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Abstract We proposed a delay differential model, associated with the response time
for individuals to the current infection, to examine the media impact on the trans-
mission dynamics of infectious diseases. We investigated the global bifurcation by
considering the delay as a bifurcation parameter and examined the onset and termina-
tion of Hopf bifurcations from a positive equilibrium. Numerical studies to identify
ranges of parameters for coexistingmultiple periodic solutions are guided by the bifur-
cation analysis and the Matlab package DDE-BIFTOOL developed by Engelborghs
et al. Further, we parameterized the proposed model on the basis of the 2009 A/H1N1
pandemic influenza data in Shaanxi province, China, and estimated the basic repro-
duction number to be 1.79 [95% CI (1.77–1.80)] and the time delay to be 2.94 days
[95% CI (2.56–3.24)]. Our main results indicated that media impact with time delay
significantly influenced the transmission dynamics of infectious diseases.

Keywords Media impact · Time delay · Global Hopf bifurcation

Mathematics Subject Classification 34K18 · 65L03 · 92B05
1 Introduction

In recent years, emerging infectious diseases such as 2003 severe acute respiratory
syndrome (SARS), the recent H1N1, Dengue, have become a worldwide problem,
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threatening the public health and the stability of the whole world. When an emerging
disease starts to spread, it is essential for individuals to recognize the infectivity,
virulence and fatality of the infectious disease. Once knowing about the diseases such
as the transmission routes and interventions, individuals will remain on high alert and
maychoosenot to go to crowded areas and thus avoid unnecessary contactwith infected
individuals. Moreover, infected individuals will choose to cancel their trips and stay
in home or hospital being treated, therefore new infection will apparently decrease
due to reduction of contact rates (Cai and Li 2009; Tang et al. 2010). In particular,
in the 21st century media coverage has exerted crucial influence on affecting spread
and outbreaks of infectious disease, such as the 2003 SARS and 2009 H1N1 influenza
epidemic. There is much evidence showing that media coverage plays a significant
role in quick releasing important information, influencing individuals’ behaviour and
therefore helping contain the spread of the infectious diseases (Liu et al. 2007; Cannon
2008; Cui et al. 2008; Li and Cui 2009; Tchuenche et al. 2011; Sun et al. 2011; Wang
and Xiao 2014; Xiao et al. 2015).

Modelling the media impact on disease spread shares tremendous popularity in
these years. Liu et al. (2007) described the media coverage impact on the transmis-
sion dynamics by including a decreasing factor βe−a1E−a2 I−a3H in the transmission
coefficient, where E , I , and H are the numbers of reported exposed, infectious,
and hospitalized individuals, respectively. Cannon (2008) formulated a compartment
model with incidence rate μe−m I SI with m > 0 reflecting the impact of media cov-
erage on transmission dynamics. They have shown the existence of Hopf bifurcation
when m > 0 is sufficiently small. Li and Cui (2009) formulated an SI S (susceptible–
infective–susceptible) epidemic model with incidence rate (β1 − β2

I
m+I ) SI

N and used

β2
I

m+I to reflect the reduced amount of contact rate due to media coverage. Recently,
Xiao et al. (2015) formulated the media function depending on both the case number
and its rate of change and obtained that media impact switches on and off in a highly
nonlinear fashion with the greatest effect during the early stage of the outbreak. Yan
et al. (2015) presented a novel methodology through using cross-correlation analysis
and embedding a media function and the dynamics of the number of news reports into
classical SEIR model, showed that combining statistical analysis with a mathematical
model was beneficial for analyzing media impacts. Moreover, other forms, such as
(μ1 −μ2 f (I )) SI

S+I , have been proposed to describe the media-induced incidence rate
(see details in Tchuenche et al. (2011), Cannon (2008), Sun et al. (2011)).

A common assumption in these media functions for the models (Liu et al. 2007;
Cannon 2008; Cui et al. 2008; Li and Cui 2009; Tchuenche et al. 2011; Sun et al. 2011;
Wang and Xiao 2014; Xiao et al. 2015) is that media impact on transmission dynamics
is instantaneous, that is, the number of infected individuals at time t timely affects the
transmission coefficient at time t and leads to a reduction in incidence rate. However,
this is not how the thing looks like. Mostly, impact of media coverage on transmission
dynamics has time lag, describing both the time duration for individuals’ response to
the reported infection and the reported delay. Hence, it is more reasonable to include
I (t −τ) rather than I (t) in the media function in the incidence rate. Consequently, the
delay differential equations provide a natural description of such systems with media
impact. Functional differential equations appear in many domains of applied sciences,

123



Global hopf bifurcation of a delayed equation describing... 1251

and theoretical study on functional differential equations were given in Wu (1998).
How the delay embedded media impact affects the transmission dynamics remains
unclear, and therefore falls within the scope of this study.

Our main purpose is then to modify the known models in order to describe the
individuals’s response to infection due to media coverage by introducing a delayed
media function. We shall analyze the global dynamics of the proposed system in order
to examine how the refined media function influences the global dynamics of disease
transmission and address the effect ofmedia coverage on disease transmission. Further,
we estimate the parameters of the novelmodel on the basis of the 2009H1N1pandemic
influenza data in Shaanxi province of China, utilizes a stochastic simulation method
to estimate the basic reproduction number R0, the response time for individuals to the
current infection τ , and their confidence intervals.

