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Abstract Multimodality is a phenomenon which complicates the analysis of sta-
tistical data based exclusively on mean and variance. Here, we present criteria for
multimodality in hierarchic first-order reaction networks, consisting of catalytic and
splitting reactions. Those networks are characterized by independent and dependent
subnetworks. First, we prove the general solvability of the Chemical Master Equa-
tion (CME) for this type of reaction network and thereby extend the class of solvable
CME’s. Our general solution is analytical in the sense that it allows for a detailed
analysis of its statistical properties. Given Poisson/deterministic initial conditions, we
then prove the independent species to be Poisson/binomially distributed, while the
dependent species exhibit generalized Poisson/Khatri Type B distributions. General-
ized Poisson/Khatri Type B distributions are multimodal for an appropriate choice of
parameters.We illustrate our criteria formultimodality by several basicmodels, aswell
as the well-known two-stage transcription–translation network and Bateman’s model
from nuclear physics. For both examples, multimodality was previously not reported.
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1 Introduction

The development of single-molecule methods such as Fluorescence in situHybridiza-
tion (FISH) has resulted in considerable advances in fundamental research in biology
(Trcek et al. 2011, 2012). Those methods provide researchers with discrete, single-
molecule data on (bio-)chemical reaction networks. The measured molecule numbers
are often small, requiring a modeling approach that accounts for the discreteness of
the molecule numbers (Klipp et al. 2009).

Networks of stochastically reacting molecule species are often described by the
Chemical Master Equation (CME) (Gardiner 2009; Kampen 2011). The CME is a
difference–differential equation. By using Gillespie’s Stochastic Simulation Algo-
rithm (Gillespie 1977), an exact realization of the CME’s underlying Markov jump
process is sampled and an indirect solution is obtained (Gillespie 1992). The CME
may also be studied by approximation methods such as finite state projection (Munsky
and Khammash 2006), or exactly using analytical approaches. Stationary solutions to
the CME are known for a wide range of chemical reaction networks (Kampen 1976;
Anderson et al. 2010). However, time-dependent, analytical solutions only exist for
monomolecular reaction networks (Gans 1960; Jahnke and Huisinga 2007), consist-
ing exclusively of conversion Si ↔ S j , degradation Si → ∅ and production ∅ → S j

reactions, where Si defines a species of molecules. In contrast to numerical solution
methods, analytical solutions allow for an abstract study of reaction networks, inde-
pendently of the concrete value of reaction rate constants and network graphs.

Here, we present an extension of the class of analytically solvable CME’s to a
subset of first-order reactions, namely hierarchic first-order networks. In addition to
monomolecular reactions, first-order reactions include (auto-)catalytic and splitting
reactions, and therefore allow for more real-world applications. As a subset of those
networks, we define hierarchic networks (Def. 3), characterized by a division into
independent and dependent subnetworks. Common examples of hierarchic networks
are the transcription–translation model in molecular biology (Friedman et al. 2006;
Shahrezaei and Swain 2008), or nuclear decay chains in physics (Bateman 1910;
Pressyanov 2002), both of which we discuss here.

In contrast to monomolecular networks, first-order networks result in marginal
distributions of individual species that are not unimodal in general, as we show in
Theorems 3 and 4. These distributions are poorly characterized by mean and vari-
ance, two essential measures used to describe statistical data in natural sciences. On
one hand, characterizing multimodal distributions by mean and variance is unintu-
itive, since the mean is often a very unlikely outcome. On the other hand, many
unimodal distributions, such as the Gaussian distribution, are fully specified by the
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General solution of the chemical master equation… 379

first two cumulants, i.e. mean and variance, or just the mean in case of the Poisson
distribution. Contrastingly, an infinite number of cumulants can be necessary to fully
specify the multimodal distributions derived in this article. We therefore argue that
CME approximation methods based on the first two cumulants or moments, such
as the moment-closure method (Milner et al. 2012), yield insufficient results when
reaction networks lead multimodal molecule distributions. Albeit to a lesser degree,
this hold true even when more than the first two moments are used to approximate
the CME’s solution in approaches such as Constantino et al. (2016). Such distribu-
tions have already been reported for networks that include two-state or three-state
random variables such as promoter switches studied in the context of gene-regulation
(Shahrezaei and Swain 2008; Thomas et al. 2014). In the same context, a maximum-
entropy approach has been used to approximate multimodal molecule distributions
successfully using the first seven moments (Andreychenko et al. 2017).

In the present paper, we develop an exact theoretical description for hierarchic
first-order networks, based on probability generating functions. Hierarchic first-order
networks are introduced in Sect. 2, followed by the main results in Sect. 3. In Sect. 3.1,
we establish the existence of analytical solutions (Theorem1) and derive the joint prob-
ability generating functions (Proposition 2), which are complete characterizations of
the underlying statistics. Then, the analytical formof themarginal distributions of indi-
vidual species is derived in Sect. 3.2.We show that the independent part of the network
exhibits Poissonian and Binomial marginal distributions, while the dependent part is
described by Discrete Compound Poisson (DCP) and Kathri Type B (KTB) marginal
distributions. Next, we present criteria for the marginal distributions to be multi-
modal in Sect. 3.3. Since Poissonian/Binomial distributions are generally unimodal,
the independent part exhibits unimodalmarginal distributions (Theorem2). In contrast,
DCP/KTB marginal distributions from the dependent part can lead to multimodality
under quite general conditions (Theorems 3 and 4). We illustrate these general results
by several basic models (Sect. 4.1) and two real-world models (Sect. 4.2). Among
these are the transcription–translation model (Example 5) and Bateman’s model for
nuclear decay chains (Example 6). For the former, multimodality was previously only
discussed in an extended three-stage model variant (Shahrezaei and Swain 2008),
whereas Theorem 3 proves the protein numbers to be multimodally distributed even
in the simple two-species version. To the best of our knowledge, our exact solution
to the CME for Bateman’s model of nuclear decay chains is a novel result, applying
the techniques developed in the preceding sections. We apply Theorem 4 to show
multimodality for Bateman’s model.

The derivation of probability mass functions from generating functions is reviewed
in Appendix A.1.

2 Introduction to hierarchic first-order networks

2.1 Chemical master equation and characteristic ODEs

First of all, we define a network of n species with m chemical reactions by the n ×m
stoichiometric matrices Q = (Qi j ) and R = (Ri j ), where Qi j , Ri j ∈ N0. These
matrices enable us to write
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QTS
k→ RTS,

with S = (S1, . . . , Sn)T being the vector of species and k = (k1, . . . , km)T the vector
of rate constants.

In the present paper, we consider discrete and stochastic models of biochemical
reaction networks. Let P(x, t |x0, t0) be the probability distribution for the number
of molecules x of each species at time t , given the initial condition x0 at t0. This
distribution is described by the Chemical Master Equation, a difference–differential
equation defined by1

∂t P(x, t) =
m∑

i=1

(
αi (x − ni )P(x − ni , t) − αi (x)P(x, t)

)
, (1)

where

αi (x) :=ki

n∏

j=1

x j !
(x j − Q ji )! and ni := coli (R − Q). (2)

In the last equation coli denotes the i th column of a matrix. The CME (1) is based
on the Markovian assumption and is derived in detail in Gardiner (2009) or Kampen
(2011). Applicable for (multivariate) distributions of discrete random variables, we
introduce the concept of generating functions:

Definition 1 (Generating function) A probability generating function (PGF) is a
power series2

g(s, t) :=
∞∑

x=0

sxP(x, t) (3)

defined for s ∈ C
n within some radius of convergence ≤ 1 in each coordinate respec-

tively.

In the univariate case, a large list of correspondences between PGFs and distributions
is provided by Johnson et al. (2005). Next, we represent the Master Eq. (1) as a partial
differential equation (PDE) in terms of a generating function:

Lemma 1 TheMaster Eq. (1) can equivalently be expressed as the partial differential
equation

∂t g(s, t) =
m∑

i=1

ki

⎛

⎝
n∏

j=1

s
R ji
j −

n∏

j=1

s
Q ji
j

⎞

⎠

⎛

⎝
n∏

j=1

∂
Q ji
s j

⎞

⎠ g(s, t). (4)

1 We suppress the dependence on the initial states x0 in the following.
2 We suppress the generating function’s dependence on x0 and t0 in the following.
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This result can be found in textbooks such as Gardiner (2009), Sect. 11.6.4, p. 297.
We provide a proof in “Appendix A.2” to the convenience of the reader.

We define first-order networks as those obeying a first-order PDE for the gen-
erating function (

∑n
j=1 Q ji ≤ 1), or equivalently a linear ordinary differential

equation (ODE) system for the moments. In terms of chemical reactions, first-order
networks consist exclusively of reactions of the type S j → ∑

l Rli Sl , i.e. monomolec-
ular plus splitting and (auto-)catalytic reactions. First-order PDEs are solvable by the
method of characteristics,3 a method to convert the PDE solution problem into ODEs.
The basic idea is that the solution of the PDE is given by a set of integral curves s(τ )

called characteristic curves, parametrized by some τ ∈ R.We obtain the ODE system,
describing these curves s(τ ), by interpreting (4) as a total derivative, i.e.

dg(s(τ ), t (τ ))

dτ
= ∂g(s(τ ), τ )

∂t

dt

dτ
+

n∑

i=1

∂g(s(τ ), τ )

∂si

dsi (τ )

dτ

!= f (s(τ ), τ )g(s(τ ), τ ).

(5)

Then, the characteristic system of ODEs, obtained by comparing the coefficients of
(5) and (4), reads

dt

dτ
= 1

ds j (τ )

dτ
= −

m∑

i=1

ki Q ji

(
n∏

l=1

(
sl(τ )

)Rli − s j (τ )

)
( j ∈ {1, . . . , n}) (6)

dg(s(τ ), t (τ ))

dτ
=

m∑

i=1

n∑

j=1

ki (1 − Q ji )

(
n∏

l=1

(
sl(τ )

)Rli − 1

)

︸ ︷︷ ︸
:= f (s(τ ),τ )

g(s(τ ), τ ). (7)

In case we not only require
∑n

j=1 Q ji ≤ 1, but also
∑n

j=1 R ji ≤ 1, the equations

for dsi (τ )
dτ

and dg(s(τ ),t (τ ))
dτ

are linear and we are restricted tomonomolecular reactions.
In consequence, the characteristic ODE system is solvable and we obtain a general
solution of the CME, as shown in Gans (1960).4 For the complete definition of the
ODE system, we specify the initial conditions

s0 : = s(0)

g(s0, 0) = d(s0). (8)

3 See Evans (2010) for an introduction.
4 The same result may be obtained without the use of generating functions (Jahnke and Huisinga 2007).
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The generating function d(s0) specifies the initial distribution. Here, we study deter-
ministic initial conditions d(s0) = (

s0
)x0 and product Poissonian initial conditions

d(s0) = exp
[
〈x〉0 · (s0 − 1)

]
,

where
〈
x
〉
0 is the expected number of molecules at t = 0.

