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Abstract We study ODE models of epidemic spreading with a preventive behavioral
response that is triggered by awareness of the infection. Previous studies of such
models have mostly focused on the impact of the response on the initial growth of
an outbreak and the existence and location of endemic equilibria. Here we study the
question whether this type of response is sufficient to prevent future flare-ups from
low endemic levels if awareness is assumed to decay over time. In the ODE context,
such flare-ups would translate into sustained oscillations with significant amplitudes.
Our results show that such oscillations are ruled out in Susceptible-Aware-Infectious-
Susceptible models with a single compartment of aware hosts, but can occur if we
consider two distinct compartments of aware hosts who differ in their willingness to
alert other susceptible hosts.
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1 Introduction

The impact of behavioral responses on the progress of an infectious disease has
received growing attention in epidemic modeling in recent years (Bagnoli et al. 2007;
Epstein et al. 2008; Ferguson 2007; Funk et al. 2010b; Manfredi and d’Onofrio 2013).
Responses arising from risk perception of the disease are, for instance, avoidance
behavior implying breaking off connections with infectious acquaintances (social dis-
tancing), and preventive behaviors, like handwashing or wearing face masks (Kuo
et al. 2011; Lau et al. 2010). In epidemic network models, which take into account the
contact network in a population, social avoidance has been modeled by means of sev-
eral mechanisms of dynamic rewiring (Gross et al. 2006; Juher et al. 2013; Llensa et al.
2014; Risau-Gusmán and Zanette 2009; Schwarzkopf et al. 2010). Other approaches
cast preventive actions into classic epidemic models by dividing each of the suscep-
tible/infectious/removed classes between responsive and non-responsive individuals
(Funk et al. 2010a; Kiss et al. 2010), or by explicitly considering a new class of indi-
viduals who are both susceptible and aware, with a lowered susceptibility to infection
relative to unaware hosts. This approach leads to the class of SAIS models (Juher et al.
2015; Sahneh et al. 2012, 2014; Sahneh and Scoglio 2011).

FollowingFunk et al. (2009, 2010a), amongothers, herewewill considerawareness
as a state of knowledge about the prevalence of the disease that will both induce a
behavioral response in the given host and that this host is willing to transmit to other
hosts. To distinguish this more stringent notion of awareness from the one made in
the SAIS models of the previous paragraph, we call the latter type of models reactive
SAIS models. These models incorporate direct transmission of information about the
disease, so that the spread of awareness is somewhat similar but not entirely analogous
to the spread of an infectious disease. See Sect. 2 for details.

We are interested in two aspects of the question under what circumstances a behav-
ioral response that is induced by awareness can be an effective control measure:
whether such models would predict an elevated epidemic threshold and whether the
response would prevent future flare-ups from low endemic levels. Some recent empir-
ical findings appear to show such flare-ups when awareness or at the least adoption of
the corresponding behavioral response diminishes. Several public health agencies have
reported an increase in some sexual transmitted infections (STIs), particularly among
MSM (men who have sex with men) in high-income countries, since the mid-1990s.
For instance, the Public Health Agency of Canada reports that syphilis infections are
increasing in Canada and, between 2003 and 2012, rates increased by 100% (Totten
et al. 2015). Similarly, during the same period of time, the overall rates for gonorrhea
and chlamydia in Canada increased by 39 and 58% (75% among men), respectively
(see Wilton 2015 and references therein). Interestingly, such a re-emergence follows
the dramatic decline in STIs that occurred after the appearance of the HIV in the early
1980s and the consequent widespread use of condoms. However, the introduction of
the antiretroviral therapy for HIV in 1996 and a higher adoption of non-condom HIV
risk-reduction strategies led to a decreased condom use and the re-emergence of STIs
in USA, Canada, and Europe (Fenton and Lowndes 2004; Wilton 2015). In this con-
text, behavioral interventions remain an important tool in the global fight against STIs
(Task Force on Community Preventive Services 2007).
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Oscillations in epidemic models with spread of awareness 1029

For non-reactive SAISmodelswithout decay of awareness, it was shown in Sahneh
et al. (2012) that the spread of awareness causes an elevation of the epidemic threshold.
Even if the basic reproduction number R0 > 1 in the underlying model of disease
transmission, an endemic equilibrium only appears once this elevated threshold is
surpassed. However, this result requires the assumption that awareness will not decay
over time. In Juher et al. (2015), it was proved that this elevated epidemic threshold
disappears if one assumes that awareness will decay over time. Under this assumption,
when R0 > 1, awareness may drive the endemic equilibrium to very low levels of
disease prevalence, but may not eliminate it or change its stability. Here we show
that reactive SAIS models with awareness decay in some cases permit an elevated
epidemic threshold so that the endemic equilibrium will disappear and the disease
will be driven towards extinction from almost all initial states, even when R0 > 1.

