The algorithm begins by solving for the steady state solution of the reaction-
diffusion equation (as described above) for the current epithelial cell locations. Using
a randomly-permuted list of cell indices, each cell is then visited in turn, and updated.
Updates proceed as follows. If a cell has empty neighbouring sites then we determine
whether to propose a movement or division event into one of the empty locations; the
local GDNF concentration determines whether the proposed action occurs and, if so,
the empty site at which the action is carried out.

During this process we establish whether any of the 4 adjacent sites in the von
Neumann neighbourhood (up, down, left, right) are empty (no epithelium present). If
this is the case then we select a move with probability pmove, or a cell division with
probability (1 − pmove). The probability pmove is independent of GDNF, and is used
simply to propose an action (that may not be undertaken). If an action is selected and
feasible, our cell-based rules dictate whether it is executed. Moves are always carried
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out; whether cell division occurs depends on local levels of GDNF. We refer to this
process as “GDNF-stimulated cell division”. In particular, the probability pcd that a
cell at location (ηx , ηy) at time t divides is given by,

pcd = �(c1 + c2g(ηx , ηy, t)) = 1√
2π

c1+c2g(ηx ,ηy ,t)∫
−∞

e− τ2
2 dτ (6)

where �(.) is the standard normal cumulative distribution function. This functional
form allows a switch-like behaviour for cell division. In Eq. (6) the parameter c1
controls the location of the switch, while the parameter c2 determines its sensitivity
to the local GDNF level, g(x, y, t). In most simulations we fix c1 < 0 and c2 > 0, so
that in the absence of GDNF (g = 0) by default epithelial cells do not divide.

If a move or cell division event is to occur, we must decide which empty neigh-
bouring grid point will be occupied by the result of the action. This choice (if there is
more than one empty grid point) is biased by GDNF levels at the neighbouring sites.
For moves this process represents “chemotaxis” and for cell divisions it represents
“anisotropic cell division”. In either case the probability pi of selecting an empty
neighbouring grid point 1 ≤ i ≤ K is given by,

pi = exp(βagi )∑K
j=1 exp(βag j )

(7)

where a ∈ {move, cell-division} specifies the action type, 1 ≤ K ≤ 4 is the number
of empty neighbours, and gi is the GDNF concentration at site i . In Eq. (7) the non-
negative parameter βa controls the sensitivity of the selection to GDNF concentration,
which can differ for chemotaxis and anisotropic cell division.

2.3 Parameter inference for agent-based models

Approximate Bayesian Computation allows parameter inference and model selection
using distance-based criteria to compare simulations and data (Sunnåker et al. 2013).
A distance metric is introduced (e.g. Euclidean or Manhattan) and simulations are
rejected if they yield values for a (set of) chosen statistic(s) that exceed a threshold
value. ABC is appropriate when a likelihood function is difficult or intractable to
calculate. It has been applied to a wide range of problems in systems biology (Beau-
mont et al. 2002; Beaumont 2010; Csilléry et al. 2010a). A prerequisite of ABC is
that simulating a dataset from the model must be relatively inexpensive so that it is
possible to adequately sample from the posterior parameter space. This is the case
whether performing simple ABC rejection or more sophisticated procedures, such as
sequential Monte Carlo ABC (Toni et al. 2009). A simulation time for a single dataset
of O(seconds) or greater is thus typically prohibitive for performing ABC.

A new algorithm named “Approximate Approximate Bayesian Computation”
(AABC) has been designed to resolve this problem (Buzbas and Rosenberg 2015).
By replacing true model simulations with realisations of a suitably-tuned statistical
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Algorithm 1 Pseudocode for updating the CA
solve for steady state spatial distribution for g =“non-dimensional GDNF concentration”
create a randomly permuted list of cells, C
for each cell in C do

if cell has empty von Neumann neighbours then
//determine whether to propose a move or a cell division
generate u1 ∼ U (0, 1)
if pmove > u1 then

proposed action = move
else

proposed action = cell division
end if
do GDNF- stimulated action(proposed action)

else
proposed action = NULL
consider next cell in C

end if

end for

function GDNF- stimulated action(proposed action)
if proposed action = cell division then

calculate pcd = �(c1 + c2g) = 1√
2π

c1+c2g∫
−∞

e−
τ2
2 dτ

generate u2 ∼ U (0, 1)
if pcd > u2 then

do Anisotropic cell division
end if

else
do Chemotaxis

end if
end function
function Chemotaxis

select grid point i out of K empty neighbouring sites with probability

pi = exp(βmgi )∑K
j=1 exp(βmg j )

move cell into site i
end function
function Anisotropic cell division

select grid point i out of K empty neighbouring sites with probability

pi = exp(βcd gi )∑K
j=1 exp(βcd g j )

place daughter cell in i
end function
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model, AABC enables parameter inference for a class of models that previously pre-
sented large (or insurmountable) computational challenges. Agent-basedmodels, such
as our CA model, represent such a class, that have with few notable exceptions (John-
ston et al. 2014b; Jones et al. 2015; Sottoriva and Tavare 2010), evaded approximate
Bayesian inference.