2.2 Hierarchically linear ODE systems and reaction networks

Compared to monomolecular reaction networks, a more general subset of first-order
networks are hierarchically linear networks, which we characterize in this article.

Definition 2 (Hierarchically linear ODE system) Let xi (t), fi (·, t) and hi (·, t) be con-
tinuously differentiable, vector- and matrix-valued functions respectively.5 An ODE
system exhibiting the structure

dx1
dt

= f1(x2, x3, . . . , xn) + h1(x2, x3, . . . , xn)x1

dx2
dt

= f2(x3, x4, . . . , xn) + h2(x3, x4, . . . , xn)x2

...

dxn
dt

= fn + hnxn (9)

is called a hierarchically linear ODE system.

The next proposition gives a reason for our interest in hierarchically linear ODE
systems:

Proposition 1 All hierarchically linear ODE systems are solvable by means of matrix
exponentials.

Proof We inspect a system of two levels only, since an extension to the n-dimensional
case follows by mathematical induction. Then, the system for n = 2

ẋ1 = f1(x2) + h1(x2)x1
ẋ2 = f2 + h2x2

has a solution in terms of simple matrix exponentials if h1(x2(t1)) and h1(x2(t2))
commute, i.e.

h1(x2(t1))h1(x2(t2)) = h1(x2(t2))h1(x2(t1)) .

5 The temporal dependence of the functions is suppressed as usual. Furthermore, xi : R
+
0 → C

mi ,

fi : Cmi+1 ×C
mi+2 ×· · ·×C

mn ×R
+
0 → C

mi and hi : Cmi+1 ×C
mi+2 ×· · ·×C

mn ×R
+
0 → C

mi ×C
mi ,

where n,mi ∈ N.
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In this case, the solution can be written6 as

x1(t) = exp

{∫ t

0
h1(x2(t ′))dt ′

}
x01

+ exp

{∫ t

0
h1(x2(t ′))dt ′

}∫ t

0
exp

{
−
∫ t ′

0
h1(x2(t ′′))dt ′′

}
f1(x2(t ′))dt ′

(10)

x2(t) = exp{h2t}x02 + exp{h2t}
∫ t

0
exp{−h2t ′}f2dt ′ . (11)

If the matrix-valued function h1 does not commute for two different instants of time,
the matrix exponent is expressed in terms of Magnus series (see Magnus 1954). Even
in that case [h1(x2(t1)),h1(x2(t2))] �= 0, it is still possible to write down an analytical
expression in terms of matrix exponentials. �

A hierarchically linear ODE system translates to the study of chemical reaction
networks modeled by the CME as follows:

Definition 3 (Hierarchic first-order reaction network) A first-order reaction network,
described by a hierarchically linear characteristic ODE system is called hierarchic
first-order reaction network.

2.3 Two-level hierarchic networks

In contrast to the general form of the preceding definition, we focus on two-level
hierarchic networks, composed of two subsystems. That is, we have nind indepen-
dent species Sind = (S1, . . . , Snind , 0, . . . , 0)

T and ndep dependent species Sdep =
(0, . . . , 0, Snind+1, . . . , Sn)T, where nind + ndep = n. We express a two-level hierar-
chic network in terms of chemical reactions as

QTSind
k→RTSind + RTSdep (first order reactions, system I), (12)

QTSdep
k→RTSdep (monomolecular reactions, system II). (13)

The first-order reactions’ products are split into two parts: Sind appears only once per
reaction (

∑nind
j=1 R ji ≤ 1 for i ∈ {1, . . . ,m}), while an arbitrary number of molecules

Sdep is allowed. The monomolecular reactions are defined by
∑n

j=nind+1 R ji ≤ 1 for
i ∈ {1, . . . ,m}.

Note that by ignoring Sdep, we might study QTSind → RTSind independently of
the monomolecular reactions (13), and obtain another monomolecular network, since∑nind

j=1 R ji ≤ 1 for i ∈ {1, . . . ,m}. We therefore refer to (12) as independent part and
(13) as dependent part of the hierarchic system, since the latter cannot be modeled

6 For a review of the solution of a non-homogeneous system see Brannan (2010).
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Fig. 1 Scheme depicting a hierarchic first-order network. In system I, all non-monomolecular reactions
take place, such as splitting or catalytic reactions, while in system II only monomolecular reactions take
place

independently of system I. Figure 1 depicts an example of such a hierarchic first-order
two-level system.

Mathematically, (12) and (13) translate to a hierarchically linear characteristic ODE
system. That is, the general form (6) is constrained to

ds j
dt

= −
m∑

i=1

Q ji ki

⎧
⎨

⎩

⎡

⎣
n∏

l=nind+1

sl
Rli

⎤

⎦
(

nind∑

l=1

Rli sl + δ∑nind
l=1 Rli ,0

)
− Q ji s j

⎫
⎬

⎭

( j ∈ {1, . . . nind}), (14)

ds j
dt

= −
m∑

i=1

Q ji ki

⎛

⎝
n∑

l=nind+1

Rli sl + δ∑n
l=nind+1 Rli ,0

− Q ji s j

⎞

⎠

( j ∈ {nind + 1, . . . n}). (15)

Note that the algebraic hierarchy is inverse to the reaction network hierarchy. The
dependent part of the reaction network (system II) is described by an autonomous
ODE system, while the independent part (system I) is non-autonomous due to the
term

∏n
l=nind+1 sl

Rli .
The monomolecular system II can be expressed more compactly as

S j
α jk→ Sk

S j
α j0→ ∅,

where j, k ∈ {nind + 1, . . . , n} and A := (αi j ) is the matrix holding the conversion
rates. Using that matrix, we rewrite (15) as

dsdep
dt

= −AT(sdep − 1). (16)
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The inversion of the hierarchic and algebraic structure, mentioned in the previous
paragraph, also becomes clear by the traditional rate equations for the concentration
vector Cdep of system II

dCdep

dt
= ACdep + influx from system I. (17)

It was shown by Jahnke and Huisinga (2007) using a statistical argument that the
solution to themonomolecularCME is a product Poissondistribution, givenPoissonian
initial conditions, and amultinomial distribution, given deterministic initial conditions.
Thereby, the parameters of the distributions are given by the traditional rate Eq. (17).
This parametrization is also evident by the characteristic ODEs (16) because these can
be expressed using the transposed Jacobian matrix of (17).

However, it also becomes clear that the exact solution to the CME for a general first-
order network, is not fully parametrized by the traditional rate equations: The ODE
system (13) is structurally different from the traditional rate equations for system I
due to the time-dependent coefficients

∏n
l=nind+1 sl

Rli . In contrast to the characteristic
Eq. (14), the traditional rate equation system is generally autonomous if the rate
constants ki are time-independent as we assume.

In order to highlight the relationship between traditional rate equations and char-
acteristic ODEs for system II, we use the convention

QTSind
k→ RTSind + RTSdep ,

S j
α jk→ Sk,

S j
α j0→ ∅,

∅ b→ S, (18)

instead of (12) and (13) to fully express the two-level hierarchic reaction network.
Note that we summarized influx reactions to both system I and II in (18), which yields
the characteristic equations

ds j
dt

= −
m∑

i=1

Q ji ki

⎧
⎨

⎩

⎡

⎣
n∏

l=nind+1

sl
Rli

⎤

⎦
(

nind∑

l=1

Rli sl + δ∑nind
l=1 Rli ,0

)
− Q ji s j

⎫
⎬

⎭

( j ∈ {1, . . . nind})
dsdep
dt

= −AT(sdep − 1)

dg(s, t)
dt

= b · (s − 1)g(s, t)

instead of (14) and (15).

123



386 M. Reis et al.

3 Main results

3.1 Solvability of hierarchic first-order networks

First, we show that the CME is solvable for any hierarchically linear reaction network.

Theorem 1 (Existence of analytical solutions for hierarchic first-order networks) The
Master equation corresponding to a hierarchic first-order reaction network is analyt-
ically solvable.

Proof Applying Proposition 1, we find that the characteristic system (6) is solvable as
a linear equation system as s = eCs0 + v, where C is a square matrix and v a column
vector. For the initial condition of (7), we need s0. Since eC is generally invertible,
the characteristic system s = eCs0 + v can be solved for s0. This in turn yields the
generating function and the distribution, defined as the coefficients of the former. �

Remark 1 The term “analytical solution”, which is often used in a more intuitive
sense, requires some explanation. One may argue that the Master equation is a system
of linear ODEs and can always be formally solved by a matrix exponential as such.
This remains true even for bimolecular networks such as the Lotka–Volterra model
(Lotka 1925). However, a formal solution of the Master equation does not tell us
anything about the structure of the distribution, if the matrix exponential cannot be
calculated explicitly. Contrary to this non-analytical case, the generating function
stated in the next proposition earns the word “analytical”, even if it also contains
a matrix exponential. As shown in Sect. 3.2, the matrix exponential from the next
proposition enables us to analyze properties of the distribution and may be used to
find the stationary distribution, to compute moments and cumulants, etc.

