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Abstract A SIR epidemic model is analyzed with respect to identification of its
parameters, based upon reported case data from public health sources. The objective
of the analysis is to understand the relation of unreported cases to reported cases. In
many epidemic diseases the ratio of unreported to reported cases is very high, and of
major importance in implementing measures for controlling the epidemic. This ratio
can be estimated by the identification of parameters for the model from reported case
data. The analysis is applied to three examples: (1) the Hong Kong seasonal influenza
epidemic inNewYorkCity in 1968–1969, (2) the bubonic plague epidemic inBombay,
India in 1906, and (3) the seasonal influenza epidemic in Puerto Rico in 2016–2017.

Keywords Epidemic models · Transmission rate · Reported cases · Unreported cases

Mathematics Subject Classification 92D25 · 92D30 · 93B30

1 Introduction

Amajor challenge in the application of epidemicmodels is the determination of model
parameters.The challenge ismade difficult by the lack of complete data available in the
course of a typical epidemic disease. In theUnited States, typical epidemic data consist
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of Morbidity and Mortality Weekly Reports (MMWR) published by the Centers for
Disease Control and Prevention. For many diseases, such as seasonal influenza, these
data are very incomplete, and record only a small fraction of total cases. In general,
reported cases are not representative of all cases, with respect to symptoms severity,
infectiousness level, demographic classification, and social context. Identifying the
fraction of unreported cases requires that the unknown becomes known.Mathematical
models of an epidemic’s evolution provide a way to make known this unknown. The
distinction can be incorporated into the model parameterization, and the known case
data can be related to the number of unknown cases through the transmission dynamics
in the model construction.

We assume that reported case data provide a time-sequential record of the number
of cases reported in some specified formulation by public health officials. We assume
that these cases are removed from the infected class and that they no longer have
capability to infect susceptible individuals (due to mortality, hospitalization, isolation,
social instruction, or other reasons). We assume that a typical susceptible individual
has the potential to be infected by an infected individual independently of whether or
not the infected individual will ultimately be reported.

We note several examples of case data for specific epidemics. In Biggerstaff and
Balluz (2011) data for the 2010–2011 influenza season in the United States were
obtained by landline telephone survey of approximately 90,000 people. Of these 8.9%
of adults and 33.9% of children reported influenza like symptoms. In Reed et al. (2009)
a statistical estimator model was used to estimate the ratio of unreported to reported
cases for the H1N1 influenza epidemic in the United States from April to July 2009
as 79 to 1, and the ratio of total cases to confirmed cases as 140 to 1. In Shrestha et al.
(2011) it is estimated that approximately 60.8 million cases occurred in the United
States during this epidemic, with the population approximately 300 million during
this time period.

In Sect. 2 we present the SIRmodel and formulate a system of equations connecting
its parameters to reported case data. In Sect. 3 we solve this system of equations and
identify the model parameters. In Sect. 4 we present three examples of epidemics with
reported case data, and determine the fraction of their unreported cases. In Sect. 5 we
discuss our results and further work.

2 The deterministic SIR epidemic model and the identification of its
parameters

The first SIR deterministic epidemic models were developed by Bernoulli (1760),
Dietz and Heesterbeek (2000, 2002), Ross (1910), Kermack and McKendrick (1927,
1932, 1933), and Macdonald (1957). Investigations of these models and their exten-
sions have been developed by many researchers, including Anderson andMay (1991),
Bailey (1957), Brauer et al. (2008), Brauer andCastillo-Chavez (2000), Busenberg and
Cooke (1993), Diekmann et al. (2013), Hethcote (1976, 2000), Keeling and Rohani
(2007), Murray (1993), and Thieme (2003). The parameter identification problem for
SIR model has been investigated by many researchers, including Andreasen (2011),
Arino et al. (2007), Capistran et al. (2009), Chowell et al. (2003, 2007), Diekmann
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et al. (1990), Evans et al. (2005), Grassly and Fraser (2006), Hadeler (2011a, b), Het-
hcote (1996), Hooker et al. (2011), Hsieh et al. (2010), Lange (2016), Li and Lou
(2016), Ma and Earn (2006), Mummert (2013), Pellis et al. (2009), Pollicott et al.
(2012), Roeger et al. (2009), and Driessche and Watmough (2002).

The SIR model we analyze is the following: at time t , let S(t) be the number
of susceptible, I (t) the number of infected, and R(t) the number of removed and
permanently immune. The equations for the SIR model are

d

dt
S(t) = −τ I (t)S(t) (2.1)

d

dt
I (t) = τ I (t)S(t) − (ν1 + ν2)I (t) (2.2)

d

dt
R(t) = (ν1 + ν2)I (t) (2.3)

with initial conditions S(0) = S0 > 0, I (0) = I0 > 0, R(0) = R0 ≥ 0. Here τ

is the transmission rate, ν1 is the removal rate of reported infected individuals, and
ν2 is the removal rate of infected individuals due to all other unreported causes such
as mortality, recovery, or other reasons. It is assumed that a reported case, known to
medical care-givers or public health authorities, produces no further cases.