Will a behavioral response that is induced by awareness prevent, all by itself, future
flare-ups from low endemic levels? When awareness is assumed to be permanent and
demography is not considered, as in Sahneh et al. (2012), Sahneh and Scoglio (2011),
the answer is obviously yes. But it is less clear what to expect when awareness decays
over time. In the context of ODE models the question translates into one about the
existence of sustained oscillations with a significant amplitude. In Sect. 2 we show
that such oscillations are ruled out in SAIS models. This result applies to both reactive
and non-reactive SAIS models and holds even if we allow more general functional
responses rather than rate constants in the models.

However, in Sect. 3 we introduce a more general class of models that we call
SAUIS models. They have two distinct compartments of aware hosts who differ in their
willingness to alert other susceptible hosts. Thus thesemodels embody the degradation
of quality of information as it is transmitted from one individual to another. Our
approach for modeling this phenomenon adopts, albeit in greatly simplified form, an
idea that was introduced in Agliari et al. (2006) and adopted in Funk et al. (2009) for
an epidemic context. We show that sustained oscillations can occur in SAUIS models,
even if all rate coefficients are constants. Also, while it seems quite plausible that
oscillations could be induced by a time lag between actual prevalence and available
information about it, this mechanism is deliberately ruled out by the way we set up our
models. Thus our results clearly demonstrate that degradation of information during
transmission processes can be the driving mechanism for the existence of periodic
waves of infection, supporting the claim in Agliari et al. (2006) that such a degradation
can reveal important qualitative and quantitative effects.

The remainder of the paper is organized as follows: In Sect. 2 we formally define
reactive SAIS models and prove the results about these models that were described
above. In Sect. 3 we formally define reactive SAUIS models and examine some of
their basic properties. In particular, we present numerical explorations both of the
dynamics in SAUIS models and of regions of the parameter space that are bounded by
Hopf bifurcation points. These results reveal intricate possibilities for the dynamics
in SAUIS models.

In Sect. 4 we briefly review some related models of behavioral epidemiology that
predict oscillations and discuss how they differ from ours. We also discuss some
possible implications for public health policy and directions of future work.
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2 Reactive SAIS models

2.1 The model

An SAIS model has three compartments: S (susceptible), A (aware) and I (infectious).
Susceptible hosts canmove to theA-compartment or to the I-compartment, aware hosts
can move to the S-compartment due to awareness decay or to the I-compartment due
to infection (albeit at a lower rate than susceptible hosts). Upon recovery, infectious
hosts can move either to the A-compartment or to the S-compartment.

As was mentioned in the introduction, we will consider awareness as a state of
knowledge about the prevalence of the disease that will both induce a behavioral
response in the given host and that this host is willing to transmit to other hosts. So, it
is natural to assume that awareness can be passed on from aware to unaware individuals
like a contagious disease (Epstein et al. 2008). However, while the force of infection
in transmission of actual diseases can usually be assumed to be a linear function of the
prevalence, the rate at which susceptible individuals become aware usually will show
more pronounced nonlinearities. On the one hand, there will be a saturation effect
arising from overexposure to information when the proportion of infectious hosts is
very high. On the other hand, when the prevalence of the disease is very low, a careless
attitude may prevail that renders the channels of transmitting awareness ineffective.
Details may significantly vary between different populations and diseases. In order
to allow for maximum flexibility in incorporating these effects, we will investigate
models where parameters for transmission of awareness are functions of the disease
prevalence rather than rate constants. The sources of nonlinearities mentioned above
suggest that these parameters may exhibit near switch-like behavior.

The proportions of hosts in the S-, A-, and I- compartmentswill be denoted by s, a, i
respectively. The rates of change of these fractions are governed by the followingODE
model:

da

dt
= αi (i) s i + αa(i) s a + p(i) δ i − βa a i − δa(i) a,

di

dt
= (β s + βa a − δ) i, s + a + i = 1.