Proposition 2 Let b = 0, i.e. no reactions7 ∅ b→ S. Given that the molecules are
initially product Poisson distributed, i.e. g(s, 0) = exp

[〈
x
〉
0 · (s− 1)

]
, the generating

function is given by

g(s, t) = exp
{
〈x1〉0 · [e− ∫ t0 J(sdep,t ′,t)dt ′sind −

∫ t

0
e− ∫ t ′0 J(sdep,t ′′,t)dt ′′ f(sdep, t ′, t)dt ′ − 1

]

+ exp(At)〈x2〉0 · (sdep − 1)
}
. (19)

In the last expression, the Jacobian J is defined by

Jpq(sdep, t ′, t) :=
m∑

i=1

Qpi ki
(
1 − ci (sdep, t ′, t)Rqi

)
, p, q ∈ {1, . . . , nind} (20)

7 Without this requirement, we obtain an additional factor e
∫ t
0 b·(sind(t ′′′)−1)dt ′′′ , where sind(t ′′′) is defined

in (55). For more compact expressions, this factor was left out without loss of generality.
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with8 [J(sdep, t1, t), J(sdep, t2, t)] = 0 and f is given by

f j (sdep, t ′, t) := −
m∑

i=1

Q ji ki ci (sdep, t ′, t) , j ∈ {1, . . . , nind} (21)

where

ci (sdep, t ′, t) :=
n∏

l=nind+1

(
exp

{− A(t ′ − t)
}
εl · (sdep − 1) + 1

)Rli
. (22)

For deterministic initial conditions, i.e. P(x, 0) = δx,x0 , where x
0 = (x01 , . . . , x

0
n )

T,

we obtain

g(s, t) =
{ n∏

i=1

([
e− ∫ t0 J(sdep,t ′,t)dt ′sind −

∫ t

0
e− ∫ t ′0 J(sdep,t ′′,t)dt ′′ f(sdep, t ′, t)dt ′

]
ε
(1)
i

+ exp(At)ε(2)
i · (sdep − 1) + 1

)x0i }
, (23)

with ε
(1)
i := coli Inind×nind and ε

(2)
i := coli Indep×ndep .

We postpone the proof to “Appendix A.3” and interpret this result first. Remember that
the deterministic or product Poisson distributions, assumed as an initial distributions
in the preceding proposition, imply that all random variables are uncorrelated for a
fixed time t . This can be shown by using the cumulant generating function κ(ξ) =
log(g(eξ )), that is given for a product Poisson distribution by

κ(ξ) = log(e
〈
x
〉
1
(eξ1−1)+···+

〈
x
〉
n
(eξn−1)

) = 〈
x
〉
1(e

ξ1 − 1) + · · · + 〈
x
〉
n(e

ξn − 1) .

Here, “uncorrelated” means that the covariances and higher order mixed cumulants,
defined as the coefficients of κ(ξ), are zero:

∂ξ1,...,ξn

(〈
x
〉
1(e

ξ1 − 1) + · · · + 〈
x
〉
n(e

ξn − 1)
)∣∣∣

ξ=0
= 0.

For monomolecular reaction networks, the variables remain uncorrelated after some
time t > 0, since a monomolecular system given Poissonian initial conditions stays
Poissonian, as shown in Jahnke and Huisinga (2007), Proposition 2. Contrastingly,
for first-order processes, covariances between the variables appear for t > 0, because
the exponent of Eq. (19) is in general not a first-order polynomial. In other words,
monomolecular systems stay uncorrelated for uncorrelated initial conditions, while
first-order systems do not.

8 Without this requirement,Magnus series are needed to express the solution. Formore compact expressions
we restrict ourselves to [J(sdep, t1, t), J(sdep, t2, t)] = 0 without loss of generality.
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We understand the correlations in terms of chemical reactions by the difference
between the first-order splitting reaction S j → Sk + Sl and the two monomolecular
reactions S j → Sk and S j → Sl : The molecules Sk and Sl appear simultaneously
in the splitting reaction, while the two monomolecular conversions are statistically
independent events.

3.2 Analytical form of marginal distributions

As we show in the following, the hierarchic network structure yields marginal distri-
butions that are best interpreted as generalized distributions. We follow Johnson et al.
(2005) for the next definition.

Definition 4 (Generalizing distribution) The distribution P1 is generalized by the
generalizing distribution P2:

P ∼ P1

∨
P2 :⇔ g(s) = g1(g2(s)),

where g1(s) and g2(s) are the corresponding generating functions.

Generalized distributions are related to mixing distributions by Gurland’s theorem
(Gurland 1957), if certain requirements are met. Next, we define two classes of gen-
eralized distributions that arise as marginal distributions for hierarchic networks.

Definition 5 (Discrete compound Poisson distribution (DCP)) A discrete compound
Poisson distributionPDCP is a univariate distribution (Zhang et al. 2014), generalizing
the Poisson distribution with another distributionP2:

PDCP ∼ PPoisson

∨
P2.

The generating function is defined accordingly:

gDCP(s) := gPoisson(g2(s)) = eλ(g2(s)−1) = e
∑∞

i=1 λαi (si−1) ,

where λ > 0 and αi ∈ [0, 1] with ∑∞
i=1 αi = 1 are parameters. We introduce the

notation

DCPN :⇔ degs

∞∑

i=1

λαi (s
i − 1) = N . (24)

The next type of distributionwas previously defined byKhatri andPatel (1961) andwill
be important for our study of reaction networks given deterministic initial conditions:

Definition 6 (Khatri’s Type B distribution) Khatri’s Type B distribution PKTB is a
univariate distribution, generalizing the deterministic distribution with another distri-
bution P2:

PKTB ∼ PDeterministic

∨
P2.
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The generating function is defined accordingly:

gKTB(s) := (
g2(s)

)ν =
( ∞∑

i=0

αi s
i
)ν

,

αi ∈ [0, 1] are parameters and ν ∈ N0 is the number of trials. Furthermore, g2(s)
must be a generating function, i.e.

∑∞
i=1 αi = 1. We introduce the notation

KTBN :⇔ degs

∞∑

i=0

αi s
i = N . (25)

These distributions specify the marginal distributions of the dependent part (system II)
of hierarchic first-order reaction networks. We will show in Sect. 3.3, that the DCPN

and KTBN distributions are conditionally multimodal for N > 1.

Proposition 3 (Marginal distributions given ∂sX λi (sX ) = 0) Let λi (sX ) be the i th
eigenvalue of J(sX , t ′, t). Furthermore, let ∂sX λi (sX ) = 0, f = 0 and b = 0. Given
Poissonian initial conditions, the marginal distribution of any species X from the
dependent part of the network is DCPN , where N < ∞. Given deterministic initial
conditions, this distribution is KTBN .

To prove this statement, we need an auxiliary result:

Lemma 2 LetH(x) be an n×n matrix, whose entries depend polynomially on x ∈ C.
Let λi (x) be the i th eigenvalue of H(x). Then, ∂xλi (x) = 0 ⇒ degx

(
eH(x)

)
i j < ∞.

Proof By the Cayley–Hamilton theorem, H(x) fulfills its own characteristic polyno-
mial Δ(λ), i.e. Δ(H(x)) = 0. Furthermore, any polynomial p(λ) might be expressed
as p(λ) = q(λ)Δ(λ) + r(λ), where q is found by long division p/q with remainder
r of degree ≤ n − 1. Since Δ(H(x)) = 0, we might express9 eH(x) as

eH(x)
︸ ︷︷ ︸
p(H(x))

=
n−1∑

k=0

αk(x)Hk(x)

︸ ︷︷ ︸
r(H(x))

(26)

for some coefficients αk(x).
Furthermore, the eigenvalues λi (x) fulfill

eλi (x) =
∞∑

k=0

λki (x)

k! =
n−1∑

k=0

αk(x)λ
k
i (x)

︸ ︷︷ ︸
:=
(
Lα
)
i

(i ∈ {1, . . . , n}). (27)

9 The matrix exponential and the following expression, obtained by the Cayley–Hamilton theorem, is
reviewed in Rowell (2004).
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Here, the second relation follows again from long division by the characteristic poly-
nomial of H(x). For ∂xλi (x) = 0, the coefficients of the characteristic polynomial do
not depend on x and thus ∂xαk(x) = 0.

Therefore, the expression (26) introduces only a finite-order dependence on x . �
Using this Lemma, we prove Proposition 3:

Proof We obtain the marginal distribution of species X by setting all si = 1 except
sX in Eqs. (19) and (23) respectively. First of all, the integrals in Eq. (19) do not
change the order of the polynomial in the exponent with respect to sX , that is

degsX
(
e−J(sX ,t,t ′))

i j = degsX
(
e− ∫ t0 J(sX ,t ′,t)dt ′)

i j . Therefore, we have a DCPN dis-

tribution, where N is given by (24). We find10

N = degsX

(
s0ind(sX ) · 〈x1

〉
0

)
= degsX

(
e−J(sX )1 · 〈x1

〉
0

)
= degsX

∑

i, j

(
e−J(sX )

)

i j

(28)

≤ max
i, j∈{1,...,nind}

degsX

(
e−J(sX )

)

i j
. (29)

Because J(sX ) depends polynomially on sX , we apply Lemma 2 to obtain

N ≤ degsX

(
e−J(sX )

)

i j
< ∞.

In case [J(sX , t1, t), J(sX , t2, t)] �= 0, the same argument can be made for theMagnus
series. By replacing

〈
x1
〉
0 in Eq. (28) with ε

(1)
i := coli Inind×nind for deterministic initial

conditions, we have the result KTBN , where N < ∞. �
For simple reaction networks such as those from the next proposition, we show the

order of the marginal distributions to be larger than one. We first investigate networks
whose independent part is mass-conservative, i.e.

∑nind
l=1 Rli �= 0 ⇒ f = 0 and∑nind

l=1 Qli �= 0 ⇒ b = 0.

Proposition 4 Let ∂sX λi (sX ) = 0, f = 0, b = 0 and [J(sX , t1, t), J(sX , t2, t)] = 0.
The marginal distribution of any dependent species X is DCPN (KTBN for determin-
istic initial conditions), with N > 1 for the following minimal reaction networks:

1.

Sind1 → Sind2 + RX, (Type I)

where R > 1 and nind = 2.
2.

Sind1 → Sind2 + R1X
Sind2 → Sind3 + R2X,

(Type II)

where R1 ≥ 1, R2 ≥ 1 and nind = 3.

10 We suppress the time-dependence of J in the following.
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Proof We expand the matrix powers in

degsX
∑

p,q

(e−J(sX ))pq
(26)= degsX

∑

p,q

( nind−1∑

k=0

(−J(sX ))kαk

)

pq

, (30)

starting with J1:

Jpq(sX )
(20)=

m∑

i=1

ki Q pi (1 − ci (sX )Rqi ), p, q ∈ {1, . . . , nind}

For reaction Type I, it suffices to consider the first order J1 of (30). Since there are
no reactions within the dependent part A = 0, we then have

ci (sX , t ′, t) (22)=
(
1 · (sX − 1) + 1

)Ri = sRiX (31)

In consequence of (31), we get degsX
∑

p,q(e
J(sX ))pq > 1 whenever Ri > 1. This

translates to a splitting reaction of Type I. To see ∂sX λi (sX ) = 0, consider

ds1
dt

= − kS1→S2+X︸ ︷︷ ︸
:=1

(sRX s2 − s1)

ds2
dt

= 0

and

det(J − λ1) = det((∂s j
dsi
dt

)i j − λ1) = det

(
1 − λ −sRX
0 −λ

)
= λ2 − λ.