Although the analysis of (2.1), (2.2), (2.3) is well-known, we provide details here
for the sake of completeness. First, S(t) and I (t) are nonnegative when S0 > 0 and
I0 > 0, which implies S(t) is decreasing. The basic reproduction numberR0 is defined
as τ S0/(ν1 + ν2). If R0 < 1, then I (t) is decreasing. If R0 > 1, then I (t) is initially
increasing and then decreasing. Add (2.1) and (2.2) to obtain

S(t) + I (t) + (ν1 + ν2)

∫ t

0
I (s)ds = S0 + I0, (2.4)

which implies I (t) < ∞ for t ≥ 0, and
∫ ∞
0 I (t)dt < ∞. Also, (2.1) implies

log

(
S(t)

S0

)
= −τ

∫ t

0
I (s)ds ⇐⇒ S(t) = S0 exp

(
− τ

∫ t

0
I (s)ds

)
. (2.5)

Since S(t) is decreasing and
∫ ∞
0 I (t)dt < ∞ by (2.4), limt→∞ S(t) = S∞ > 0. Then

(2.4) implies limt→∞ I (t) = 0. Further, (2.4) and (2.5) imply

S∞ = S0 + I0 + ν1 + ν2

τ
log

(
S∞
S0

)
. (2.6)

It is possible to use the data of cumulative reported cases to determine the total
number of cases S(0)− S∞ over the course of the epidemic, as well as the parameters
τ , ν1, and ν2. The cumulative number of reported cases at time t is

CR(t) = ν1

∫ t

0
I (s)ds = ν1

τ
log

(
S0
S(t)

)
,
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and the total cumulative number of reported cases at the end of the epidemic is

CR∞ = lim
t→∞CR(t) = ν1

τ
log

(
S0
S∞

)
, (2.7)

which implies

S∞ = S0 exp

[
− τ

ν1
CR∞

]
. (2.8)

Then (2.6) implies

S0 exp

[
− τ

ν1
CR∞

]
= S0 + I0 − ν1 + ν2

ν1
CR∞. (2.9)

The cumulative number of both reported and unreported cases at time t is C(t) =
S0 + I0 − S(t), and the cumulative number of unreported cases at time t is CU (t) =
C(t) − CR(t). Since the total number of cases (the epidemic final size) is

CR∞ + CU∞ = S0 + I0 − S∞,

the total number of unreported cases is

CU∞ = S0 + I0 − S∞ − CR∞.

The epidemic attack ratio (defined as the fraction of the susceptible population that
becomes infected) is

(S0 + I0 − S∞)/(S0 + I0) = (CR∞ + CU∞)/(S0 + I0).

By symmetry, the ratio of reported cases to unreported cases is

CR(t)

CU (t)
= ν1

ν2
, since CR(t) = ν1

∫ t

0
I (s)ds and CU (t) = ν2

∫ t

0
I (s)ds.

Assume that the reported cases have a maximum at time tp, which we call the
turning point. Since (2.2) implies ν1 I ′(tp) = ν1(τ S(tp) − (ν1 + ν2))I (tp) = 0, we
obtain S(tp) = (ν1 + ν2)/τ . From (2.4 and (2.5) we obtain

CR(tp) = ν1

τ
log

(
τ S0

ν1 + ν2

)
⇐⇒ ν1 + ν2

τ
= S0 exp

[
− τ

ν1
CR(tp)

]
,

(2.10)

S0 + I0 −
(

ν1 I (tp)

)(
1

ν1

)
= ν1 + ν2

τ

(
1 − log

(
ν1 + ν2

τ S0

))
. (2.11)
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3 Analysis of Eqs. (2.9), (2.10), (2.11)

The Eqs. (2.9), (2.10), (2.11) provide an algorithm for identifying the parameters S0,
I0 and τ , ν1 and ν2. Assume that tp,CR′(tp),CR(tp), and CR∞ are known. The
algorithm is based on the following equation:

S0 + I0 = S0 exp

[
− τ

ν1
CR∞

]
+ τ

ν1
S0 exp

[
− τ

ν1
CR(tp)

]
CR∞. (3.1)

Equation (3.1) is obtained by using Eq. (2.10) to obtain

ν1 + ν2 = τ S0 exp

(
− τ

ν1
CR(tp)

)
,

and then substituting ν1 + ν2 into Eq. (2.9). Re-write (3.1) as

exp

[
− τ

ν1
CR∞

]
+ τ

ν1
exp

[
− τ

ν1
CR(tp)

]
CR∞ − 1 = I0

S0
. (3.2)

Equation (3.2) is equivalent to

F(X) = I0
S0

, where F(X) = e−cX + c Xe−rcX − 1, X ≥ 0, (3.3)

with X = τ

ν1
, and c = CR∞, and r = CR(tp)

CR∞
.