(1)

Here we assume that αi (i), αa(i), p(i), δa(i) are nonnegative differentiable func-
tions in [0, 1], p(i) ≤ 1, δa(0) > 0, and β, βa, δ are constants such that 0 ≤ βa < β

and δ > 0. Moreover, for i > 0 we assume that αa(i) > 0 and αi (i) + p(i) > 0.
The term αi (i)i represents the rate at which a susceptible host becomes aware due

to direct information about the disease prevalence. As αi (i) may depend on i , the
factor i is strictly speaking redundant in this term. But its inclusion simplifies some
calculations. Also, inclusion of the factor i makes the similarity with disease transmis-
sion more explicit. If αi (i) is not constant, one can think of the process of obtaining
direct information as encountering at least one infectious host and then seeking or
re-interpreting independent information about the overall disease prevalence. Thus it
seems plausible to assume that αi (i) is low when infectious hosts are observed so
rarely that they are not considered indicative of an outbreak, steeply increases around
a critical level of disease prevalence, and then levels off.
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Oscillations in epidemic models with spread of awareness 1031

Similarly, the term αa(i)a represents the rate at which susceptible hosts become
aware due to a contact with an aware host duringwhich the latter transmits information
about the disease. The assumption thatαa(i) > 0 is the one that really distinguishes our
models from non-reactive SAISmodels.The latter can be obtained by simply removing
the term αa(i) s a from (1). The previously published versions of non-reactive SAIS
models also do not include a term p(i) δ i .

In view of the above discussion we tend to think of αi (i) and αa(i) as increasing in
a sigmoid-like fashion from 0 or near 0 when i = 0 to near a saturation constant when
i = 1, but these properties are not needed for the results of this section. While one can
argue that αa(0) should be zero so that awareness will not spread in the absence of
an outbreak, we also allow for a minimum level of creation of awareness (αa(0) > 0)
reflecting, for instance, the spread of rumors and beliefs, or a propensity to become
aware because of previous experiences with the disease, even in the absence of current
empirical evidence.

The parameter p(i) can be interpreted as the probability that an infectious host
will move to the A-compartment as a result of direct experience of the disease. With
probability 1− p(i) the host will remain oblivious of the dangers posed by the outbreak
and will move back to the S-compartment.

The term δa(i) represents the decay of awareness. It could be a constant or any
other positive differentiable function, but in realistic models higher disease prevalence
should result in slower awareness decay so that δa(i) will be a nonincreasing function
of i .

The inequality βa < β embodies the assumption that awareness will lead to
adoption of a behavioral response that decreases the rate at which hosts contract the
infection.

Lemma 1 Assume αi (i), αa(i), p(i), δi (i), β satisfy the conditions that were spelled
out below (1). Then the region � = {(a, i) ∈ R

2 | 0 ≤ a + i ≤ 1, a ∈ [0, 1]} is
forward-invariant.

Proof By direct inspection of the system we see that (da/dt)|a=0 = αi (i)(1− i)i +
p(i)δi ≥ 0 for 0 ≤ i ≤ 1, (di/dt)|i=0 = 0, and (d(a + i)/dt)|a+i=1 = −(1 −
p(i))δi − δa(i)a ≤ 0. ��

2.2 Nullclines and equilibria

By solving di/dt = 0 we find two parts of the i-nullcline. The first one is given by
the horizontal axis i = 0 and the second one is the straight line

i(a) = 1 − δ

β
−

(
1 − βa

β

)
a, (2)

which has a slope between −1 and 0 under the assumption βa < β. It intersects the
horizontal axis i = 0 at the point

a = β − δ

β − βa
.

123



1032 W. Just et al.

By solving da/dt = 0 we find the a-nullcline. The point (0, 0) always satisfies this
equation. For i > 0 we have assumed αa(i) > 0 and the other part of this nullcline is
implicitly defined by the following equation in the variables i and a:

a2 −
(
1 − i − (αi (i) + βa)i + δa(i)

αa(i)

)
a − αi (i)

αa(i)
i (1 − i) − p(i)δ

αa(i)
i = 0. (3)

Since we have assumed αi (i) + p(i) > 0 for i > 0, the positive branch of the
a-nullcline is given by the graph of the following function a(i) on [0, 1]:

a(i) = 1

2

⎛
⎝1 − i − (αi (i) + βa)i + δa(i)

αa(i)

+
√(

1 − i − (αi (i) + βa)i + δa(i)

αa(i)

)2
+ 4

αi (i)

αa(i)
i (1 − i) + 4p(i)δ

αa(i)
i

⎞
⎠ . (4)

Note that a(1) ≥ 0. If p(1) = 0, then a(1) = 0. If p(1) > 0, the last term under the
root in (4) will be positive so that a(1) > 0 and the curve a(i) will enter � only at
some point (a, i) with i < 1. Similarly, a(0) = 1 − δa(0)/αa(0) if δa(0) < αa(0),
while a(0) = 0 if δa(0) ≥ αa(0). Moreover, a(i) is continuous and takes on positive
values for all i ∈ (0, 1).