For reaction Type II, nind = 3 and we need to calculate the second order J2 in (30).
We have11

J 2pq(sX ) ∝
nind∑

r=1

(
m∑

i=1

ki Q pi (1 − sRiX Rri )

)⎛

⎝
m∑

j=1

k j Qr j (1 − s
R j
X Rq j )

⎞

⎠

∝
nind∑

r=1

m∑

i, j=1

ki k j Q pi Rri Qr j Rq j s
Ri+R j
X .

Note that only i �= j terms are non-zero due to
∑nind

l=1 Rli ≤ 1. This implies that the
products from the independent part must appear in different reactions. In terms of
chemical reaction networks, we have

11 Here, “∝” means that lower order terms and constant factors in sX are dropped.
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Qp1S
ind
p → Rr1S

ind
r + Rξ1X

Qr2S
ind
r → Rq2S

ind
q + Rξ2X.

We arbitrarily chose p = 1, r = 2, q = 3 to obtain the result. To see ∂sX λi (sX ) = 0,
consider

ds1
dt

= − kS1→S2+R1X︸ ︷︷ ︸
:=1

(sR1
X s2 − s1)

ds2
dt

= − kS2→S3+R2X︸ ︷︷ ︸
:=1

(sR2
X s3 − s2)

ds3
dt

= 0

and

det J = det(∂s j
dsi
dt

)i j = det

⎛

⎝
1 − λ −sR1

X 0
0 1 − λ −sR2

X
0 0 −λ

⎞

⎠ = −λ
(
λ2 − 2λ + 1

)
.

�
Proposition 5 Let J(t ′, t) be independent of sX , b = 0 and ∂sX f(sX , t ′, t) �= 0, then
the marginal distribution of any species X from the dependent part is DCPN (KTBN

for deterministic initial conditions), with N > 1 for the following minimal reaction
network:

Sind1 → RX,

where R > 1 and nind = 1.

Proof We express the reaction Sind1 → RX by

f1(sX )
(21)= −k1

(
1 · (sX − 1) + 1

)R = −k1s
R
X

and plug the same expression into (19) to obtain log g(sX , t) ∝ sRX . In consequence,
we get a DCPN distribution with N > 1 whenever R > 1. The analogous statement
for deterministic initial conditions follows by plugging f1(sX ) into (23). �

The next proposition holds for the transcription–translation model, as examined in
detail in Example 5.

Proposition 6 (Marginal distributions given ∂sX λi (sX ) �= 0) Let λi (sX ) be the i th
eigenvalue of J(sX , t ′, t) and let ∂sX λ(sX ) �= 0. Given Poissonian initial conditions,
the marginal distribution of any species X from the dependent part of the network is
DCP∞ (KTB∞ for deterministic initial conditions).
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Proof In case all eigenvalues are distinct, we solve the system (27) by inverting the
matrix12 L(sX ), so

eJ(sX ) =
nind−1∑

k=0

nind−1∑

i=0

(L−1(sX ))ki e
λi (sX )Jk(sX ). (32)

Since (L−1)ki is a rational function of the eigenvalues, we have

max
i, j∈{1,...,nind}

degsX
(
eJ(sX )

)
i j = ∞. (33)

In case there is an eigenvalue λ j of multiplicity μ, the matrix L is not invertible.
Since

dμ−1Δ(λ)

dλμ−1

∣∣∣∣
λ j

= dμ−1

dλμ−1 (λ − λ j )
μ

nind−μ∏

i=1

(λ − λi )

∣∣∣∣
λ j

= 0 ,

we derive (27) for λ and obtain μ − 1 additional equations:

di eλ j (sX )

dλi
= di

dλi

nind−1∑

k=0

αk(sX )λk (i ∈ {1, . . . , μ − 1}).

We solve this system together with (27) for αk(sX ) by inverting a matrix. The entries
of this matrix are rational functions of λ, so the terms eλi (sX ) in (32) do not cancel,
i.e. Equation (33) holds. In the last step, we plug Eq. (32) into (19) for Poissonian and
into (23) for deterministic initial conditions to obtain the generating function for the
marginal distribution of X . Since the exponent of (19) is of infinite degree, we obtain
a DCP∞ class distribution. For deterministic initial conditions, we obtain a KTB∞
class distribution. �

3.3 Modality of marginal distributions

In this section, we investigate under which conditions the generalized distributions
from Proposition 2 have infinitely many modes. We need several definitions for this
end:

Definition 7 (Unimodality)Adistribution pn is said to beunimodalwithmodea ∈ N0
if

pn≥pn−1, ∀ n ≤ a and pn+1 ≤ pn, ∀ n ≥ a.

If this property does not depend on the parameters of the distribution, the latter is said
to be unconditionally unimodal. A unimodal distribution that results in a unimodal

12 The time-dependence of L and J is suppressed in the following.
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distribution upon convolution with another unimodal distribution is called strongly
unimodal.13

The classes DCP1 and KTB1 are unconditionally unimodal, since the only members of
these sets are the Poissonian and Binomial distribution respectively. For the indepen-
dent species (system I) of a hierarchic first-order reaction network, we obtain unimodal
marginal distributions:

Theorem 2 (Unconditional unimodality of marginal distributions of independent
species (system I)) Given deterministic or Poissonian initial conditions, the species
from the independent part of the hierarchic network exhibit unconditionally unimodal
marginal distributions at all times t > 0.

Proof Upon setting all si = 1, except one sX from the independent part, we obtain
a Poissonian distribution for Eq. (19). For deterministic initial conditions, Eq. (23)
yields a convolution of binomial and Poisson distributions. Since the binomial and
Poisson distribution are strongly unimodal, the resulting distribution is unimodal as
well, as shown by Keilson and Gerber (1971). �

For the second part of a hierarchic first-order network, we need the following
definition:

Definition 8 (Conditional multimodality) A distribution that is not unconditionally
unimodal is called conditionally multimodal.

As an example for the preceding definition, we have Neyman’s Type A distribution
(Neyman 1939), defined by the generating function exp(λ(eφ(s−1) −1)), where λ > 0
and φ > 0. Because of the double exponential generation function, it belongs to the
class of DCP∞ distributions that we prove to be conditionally multimodal in the next
proposition.

Proposition 7 (Three classes of conditionally multimodal distributions) The classes
of distributions DCP∞, KTB∞, DCP2, KTB2 and DCP3, KTB3 are conditionally
multimodal.

Proof Since conditional multimodality is defined to be the contrary of uncondi-
tional unimodality, a counterexample is enough to prove conditional multimodality.
Respective counterexamples are shown in Fig. 2. Figure 2a shows Neyman’s Type A
distribution, defined by the DCP∞ generating function g(s) = exp(λ(eφ(s−1) − 1)),
can be multimodal.14 The same is done for the Hermite distribution by the gener-
ating function g(s) = ea1(s−1)+a2(s2−1). As a DCP2 distribution, it is conditionally
multimodal, as demonstrated in Fig. 2a. A counterexample for DCP3 is given by

13 Defined by Keilson and Gerber (1971).
14 Note that the coefficients of eφ(s−1) are defined as the parameters of DCP∞, not φ.
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(a) (b) (c)

(d) (e) (f)

Fig. 2 Some conditionallymultimodal distributions. The thick gray lines depict the expectation value,while
the dashed lines stand for the standard deviation. The arrow marks the probability for a zero outcome. a
Hermite (DCP2) distribution, a1 = 1, a2 = 5.1. b Triple stuttering-Poisson (DCP3) distribution, a1 = 0.1,
a2 = 1.1, a3 = 2. c Neyman’s type A (DCP∞) distribution, λ = 2, φ = 18.1. d Binomial–Binomial
(KTB2) distribution, p1 = 0.5, p2 = 0.8. e Binomial–Binomial (KTB3) distribution, p1 = 0.5, p2 = 0.8.
f Binomial–Binomial (KTBin f ini t y ) distribution, p1 = 0.5, p2 = 0.8

g(s) = ea1(s−1)+a2(s2−1)+a3(s3−1) from Fig. 2b. Figure 2d–f shows counterexamples
for the generalized binomial distributions KTB2, KTB3 and KTB∞:

gKTB2(s) = (
1 − p1 + p1(1 − p2 + p2s)

2)4 (
Binomial(4, p1)

∨
Binomial(2, p2)

)

gKTB3(s) = (
1 − p1 + p1(1 − p2 + p2s)

3)4 (
Binomial(4, p1)

∨
Binomial(3, p2)

)

gKTB∞(s) = (
1 − p1 + p1e

λ(s−1))4 (
Binomial(4, p1)

∨
Poisson(λ)

)
.

�
Since we cannot provide an infinite number of counterexamples, one for each

DCPN or KTBN class, where N > 1, we extend the result of the last proposition as a
conjecture.

Conjecture 1 The classes DCPN andKTBN are conditionally multimodal for N > 3.

The intuition behind this conjecture is that the DCPN and KTBN classes are modeling
events that can occur in bursts. In terms of Definition 4, the generalizing distribu-
tionP2 is modeling the (stochastic) number of events per burst or burst size, whereas
the generalized distributionP1 models the (stochastic) number of bursts, yielding the
total number of events asP ∼ P1

∨
P2. In consequence, the distances between the

modes seen in Fig. 2 approximately correspond to multiples of the burst sizes. For the
Binomial–Binomial distribution from Fig. 2d the burst size is 2, for Fig. 2e it is 3, and
for the Binomial–Poisson distribution from Fig. 2f it is λ = 10.8. The same applies
for the generalized Poisson distributions. For Neyman’s Type A (Poisson–Poisson)
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distribution shown in Fig. 2c, the modes are clearly visible at multiples of 18.1. Thus,
the bursting behavior is linked to conditional multimodality. In consequence, what we
are conjecturing is that this link stays the same as we increase the number of possible
bursts beyond 3.