Proposition 3.1 Let c > 0 and r ∈ (0, 1). We have the following alternative:

i) If 2 r ≥ 1, then F(X) ≤ 0,∀X ≥ 0.
ii) If 2 r < 1, then Ymax := supX≥0 F(X) > 0. Moreover there exists a unique

Xmax > 0 such that Ymax := F(Xmax ), and F is strictly increasing on (0, Xmax )

and strictly decreasing on (Xmax ,+∞). Furthermore, for each Y0 ∈ (0,Ymax )

there exists X∗ ∈ (0, Xmax ) and X∗∗ ∈ (Xmax ,+∞) such that F(X∗) =
F(X∗∗) = Y0.

Proof Observe that F(0) = 0 and limX→+∞ F(X) = −1. Moreover

F ′(X) = − c e−c X + c e−c r X − c2 r X e−c r X

= c e−c r X
(
1 − e−c [1−r ] X − c r X

)
,

and
F ′′(X) = c2 e−c X − 2c2 r e−c r X − c3 r2 X e−c r X

= c2 e−c r X
(
e−c (1−r) X − 2 r + c r2 X

)
.

Therefore,
F ′(0) = 0 and F ′′(0) = c2(1 − 2 r). (3.4)
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Define G(X) := 1 − e−c [1−r ] X − c r X, and we then have

F ′(X) = c e−c r XG(X), (3.5)

and F ′(X) = 0 ⇐⇒ G(X) = 0. Thus, G(0) = 0, limX→+∞ G(X) = −∞, and
G ′(X) = c [1 − r ] e−c [1−r ] X − c r. By assumption r < 1, so the mapping X →
G ′(X) is strictly decreasing, G ′(0) = c (1 − 2 r), and limX→+∞ G ′(X) = −c r < 0.

Proof of i). Assume that 1−2 r ≤ 0. Then G ′(0) = c (1−2 r) ≤ 0, and since G ′(x) is
strictly decreasing, G ′(X) < 0,∀X > 0. But G(X) = 0, therefore G(X) < 0,∀X >

0. By using (3.5), we deduce that F ′(X) < 0,∀X > 0 and i) follows from the fact
that F(0) = 0.

Proof of ii). Assume that 1−2 r > 0. Then G ′(0) = c (1−2 r) > 0, and the mapping
G has exactly one point Xmax > 0 such that G(Xmax) = 0, and

G(X) > 0,∀X ∈ (0, Xmax), and G(X) < 0,∀X > Xmax. (3.6)

By using again (3.5), we deduce that Xmax > 0 is a critical point of F(X) (i.e.
F ′(Xmax) = 0), and ii) follows from (3.5) and (3.7). �

Remark 3.2 Proposition 3.1 implies that the cumulative reported case dataCR(tp) and
CR∞ are compatible with the solution of model (2.1), (2.2) only if CR(tp)/CR∞ <

1/2. The condition 2CR(tp) < CR∞ means that more than half of the reported
cases will be reported after the turning point. The multiplier ν1 in the definition of
CR(t) = ν1

∫ t
0 I (s)ds can be replaced by ν2 or ν1 + ν2, and the turning point is

unchanged. Then, the cumulative unreported cases satisfy 2CU (tp) < CU∞ (where
CU (t) = ν2

∫ t
0 I (s)ds), and all the cumulative cases satisfy 2CT (tp) < CT∞

(where CT (t) = (ν1 + ν2)
∫ t
0 I (s)ds). Thus, CR(t), CU (t), CT (t) all have the

same the turning point tp. Illustrations of Proposition 3.1 are given in Figs. 1
and 2.

The algorithm to determine the initial conditions S0, I0 and the parameters τ, ν1, ν2
from the reported case data is as follows:

(1) Assume the reported case data ν1 I (t) and the turning point tp are known, and
2CR(t) < CR∞. Define F(X) = I0/S0 as in (3.3) (where F depends only on
CR(tp), CR∞, and not on S0, I0, tp).

(2) The value of the ratio I0/S0 in (3.3) must be adjusted so that the model simulation
of (2.1), (2.2) gives agreement with the reported case data and its turning point
tp. Let trial values of S0 and I0 be given. Then F(X) = I0/S0 has two positive
solutions X = X∗ and X∗∗, provided I0/S0 < supX≥0 F(X).
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Fig. 1 The graph of F(X) (red), and the two solutions X∗ and X∗∗ of F(X) = I0/S0. One of the two
solutions provides a correct numerical simulation of (2.9), (2.10) for the reported case data and their turning
point tp (color figure online)
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Fig. 2 The graph of all cases (both reported and unreported) I (t) (red) and the graph of cumulative reported
cases CR(t) (black), and their relationship at the turning point tp. I ′(tp) = 0 and CR′′(tp) = 0 (color
figure online)

(3) Set either X∗ or X∗∗ to τ/ν1, and use (2.10), (2.11) to obtain ν1, τ , and ν2, for
each from

ν1 = CR′(tp)