The rest of this paper is organized as follows. Section 2 collects some preliminary
results of the well-posedness of the delay differential system and the existence of
equilibria. In Sect. 3,we focus on the localHopf bifurcation of the positive equilibrium.
The global onset and termination ofHopf bifurcations is validated in Sect. 4.Moreover,
a case study and numerical results are shown in Sect. 5. Finally, concluding remarks
are given in Sect. 6.

2 Preliminaries

The population is divided into three groups: susceptible (S), infected (I ) and recovered
(R).Media coverage and fast informationflow induce a profound psychological impact
on the public, a reduction in the incidence rate is represented by e−α I (t−τ). Here time
delay τ denotes response time for individuals to the current infection. Thus the model
equations are as follows.

⎧
⎨

⎩

Ṡ = Λ − βe−α I (t−τ)SI − d S,

İ = βe−α I (t−τ)SI − (d + γ )I,
Ṙ = γ I − μR.

(1)

where Λ stands for the rate of flow into the population, d is the natural death rate, β
denotes the baseline transmission rate, and γ represents the recovery rate. All param-
eters are nonnegative constants. Note that the recovered class R is decoupled with the
first two equations in (1), then we only need to focus on the first two equations in the
rest of this work,

{
Ṡ = Λ − βe−α I (t−τ)SI − d S,

İ = βe−α I (t−τ)SI − (d + γ )I.
(2)

In this section, we initially give some preliminary results of system (2).
For any τ > 0, let C := C([−τ, 0], R) be Banach space of continuous func-

tions on [−τ, 0] with the norm defined as ‖φ‖ = sup−τ≤θ≤0|φ(θ)|. Denote C+ =
C([−τ, 0], R+). Given biological background,we choose initial values fromC+×C+.
For the initial value with the formΦ(θ) = (φ1(θ), φ2(θ)),Φ(θ) ∈ C+ ×C+, φi (0) >

0, i = 1, 2, it can be shown that the system admits a unique solution Xt and Xt ∈ R2+
for any t > 0.
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Proposition 1 For initial value with the form Φ(θ) = (φ1(θ), φ2(θ)),Φ(θ) ∈ C+ ×
C+, φi (0) > 0, i = 1, 2, the system (2) admits a unique solution Xt and Xt is
nonnegative and bounded.

Proof It follows from Hale (1971) and Hale and Lunel (2013) that the existence and
uniqueness of sultions to system (2) hold true.

For the initial value with the form Φ(θ) = (φ1(θ), φ2(θ)),Φ(θ) ∈ C+ ×
C+, φi (0) > 0, i = 1, 2, it follows from system (2) that

I (t) = I (0)e
∫ t
0 (βe−α I (θ−τ )S(θ)−(d+γ ))dθ ≥ 0, for t ≥ 0.

Thus the solution I (t) remains nonnegative for t ≥ 0. ��
To verify that S(t) > 0 for t > 0, we assume the contrary. Let t1 > 0 be the first

time such that S(t1) = 0, then by the first equation of (2) we have S′(t1) = Λ > 0,
and therefore, S(t) < 0 for t ∈ (t1 − εt1) where ε > 0 is sufficiently small. This
contradicts S(t) > 0 for t ∈ [0, t1). We conclude that S(t) > 0 for t > 0.

Besides, it follows from system (2) that

(S(t) + I (t))′ ≤ Λ − d(S(t) + I (t)) − γ I (t).

Then we have

lim sup
t→∞

(S(t) + I (t)) ≤ Λ

d
.

Summarizing above-mentioned discussion, we can get the conclusion and complete
the proof.

It is easy to calculate the disease-free equilibrium E0 = (Λ/d, 0), and the endemic
equilibrium

E1 = (S∗, I∗) =
(

d + γ

αd
LambertW

(
dα

β
e

αΛ
d+γ

)

,
Λ − d S∗

d + γ

)

, (3)

where LambertW (.) is a Lambert W function, defined to be the multivalued inverse
of the function ω → ωeω (Corless et al. 1996).

The basic reproduction number is denoted as

R0 = Λβ

d(d + γ )
. (4)

In view of Wang and Xiao (2014), we obtain the following proposition.

Proposition 2 Let τ = 0. The disease-free equilibrium E0 is globally asymptotically
stable if R0 ≤ 1, while the endemic equilibrium E1 is feasible and globally asymptot-
ically stable if R0 > 1.
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Proof When τ = 0, main conclusions for R0 > 1 or R0 < 1 have been carefully
proved by Wang and Xiao (2014). Here, we only need to prove that the disease-free
equilibrium E0 is globally asymptotically stable if R0 = 1.

Let y = S − S∗. Rewriting system (2) yields,

{
ẏ = −βe−α I (t)y I − dy − βe−α I (t)S∗ I,
İ = βe−α I (t)(y + S∗)I − (d + γ )I,

(5)

where (y, I ) ∈ D = {(y, I )|y ≥ −S∗, I ≥ 0, y + I ≤ 0}.
Now we validate the global asymptotically stability of zero point in D by using the

Lyapunov function V (y, I ) = y2

2 + S∗ I . It is easy to obtain

dV

dt
= −dy2 − βe−α I (t) I y2 + S∗ I (d + γ )(R0e−α I (t) − 1) ≤ 0.