In the next Theorems, we summarize the cases in which conditional multimodality
appears for the species of the dependent system II.

Theorem 3 (Sufficient criterion for conditional multimodality, given deterministic or
Poissonian initial conditions and ∂sX λ(sX ) �= 0) Let ∂sX λ(sX ) �= 0. Then the depen-
dent species X in a hierarchic first-order network obeys a conditionally multimodal
marginal distribution at all times t > 0.

Proof ∂sX λ(sX ) �= 0 implies DCP∞ and KTB∞ class distributions (Proposition 6)
that are conditionally multimodal by Proposition 7. �

Theorem 4 (Minimal reaction networks exposing conditional multimodality, given
deterministic or Poissonian initial conditions and ∂sX λ(sX ) = 0) Let ∂sX λ(sX ) = 0,
b = 0 and assume Conjecture 1 is true. Then, given Poissonian or deterministic initial
conditions, the following minimal hierarchic first-order networks exhibit a condition-
ally multimodal marginal distribution at all times t > 0 for the dependent species
X:

1. For mass-conservative independent networks, i.e. f = 0:
(a)

Sind1 → Sind2 + RX, (Type I)

where R > 1 and nind = 2.
(b)

Sind1 → Sind2 + R1X
Sind2 → Sind3 + R2X,

(Type II)

where R1 ≥ 1, R2 ≥ 1 and nind = 3.
2. For open independent networks and

∑nind
l=1 Rli = 0 for all reactions, i.e. ∂sX J = 0

and ∂sX f �= 0, the minimal network is:

Sind1 → RX

where R > 1 and nind = 1.

Proof By Proposition 4 we know that the distribution class is DCPNProp4 whenever
f = 0, where the degree NProp4 > 1 for both types of minimal reaction networks.
Proposition 5 applies if ∂sX f �= 0, and yields theminimal reaction network Sind1 → RX
for which NProp5 > 1.
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These distribution classes are conditionally multimodal if NProp4 and NProp5 are
larger than one according to Proposition 7 and Conjecture 1. �

In general conditional multimodality arises, if the degree of the exponent of (19) is
larger than one upon setting all si = 1 except sX .

4 Examples

In the following two sections, we illustrate how our results can be used to predict
conditional multimodality by several examples. The calculations can be verified using
the supplemented Wolfram Mathematica files.

4.1 Basic models

Example 1 (Catalysis) Themodel of the simple catalytic reaction X
kcat→ X+Y is a triv-

ial example of a hierarchic system, since system II is governed by a time-independent
characteristic ODE. By Eqs. (6–7) we have

dsX
dt

= −kcat(sX sY − sX ) (34)

dsY
dt

= 0 (35)

dg

dt
= 0 ⇔ g = g(s0X , s0Y , 0). (36)

The solution of (35) simply reads sY (t) = s0Y . We reorder the terms in (34)

dsX
dt

= sX (−kcat(s
0
Y − 1)),

and solve the same equation as

sX (t) = e−kcatt (s0Y−1)s0X .

The generating function, given by (8) for Poissonian initial conditions, reads

gPoiss(s
0
X , s0Y , 0) = exp

(〈
x
〉
0(s

0
X − 1) + 〈

y
〉
0(s

0
Y − 1)

)
.

By replacing

s0X = ekcatt (s
0
Y−1)sX ,
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Fig. 3 Marginal distributions for catalysis product py := P(y, t |y0 = 0, 0), given the parameters kcat =
20 s−1, deterministic (y0 = 0) and Poissonian initial conditions for

〈
x
〉
0 = 2. The thick gray lines mark

the expectation value, and the dashed lines the range of one standard deviation from the mean. The arrow
marks the probability for a zero outcome

and sY = s0Y we obtain the generating function

gGenPoiss(sX , sY , t) = exp
(〈
x
〉
0(e

kcatt (sY−1)sX − 1) + 〈
y
〉
0(sY − 1)

)
. (37)

The marginal distribution of Y can be represented as a convolution of Neyman’s type
A distribution and a Poisson distribution:

P ∼ [
Poisson(

〈
x
〉
0)
∨

Poisson(kcatt)
︸ ︷︷ ︸

Neyman Type A

] ∗ Poisson(
〈
y
〉
0). (38)

In case we set y0 = 0 as a deterministic initial condition, the distribution is identical
to Neyman’s Type A distribution. In Fig. 3, we depict a numerical evaluation of this
multimodal distribution. Conditional multimodality is expected by Theorem 3, since
the Jacobian exhibits eigenvalues dependent on sY . Note that the most likely outcome
is zero, is far from the mean (solid gray line in Fig. 3), even outside the standard
deviation (dashed gray line). This clearly demonstrates the misleading character of
mean and standard deviation for multimodal distributions. The high probability for
a zero outcome, depicted by the black arrow in Fig. 3, can be explained by the high
likelihood of an “extinction scenario”: If there are initially no molecules of species
X , the number of molecules of type Y must always be zero. This phenomenon can be
found in many hierarchic networks, as we show in the following figures.

Using deterministic initial conditions, we obtain a contrasting picture, since the
resulting marginal distributions are Poissonian:

gdet(sX , sY , t) = (sX )x0(sY )y0 = (ekcatt (sY−1)sX )x0(sY )y0

⇒ gdet(1, sY , t) = (ekcatt (sY−1))x0︸ ︷︷ ︸
:=gcat(sY )

. (39)

In consequence, no multimodality is observed. However, sincePcat ∈ KTB∞, Propo-
sition 7 predicts conditionally multimodality. This is not a contradiction because
conditional multimodality is a notion defined by the order of the generalizing dis-
tribution g2(s) (see Def. 6), not by the model parameters (here kcat). For a concrete
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Fig. 4 Plot of the joint
distribution for the educt X and
product Y for the same
parameters and time points as
Fig. 3

model, only subsets of the parameter space, defined by the set of coefficients of g2(s),
are reachable by appropriate choices of the model parameters (here kcat). In our model
this subset does not contain tomultimodal distributions. The joint distribution is plotted
in Fig. 4.

To obtain a multimodal distribution for deterministic initial conditions, we add a
degradation reaction, as shown in the next example.

Example 2 (Catalysis with degradation) We see a different picture for deterministic
initial conditions once we add a degradation mechanism:

X
kcat→X + Y

X
kdeg→∅.

These reactions result in the characteristic system

dsX
dt

= − kcat(sX sY − sX ) − kdeg(1 − sX )

dsY
dt

= 0,

solved by

sX (t) =
(
sX (kcat(1 − sY ) + kdeg) − kdeg

)
et (kcat(1−sY )+kdeg) + kdeg

kcat(1 − sY ) − kdeg
.
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(a) (b)

Fig. 5 Marginal distributions py := P(y, t |y0 = 0, 0) at t = 1.4 s. Parameters: kcat = 10.1 s−1,
kdeg = 0.5 s−1. The thick gray lines depict the expectation value, while the dashed lines stand for the
standard deviation. The arrow marks the probability for a zero outcome. a Poissonian initial conditions:〈
x
〉
0 = 1,

〈
y
〉
0 = 0.001. b Deterministic initial conditions: x0 = 1, y0 = 0

Deterministic initial conditions result in the following generating function:

g(sX , sY , t)

=
(
e−t (kcat(1−sY )+kdeg)

(−sX (kcat(1 − sY ) + kdeg) + kdeg
(−et (kcat(1−sY )+kdeg)

)+ kdeg
)

kcat(sY − 1) − kdeg

)x0

(sY )y0 .

Figure 5 shows the comparison between Poissonian and deterministic initial condi-
tions. For Poissonian initial conditions, the scenario of starting without any molecules
of species X is possible. This “extinction scenario” does not lead to the production of
any Y molecules at any time and is seen by the large peak at y = 0 in Fig. 5a. For
deterministic initial conditions, we set x0 = 1 and Fig. 5b therefore does not exhibit
a peak of the same size at y = 0. However, after some time, the species X may well
become extinct and therefore the mode at y = 0 still appears, albeit with a lower size
compared to Fig. 5a.

Example 3 (Simple splitting) The simple splitting reaction X
k1→ Y + Z , obeys the

characteristic system

dsX
dt

= − k1(sY sZ − sX )

dsY
dt

= 0

dsZ
dt

= 0.

It is solved by

sX (t) = s0Xe
k1t + sY sZ (1 − ek1t )

⇔ s0X = e−k1t sX (t) − sY sZ (e−k1t − 1).
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Poissonian initial conditions yield the generating function

g(sX , sY , sZ , t)

= exp
{〈
x1
〉
0(e

−k1t sX (t) − sY sZ (e−k1t − 1) − 1)+〈x2
〉
0(sY − 1)+〈x3

〉
0(sZ − 1)

}
.

(40)

Therefore, the marginal distributions are Poissonian and the joint distribution is a
multivariate Poisson distribution, studied in detail by Kawamura (1979). The product
Poisson distribution differs from the multivariate Poisson distribution by the fact that
the variables Y and Z correlate, yet the marginal distributions stay unimodal for both.

Without the explicit solution (40), we prove unconditional unimodality by not-
ing that either Y or Z may be assigned to the independent part of the network. In
consequence, Theorem 2 can be applied to both Y and Z .

Example 4 (Additional conversion) Things get more interesting as we add a conver-
sion reaction to the same network:

X
k1→ Y + Z

Y
k2→ X.

The characteristic system is given by

dsX
dt

= − k1(sY sZ − sX )

dsY
dt

= − k2(sX − sY )

dsZ
dt

= 0,

and the Jacobian by

J(sZ ) =
(

k1 −k1sZ
−k2 k2

)
.

The characteristic polynomial

det(λI −
(

k1 −k1sZ
−k2 k2

)
) = − k1λ − k2λ − k1k2sZ + k1k2 + λ2

depends on sZ , which implies ∂sZ λ(sZ ) �= 0. Proposition 6 therefore applies and
the resulting distributions are conditionally multimodal. Multiple modes, obtained by
assuming Poisson distributed initial numbers, are visible in the marginal distribution
Fig. 6 as well as the joint distribution Fig. 7.