The system has three possible types of equilibria in the first quadrant, namely,

P1 = (0, 0), P2 =
(
1 − δa(0)

αa(0)
, 0

)
, P3 = (a∗, i∗),

where (a∗, i∗) denotes an equilibrium with i∗ > 0. Since for i∗ > 0 we have αi (i∗)+
p(i∗) > 0 by assumption, any endemic equilibriummust necessarily lie in the interior
of �. P2 lies in � provided that δa(0) < αa(0).

Now consider the inequality

β − δ

β − βa
> 1 − δa(0)

αa(0)
. (5)

By sketching the nullclines in the a-i plane, one can see that (5) is a sufficient condition
for the existence of at least one endemic equilibrium when β > δ > βa , because the
function a(i) is continuous and satisfies a(1) ≥ 0. It will always contain a point on the
boundary of�with a+ i = 1. Thus (5) guarantees that it must intersect the part of the
i-nullcline given by (2), which is a straight line such that i(0) < 1 with a slope larger
than −1 and a-intercept β−δ

β−βa
< 1 (see Fig. 1). The condition δ > βa can be relaxed

when all the coefficients in the model are constants; see Lemma 2(a) and its proof.
Alas, ourmodel assumptions do not rule outmultiple endemic equilibria P3. Neither

is (5) necessary for the existenceof endemic equilibria.Under a number of fairly natural
conditions, uniqueness of P3 is guaranteed and (5) is necessary for its existence; see
Lemma 2 below. However, as the main results of this section can be derived under our
most general assumptions, we will not impose any of these conditions from the outset.
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Fig. 1 Phase portrait of the
reactive SAIS with alert rates
αa(i) = α0a (i + 1) and
αi (i) = α0i (i + 1), and decay

rate δa(i) = δ0a/(1 + i) for
different values of δ0a showing
three possible configurations of
equilibria when R0 > 1 (top:
δ0a = 1, middle: δ0a = 3, bottom:
δ0a = 5). Parameters: p(i) = 0,
δ = 4, β = 10, βa = 1, and
α0a = α0i = 4. Note that
αa(0) > 0 allows the existence
of a second equilibrium on the
a-axis for small enough values
of δ0a
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We want to mention though that the case of constant rate functions that is covered
by points (a1) and (b1) of Lemma 2 is the only one that has been studied in the prior
literature on nonreactive SAIS models, and is also the one that directly corresponds
to our work in the next section.

Lemma 2 Assume αi (i), αa(i), p(i), δi (i), β satisfy the conditions that were spelled
out below (1), and that β > δ. Then :

(a) Under any of the following assumptions, when (5) holds, there exists exactly one
interior equilibrium P3:
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1034 W. Just et al.

(a1) The functions αi (i) = αi , αa(i) = αa, p(i) = p and δa(i) = δa are all
constant.

(a2) The functions αi (i), αa(i), p(i) are nondecreasing, δ ≥ βa, the function δa(i)
is nonincreasing, and αa(0) > β − βa .

(a3) The functions αi (i), αa(i), p(i) are nondecreasing, δ ≥ βa, and the func-
tion δa(i) decreases steeply enough so that βa ≤ −δ′

a(i) for all i ∈ [0, 1].
(b) If the inequality in (5) is reversed, then any of the following conditions precludes

the existence of an interior equilibrium.

(b1) The functions αi (i) = αi , αa(i) = αa, p(i) = p and δa(i) = δa are all
constant and

αa − δa

αa + βa
≥ 1 − δ

β
. (6)

(b2) The assumptions of (a2) hold.
(b3) The assumptions of (a3) hold.

The proof of this lemma is included in the appendix. In part (b1), without an
assumption like (6), saddle-node bifurcations that lead to multiple endemic equilibria
are possible; see Fig. 2.