Besides, when R0 = 1, dV
dt = 0 only if y = I = 0. Thus, we complete the proof. ��

3 Dynamics of delayed equations

3.1 Stability of disease-free equilibrium

If R0 ≤ 1, the system (2) possesses only the disease-free equilibrium. We have the
subsequent conclusion.

Theorem 1 The disease-free equilibrium E0 of system (2) is globally asymptotically
stable if R0 ≤ 1 and unstable if R0 > 1.

Proof Let y = S − S∗. Rewriting system (2) yields,

{
ẏ = −βe−α I (t−τ)y I − dy − βe−α I (t−τ)S∗ I,
İ = βe−α I (t−τ)(y + S∗)I − (d + γ )I,

(6)

where (y, I ) ∈ D = {(y, I )|y ≥ −S∗, I ≥ 0, y + I ≤ 0}.
Now we validate the global asymptotically stability of zero point in D by using the

Lyapunov functional L = yt (0)2

2 + S∗ It (0). It is easy to obtain

d L

dt
= −dy2 − βe−α I (t−τ) I y2 + S∗ I (d + γ )(R0e−α I (t−τ) − 1) ≤ 0.

Besides, when R0 < 1, d L
dt = 0 only if y = I = 0. When R0 = 1, d L

dt = 0 yields
y = 0 and y = 0 yields I = 0. Thus, we complete the proof. ��

The Jacobian matrix concerned with the linearization of system (2) at E0 is,

ME0 =
(

−d − λ −βΛ
d

0 βΛ
d − (d + γ ) − λ

)

. (7)
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Therefore the characteristic equation of E0 gives (λ+d)(λ+(d +γ )(1− R0)) = 0. In
view of the characteristic equation, it’s easy to verify that the disease-free equilibrium
E0 of system (2) is unstable if R0 > 1.

3.2 Stability and Hopf bifurcation of the endemic equilibrium

If R0 > 1, in addition to the disease-free equilibrium, the system (2) possesses an
endemic equilibrium E1. The Jacobian matrix concerned with the liberalization of
system (2) at E1 is,

ME1 =
(− Λ

S∗ − λ −(d + γ ) + αe−λτ (d + γ )I∗
(d+γ )I∗

S∗ −αe−λτ (d + γ )I∗ − λ

)

. (8)

Thus, the characteristic equation of E1 gives

λ2 + aλ + b(λ + d)e−λτ + c = 0, (9)

where a = Λ
S∗ , b = α(d + γ )I∗, c = (d+γ )2 I∗

S∗ . It is easy to get that the endemic
equilibrium E1 is locally asymptotically stable for τ = 0. Further, E1 is globally
asymptotically stable for τ = 0 and see details in paper Wang and Xiao (2014).

We now set delay τ as the bifurcation parameter to investigate whether Hope bifur-
cation can occur or not. The stability of E1 may change if a pair of purely imaginary
roots λ = ±iω,ω > 0 arises.

By substituting λ = iω into (9) and separating the real and imaginary part, we
obtain

−ω2 + bω sinωτ + bd cosωτ + c = 0,
aω + bω cosωτ − bd sinωτ = 0.

(10)

Rewriting the equations yields

ω4 + pω2 + q = 0, (11)

with

p =: a2 − b2 − 2c, q =: c2 − b2d2. (12)

Whether Eq. (11) has one or two positive roots yields the following two cases:

Case 1: (H1) q < 0, i.e., αde
αΛ

d+γ
−1

/β < 1.
By using Lambert W function (Corless et al. 1996), we easily know that q < 0 is
equivalent to

α <
d + γ

Λ
LambertW (eR0).
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In such case the Eq. (11) has one root,

ω0 =
√

−2(a2 − b2 − 2c) + √
(a2 − b2 − 2c)2 − 4(c2 − b2d2)

2
. (13)

(10) yields that cos(ωτ) = bω2
0(d− Λ

S∗ )−cbd

(bω0)2+(bd)2
< 0. Therefore,

τk = 1

ω0
((2k + 1)π − arcsin A), A = (ω2

0 − c)bω0 + abdω0

(bω0)2 + (bd)2
, (14)

with k = 0, 1, 2, 3, ....

Case 2: (H2) q > 0, p < 0, p2 − 4q > 0.
In such scenario the Eq. (11) has two roots,

ω1 =
√

−2(a2 − b2 − 2c) + √
(a2 − b2 − 2c)2 − 4(c2 − b2d2)

2
,

ω2 =
√

−2(a2 − b2 − 2c) − √
(a2 − b2 − 2c)2 − 4(c2 − b2d2)

2
.

Solving Eq. (10) for τ yields

τ
1,2
k = 1

ω1,2
((2k + 1)π − arcsin A1,2), A1,2 = (ω2

1,2 − c)bω1,2 − abdω1,2

(bω1,2)2 + (bd)2
.

In order to validate the transversion condition for existence of local Hopf bifurca-
tion, we need to identify the sign of Re( dλ

dτ
)|τ=τk with Re(x) denoting the real part of

x and k = 0, 1, 2, .... For simplicity, we analyze the sign of Re( dλ
dτ

)−1|τ=τk .