Here we use AABC to infer parameters of the CA model that yield behaviour
consistent with the average summary statistics extracted from dynamic experimental
data for kidney explants generated by Watanabe and Costantini (2004). These sum-
mary statistics (see Sect. 2.1 above) measure two facets of the evolving explants: the
number of branches, and the rate of cell proliferation. By comparing summary statis-
tics from the experimental data with equivalent statistics from our simulations (as
detailed below) we investigate the sensitivity of explant growth patterns to variation
in three model parameters c1, c2, and pmove. We specify uniform priors for each of
these parameters with the following bounds: c1 ∈ [− 20,− 40], c2 ∈ [40, 280] and
pmove ∈ [0, 1]. The boundaries for the prior distributions of c1 and c2 were chosen
because simulation results indicated that the parameter ranges they encompassed were
most likely to yield branching similar to the real explants. Whilst somewhat arbitrary,
choosing these parameter ranges was akin to focussing the analysis on the posterior
modes, where the majority of posterior probability mass is likely concentrated. All
other parameters are held fixed (as per Table S1).

Specifically the algorithm implements the following steps:

1. Simulate the CA model, and accept a subset of particles with parameter sets θi =
(c1i , c2i , pmovei ) and corresponding datasets xi = (x1i , x2i ), i ∈ (1, 2, . . . ,m),
where m is the number of simulations (each with a unique set of parameters
sampled from the priors) and N = 2 is the number of replicates per parameter set.
For our application, each dataset x consists of data for the normalised area and the
number of branch points at t = 10, 20, 30 h after E11.5.

2. Sample a new set of parameter values, θ∗, from the prior.
3. Calculate the weights, ωi , using an Epanechnikov kernel (Buzbas and Rosenberg

2015):

ωi = 3

4

1

(θ∗ − θ(k+1))

[
1 −

∥∥∥∥ θ∗ − θi

θ∗ − θ(k+1)

∥∥∥∥
2
]
1{‖θ∗−θi‖<‖θ∗−θ(k+1)‖},

where 1{‖θ∗−θi‖<‖θ∗−θ(k+1)‖} is an indicator function with value 1 for the k param-
eter values θ = θ1, θ2, . . . , θk with the shortest Euclidean distance from θ∗, and 0
otherwise (from θk+1 onwards).

4. Select (θi , xi ), i ∈ (1, 2, . . . , k), for which ωi > 0.
5. Draw a sampleφ—used to specify data resampling probabilities—from aDirichlet

distribution parameterised by ωi , i ∈ (1, 2, . . . , k).
6. Simulate a new dataset x∗ of area and branching time point data (of size N = 2

replicates) by: (i) resampling datapoints from xi with probabilities set by φ, and
(ii) assuming that each replicate is equally probable.
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Fig. 3 Comparison of branching patterns associated with a ex vivo data and b typical simulations of the CA
model. Image processing techniques (see Sect. 2.1) are used first to extract the bulk shape of the epithelial
cells (middle panel) and then to generate the medial axis skeleton (right panel), which characterises the
shape of the growing explant. The parameter values used to generate these simulation results are shown in
Table S1

7. Calculate the Euclidean distance between the real and simulated datasets, and add
θ∗ to the posterior, iff ||xi − x∗|| < ε. We choose ε such that 5% of simulations
are accepted as posterior samples.

8. Repeat steps (2)–(7) until convergence in the approximate posterior distribution is
reached.

We perform Step (1) of the algorithm in Matlab (MathWorks, Natick, MA), and
steps (2)–(7) in Julia (v0.3.5, julialang.org).