S0 + I0 − S0 exp

(
− τ

ν1
CR(tp)

)(
1 + τ

ν1
CR(tp)

) , (3.7)
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τ =
(

τ

ν1

)
ν1, (3.8)

ν2 = τ S0 exp

(
− τ

ν1
CR(tp)

)
− ν1. (3.9)

(4) One value of X∗ or X∗∗ for τ/ν1 will yield parameters τ, ν1, ν2 such that the
corresponding numerical simulation of (2.1), (2.2) has a graph with the shape of
the reported case data, but possibly not the same turning point tp of the data. The
value of the ratio I0/S0 must be adjusted so that the value of X∗ or X∗∗ for τ/ν1
will yield parameters τ, ν1, ν2 such that the corresponding numerical simulation
has a graph with the shape of the reported case data and the same turning point
as the data.

Remark 3.3 We note that when I0 is small relative to S0, the turning point of themodel
simulation can be approximated as a decreasing function of the ratio I0/S0 according
to the following formula:

tp(k) ≈ tp
1 + log(k I0/S0)

1 + log(I0/S0)
,

where tp is the turning point obtained by the algorithm for I0/S0 and tp(k) is the
turning point obtained by the algorithm for k I0/S0 with k > 0.

Remark 3.4 For I0/S0 = (cI0)/(cS0), c > 0 given, the algorithm yields parameters
τ(c), ν1(c), ν2(c) that depend on the scaling factor c, but with turning point indepen-
dent of c. Further, S0cν1(c), S0cτ(c), ν1(c) + ν2(c), and R0(c) are independent of c.
More precisely, assume that S0 = cŜ0 and I0 = cÎ0 for some constant c > 0, where

Ŝ0 > 0, Î0 > 0, and CR(t) are given. Then, by solving (3.2), we deduce that
τ(c)

ν1(c)
is

independent of c. By using (3.7), we deduce that ν1(c) = ν̂1

c
, where

ν̂1 := CR′(tp)

Ŝ0 + Î0 − Ŝ0 exp

(
− τ(c)

ν1(c)
CR(tp)

)
(1 + τ(c)

ν1(c)
CR(tp))

is independent of c. By (3.8) τ(c) = τ(c)

ν1(c)
ν1(c), and we obtain τ(c) = τ̂

c
(where

τ̂ := τ(c)

ν1(c)
ν̂1 is independent of c). Thus, τ S0 = τ̂ Ŝ0 is independent of c, and by using

(3.9) we deduce that ν2(c) = η − ν̂1

c
with η := τ S0 exp(− τ

ν1
CR(tp)), is independent

of c. Now by replacing the values for τ(c), ν1(c), ν2(c) with these formulas in (2.1),
(2.2), we obtain
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S′(t) = − τ̂

c
S(t)I (t)

I ′(t) = τ̂

c
S(t)I (t) − ηI (t)

S(0) = cŜ0, I (0) = cÎ0.

(3.10)

By setting Ŝ(t) := S(t)

c
and Î (t) := I (t)

c
we obtain

⎧⎨
⎩
Ŝ′(t) = −τ̂ Ŝ(t) Î (t)
Î ′(t) = τ̂ Ŝ(t) Î (t) − η Î (t)
Ŝ(0) = Ŝ0, Î (0) = Î0.

(3.11)

Moreover, since Î (t) = I (t)

c
, we obtain Î ′(t) = 0 ⇔ I ′(t) = 0. Since (3.10) is

independent of c, we deduce that the turning point of (3.10) is the same as the turning
point of (3.11), which is independent of c.

From (2.10) (ν1(c) + ν2(c))/(S0c τ(c)) = R0(c) = exp[−τ(c)CR(tp)/ν1(c)],
independently of c. Thus, R0(c) is independent of c. Further, (2.11) (divided by S0c)
implies

1 + I0c

S0c
− ν1(c)I (tp)

S0c ν1(c)
=

(
ν1(c) + ν2(c)

S0 c τ(c)

) (
1 − log

(
ν1(c) + ν2(c)

S0 c τ(c)

))
,

which yields S0c ν1(c) independent of c. Then, S0c τ(c) = S0c ν1(c) τ (c)/ν1(c) and
ν1(c) + ν2(c) = S0c τ(c)R0(c) are independent of c.

Remark 3.5 The total number of initial cases I0 may be known, both reported and
unreported, but the initial number of susceptible individuals S0 may not be known.
This is the case if a significant fraction of the demographic population has acquired
immunity from a prior infection. The value of S0 can be obtained from the algorithm
by varying S0 and comparing the model output to the reported case data and its turning
point tp. The turning point in the model simulation, with I0 fixed, increases approxi-
mately linearly with log(S0), so the correct value of S0 can be matched to the turning
point in the model and the data. An illustration is given in Fig. 3.