Proposition 3 (i) For Case 1, that is, conditions (H1) holds, we have

Re

(
dλ

dτ

)−1

|τ=τk > 0.

(ii) For Case 2, that is, conditions (H2) holds, we have

Re

(
dλ

dτ

)−1

|τ=τ 1k
> 0 > Re

(
dλ

dτ

)−1

|τ=τ 2k
.

Proof (i) Differentiating both sides of the characteristic Eq. (9) with respect to τ

yields

dλ

dτ
= e−λτ λb(λ + d)

2λ + a + be−λτ − τe−λτ b(λ + d)
.
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Replacing b(λ + d)e−λτ with −(a2 + bλ + c), we have

Re
( dλ

dτ

)−1 |τ=τk = Re

[
2iω0+a

i(ω3
0−cω0)+aω2

0

]

+ Re
[

1
iω(iω+d)

]
− Re

[
τ

iω

]

= a2−b2+2(ω2
0−c)

b2(ω2
0+d2)

= ω4
0+b2d2−c2

b2ω2
0(ω

2
0+d2)

.

(15)

Therefore we obtain Re( dλ
dτ

)−1|τ=τk > 0. Then the transversion condition holds
at τ = τk, k = 0, 1, 2, 3....

(ii) For condition (H2), it is complicated to determine Re( dλ
dτ

)−1|τ=τ 1k
or

Re( dλ
dτ

)−1|τ=τ 2k
. However, we have the following formula

Re(
dλ

dτ
)−1|τ=τ 1k

· Re(
dλ

dτ
)−1|τ=τ 2k

= a2 − b2 + 2(ω2
1 − c)

b2(ω2
1 + d2)

a2 − b2 + 2(ω2
2 − c)

b2(ω2
2 + d2)

= (p + 2ω2
1)(p + 2ω2

2)

b4(ω2
1 + d2)(ω2

2 + d2)

= p2 + 2(ω2
1 + ω2

2)p + 4ω2
1ω

2
2

b4(ω2
1 + d2)(ω2

2 + d2)

= 4q − p2

b4(ω2
1 + d2)(ω2

2 + d2)
< 0. (16)

Furthermore, we note that Re( dλ
dτ

)−1|
τ=τ

1,2
k

= p+2ω2
1,2

b2(ω2
1,2+d2)

. Since ω1 > ω2, we

obtain,

Re

(
dλ

dτ

)−1

|τ=τ 1k
> 0 > Re

(
dλ

dτ

)−1

|τ=τ 2k
.

Then he transversion condition holds for λ = iω1, τ = τ 1k , doesn’t hold for
λ = iω2, τ = τ 2k , k = 0, 1, 2, 3.... Applying Proposition 3 and Collary 2.4 of
Ruan and Wei (2003) yields the spectral results. ��

Proposition 4 (i) For condition (H1), the characteristic equation (9) has a pair of
simple purely imaginary roots ±iω0 at τk, k = 0, 1, 2.... Furthermore, if τ ∈
[0, τ0), all roots of Eq. (9) have negative real parts; if τ = τ0, all roots of Eq. (9)
except for ±iω0 have negative real parts; if τ ∈ (τk, τk+1], Eq. (9) has 2(k + 1)
positive roots.

(ii) For condition (H2), the characteristic equation (9) has two pairs of simple purely
imaginary roots ±iω1,±iω2 at τ 1k , τ 2k , k = 0, 1, 2..., respectively. Furthermore,
if τ ∈ [0, τ0), all roots of Eq. (9) have non-positive real parts, if τ ∈ (τk, τk+1),
Eq. (9) has 2(k + 1) positive roots.
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(iii) If neither of conditions (H1–H2) holds, all roots of Eq. (9) have negative real
parts.

In fact, the expressions of ω1 and τ 1k in Case 2 are the same as ω0 and τk in Case
1, respectively. For convenience, we use the same notation ω0, τk in the following
part of this study. In summary, for Case 1 and Case 2, transversion condition holds at
the endemic equilibrium when τ = τk, k = 0, 1, 2.... Applying the Hopf bifurcation
theorem for delay differential equations (Hale and Lunel 2013; Hassard et al. 1981)
yields system (2) undergos Hopf bifurcations at the endemic equilibrium along a
sequence of τ value τk, k = 0, 1, 2.... Proposition (4) immediately leads to stability
properties of the endemic equilibrium of system (2).

Theorem 2 Let R0 > 1 and τ > 0 be satisfied.

(i) If condition (H1)or (H2) holds, the endemic equilibrium is asymptotically stable
for τ ∈ [0, τ0) and unstable for τ > τ0. Besides, system (2) undergos Hopf
bifurcation at the endemic equilibrium when τ = τk, k = 0, 1, 2....

(ii) If neither of conditions (H1–H2) holds, the endemic equilibrium is locally asymp-
totically stable.