By adding a degradation reaction X
k3→ ∅ to this model and setting k2 � k1, we

obtain a model that behaves like Example 2. In consequence, multimodal distributions
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Fig. 6 Marginal distribution pz := P(z, t |z0 = 0, 0), given Poissonian initial conditions
〈
x
〉
0 = 1.875,〈

y
〉
0 = 1.875, as well as the deterministic initial condition ξZ = 0. Parameters are k1 = 7.0 s−1, k2 =

1.875 s−1. The thick black line represents the mean while the dashed lines depict the standard deviation.
The arrow marks the probability for a zero outcome

Fig. 7 Plot of the joint
distribution for the educt X and
product Z for the same
parameters as Fig. 6
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Fig. 8 Marginal distribution of protein numbers py := P(y, t |y0 = 0, 0) created from 105 simulated

trajectories. Parameters: t = 2.7 s and t = 15.0 s, kmRNA
deg = 1.2 s−1, kmRNA

syn = 1.2 s−1, kprotdeg = 0.3 s−1,

ktransl = 10.0 s−1, deterministic initial conditions with x0 = y0 = 0. The thick gray lines depict the
expectation value, while the dashed lines stand for the standard deviation. The arrow marks the probability
for a zero outcome in the left hand side plot

appear for deterministic and Poissonian initial conditions for k1 = kcat and k3 = kdeg
(data not shown).

4.2 Real world models

Example 5 (Transcription–translation model) The two-stage model, which excludes
any effects of promoter activity, consists of the reactions

∅ kmRNA→ X

X
dmRNA→ ∅

X
ktl→ X + Y

Y
dprot→ ∅,

where X are mRNA molecules and Y proteins. We use the implementation of Gille-
spie’s algorithm by Maarleveld et al. (2013) to simulate this model.

The appearance of multimodal distributions is due to the reaction X → X +
Y , studied in Example 2. As mentioned there, the Jacobian’s eigenvalues depend
on sY , conditional multimodality is expected. Figures 8 and 9 show that the protein
distribution can be multimodal for deterministic and Poissonian initial conditions
respectively. Previously, the two-stage transcription–translation model was not shown
to be conditionallymultimodal (Shahrezaei and Swain 2008). Given small degradation
rates, the apparent difference between the shape of Neyman’s Type A distribution (see
Figs. 2c and 3), solving the CME for X → X + Y , and the simulation results is rather
small. Furthermore, the previously described “extinction scenario” is visible by the
large peak at y = 0 in Figs. 8 and 9. This highlights the usefulness of basic models
for the study of more complex models.
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Fig. 9 Marginal distribution of proteins py := P(y, t |y0 = 0, 0), simulated using Poissonian initial

conditions for the mRNA,
〈
x
〉
0 = 2. Parameters: kmRNA

deg = 0.2 s−1, kmRNA
syn = 0.4 s−1, kprotdeg = 0.3 s−1,

ktransl = 20.0 s−1. The number of simulated trajectorieswas 106. The thick gray lines depict the expectation
value, while the dashed lines stand for the standard deviation. The arrow marks the probability for a zero
outcome

The right panel in Fig. 8 shows that the probability of still having zero proteins
after 15 s is much smaller than at 2.6 s. Therefore, the corresponding mode disap-
pears. However, the distribution class is still conditionally multimodal as predicted by
Theorem 3. Remember that conditional multimodality is a notion defined by the order
of the generalizing distribution g2(s) (see Def. 6), not by the model parameters.

Example 6 (Natural decay series including decay particles) In an extension of the
classicalmodel byBateman (1910), we now formulate the reaction network for nuclear
decay chains including decay particles α, β and γ . The stoichiometry of the model is

Xi
ki→ Xi+1 + Ri,αα + Ri,ββ + Ri,γ γ ,

where Ri,α , Ri,β and Ri,γ are the numbers of decay particles involved in each reaction.
The generating function PDE corresponding to the Master equation is

∂t g =
n−1∑

i=1

ki (s
Rα,i
α s

Rβ,i
β s

Rγ,i
γ si+1 − si )∂si g. (41)
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Asbefore,we solve thePDE(41) using themethodof characteristics. The characteristic
ODEs corresponding to Eq. (41) are:

dsi
dt

= −ki (s
Rα,i
α s

Rβ,i
β s

Rγ,i
γ si+1 − si ) (i ∈ 1, . . . , n − 1) (42)

dsn
dt

= 0 (43)

dsα
dt

= dsβ
dt

= dsγ
dt

= 0

dg(s(t), t)
dt

= 0 ⇒ g(s(t), t) = f (s0). (44)

These equations represent a hierarchically linear ODE system. It can be interpreted
as being composed of two subsystems, just as in Theorem 2. System I consists of all
isotopes, while system II represents the α, β and γ particles. System II is a trivial
example of a monomolecular reaction network, since no reactions take place within
the system, we just have to consider the influx of particles from system I. We note
that the Jacobian matrix of the characteristic system is identical to the rate equation’s
transposed, as discussed in Sect. 2.3. The ODE system is homogeneous and we have

s = eA(sα,β,γ )t s0

⇔ s0 = e−A(sα,β,γ )t s,

where A(sα,β,γ ) = (∂s j
dsi
dt ) is the Jacobian. We express the generating function for

Poissonian initial conditions by this matrix as

g(s, t) = exp
{〈
x
〉
0 · (s0 − 1)

}

= exp
{〈
xα,β,γ

〉
0 · (sα,β,γ − 1) + 〈

x1,...,n
〉
0 · (exp(−A(sα,β,γ )t)s − 1)

}

= exp
{〈
xα,β,γ

〉
0 · (sα,β,γ − 1) + exp(−A(sα,β,γ )Tt)

〈
x1,...,n

〉
0 · s − 〈

x1,...,n
〉
0 · 1

}
.

In the last line, we have used the identity Ab · c = b ·ATc = ATc · b, which holds for
any square matrix A and two vectors b, c of the same dimension.15 The insight of the
equivalence of the characteristic system and the transposed rate equation system, as
discussed in Sect. 2.3, greatly simplifies the following computations. In consequence,
the solution of the Master equation is not much more difficult than the solution of the
rate equations, as provided by Bateman (1910) originally.

15 This identity can be seen by writing out the components of the scalar and matrix product:

n∑

i=1

(
Ab
)

i
ci =

n∑

i=1

bi
(
ATc

)

i

n∑

i=1

n∑

j=1

Ai j b j ci =
n∑

i=1

bi

n∑

j=1

ATi j c j =
n∑

i=1

bi

n∑

j=1

A ji c j .
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The difference to Bateman’s system is that the negative Jacobian matrix AT depends
on the constants sα , sβ and sγ :

− AT(sα,β,γ ) =
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−k1 0 . . . 0

k1s
Rα,1
α s

Rβ,1
β s

Rγ,1
γ

0
. . .

−ki 0

ki s
Rα,i
α s

Rβ,i
β s

Rγ,i
γ

. . .

−kn−1 0

0 kn−1s
Rα,n−1
α s

Rβ,n−1
β s

Rγ,n−1
γ 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since this matrix is triangular, the eigenvalues are the diagonal entries. Because the
eigenvalues do not depend on sα,β,γ , the marginal distribution of the corresponding
particles obeys Proposition 3. Furthermore, Theorem 4 predicts that conditional mul-
timodality depending on the choice of Rα,i , Rβ,i and Rγ,i . Note that Theorem 4 gives
us this information without the exact solution of the system presented here.

We now proceed along the lines of Pressyanov (2002) and solve the rate equation
system, transposed to the characteristic system, to obtain exp(−AT(sα,β,γ )t)

〈
x1,...,n

〉
0.

The computations can be found in “Appendix A.4” and yield

(
exp

(− AT(sα,β,γ )t
)〈
x1,...,n

〉
0

)

i

= 〈
xi
〉
0e

−ki t +
i−1∑

m=1

〈
xm
〉
0

( i−1∏

l=m

kls
Rα,l
α s

Rβ,l
β s

Rγ,l
γ

) i∑

l=m

e−kl t

∏i
j=m, j �=l(k j − kl)

.

In consequence, we use the matrix exponential to express the generating function as

g(s, t) = exp
{〈
xα,β,γ

〉
0 · (sα,β,γ − 1)

+
n∑

i=1

[(〈
xi
〉
0e

−ki t

+
i−1∑

m=1

〈
xm
〉
0

( i−1∏

l=m

kls
Rα,l
α s

Rβ,l
β s

Rγ,l
γ

) i∑

l=m

e−kl t

∏i
j=m, j �=l(k j − kl)

)(
si − 〈

xi
〉
0

)]}
.
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Fig. 10 Marginal distribution py := P(y, t |y0 = 0, 0) of decay particles Y . Parameters:
〈
x1
〉
0 = 2,〈

x2
〉
0 = 0.1,

〈
x3
〉
0 = 0.001, k1 = 3.1 s−1, k2 = 1 s−1. The thick black line represents the mean while the

dashed lines depict the standard deviation

Interestingly, the further the isotopes are downstream of the decay chain, themore they
contribute to the higher order cumulants16 of the α, β and γ particles.17 An insight
like that is not easily gained by doing stochastic simulations, because the simulation
results alone would not directly point to this fact. We also see that the distribution is
not simply characterized by mean and covariance.

Next, we consider multimodality of the marginal distributions. Since the eigenval-
ues ofAT(sα,β,γ ) do not depend on sα,β,γ , Theorem 4 applies and predicts conditional
multimodality for several minimal networks. First, we consider networks correspond-
ing to case 1. We evaluate the solution for the decay chain

16 The cumulants are defined as the coefficients of the cumulant generating function κ(ξ) := log(g(eξ ))

at ξ = 0.
17 This can be seen by looking at the number of factors

∏i−1
l=m .
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X1
k1→X2 + Y (45)

X2
k2→X3 + Y (46)

and plot the marginal distributions for Y in Fig. 10. The plots, depicting the temporal
evolution of the marginal distribution, clearly demonstrate multimodality. Here, (45–
46) represent theminimal reaction networkType I fromTheorem4.Aminimal reaction
network of Type II is obtained by reducing the network to

X1
k1→ X2 + 2Y. (47)

Finally, by assigning X2 to the dependent part of the network, we obtain an even

smaller network as X1
k1→ (X2) + 2Y . Now the independent part of the network is

open. If we ignore X2, this represents case 2 in Theorem 4.
Note that X2 can either be assigned to the independent or the dependent part of the

reaction network. However, in either case Theorem 4 applies and predicts conditional
multimodality.