3 Results

3.1 GDNF-directed cellular proliferation can explain the branching patterns
observed when kidney explants are cultured ex vivo

Simulations of the CA model reveal that it can generate branching patterns similar to
those identified from ex vivo kidney explant data of Watanabe and Costantini (2004).
In Fig. 3 we compare results from a typical simulation with experimental data col-
lected at four time points. The CA model recapitulates notable features of branching:
branching at both ends of the buds, followed by secondary branching at the branch
tips. Our simulated explants also often produce branching events in which three or
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Table 1 A summary of the effect of different GDNF signalling mechanisms on explant branching

Figures GDNF-stimulated
cell division

Chemotaxis Anisotropic cell
division (ACD)

Branching

4, 5a − − − −
4, 5b + − − +

4, 5c − + − −
4, 5d + + − +

4, 5e − − + −
4, 5f + − + ++

4, 5g − + + −
4, 5h + + + ++

Each row of the table corresponds to specific panels of Figs. 4 and 5, with corresponding parameter sets
indicated in Table S1. In the middle three columns “−” indicates that the mechanism is inactive, “+”
indicates that it is active. In the right-hand column “−” indicates no significant branching, “+” indicates
modest branching and “++” indicates that branching that is consistent with experimental data

more branches emerge from a single tip, events which are observed in the developing
kidney (Menshykau and Iber 2013).

3.2 Finding a minimal set of sub-cellular mechanisms necessary to generate
branching

We also used our model to investigate the contribution of cell proliferation, anisotropic
cell division and chemotaxis to branching (Table 1 and Figs. 4, 5). Each mechanism
is regulated by local levels of GDNF: the rate of cell division increases with local
levels of GDNF in a sigmoidal manner (see Fig. 6); regarding chemotaxis, cells are
more likely to migrate up local GDNF gradients; for anisotropic cell division (ACD),
daughter cells are located preferentially in sites with higher levels of GDNF. For
both chemotaxis and ACD we acknowledge that our model is an idealisation of the
biological processes involved. For example RET-dependent movement (Riccio et al.
2016) and luminal mitosis (Packard et al. 2013) are not considered explicitly. Even so,
our model captures some of the features of these processes and, hence, can be used to
determine their relative contributions for branching.

Model simulations reveal that when cell division is independent of GDNF, no
branching occurs; the explant grows as an approximately circular mass (see Figs.
4, 5a). When only cell proliferation is regulated by GDNF, some branching occurs,
although the number of branches is fewer than for explant growth (see Figs. 4, 5b).
When chemotaxis and/or anisotropic cell division depend on GDNF although the rate
of proliferation is independent of GDNF, the model does not exhibit branching (Figs.
4, 5 c, e, g). Additionally the cumulative effect of GDNF-stimulated proliferation and
chemotaxis on branching is no greater than proliferation stimulated by GDNF alone
(Figs. 4, 5d). By contrast when proliferation and anisotropic cell division depend on
GDNF, the number of branches observed along the branching trajectory increases
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such that simulation results are in good agreement with the experimentally observed
branching patterns (Figs. 4, 5f). The best agreement with the experimental data is
obtained when all three processes (i.e. proliferation, chemotaxis and anisotropic cell
division) depend on GDNF levels (Figs. 4, 5h). These results do not appear to depend
strongly on the initial shapeof the epitheliumused to inmodel simulations. In particular
simulations initialised using different experimental explant data yielded similar results
(see Figs. S1, S2).

These simulation studies reveal several key messages. First, GDNF-stimulated pro-
liferation can generate biologically realistic branching patterns. Second, what we
term anisotropic cell division ameliorates the rate of branching when it is coupled
to GDNF-stimulated growth. Finally, within the regions of parameter space studied,
GDNF-controlled chemotaxis does not strongly affect the branching of explants. It
was an unexpected result that chemotaxis and anisotropic cell division did not play a
more significant role in generating branching, but this appears to reflect the fact that, in
our model, the movement and location of daughter cells in cell division is often highly
constrained, and skewed towards sources of GDNF. In order to determine whether the
weak dependence on chemotaxis was due to an overly simplistic treatment of cell–cell
interactions, we revised our CA model to ensure that epithelial cells remain attached
to at least one neighbouring cell. However this change did not significantly alter the
observed branching patterns (results not shown).

We also investigated how the shape of the GDNF-controlled switch that regulates
cell proliferation affects branching (Fig. 6). When the slope of the switching function
is gradual, the epithelium grows as a circular mass and no branching occurs (Fig.
6a). Similarly, when the threshold of the switch is high, the epithelial growth rate and
branching rate are both too low (Fig. 6c). We therefore tune the threshold and slope of
the GDNF-mediated switch (Fig. 6b) in order to maximise the amount of branching.
Againwe show in the SupplementaryMaterials how these results are robust to variation
in the shape of the epithelial cell starting mass (see Figs. S3 and S4).