Remark 3.6 The initial number of reported cases may be known from the data, but
the initial number of all cases I0, including unreported cases, may not be known. If
S0 is known, however, the algorithm can be extended to determine I0: vary I0 in the
algorithm and compare the model output to the reported case data and its turning point
tp. The turning point in the model simulation, with S0 fixed, decreases approximately
linearly with log(I0), so the correct value of I0 can be matched to the turning point of
the data. An illustration is given in Fig. 3.

Remark 3.7 In practice neither I0 nor S0 may be known. The algorithm can be used
in this case by varying the ratio I0/S0. As I0/S0 increases, the turning point in the
model simulation decreases. The correct value of the ratio I0/S0 can be identified by
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Fig. 3 The relationship of I0/S0 for the simulation of the 2016–2017 seasonal influenza epidemic in
Puerto Rico with model (2.1), (2.2). The algorithm yields the correct turning point tp = 14 for the data with
I0/S0 = 2.28 × 10−5. Left side: I0 = 57, tp increases linearly with log(S0) for I0/S0 = 2.28 × 10−5.
Right side: S0 = 2,500,000, tp decreases linearly with log(I0) for I0/S0 = 2.28×10−5. The green graphs
correspond to S0 = 2,500,000 and I0 = 57. For cI0/cS0, c ≥ 1, R0 ≈ 1.73 independently of c, and
ν1/ν2 ≈ 38.7 c − 1.0 (color figure online)

matching the model turning point to the data and its turning point tp. For this value
of I0/S0 any scaling cI0/cS0 of this ratio will also match the data and its turning
point tp. For c given, R0 is independent of c, and the ratio ν2(c)/ν1(c) is a linearly
increasing function of c. Thus, the scaling factor c can be varied and the values of
cS0, cI0, τ (c), ν1(c), ν2(c) can be compared to known information about the epidemic
to obtain a realistic value of c.

4 Examples of the algorithm for identifying the model parameters

Example 1 The Hong Kong influenza epidemic in New York City in 1968–1969.
We apply the parameter identification algorithm to the Hong Kong influenza epi-

demic in New York City in 1968–1969. The reported case data consist of weekly
reported mortality cases in excess of typical reported mortality (assumed to be due to
the influenza epidemic) for the same time period in previous years (Smith and Moore
2004). The cumulative mortality is obtained by adding these weekly values over the 13
week duration of the epidemic. The time units are weeks. We take S(0) = 7,900,000
(the population of NewYork City in the 1970 census) and I (0) = 15,000. The weekly
reported data and the cumulative reported excess mortality data are illustrated by the
black dots in Fig. 4. From these data we estimate CR∞ ≈ 1080, tp ≈ 6.15 weeks,
CR(tp) ≈ 500, and ν1 I (tp) = 190. Notice that 2CR(tp) < CR∞.

The two solutions of F(X) = I0/S0, with F(X) given in (3.3), are X = 0.000276
and X = 0.000728. The solution that gives agreement with the data is X = 0.000728.
F(X) has its maximum at F(0.000524) ≈ 0.00332. If I0 > 26,220, then I0/S0 >

0.00332, and the reported case data are not consistent with these initial conditions.
For X = 0.000728, the numerical solutions of Eqs. (2.9), (2.10), (2.11) are τ ≈
3.24 × 10−7, ν1 ≈ 0.00044, ν2 ≈ 1.78, which corresponds to an average infectious
period in non-fatal cases of ≈ 1/1.78 weeks ≈ 4 days, and a ratio of unreported to
reported cases of≈ 4045 to 1. The graphs of the reported data andmodel reported cases
output are given in Fig. 4. The epidemic peak size is I (tp) ≈ 198,000 at tp ≈ 6.15
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Fig. 4 Hong Kong influenza epidemic in New York City in 1968–1969. The weekly reported mortality
case data and cumulative reported case data (black dots), and the model output graphs of ν1 I (t) and CR(t)
(blue) (color figure online)
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Fig. 5 Hong Kong influenza epidemic in New York City in 1968–1969. The model output graphs of S(t)
(blue), I (t) (black), and R(t) (dashed). The vertical lines are at the epidemic turning point tp ≈ 6.15 weeks
(color figure online)

weeks. From model output we obtain S∞ ≈ 3,620,000. The epidemic final size is
S0 + I0 − S∞ ≈ 4,295,000. The epidemic attack ratio is (S0 + I0 − S∞)/(S0 + I0) ≈
54%. The basic reproduction number R0 ≈ 1.44. The graphs of S(t), I (t), R(t) are
given in Fig. 5, and the graph of F(X) is given in Fig. 6a. The value of ν1 I (t) obtained
from the numerical solution of model, with parameters obtained from X = 0.000276
as the solution of F(X) = I0/S0, is graphed in Fig. 6b, and is not in agreement with
the reported data.

The case fatality ratio CR∞/(S0 + I0 − S∞) = 1080/4,295,000 ≈ 0.00025 =
0.025% is lower than commonly claimed values for seasonal influenza, typically 0.1–
0.2% (Li et al. 2008). If the initial susceptible population S0 is reduced, then the fatality
ratio is increased proportionately.