4 Global Hopf bifurcation

In this section, we explore the continuation and termination of the local Hopf bifur-
cation emanating from τk, k = 1, 2, 3... by using global Hopf bifurcation theorem of
functional differential equation (Erbe et al. 1992;Wu 1998). Let X = C([−1, 0], R2),
z(t) = (z1(t), z2(t)) = (S(τ t), I (τ t)). Rewriting system (2) as a functional differen-
tial equation yields

z′(t) = F(zt , τ, T ), (t, τ, T ) ∈ R × R × R+, (17)

where zt (θ) = z(t + θ), θ ∈ [−1, 0] , zt ∈ X and

F(zt , τ, T ) =
{

τΛ − τβe−αz2(t−1)z1(t)z2(t) − τdz1(t)
τβe−αz2(t−1)z1(t)z2(t) − τ(d + γ )z2(t).

(18)

The subspace of X contains all constant function from [−1, 0] to R2. The restricted
function of F can be given in the following form,

F̃ := F |R2+×R×R+ −→ R,

F̃(z, τ, T ) =
{

τΛ − τβe−αz2 z1z2 − τdz1
τβe−αz2 z1z2 − τ(d + γ )z2.

(19)

It’s obvious that F̃ is twice continuously differentiable. Thus the assumption (A1) in
global hopf bifurcation theorem (Wu 1998) is corroborated.
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We denote the set of stationary solutions of (19) by

N (F) = {(ŷ, τ̃ , T̃ ) : F̃ (̃z, τ̃ , T̃ ) = 0}.

For any (z̃, τ̃ , T̃ ) ∈ N (F), DF(z̃, τ̃ , T̃ )(e−λ I d) �= 0, which implies the assumption
(A2) is validated.

For any stationary solution, the characteristic matrix is

Δ
(z̃,τ̃ ,T̃ )

(λ) = λI d − DF(z̃, τ̃ , T̃ )(e−λ I d)

=
(

τβe−αz̃2 z̃2 + τd + λ τβe−αz̃2 z̃1 − ταe−λβe−αz̃2 z̃1 z̃2

−τβe−αz̃2 z̃2 −τβe−αz̃2 z̃1 + ταe−λβe−αz̃2 z̃1 z̃2 + τ(d + γ ) + λ

)

,

(20)

and the characteristic equation of the stationary solution gives

det (Δ
(z̃,τ̃ ,T̃ )

(λ)) = λ2 + τ ãλ + τ b̃(λ + τ d̃)e−λ + τ 2c̃ = 0, (21)

where ã = Λ
z̃1

, b̃ = α(d + γ )z̃2, c̃ = (d+γ )2 z̃2
z̃1

. Therefore it can be easily obtained
that the assumption (A3) holds.

In view of Wu (1998), if det (Δ
(z̃,τ̃ ,T̃ )

(im 2π
T̃

) = 0 for some integer m, we call

this stationary solution (z̃, τ̃ , T̃ ) ∈ N (F) a center. Moreover, if it is the only center
in some neighborhood of (z̃, τ̃ , T̃ ) and it has finitely purely imaginary characteristic
values of the form im 2π

T̃
, where m is an integer, we call this center is isolated. Let

J (z̃, τ̃ , T̃ ) denote the set of all such positive integers m.
From Wu (1998), we know that ((S∗, I∗), τn, 2π

ω0τn
) for any integer n ≥ 0 is an

isolated center, where τn and ω0 are defined in (13) and (14), respectively. Moreover,
it has only one purely imaginary eigenvalue of the form im 2π

T̃
and the only interger

m = 1. Note that the crossing number in Wu (1998) satisfies

γ1

(

(S∗, I∗), τn,
2π

ω0τn

)

= −1. (22)

Thus the assumption (A4) in Wu (1998) holds.
Let Σ(F) = Cl{(z, τ, T ) : z is a nontrival T-periodic solution of system(2)} ⊂

X × R+ × R+ with n = 1, 2, ..., X = C([−τ, 0], R2), and C((S∗, I∗), τn, 2π
ω0τn

)

denotes the connected component of ((S∗, I∗), τn, 2π
ω0τn

) in Σ(F). The global Hopf
theorem implies that either of the subsequent two assertions holds,

(i) C((S∗, I∗), τn, 2π
ω0τn

) is unbounded,

(ii) C((S∗, I∗), τn, 2π
ω0τn

) is bounded, C((S∗, I∗), τn, 2π
ω0τn

) ∩ N (F) is finite and for
all m = 1, 2, 3,..., we have

∑

(z,τ,T )∈C((S∗,I∗),τn , 2π
ω0τn

)∩N (F)

γm(z, τ, T ) = 0,
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whereγm(z, τ, T ) is themth crossingnumber of (z, τ, T ) ifm ∈ J (z, τ, T ), otherwise,
γm(z, τ, T ) = 0.

Proposition 4 reveals for each n = 1, 2, ..., (z, τ, T ) ∈ C((S∗, I∗), τn, 2π
ω0τn

),

J (z, τ, T ) = {1}, (23)
∑

(z,τ,T )∈C((S∗,I∗),τn , 2π
ω0τn

)∩N (F)

γm(z, τ, T ) = γ1(z, τ, T ) = −1 < 0. (24)

Therefore, for all n = 1, 2, ..., assertion (i) holds, which means the connected
component of ((S∗, I∗), τn, 2π

ωnτn
) in Σ(F), C((S∗, I∗), τn, 2π

ω0τn
) is unbounded. If its

projection onto z − space and T − space are bounded, then the projection on τ −
space is unbounded. Therefore we reap the final results of global Hopf bifurcation
branches. The following two lemmas help confirm the boundedness of projection of
C((S∗, I∗), τn, 2π

ω0τn
) onto z − space and T − space.