5 Conclusions

In this article, we analyzed the CME for hierarchic first-order reaction networks,
based on a general solution method. We showed in Theorem 1 that hierarchic reaction
networks are generally treatable in an analytic manner. We derived the analytical solu-
tion for the joint probability generating function for Poisson and deterministic initial
conditions. Next we analyzed the multimodality of resulting marginal distributions of
individual species. The analysis revealed that themarginal distributions of species from
the independent part of the network are unimodal (Theorem 2), while the dependent
part yields conditionally multimodal distributions (Theorems 3 and 4). Furthermore,
we presented several basic models of hierarchic reaction networks, which we consider
insightful for the understanding of larger reaction networks. We illustrated this point
by showing the similarity between the catalysis basic model and the transcription–
translation model. As a proof of principle, we showed that even more complex models
such as the nuclear decay chain presented here, are amenable to an exact analytical
treatment.

Underlining the prevalence of multimodality, we saw that even trivial networks like
the one from Example 1, consisting of the reaction X → X + Y , are conditionally
multimodal given Poissonian initial conditions. We also showed that deterministic
initial conditions give rise to multimodal distributions in Examples 2 and 5. For the
two-stage transcription–translation model, multimodality was previously not reported
(Shahrezaei and Swain 2008).

Since the main Theorems 3 and 4 only require knowledge about the dependence
of the eigenvalues of the Jacobian matrix on the variable of interest, it is sufficient
to compute the characteristic polynomial of the Jacobian matrix. However, the char-
acteristic polynomial of any square matrix is algorithmically computable and so our
Theorems are algorithmically applicable in practice. We furthermore demonstrated
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how insight about a network may be gained by simply dividing the network into
dependent and independent parts (see Example 3), without doing any calculations or
simulations. Therefore, we believe that our abstract treatment of hierarchic reaction
networks may inspire other researchers to analyze and design networks with respect
to their multimodality properties.

6 Further developments

As a future project, we suggest the development of a numerical software to determine
the parameter regions ofmultimodality of our basicmodels. In that study, the collection
of basic models maybe extended, since the ones presented here are far from the only
ones whose generating function may be written in a compact form. It might also be
interesting to study n-fold hierarchies instead of the two-level hierarchies presented
here.

Furthermore, we note that the Luria–Delbrück model (Zheng 1999), describing the
division of wild-type cells X into mutants Y may be investigated in a similar way we
proposed. One of the many variants of the model is defined by

X
kwt→ 2X

X
kmut
wt→ X + Y

X
dwt→ ∅

Y
kmut→ 2Y

Y
dmut→ ∅.

Even though the reaction equations show the hierarchic character of the model, they
do not fit our definition of hierarchic first-order networks. This fact can by seen by the
characteristic ODEs:

dsX
dt

= −kwt(s
2
X − sX ) − kmut

wt (sX sY − sX ) − dwt(1 − sX ) (48)

dsY
dt

= −kmut(s
2
Y − sY ) − dmut(1 − sY )

dg

dt
= 0. (49)

The system is not hierarchically linear due to the s2X and s2Y terms, which is why we
excluded autocatalytic reactions X → 2X from our study. However, (48) and (49) are
examples of Riccati differential equations, and may be linearized as such by a coor-
dinate transformation. In this way, an exact solution of the system can be obtained,18

even though it involves large expressions involving hypergeometric functions.

18 Write the author for a sketch of the calculations.
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Appendix

A.1 How to obtain distributions from generating functions

Before finally coming to the proof of Proposition 2, we discuss how the probability
mass function (PMF), defined as the coefficients of the generating function, can be
found. In the first-order case, this is not as easy as in the monomolecular case, where
the product Poisson and multinomial distributions are obtained (Jahnke and Huisinga
2007). Even the PMF of the relatively simple Neyman Type A distribution given by
g(s) = eλ(exp(φ(s−1))−1), almost identical to Eq. (38) from Example 1, is defined only
in terms of a multinomial expansion (Zhang et al. 2014). In general, the distribution
corresponding to the generating function of Eq. (19) is not expressible in terms of
elementary functions, except for special cases.

Generally, the coefficients of a generating function g(s, t) are given by the multi-
variate Cauchy integral formula

P(x, t) = 1

(2π i)n

∮

C1×···×Cn

g(s, t)
sx+1 ds. (50)

This identity is due to the definition of the generating function as a power series.
Here, Ci are discs encircling the origin on the complex (hyper)plane. See Pemantle
and Wilson (2013), Appendix A, for the technicalities of the definition of multivariate
Cauchy integrals.

Asymptotic joint distributions |x| → ∞ can be obtained by applying a saddle
point integration approach to the Cauchy integral (50). Pemantle and Wilson (2013)
present these techniques, developed over the course of the last 20years, in an excellent
textbook. The resulting asymptotic distributions are often in very good numerical
agreement with the exact ones, even for low |x|, and are a convenient tool to analyze
the distributions.

If only a numerical evaluation of the distributions is needed, the Discrete Fourier
Transform (DFT) is obtained by defining s := e−2π iω with ω ∈ [0, 2π ] and the
application of an inverse Fast-Fourier Transform (FFT) leads to a fast computation
of the distributions. Recently, Xu and Minin (2015) have made efforts to increase the
efficiency of these computations. Numerical integration of (50) is of course also a
possibility.

Lastly, it shall be mentioned that there are a number of algorithms based on recur-
rences (Zheng 1999; Zhang et al. 2014), applicable for one dimensional distributions.
Themost important of these is the Lévy-Adelson-Panjer recursion for theDCPN , given
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by

pk+1 = λ

k + 1

k∑

j=0

(k + 1 − j)αk+1− j p j . (51)

In practice, the sum
∑k

j=0 often converges after a constant number of terms (i.e. the

convergence is linear,19) so the computational cost of evaluating n probabilities is
O(n). Khatri and Patel (1961) provide recurrences for KTBN distributions, needed
for the deterministic initial condition setting.

The generating function can also be used directly for parameter estimation, with-
out calculating the distribution first. Marcheselli et al. (2008) propose a method for
parameter estimation that is based exclusively of generating functions.

A.2 Proof of Lemma 1

Proof The proof is adapted from Gardiner (2009), Sect. 11.6.4, p. 297. We first mul-
tiply with sx and sum over all x to obtain

∂t g(s, t) =
∞∑

x=0

m∑

i=1

sx (αi (x − ni )P(x − ni , t) − αi (x)P(x, t))

=
m∑

i=1

( ∞∑

x′=0

sx
′+ni αi (x′)P(x′, t) −

∞∑

x=0

sxαi (x)P(x, t)

)
. (52)

Using the definition of the stochastic propensities αi (x) = ki
∏n

j=1
x j !

(x j−Q ji )! , we find
the identities

sxαi (x) = ki

n∏

j=1

s
x j
j x j !

(x j − Q ji )! = ki

n∏

j=1

s
x j
j (x j (x j − 1)(x j − 2) · · · (x j − Q ji + 1)

= ki

n∏

j=1

s
Q ji
j

(
∂
Q ji
s j s

x j
j

)

and

sx+niαi (x) = ki

n∏

j=1

s
x j+n ji
j x j !

(x j − Q ji )! = ki

n∏

j=1

s
R ji
j

(
∂
Q ji
s j s

x j
j

)
.

Plugging these into Eq. (52), the desired Eq. (4) is obtained. �

19 Deuflhard and Hohmann (2003), p. 85, Definition 7.
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A.3 Proof of solution formula for twofold hierarchy

Proof We start by writing out the PDE for a system of two parts, corresponding to
the variables sind := (s1, . . . , snind)

T and sdep := (snind+1, . . . , sn)T, as depicted in an
exemplary manner in Fig. 1.

The PDE for the generating function, derived from Lemma 1, then reads

∂g(s, t)
∂t

=
m∑

i=1

ki

(
ci (sdep)

( nind∑

l=1

Rli sl + δ∑nind
l=1 Rli ,0

)
−

nind∑

l=1

Qli sl

)( nind∑

l=1

Qli∂sl

)
g

+
N∑

i=nind+1

N∑

j=nind+1

αi j
(
s j − si

)
∂si g(s, t)

+
N∑

i=nind+1

αi0(1 − si )∂si g(s, t) + b · (s − 1)g(s, t).

ci (sdep(t ′, t)) := ∏n
l=nind+1 s

Rli
l (t ′, t) is defined to be the function representing the

produced molecules that do not belong to part I. The characteristic ODEs are obtained
in the same manner as for monomolecular systems and read for part I as:

ds j
dt

= −
m∑

i=1

Q ji ki

(
ci (sdep)

( nind∑

l=1

Rli sl + δ∑nind
l=1 Rli ,0

)
− Q ji s j

)
(ki ∈ R

+).

Part II is monomolecular and the characteristic equations are:

dsdep
dt

= −AT(sdep − 1).

The total derivative of g(s(t), t) reads

dg(s(t), t)
dt

= b · (s − 1)g(s, t). (53)

The Jacobian matrix for part I is given by

J jk = −∂sk

m∑

i=1

Q ji ki

(
ci (sdep)

( nind∑

l=1

Rli sl(t) + δ∑nind
l=1 Rli ,0

)
− Q ji s j (t)

)
(k ∈ 1, . . . nind)

= −
m∑

i=1

Q ji ki

(
ci (sdep)

nind∑

l=1

Rliδkl − 1

)

=
m∑

i=1

Q ji ki
(
1 − ci (sdep)Rki

)
.
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If the Jacobian commutes for two different times, i.e. J(t1)J(t2) = J(t2)J(t1), the
homogeneous part of this system is solved by exp

{ ∫ t
0 J(sdep(t

′))dt ′
}
. If it does not

commute, exp
{ ∫ t

0 J(sdep(t
′))dt ′

}
is the first term of the Magnus expansion

e�(J(t)) = exp
{ ∫ t

0
J(sdep(t ′))dt ′ +

∫ t

0

∫ t1

0
[J(sdep(t1)), J(sdep(t2))]dt2dt1 + · · ·

}
.