Example 2 The plague epidemic in Bombay, India in 1906.
We apply the parameter identification algorithm to the bubonic plague epidemic in

Bombay, India in 1906. This epidemic has been modeled many times, beginning with
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Fig. 6 Hong Kong influenza epidemic in New York City in 1968–1969. a The graphs of F(X) (yellow)
and I0/S0 (blue). There exists two solutions X = 0.000276 and X = 0.000728 of F(X) = I0/S0.The
solution corresponding to the data is X = 0.000728. b The graph of the model output of the cumulative
weekly reported case data for the solution X = 0.000276, which does not match the epidemic data (color
figure online)
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Fig. 7 Bubonic plague epidemic in Bombay, India in 1906. a The weekly reported mortality case data
(black dots) and model output graph of ν1 I (t) (blue). b The weekly reported cumulative mortality case
data (black dots) and model output graph of CR(t) (blue). The vertical lines are at the epidemic turning
point tp ≈ 13.5 weeks (color figure online)

one of the most famous works in mathematical epidemiology, due to Kermack and
McKendrick (1927). These reported case data consist of weekly reported mortality
cases over a period of 30 weeks beginning in January, 1906. These data of reported
mortality cases are available at https://www.math.psu.edu/treluga/misc.html, and are
graphed Fig. 7a (black dots). The population of Bombay in 1906 was approximately
1,000,000, but not all residents had equal likelihood of infection. Infection did not
spread from person to person, but was strongly associated with shared dwellings,
workplaces, or other localities (Thompson 1906). Additionally, many residents fled
the city during the seasonal plague epidemics of that time period, as for example,
850,000 in 1896 (http://en.wikipedia.org/wiki/Mumbai). The case-fatality rate was
as high as 90%, and the typical duration of a fatal infection was ≈ 5 days with an
incubation period of ≈ 3 days (Bacaër 2012).

For the model (2.1), (2.2) we take S(0) = 100, 000 and I (0) = 8. The cumulative
reported mortality data are illustrated by the black dots in Fig. 7b. From these data
we estimate CR∞ ≈ 8840, tp ≈ 13.5 weeks, CR(tp) ≈ 4330, and ν1 I (tp) = 770.
Notice that 2CR(tp) < CR∞. The two solutions of F(X) = I0/S0, with F(X) given
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Fig. 8 Weekly reported cases of seasonal influenza epidemics in Puerto Rico in the 2015–2016 and 2016–
2017 seasons. The graph of reported cases in 2015–2016 (yellow) has two peaks. The graph of reported
cases in 2016–2017 (black) has only one peak and satisfies CR(tp)/CR∞ < 1/2 (color figure online)

in (3.3), are X = 0.0000159 and X = 0.0000204. The solution that gives agreement
with the data is X = 0.0000159.

For X = 0.0000159 the numerical solutions of (2.9), (2.10), (2.11) are τ ≈ 5.2 ×
10−5, ν1 ≈ 3.3, ν2 ≈ 1.6,which correspond to an average infectious period of≈ 1/4.9
weeks ≈ 1.4 days, and a ratio of unreported to reported cases of ≈ 0.48 to 1. From
(2.8) we estimate S∞ ≈ 87, 000 with corresponding total cases ≈ 13,000, an attack
ratio ≈ 13%, and a reported removal rate of ≈ 70% (the total mortality rate would
be increased by unreported removal cases). The epidemic peak size is I (tp) ≈ 235 at
tp ≈ 13.5 weeks. The basic reproduction number R0 ≈ 1.07. The graph of the model
output of the weekly reported cases ν1 I (t) is given in Fig. 7a. The graph of model
output of cumulative weekly reported cases is given in Fig. 7b.

Example 3 The seasonal influenza epidemic in Puerto Rico in 2016–2017.
We apply the parameter identification algorithm to the seasonal influenza epidemic

in Puerto Rico in 2016–2017. The reported case data consist of weekly reported cases
from Departamento de Salud, Puerto Rico1 from week 36 in 2016 to week 23 in
2017 (Fig. 8). The cumulative reported cases are obtained by adding these weekly
values over the 37 weeks duration of the epidemic. We take S(0) = 2,500,000 and
I (0) = 57. The 2010 census of Puerto Rico was≈ 3,500,000, so we assume≈ 1/3 of
the population has acquired immunity. The weekly reported data and the cumulative
reported data are illustrated by the black dots in Fig. 9. From these data we estimate
CR∞ ≈ 45,300, tp ≈ 14 weeks, CR(tp) ≈ 20,400, and ν1 I (tp) ≈ 6200. Notice
that 2CR(tp) < CR∞.