Lemma 1 For the initial value with the form Φ(θ) = (φ1(θ), φ2(θ)),Φ(θ) ∈
C+, φi (0) > 0, i = 1, 2, all periodic solutions of system (17) is uniformly bounded.

Proof For the initial value with the form Φ(θ) = (φ1(θ), φ2(θ)),Φ(θ) ∈
C+, φi (0) > 0, i = 1, 2, it can be shown that the system admits a unique solution Xt

and Xt ∈ R2+ for any t > 0. Then we obtain the lower bound.
Moreover, it follows from 2 that

(S(t) + I (t)′) ≤ Λ − d(S(t) + I (t)) − γ I (t),

which implies

lim sup
t→∞

(z1(t) + z2(t)) ≤ Λ

d
.

Thus, we obtain an upper bound. This completes the proof. ��

Note that lemma1 ensures that the projection ofC((S∗, I∗), τn, 2π
ω0τn

)onto z−space
is bounded. It follows from (13) and (14) that τkω0 = 2kπ + arccos A, k = 1, 2, ....
Hence, we have

1

k + 1
<

2π

τ0ωk
< 1. (25)

If we exclude the existence of periodic solution of period 1, then system (17) has
no periodic solutions of period 1

k for any positive integer k. Thus, the projection of
C((S∗, I∗), τk,

2π
ω0τk

) onto T − space is bounded.

Lemma 2 Suppose that condition (H1) or (H2) holds, then the system (17) has no
periodic solutions of period 1.
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Proof Assume that y(t) = (y1(t), y2(t)) is a periodic solution of system (17) with
period 1, then y(t) = (y1(t), y2(t)) is a periodic solution of the following ordinary
differential equations,

{
y1(t)′ = τΛ − τβe−αy2(t)y1(t)y2(t) − dy1(t),

y2(t)′ = τβe−αy2(t)y1(t)y2(t) − τ(d + γ )y2(t).
(26)

However, by simply analyzing the above system we know that the unique positive
equilibrium is globally asymptotically stable and no periodic solution occurs [referring
to proposition (2)]. This completes the proof. ��
Theorem 3 Assume that R0 > 1 and condition (H1) or (H2) holds, then for any
τ > τ1 system (17) has at least one nontrivial periodic solution.

Proof It follows from Eq. (19) that hypothesis (A1), (A2) and (A3) inWu (1998)hold.
Moreover, Eqs. (22) and (23) imply conditions (A4) and (A5) hold.

In view of (2), we know for each n = 1, 2, ..., (z, τ, T ) ∈ C((S∗, I∗), τn, 2π
ω0τn

),
and

∑

(z,τ,T )∈C((S∗,I∗),τn , 2π
ωnτn

)∩N (F)

γm(z, τ, T ) = γ1(z, τ, T ) = −1 < 0. (27)

Thus, for all n = 1, 2, ..., assertion (i) holds, which means the connected component
of ((S∗, I∗), τn, 2π

ωnτn
) in Σ(F), C((S∗, I∗), τn, 2π

ω0τn
) is unbounded.

It follows Lemma 2 that the projection of C((S∗, I∗), τk,
2π

ω0τk
), k = 1, 2, 3, ... onto

T − space is bounded. Moreover, (13) and (14) indicate τkω0 = 2kπ + arccos A is
satisfied. Hence

1

k + 1
<

2π

τ0ωk
< 1. (28)

From Lemma 2, we can exclude the existence of periodic solution of period τ , thus
the projection of C((S∗, I∗), τk,

2π
ω0τk

), k = 1, 2, 3, ..., onto T − space is bounded.
This completes the proof.

We now use numerical simulations to demonstrate our theoretical results. We ini-
tially fix parameters as Λ = d = 0.2, β = 1, γ = 0.1(day−1), α = 3. It is easy
to verify that R0 = 10/3 > 1 and condition (H1) : c2 − b2d2 = −0.019 < 0
holds. It follows from (13) and (14) that τ0 = 11.758, τ1 = 43.901, τ2 = 76.045
theoretically. Figure 1 shows the tendency of each eigenvalue with the increasing
time delay τ , which illustrates the curves hit the line of Re(x) = 0 at τ ≈ 11.758
for the first time,τ ≈ 43.901 the second time, τ ≈ 76.045 third time, respec-
tively. Figure 2 shows that the endemic equilibrium is asymptotically stable for
τ = 10.758 < τ0 (shown in Fig. 2a, b) and the bifurcated periodic solution is
feasible for τ = 12.758 > τ0 = 11.758 (shown in Fig. 2c, d). By using DDE-
BIFTOOL (Engelborghs et al. 2002), we can depict the the global Hopf branches of
periodic solution originating from Hopf bifurcation points. Figure 3 shows the global
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Fig. 1 Each curve represents the tendency of each eigenvalue with increasing delay τ . Three curves hit
Re(λ) = 0 at τ ≈ 11.758(τ0), 43.901(τ1), 76.045(τ2) respectively
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Fig. 2 Solutions of system (2) for τ = 10.758 < τ0 = 11.758 (a, b) and for τ = 12.758 > τ0 = 11.758
(c, d)