The nonhomogeneous part is

f j (t) := −
m∑

i=1

Q ji ki ci (sdep(t)) (54)

for the lth component of system I, so the complete solution reads

sind(t) = exp
{ ∫ t

0
J(sdep(t ′))dt ′

}
s0ind+

exp
{ ∫ t

0
J(sdep(t ′))dt ′

} ∫ t

0
exp

{
−
∫ t ′

0
J(sdep(t ′′))dt ′′

}
f(sdep(t ′))dt ′

(55)

sdep(t) = exp(−ATt)(s0dep − 1) + 1. (56)

From Eq. (53), we know that

g(s(t), t) = d(s0) exp
(∫ t

0
b · (s(t ′) − 1)dt ′

)

where d(s0) is an arbitrary function to be determined by the initial conditions. The
integral over ci (sdep(t ′, t)) = ∏n

l=nind+1(sl(t
′, t))Rli appears both in the homogeneous

and in the inhomogeneous part of the equations for sind(t ′, t):

∫ t

0

n∏

l=nind+1

sRlil (t ′, t)dt ′ =
∫ t

0

n∏

l=nind+1

(
exp

{
− ATt ′

}
(s0dep − 1) · εl + 1

)Rli

dt ′

=
∫ t

0

n∏

l=nind+1

(
exp

{
− ATt ′

}
exp(ATt)(sdep − 1) · εl + 1

)Rli

dt ′

=
∫ t

0

n∏

l=nind+1

(
exp

{
− A(t ′ − t)

}
εl · (sdep − 1) + 1

)Rli

dt ′.

(57)

In the last line, we made use of the identity Ab · c = b · ATc = ATc · b. We note
that the integral can be expressed completely in terms of the fundamental matrix of
the second, monomolecular reaction network. Thus, the property that the statistics of
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monomolecular networks can be fully parametrized by the solution of its traditional
reaction rate equations translates to hierarchic first-order networks.

Using Poissonian initial conditions, we find d(s0):

g(s0, t = 0) = exp(〈x〉0 · (s0 − 1)) = d(s0). (58)

We solve Eq. (55) for s0ind:

s0ind = exp
{

−
∫ t

0
J(sdep(t ′))dt ′

}
sind −

∫ t

0
exp

{
−
∫ t ′

0
J(sdep(t ′′))dt ′′

}
f(s2(t ′))dt ′.

The last integral is over a double exponential function and a simple exponential, hidden
in

f j (sdep, t ′, t) := −
m∑

i=1

Q ji ki

n∏

l=nind+1

(
exp

{
− A(t ′ − t)

}
εl · (sdep − 1) + 1

)Rli

and is not easily expressed in terms of elementary functions. A series expansion can
be found, but is not very simple, which is why we keep the integral as it is. For s0dep,
we obtain the same result as in the monomolecular case, namely

s0dep = exp(ATt)(sdep − 1) + 1 .

The complete generating function is

g(s, t) = exp
{

〈x1〉0 · (e− ∫ t0 J(sdep,t ′,t)dt ′sind −
∫ t

0
e− ∫ t ′0 J(sdep,t ′′,t)dt ′′ f(sdep, t ′, t)dt ′

︸ ︷︷ ︸
:=sind(t)

−1)

+ 〈x2〉0 · exp(ATt)(sdep − 1) +
∫ t

0
b · (sind(t ′′′) − 1)dt ′′′

}

= exp
{
(e− ∫ t0 JT(sdep,t ′,t)dt ′ 〈x1〉0 · sind

−
∫ t

0
e− ∫ t ′0 JT(sdep,t ′′,t)dt ′′ 〈x1〉0 · f(sdep, t ′, t)dt ′ − 〈x1〉0)

+ exp(At) 〈x2〉0 · (sdep − 1) +
∫ t

0
b · (sind(t ′′′) − 1)dt ′′′

}
. (59)

If the initial condition is deterministic, that is P(x, 0) = δx,x0 , where x0 =
(x01 , . . . , x

0
n )

T, we have

g(s(0), 0) =
∞∑

x=0

δx,x0(s0)
x0 =

n∏

i=1

(s0i )
x0i = d(s0) . (60)
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This yields the result, using εi := coli In×n and ε
(1)
i := (εi,1, . . . , εi,nind)

T, ε
(2)
i :=

(εi,nind+1, . . . , εi,n)
T:

d(s0) =
n∏

i=1

(s0i )
x0i =

n∏

i=1

(
s0 · εi

)x0i

=
n∏

i=1

([
e− ∫ t0 J(sdep,t ′,t)dt ′sind −

∫ t

0
e− ∫ t ′0 J(sdep,t ′′,t)dt ′′f(sdep, t ′, t)dt ′

] · ε
(1)
i

+
(
eA

Tt (sdep − 1) + 1
)

· ε
(2)
i

)x0i
(61)

=
n∏

i=1

(
e− ∫ t0 JT(sdep(t ′))dt ′ε(1)

i · sind −
∫ t

0
e− ∫ t ′0 JT(sdep(t ′′))dt ′′ε(1)

i · f(s2(t ′))dt ′

+
(
exp(At)ε(2)

i · (sdep − 1) + 1
))x0i

. (62)

�

A.4 Solution of characteristic ODE system for decay chains

The ODE system, describing the temporal evolution of the concentration of isotope
xi , is transposed to the characteristic system (43–44) of the PDE (41). More precisely,
the system for xi is identical to the original one from Bateman (1910), except for the

factors20 representing the decay particles, s
Rα,i
α s

Rβ,i
β s

Rγ,i
γ :

dx1
dt

= −k1x1 (63)

dx2
dt

= k1s
Rα,1
α s

Rβ,1
β s

Rγ,1
γ x1 − k2x2

...
dxn
dt

= kn−1s
Rα,n−1
α s

Rβ,n−1
β s

Rγ,n−1
γ xn−1 − knxn . (64)

Due to this similarity, we are able to adapt the calculations from Pressyanov (2002)
almost one-to-one.We take theLaplace transform21 on both sides of Eqs. (63) and (64),
thereby introducing the complex variable σ , setting x0i = 0 for i ≥ 2, and obtain

20 In the following, we suppress the dependence of x on s
Rα,i
α s

Rβ,i
β s

Rγ,i
γ for better readability.

21 See Brannan (2010) for an introduction.
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∫ ∞

0
e−σ t dx1

dt
dt =

∫ ∞

0
e−σ t dx1 = e−σ t x1(t)

∣∣∣
∞
0

+ σ

∫ ∞

0
e−σ t x1(t)dt

= −x01 + σ x̃1(σ )

= −k1 x̃1(σ ), (65)∫ ∞

0
e−σ t dx2 = σ x̃2(σ )

= k1s
Rα,1
α s

Rβ,1
β s

Rγ,1
γ x̃1(σ ) − k2 x̃2(σ )

...∫ ∞

0
e−σ t dxn

dt
dt = σ x̃n(σ )

= kn−1s
Rα,n−1
α s

Rβ,n−1
β s

Rγ,n−1
γ x̃n−1(σ ) − kn x̃n(σ ).

(66)

In Laplace domain, we solve a linear equation system and invert the Laplace transform
x̃(σ ) to obtain x(t). The solution of Eqs. (65–66) is given by

x̃1(σ ) = x01
k1 + σ

,

x̃2(σ ) = k1s
Rα,1
α s

Rβ,1
β s

Rγ,1
γ

k2 + σ
x̃2(σ ),

...

x̃n(σ ) = kn−1s
Rα,n−1
α s

Rβ,n−1
β s

Rγ,n−1
γ

kn + σ
x̃n−1(σ ). (67)

The last Eq. (67) represents the starting point of a linear recurrence, which, if the initial
conditions x2, . . . xn are set to zero,22 can be solved by

x̃n(σ ) =
∏n−1

i=1 ki s
Rα,i
α s

Rβ,i
β s

Rγ,i
γ∏n

i=1(ki + σ)
x01 .

Now, we go back from Laplace domain to the time domain, by performing the
Bromwich integral

xn(t) = 1

2π i

∫ δ+i∞

δ−i∞
eσ t x̃n(σ )dσ.

Here, δ defines an integration path parallel to the complex line that is situated right of
all singularities of x̃n(σ ).Wemay choose δ = 0, since all poles are on the negative part

22 We will shortly investigate general initial conditions.
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Fig. 11 Integration path used
for the solution of the Bromwich
integral

of the real axis. By closing the integration path through the addition of a semicircle
(see Fig. 11), we obtain an integral that can be solved by applying the residue theorem,
since the contour is closed23:

1

2π i

∮

C
eσ t x̃n(σ )dσ = 1

2π i

∫ i∞

−i∞
eσ t x̃n(σ )dσ

+ lim
ρ→∞

1

2π i

∫ 3π/2

π/2
eρeiφ t

∏n−1
i=1 ki s

Rα,i
α s

Rβ,i
β s

Rγ,i
γ∏n

i=1(ki + ρeiφ)
x01 iρe

iφdφ.

Here, the contribution of the circular part to the value of the integral along C is
zero.24 we may calculate xn(t) by the residue formula

xn(t) = 1

2π i

∮

C
eσ t x̃n(σ )dσ =

n∑

j=1

Res j (e
σ t x̃n(σ )) ,

where the sum is over all poles. In our case, we have n simple poles and so the residue
theorem yields

Res j (e
σ t x̃n(σ )) = lim

σ→−k j
((σ + k j )e

σ t x̃n(σ ))

= e−k j t

∏n−1
i=1 ki s

Rα,i
α s

Rβ,i
β s

Rγ,i
γ∏n

i=1,i �= j (ki − k j )
x01 .

23 See Boas (2006) for a review of the solution methods for this kind of integral.
24 To see this, apply the integral triangular inequality.
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Summing over all residues, we get

xn(t) = x01

( n−1∏

i=1

ki s
Rα,i
α s

Rβ,i
β s

Rγ,i
γ

) n∑

j=1

e−ki t
∏n

i=1,i �= j (ki − k j )
.

The only thing left to do is to generalize the initial conditions for x2, . . . xn−1. If we
set xm �= 0, we obtain for example

xi (t) = x01

( i−1∏

l=1

kls
Rα,l
α s

Rβ,l
β s

Rγ,l
γ

) i∑

l=1

e−kl t

∏i
j=1, j �=l(k j − kl)

+x0m
( i−1∏

l=m

kls
Rα,l
α s

Rβ,l
β s

Rγ,l
γ

) i∑

l=m

e−kl t

∏l
j=m, j �=l(k j − kl)

.

Applying this idea to all x0i , we conclude the solution of the rate equations with

xi (t) = x0i e
−ki t +

i−1∑

m=1

x0m
( i−1∏

l=m

kls
Rα,l
α s

Rβ,l
β s

Rγ,l
γ

) i∑

l=m

e−kl t

∏i
j=m, j �=l(k j − kl)

.
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