1 www.salud.gov.pr/Estadisticas-Registros-y-Publicaciones/EstadisticasInfluenza/
InformeInfluenzaSemana26-2017.pdf (2017).
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Fig. 9 Seasonal influenza epidemic in Puerto Rico in 2016–2017. The weekly reported mortality case data
and cumulative reported case data (black dots), and the model output graphs of ν1 I (t) and CR(t) (blue).
The vertical lines are at the epidemic turning point tp ≈ 14 weeks (color figure online)
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Fig. 10 Seasonal influenza epidemic in Puerto Rico in 2016–2017. Themodel output graphs of S(t) (blue),
I (t) (black), and R(t) (dashed)

The two solutions of F(X) = I0/S0, with F(X) given in (3.3), are X = 4.78×10−7

and X = 2.67 × 10−5. The solution that gives agreement with the data is X =
2.67 × 10−5, and the numerical solutions of Eqs. (2.9), (2.10) are τ ≈ 6.36 × 10−7,
ν1 ≈ 0.024, ν2 ≈ 0.90, which correspond to an average infectious period in non-fatal
cases of ≈ 1.1 weeks, and a ratio of unreported to reported cases of ≈ 37.7 to 1. The
graphs of the reported data and model output for reported cases are given in Fig. 9.
From the model output we obtain the epidemic final size S0 + I0 − S∞ ≈ 1,756,000.
The attack ratio of the susceptible population is (S0 + I0 − S∞)/(S0 + I0) ≈ 70%.
The attack ratio as a fraction of the total population of Puerto Rico is (S0 + I0 −
S∞)/3, 500, 000 ≈ 48.8%. The reported case data include year-round background
cases, which may over estimate the reported cases and the attack ratio. The basic
reproduction number R0 ≈ 1.73. The epidemic peak size is I (tp) ≈ 237,000 at
tp ≈ 14 weeks. The graphs of S(t), I (t), R(t) are given in Fig. 10.
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5 Discussion

For the SIR model (2.1), (2.2), (2.3) we have constructed an algorithm to identify
unreported cases using reported case data ν1 I (t). This SIR model yields a simple rise
and fall of the infected cases over the course of the epidemic,with a turning point at time
tp. A necessary condition for the algorithm is that the data satisfy CR(tp)/CR∞ <

1/2. The algorithm uses the cumulative reported case data CR(tp) at the turning
point and cumulative reported case data CR∞ at the end of the epidemic to obtain
model parameters ν1, ν2, and τ , that fit the reported case data and data turning point
tp, assuming S0, I0 are known. S0, however, may not be known, since the number of
initially susceptible individuals S0 may be less than the demographic population of the
region due to some individuals having acquired immunity from previous infections. I0
may not be known, since the number of initially infected individuals I0 may be much
higher than the number of initially reported infected individuals. If one of S0 and I0
is known, then the algorithm allows identification of the other using the turning point
of the data. If neither S0 nor I0 is known, then the ratio I0/S0 in the algorithm can be
adjusted to identify parameters τ, ν1, ν2 that agree with the reported case data and its
turning point tp. In this case any scaling cI0/cS0 will yield parameters that also fit the
reported case data and turning point. The ratio S0/I0 is central in our algorithm for
identifying the parameters and initial conditions of the model.

Other methods provide alternative approaches for the parameter identification
problem for epidemic models, including formal least squares methods and stochas-
tic methods (Andersson and Britton 2000; Becker 1989; Gamado et al. 2014; Li
et al. 2008). Stochastic SIR models account for probabilistic individual behavior,
but typically have much greater computational requirements for large population sets.
Deterministic SIR models provide only mean distribution outputs, but are typically
much more computationally efficient. Our deterministic modeling approach empha-
sizes the role of the initial conditions I0 and S0, which for many epidemic diseases
such as seasonal influenza, are largely unknown. Our approach also emphasizes the
role of reported cases, which for diseases such as seasonal influenza, are a very small
fraction of the total number of cases.

5.1 The SEIR epidemic model

Ageneralization of the SIRmodel (2.9), (2.10), (2.11) is the SEIRmodel, which allows
for an incubation period of newly infected individuals before they become infectious.
The equations of the SEIR model are

d

dt
S(t) = −τ I (t)S(t) (5.1)

d

dt
E(t) = τ I (t)S(t) − σ E(t) (5.2)

d

dt
I (t) = σ E(t) − (ν1 + ν2)I (t) (5.3)
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d

dt
R(t) = (ν1 + ν2)I (t) (5.4)

with initial conditions S(0) = S0 > 0, E(0) = E0 ≥ 0 I (0) = I0 ≥ 0, R(0) =
R0 ≥ 0. Here E(t) is the number of pre-infectious infected individuals at time t , the
parameters τ , ν1, and ν2 are as before, and σ is the rate at which incubating infected
individuals become infectious. The basic reproduction number R0 is τ S0/(ν1 + ν2),
the same as the SIR model, and S∞ = limt→∞ S(t) satisfies

S∞ = S0 + E0 + I0 + ν1 + ν2

τ
log

(
S∞
S0

)
(5.5)