Hopf branches of periodic solution emanating from τ0, τ1, τ2. When τ0 < τ < τ1,
system(2) have only one periodic solution originating from τ0. As τ increases and
satisfies τ1 < τ < τ2, periodic solutions originating from τ0, τ1 coexist. As τ further
increases and satisfies τ2 < τ < τ3, we obtain three periodic solutions originating
from τ0, τ1, τ2 respectively. This result also implies that the Hopf branch emanating
from τ0 can continue in awide range. Further, we plotted the bifurcation diagram using
the delay as the bifurcation parameter (showed in Fig. 4), and obtained the periodic
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Fig. 3 Global Hopf branches of τ0, τ1, τ2

Fig. 4 Bifurcation diagram describing the dynamics of system (2) as the delay τ increases

solution bifurcated from τ0 is stable whereas the periodic solutions bifurcated from
τ1, τ2 are unstable. ��

5 A case study

In this section, we estimate the parameters of model (2) on the basis of the 2009 H1N1
pandemic influenza data in Shaanxi province of China from September 3rd to Octo-
ber 12th by using nonlinear least-square method. Moreover, a stochastic simulation
method was utilized to estimate the basic reproduction number R0, the response time
for individuals to the current infection τ (day), and their confidence intervals.
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As shown in previous work, media coverage significantly delayed the epidemics
peak and decreased the intensity of the outbreak (Xiao et al. 2015; Yan et al. 2015;
Tang et al. 2010; Liu et al. 2007; Cannon 2008). Moreover, Yan et al. (2015) revealed
the importance of the response of individuals to the media reports, with behaviour
changes being more important in emerging infectious control than the substantial
media attention given to unexpected events and reports. Besides, by conducting cross-
correlation analysis between the number of new hospital notifications and the average
number of daily news, Yan et al. (2015) noted a specific lag of 4 days between the
average number of daily news items and the number of daily hospital notifications,
which revealed the lag effect of media impact on H1N1 transmission. However, the lag
effect of media coverage impact hadn’t been taken into consideration in mathematical
modelling (Yan et al. 2015). In this section, we explore the lag effect ofmedia coverage
impact from the perspective of mathematical models.

5.1 Parameter estimation and model fitting

We obtained data on laboratory-confirmed cases of the A/H1N1 influenza pandemic
in the Shaanxi province of China (shown in Fig. 5a) from the Provinces Public Health
Information System, which are actually the numbers of hospital notifications since
almost every diagnosed case has been hospitalized in early September Tang et al.
(2010). Note that daily number of hospital notifications was reported separately every
two or three days, and no data were available during the weekends (Fig. 5a). In order to
deal with this irregular data, the cubic spline interpolation method on the surveillance
data was used while we estimated the parameters and fitted the model (Fig. 5b). Since
in our model (2) the individuals in the infected compartment may include both isolated
(or hopitalized) and un-isolated individuals,we have tomultiply the number of infected
individuals I (t) with the rate of isolation δ = 0.4 (Tang et al. 2010) when fitting our
model to the data on hospital notifications. The demographic effects are not considered
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Fig. 5 The numbers of cases of A/H1N1 flu reported for the Shaanxi Province. a Daily number of hospital
notifications for the Shaanxi province from September 3rd to October 12th 2009; b goodness of fit for (a)
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Table 1 Parameter values of model (2)

Parameter Description Value Mean Std

S0 Number of initial susceptible
individuals

18167 (LS) 18906 499.8

I0 Number of initial infected individuals 10 (fixed) – –

Λ Birth rate of the susceptible
population

0 – –

d Natural death rate 0 – –

β Contact transmission rate 0.6056 (LS) 0.5946 0.0118

α Weight of media effect sensitive to
number of infected population

1 (LS) 0.9898 0.1041

γ Recovery rate (day−1) 0.33 (LS) 0.3324 0.0135

τ The response time for individuals to
the current infection (day)

2.92 (LS) 2.9371 0.1954

in the following discussion because of the short epidemic time scale in comparison to
the demographic time scale, that is, we set Λ = 0, d = 0 here.

To estimate the parameters of model (2), we utilized the nonlinear least-square
method (NLES) in matlab to fit the daily number sets of hospital notifications for the
Shaanxi province from September 3rd to October 12th 2009 which correspond to the
model solution time seris δβS(t)I (t), as shown in Fig. 5b. Note that when α = 0
i.e. media effect haven’t been exploited, model (2) becomes an ordinary differential
system. While solving the delayed differential equations (2), we used the solution of
the ordinary differential system (α = 0 in model (2)) as the initial functions. The
estimated parameter values are listed in Table 1.

5.2 Basic reproduction number R0 and the response time for individuals to the
current infection τ

To calculate the confidence intervals of the basic reproduction number R0 and the
response time for individuals to the current infection τ , we utilized a stochastic simu-
lation method. To start with, we generated 200 samples of the daily number of hospital
notifications from a Poisson process as the counting process was a Poisson process.
Secondly, NLES method was used to fit model (2) and consequently we obtained 200
groups of values for these estimated values (S0, β, α, γ, τ ), which were used to cal-
culate the confidence interval of R0 and τ . Finally, we fitted the frequency histograms
of all of the estimated values by using normal distributions. The mean values and
standard deviations are shown in Table 1.