3.3 Branching is sensitive to the form of the GDNF proliferation switch

Having shown that our CA model can reproduce qualitative features associated with
early kidney morphogenesis, we now study the dependence of branching character-
istics on the parameters c1, c2, and pmove; c1 and c2 jointly determine the sensitivity
of cell proliferation to GDNF levels (see Eq. (6)), and pmove is the probability of cell
migration.

We performed 50,000 AABC simulations and accepted the top 5% (the 5% with
overall smallest Euclidean distances from the summary statistics associated with the
experimental data) to compose approximate posterior samples, as outlined in Sect.
2.3. We use two summary statistics to compare simulations with data: the normalised
area and the total number of branch points as calculated from medial axis skeletons
of the epithelial cell mass.

In Fig. 7a we plot those trajectories that have been accepted as posterior samples.
The marginal posterior distributions associated with each parameter are shown on the
diagonal of Fig. 7b alongside the two-dimensional posterior joint density distributions
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Fig. 4 The effect of different GDNF signalling mechanisms on explant branching. a–h Simulation results
with the indicated mechanisms implemented, and correspond to cell distributions shown in the panels of
Fig. 5 with the same letters. In each panel the black line and points represent the evolution of branches from
an explant experiment in Watanabe and Costantini (2004); the orange line represents the mean branching
observed bymodel simulation (n=200) and the shaded region indicates the 95%confidence interval. “ACD”
indicates “anisotropic cell division”. The parameter values used in each case are in Table S1 (colour figure
online)
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E11.5 E12.5 E13.5
(I.) Real explant data

DCA+noitarefilorpmodnaR GDNF-stimulated proliferation + ACD
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 GDNF-stimulated proliferation + chemotaxis
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Fig. 5 The effect of different GDNF signalling mechanisms on explant branching. a–h Simulation results
with the indicated mechanisms implemented, and correspond to the panels in Fig. 4 with the same letters.
The black mass is the epithelial cells, and the coloured shading shows the corresponding dimensionless
distribution of GDNF. For comparison experimental from the first video inWatanabe and Costantini (2004)
are presented in (I.). “ACD” indicates “anisotropic cell division”. Note: the GDNF level at the edges is
not g∞ = 1 because the panels only show the central 140×140 grid points of the domain (itself of size
400×400). The parameter values used in each case are in Table S1 (colour figure online)

for each pair of parameters. This reveals that the marginal posterior distribution for c2
deviates most from its prior, taking values between 40 and 280 with high probability;
both c1 and pmove deviate less from their prior, although pmove shows deviation at
high values where little or no growth occurs.

The joint density plots in Fig. 7b reveal dependencies in parameter space. For
the parameter pair (c1, c2), a negative correlation is observed; we note also that for
low values of c1 (i.e. c1 ∈ [− 40,− 25]) c2 is tightly constrained. This dependence
is expected since the two parameters jointly determine the sensitivity of the switch
to GDNF. In particular, under a local non-dimensional concentration of GDNF of
g = − c1

c2
a cell with free neighbouring space divides with probability 0.5. This means

that there are regions of (c1, c2) space (where c1 ∼ − kc2) which result in practically
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Fig. 6 Series of simulation results showing how the shape of the GDNF-mediated proliferation switch
influences the branching dynamics. For the results shown in each of the panels we ran simulations with
c1 = − 25 so that in the absence of GDNF cells would not divide, and we vary c2 across each of the panels:
for a c2 = 400, b c2 = 120 and c c2 = 20. The inset panels show the location of the proliferation switch
in GDNF-space (horizontal axis), against the probability of growth (vertical axis). In each panel the black
line and points represent the evolution of branches from an explant experiment in Watanabe and Costantini
(2004); the orange line represents the mean branching observed by model simulation (n=200) and the
shaded region indicates the 95% confidence interval. The parameter values used in each case are shown in
Table S1 (colour figure online)

identical GDNF switches. For the other two parameter pairs, the joint density plots
highlight what has been termed “sloppiness” (Gutenkunst et al. 2007): the explant
branching phenotype is robust to changes in the values of c1 and pmove. Parameter
sloppiness can be symptomatic of several problems, including insufficient data, or a
model that is overly complex for the available data. Additionally we cannot discount
the possibility that our summary statistics are suboptimal, although we believe that the
use of more detailed summary statistics may be excessive given the level of biological
and mechanical realism present in our CA model.