(R0 and S∞ are independent of σ ). IfR0 > 1, I (t)may first decrease before increasing
and then decreasing at a turning point tp (depending on S0, E0, I0). The SIR analysis
carries over to a similar analysis for the SEIRmodel, with Eqs. (2.9), (2.10), (2.11) the
same, except that I0 is replaced by I0 + E0, and F(X) = (I0 + E0)/S0 in (3.3). With
the values of τ, ν1, ν2 obtained from the modified Eqs. (2.9), (2.10), (2.11), and (3.3),
the Eqs. (5.1), (5.2), (5.3), are solved numerically with values of σ chosen so that the
output matches the reported case data and the turning point tp. For seasonal influenza
in Puerto Rico in 2016–2017, τ = 4.54 × 10−7, ν1 = 0.017, and ν2 = 0.90 as in the
SIR model (Example 3) and E0 = 70, I0 = 70, and σ = 21. Thus, the incubation
period is ≈ 1/21 weeks = 0.33 days, which is consistent with incubation times for
influenza in volunteer studies measured by viral shedding in Carrat et al. (2008).

5.2 The general incidence SIR epidemic model

The SIRmodel (2.9), (2.10), (2.11) does not take into account changes in social behav-
ior or public health policies as the epidemic unfolds, which may reduce transmission.
A model that incorporates such change is the general incidence SIR model:

d

dt
S(t) = − τ I (t)p

1 + κ I (t)q
S(t) (5.6)

d

dt
I (t) = τ I (t)p

1 + κ I (t)q
S(t) − ν I (t) (5.7)

d

dt
R(t) = ν I (t) (5.8)

with initial conditions S(0) = S0 > 0, I (0) = I0 > 0, R(0) = R0 ≥ 0. The
parameter κ accounts for reduced transmission as I (t) increases, and the positive
exponents p and q satisfy 1 ≤ p ≤ q + 1. The basic reproduction number is R0 =
τ I p−1

0 S0/(1 + κ I q0 ). If R0 < 1, then S(t) decreases to a limiting value S∞ > 0 and
I (t) decreases to 0. If R0 > 1, then S(t) decreases to a limiting value S∞ > 0 and
I (t) first increases, then decreases to 0 (Magal et al. Submitted).

The condition CR(tp)/CR∞ < 1/2 may be violated for the general incidence
model. If the epidemic data do not satisfy this condition, then the SIR model (2.9),
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Fig. 11 The general incidence model (5.6), (5.7) with τ = 0.14 × 10−6, ν = 3.0, p = 1.09, q = 0.1,
S0 = 3,500,000, I0 = 1000. ν corresponds to all cases being reported. R0 = 1.105, tp = 22.74,
ν I (tp) = 6829, CR(tp) = 114,984, CR∞ = 210,828. The cumulative reported cases do not satisfy
CR(tp)/CR∞ < 1/2

Fig. 12 Weekly reported cases of seasonal influenza epidemics in Puerto Rico in the 2013–2014 and 2014–
2015 seasons. The cumulative reported cases (corresponding to the areas below the graphs) do not satisfy
CR(tp)/CR∞ < 1/2 for either season

(2.10), (2.11)may not be valid for epidemic analysis. A numerical example of a general
incidence model not satisfying CR(tp)/CR∞ < 1/2 is given in Fig. 11. Examples of
epidemic reported case data not satisfying CR(tp)/CR∞ < 1/2 are the 2013–2014
and 2014–2015 seasonal influenza epidemics in Puerto Rico2 illustrated in Fig. 12.

2 www.salud.gov.pr/Estadisticas-Registros-y-Publicaciones/EstadisticasInfluenza/
InformeInfluenzaSemana39-2015.pdf (2015).
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5.3 More general epidemic models

In many cases epidemic data do not show a simple rise and fall of the reported cases.
One example is found in models with multi-group infected populations. In Magal
et al. (2016) a two-group model, with super-spreaders and ordinary spreaders, yielded
a two-peak output of the total infected population for the SARS influenza outbreak in
Singapore in 2003. Spatial heterogeneity is also important in modeling the spread of
epidemics. One example is given in Fitzgibbon et al. (2017) of the 2015–2016 Zika
epidemic in Rio de Janeiro, Brazil. Another example is given in Magal et al. (Sub-
mitted) of the geographical spread of the 2015–2016 seasonal influenza epidemic in
Puerto Rico, in which the reported infected cases show an early high peak and a later
low peak (Fig. 8). The multiple peaks in this case can be attributed to spatial variation
in the course of epidemic. Models incorporating the disease phase of infected individ-
uals with a continuum disease age variable can track the rise of infectiousness, and in
particular the pre-symptomatic periods of infectiousness (Blaser et al. 2010). Models
involving time dependent transmission and removal rates, corresponding to public
behavioral changes are also important, and considerations of time dependent param-
eters were treated by Hadeler (2011a, b) and Stadler et al. (2013). These examples
illustrate the need for extension of the work here to identify parameters in epidemic
models that incorporate additional features of outbreak epidemic diseases.
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