The basic reproduction number R0,which is defined as the number of newly infected
individuals produced by a single infected individual in a totally susceptible population
during the infectious period, can be explicitly calculated as R0 = β

γ
. Based on the

above-mentioned parameter estimations, we then calculated the mean values of R0
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and τ are 1.7913 days (95% confience interval is 1.7663–1.8014), 2.9371 days (95%
confience interval is 2.5612–3.2350 days), respectively.

6 Conclusion and discussion

Media communications have a great impact on individual behaviour changes, there-
fore significantly impact on the spread and outbreak of infectious disease. In recent
years, models associated with the impact of media coverage on disease spread show a
tremendous popularity. However, these models ignore the lag effect of media impact
on the spread of infectious disease. Thus, a model of the lag effect of media impact is
analyzed and discussed in this paper. The results obtained here could be beneficial for
accurately assessing the effect of the media coverage in the control and treatment of
infective diseases.

In this paper, we have proposed and analyzed a functional differential system
induced by the lag effect of media impact. We should point out that the global Hopf
bifurcation of a two dimensional delayed system is explored here. To start with, we
address the existence of local Hopf bifurcation of the positive equilibrium. The prop-
erties of the LambertW function (Corless et al. 1996) is utilized while solving and
representing the positive equilibrium. The results show that when the basic repro-
duction number R0 is smaller than 1, the disease-free equilibrium E0 of system (2) is
globally asymptotically stable whichmeans the disease will go to extinction.When the
basic reproduction number R0 is greater than 1, there exists an endemic equilibrium.
Besides, if condition (H1) or (H2) holds, the endemic equilibrium is asymptotically
stable for τ ∈ [0, τ0) and unstable for τ > τ0. System (2) undergos Hopf bifurcation at
the endemic equilibriumwhen τ = τk, k = 0, 1, 2.... If neither of conditions (H1–H2)
hold, the endemic equilibrium is asymptotically stable. Besides, we validate the global
onset and termination of Hopf bifurcations by employing a global Hopf bifurcation
theorem (Wu 1998; Qu et al. 2010; Wei and Li 2005; Shu et al. 2014). From the bifur-
cation analysis, we know that if R0 > 1 and condition (H1) or (H2) holds, system (2)
has at least one nontrivial periodic solution for any τ > τ1. We should point out that
we haven’t excluded the existence of periodic solutions with period 2 or 4 of system
(17) under the condition (H1) or (H2). Therefore, we can’t assert that system (2) has
at least one nontrivial periodic solution for any τ > τ0 theorically. It will be the future
work. However, DDE-BIFTOOL developed by Engelborghs et al. (Engelborghs et al.
2001, 2002) implies that the Hopf branch emanating from τ0 can continue in a wide
range.

Further, we conduct a case study based on the 2009 H1N1 pandemic influenza data
in Shaanxi province of China. From the literature Yan et al. (2015), a specific lag
of 4 days about the media impact on transmission of H1N1 pandemic was noted by
conducting cross-correlation analysis between the number of newhospital notifications
and the average number of daily news. However, the lag effect of media coverage
impact hadn’t been taken into consideration while proposing mathematical models
in Yan et al. (2015). Therefore, the specific lag 4 days couldn’t be explained from
the perspective of mathematical models. In this paper, we calculate the response time
for individuals to the current infection τ and its confidence interval by fitting the
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daily number of hospital notifications during the 2009 H1N1 pandemic influenza in
Shaanxi province of China to our proposed model (2). We estimate the parameters
of model (2) by using nonlinear least-square method (in Table 1). Then, by utilizing
a stochastic simulation method we obtain the mean value of the basic reproduction
number R0 1.7913 (95%confience interval is 1.7663–1.8014) and the response time for
individuals to the current infection 2.9371 (95% confience interval is 2.5612–3.2350).
The mean value and confidence interval of the basic reproduction number R0 here
have little differences from those (1.794, % CI 1.3858–1.9091) in (Yan et al. 2015).
Besides, the mean value of the lag of media impact calculated bymodelling simulation
here is similar to the lags in (Yan et al. 2015) which was explored by cross-correlation
analysis between the number of new hospital notifications and the average number of
daily news, with small differences associated with the differences in methodology.

In conclusion, we have proposed a delay differential model associated with the lag
effect of media coverage impact on the transmission and outbreak of infectious dis-
eases. Local and global Hopf bifurcation of a two dimensional functional differential
system are explored theoretically and numerically in this paper. Further, we estimate
the parameters of the novel model on the basis of the 2009 H1N1 pandemic influenza
data in Shaanxi province of China, calculate the basic reproduction number R0, the
response time for individuals to the current infection τ , and their confidence intervals.

An assumption in this paper is that the impact ofmedia coverage on the transmission
of the infectious disease occurs as soon as the disease emerges and remains during the
whole process of the diseases spreading. However, this is not really the case. Mostly,
at the initial stages of an emerging infectious disease, both the general individuals and
public mass media are unaware of the disease. Media reports, information processing,
and individuals alerted responses to the information can only arise as the number of
infected individuals reaches and exceeds a certain level.Thus a picewise system with
delay should be analyzed. It would be the following work.
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