4 Discussion

We have developed a newmodel to describe branching morphogenesis in the develop-
ing kidney.While there are many agent-based models of other branching systems (e.g.
Fumoto et al. 2016; Iber and Menshykau 2013; Lindenmayer 1968; Merks and Kool-
wijk 2009; Schatten et al. 2007) to our knowledge, this is the first agent-basedmodel of
kidneymorphogenesis. A significant advantage of our approach is that unlike spatially-
averaged compartment-based methods (e.g. Menshykau and Iber 2013; Zubkov et al.
2015) it allows study of processes at the single-cell level. This spatial resolution may
be particularly important in determining the thresholds in the concentration of growth
factors at which branching occurs. The CA framework allows a cell-based description
of tissue morphogenesis and facilitates the future addition of other biophysical mech-
anisms and the subcellular signalling pathways, as well as extension to include other
cell types (e.g. mesenchymal cap cells, when considering kidney morphogenesis).

At present there is no consensus about whether diffusion-driven Turing pat-
terns of GDNF coupled with GDNF-regulated proliferation mechanisms can explain
branching, or whether other chemical and mechanical mechanisms are required. Our
simulation results indicate that the GDNF-mediated proliferation may suffice to gen-
erate branching in this system. We find that to recapitulate the branching behaviour of
the developing kidney, dynamic spatial patterning of epithelial cell proliferation had to
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Fig. 7 Approximate posteriors distributions for three model parameters as estimated by AABC. The
parameters c1 and c2 affect the location and sensitivity of the GDNF-mediated growth switch, and pmove
determines the relative likelihood of cell movement rather than cell division (see Sect. 2). a Accepted
trajectories in the posterior simulated from the model and their comparison with the ex vivo data (black
dots indicate means, and error bars show the range of the data). The experimental data are the means of
summary statistics extracted from three explant experiment videos in Watanabe and Costantini (2004). b
Posterior parameter distributions for single (on the diagonal) and joint pairs of parameters. See Table S1
for information about the parameter values used in the simulations

be included in the model. This was the case across all the parameter sets that we con-
sidered, however there may be isolated regions in parameter space in which branching
occurs via independent mechanisms not included in our model (e.g. due to mechan-
ical cell–cell interactions). Simulation studies demonstrated that GDNF-stimulated
tissue growth together with chemotaxis and anisotropic cell division provided the
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best fit to the explant branching data studied. In a recent experimental study, Riccio
et al. (2016) studied the behaviour of tip cells across development, and concluded that
GDNF signalling largely drives cell movement (rather than proliferation), and that this
movement, in turn, drives branching. While GDNF-dependent chemotaxis may play a
role later in kidney development (we focus here on E11.5 to E14), our results suggest
that it may not contribute significantly during early branching of the epithelium, and
supports a greater role for proliferation than that identified by Riccio et al. (2016).
It is, of course, possible that mesenchyme-derived factors other than GDNF provide
this signal. Inference of the CA model on a three-dimensional subset of parameters
revealed dependency between the parameters controlling the GDNF-stimulated cell
proliferation switch (c1 and c2). Specifically this result indicated how cell proliferation
should depend strongly on GDNF levels. However it remains to identify a biological
mechanism that fulfils this criteria.

Whilst our model can generate explant patterns that mimic some aspects of the
experimental data, we recognise that our simulation results often differ in the finer
details. At present it is not clear whether these discrepancies are due to biological
mechanisms that we have neglected, or due to the relatively simple nature of our
model framework. For example these differences might be reduced if an off-lattice
agent-basedmodel, incorporating cell–cell contact forces, were used.We also note that
the differences between our simulation results and the experimental data are highest for
later developmental times, andwe speculate that othermechanismsmay be responsible
for continued branching at these later time points. In particular our model does not
explicitly includemesenchymal cells that produce growth factors whichmay influence
branching at later developmental times.Another candidatemechanism is heterogeneity
in RET expression amongst different epithelial cells (Shakya et al. 2005). In particular,
epithelial cells with differing levels of RET expression have been shown to compete
for positions within branches (Riccio et al. 2016), and contribute unequally to the tips
of the developing kidney (Chi et al. 2009). We also assumed that the time scale for
GDNF diffusion is much slower than the time scale for its uptake/binding to RET
receptors. However we cannot discount that future experiments may invalidate this
assumption.

To compare our simulation results with the experiment results of Watanabe and
Costantini (2004), in both cases we calculated the number of explant branches using an
image processing method based on estimating a skeletal representation of 2D explant
images (known as the medial axis skeleton; Lee 1982). Determining the number of
branches of a 3D explant from a 2D image is nontrivial and we recognise that other
techniques have also been employed to this task (see, for example, Short et al. 2013),
and it would be interesting as future work to compare these approaches with ours.
Similarly, it would be worthwhile considering howwell our image processing pipeline
and resultant summary statistics based on 2D images captures the branching in a
3D explant (see Grogan et al. 2017 for an example of this type of work applied
to computational models of tumours). In future work, additional summary statistics
relating, for example, to branch angles could be calculated byTreeSurveyor—software
developed specifically to quantify the dynamics of branching morphogenesis (Short
et al. 2013). These data could then be fitted to amore detailedmodel of kidney explants.
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In order to validate a more detailed model against more advanced summary statistics,
additional experimental data is required.

As important differences exist between the dynamics of branching as it occurs ex
vivo and in vivo (Short et al. 2014), caution should be exercised when extrapolating
from the former to the latter. Here we focus on an ex vivo model, due to the avail-
ability of published image data. This system also lends itself more naturally to 2D
modelling, which is less computationally expensive than 3D simulations. Scaling an
ABM approach to 3D represents a significant computational hurdle, and it is pos-
sible that the different topology may require qualitatively different mechanisms for
branching to occur. However our results are supported by the results of computational
modelling by Clément and Mauroy (2014) who found that diffusion of growth factors
was sufficient to generate realistic 3D branching patterns. Further our 2D model per-
mits investigation of the dominant mechanisms in a simpler geometry, and presents
an opportunity for a first model validation step before investigating 3D dynamics. As
noted above our model omits certain details of the biology, for example, the (likely)
presence of a growth factor-producing mesenchyme. This choice was dictated partly
by the sparsity of the available experimental data. However since our simple model
was able to reproduce key aspects of the explant branching we chose not to include
further (uncertain) biological details.

The flexibility that CA models offer in their ability to describe spatiotemporal het-
erogeneities is not only an advantage but also a limitation, because the biological
interpretation of each update rule is not always clear. Modelling cell proliferation
and migration with biophysical and mechanical forces could improve the mechanis-
tic understanding of the model, but comes at significant computational cost (see for
example, Kim et al. 2007; Rejniak and Anderson 2011).

To perform parameter estimation, we have implemented a version of AABC, an
approximate Bayesian inference scheme that is ideally suited to models such as ours
that are computationally expensive to simulate. With the ever-increasing resolution
of spatiotemporal data and, concurrently, an increasing number of models developed
to describe relevant biological phenomena, we propose that AABC may find useful
applications to a range of problems in systems biology, outside the more typical popu-
lation genetics applications for which it was developed (Beaumont et al. 2002; Buzbas
and Rosenberg 2015; Csilléry et al. 2010b).

Existing models of organ development have proposed alternative mechanisms for
branching kidney organogenesis. In Zubkov et al. (2015), a spatially-averaged system
of ODEs is proposed in which branching occurs at a specific cell ratio of epithelial (tip)
andmesenchymal (cap) cells. In bothClément andMauroy (2014) andMenshykau and
Iber (2013), spatially-resolved models are developed and a growth-promoting ligand
mechanism is proposed for branching; in Menshykau and Iber (2013), the authors
show that this leads to a Turing-type mechanism through interaction of GDNF and
the RET receptor. The model that we present is consistent with these results, but goes
further by proposing cellular scale rules that, coupled to the influence of a ligand field,
enable branching.

We recognise that other modelling frameworks have been used to simulate branch-
ing morphogenesis. These include phase field models (Ohta et al. 1989; Hartmann and
Miura 2006) and Turing models (Kondo andMiura 2010;Menshykau and Iber 2013)),
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that yield similar conclusions to our CA approach. Even so, we believe that it is impor-
tant to establish whether results are robust across different modelling approaches or
specific to a particular modelling paradigm.

In conclusion we note that while branching morphogenesis is an old problem
in mathematical biology (Murray et al. 1983), many open questions remain to be
addressed. Here, using an agent-based model that directly describes the cell–cell inter-
actions that occur during organ development, we shed light on the processes involved
in defining the structure of the kidney. In the future, we propose that more complex
hybrid models that combine biophysical and experimentally-validated rules for the
migration and proliferation of epithelial cells will lead to further advances in our
understanding of kidney morphogenesis. Additionally we argue that future models of
in vivo kidney development should include other cells types known to be involved in
organogenesis, for example, mesenchymal cells.
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