If we define the basic reproduction numbers of the disease and awareness as

R0 := β/δ and R a
0 := αa(0)/δa(0),

we can interpret intuitively the conditions for the existence of these equilibria. The
disease-and-awareness-free equilibrium P1 always exists. The equilibrium P2 is also
disease-free, but has a positive fraction of aware hosts. It exists if, and only if, R a

0 > 1,
that is, if in a large andotherwise susceptible populationwith one aware host, awareness
will on average increase. The condition R0 > 1 is necessary and, when δ > βa ,
condition (5) is sufficient for the existence of an endemic equilibrium P3. Note that
condition (5) holds if the disease spreads faster than awareness in the early stages of
an outbreak, i.e., if R0 > max{1, Ra

0 }. In addition, it also holds when Ra
0 > R0 > 1

a
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Fig. 2 Phase portrait of the reactive SAISwith constant rates showing the existence of two interior equilibria
(right) after a saddle-node bifurcation (left) using αi as a tuning parameter. Parameters: p = 0, β = 6,
δ = 4, βa = 2, δa = 0.9, αa = 2, and αi = 0.05 (right) and αi = 0.1733500838578 (left)
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Oscillations in epidemic models with spread of awareness 1035

and βa is close enough to δ, i.e., when the reduction of the transmission probability
due to awareness is not significant enough.

The Jacobian matrix of system (1) is

J =
(

αa(i)(s−a)−αi (i)i−βai−δa(i) URC
−(β − βa)i βs + βaa − βi − δ

)
,

where URC = (αi (i)i)′s−αi (i)i + (α′
a(i)s−αa(i)−βa − δ′

a(i))a+ (p(i)δi)′ and
s = 1 − a − i .

The eigenvalues of J at P1 are

λ1(P1) = αa(0) − δa(0) and λ2(P1) = β − δ,

which shows that the necessary conditions for the existence of P2 and P3 imply
instability of P1.

At P2, the eigenvalues are

λ1(P2) = δa(0) − αa(0) and λ2(P2) = β − δ − (β − βa)

(
1 − δa(0)

αa(0)

)
.

Note that λ1(P2) = −λ1(P1) and that λ2(P2) > 0 if and only if condition (5) holds.
The former implies that if Ra

0 > 1, then P1 is unstable and P2 attracts any trajectory
on the a-axis; exactly as one would expect from an SIS-like behavior of awareness.

2.3 Dynamics

Lemma 3 Assume αi (i), αa(i), p(i), δi (i), β satisfy the conditions that were spelled
out below (1). Then the system (1) has no closed orbits inside �.

Proof Let f1(a, i) and f2(a, i) denote the functions on the right-hand side of the

system. The vector field (F1(a, i), F2(a, i)) = (
1

a i
f1(a, i),

1

a i
f2(a, i)) is C1 in the

interior of �, and its divergence is given by

∂

∂a
F1(a, i) + ∂

∂i
F2(a, i) = −αi (i)

a

(
1 + s

a

)
− αa(i)

i
− p(i)δ

a2
− β

a
< 0

for all (a, i) in the interior of �. So, the divergence does not change sign and does
not take the value 0. Therefore, Dulac’s criterion of nonexistence of periodic orbits
(Perko 2001) precludes the existence of a closed orbit lying entirely in �. ��

The next theorem sums up the dynamics of system.

Theorem 1 Assumeαi (i), αa(i), p(i), δi (i), β satisfy the conditions thatwere spelled
out below (1). Then the global behavior of the solutions of the system (1) depends as
follows on the remaining parameters:
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(i) If R0 ≤ 1 and Ra
0 ≤ 1, then P1 is the only equilibrium point and is globally

asymptotically stable.
(ii) If R0 ≤ 1 < Ra

0 , then P1 and P2 are the only equilibrium points. P2 is globally
asymptotically stable on �\{P1}. When R0 < 1, then P1 is a saddle point.

(iii) If Ra
0 ≤ 1 < R0, then no equilibrium P2 	= P1 exists in �. When Ra

0 < 1, then
P1 is a saddle point. Each trajectory that starts with i(0) > 0 will eventually
approach an endemic equilibrium of type P3.

(iv) If R0 > 1 and Ra
0 > 1, then P1 is an unstable point and system (1) has also the

equilibrium P2. If λ2(P2) < 0, then P2 is locally asymptotically stable.
(v) If instead λ2(P2) > 0, then system (1) has also at least one equilibrium P3, with

P2 being a saddle point. Each trajectory that starts with i(0) > 0 will eventually
approach an endemic equilibrium of type P3.

Moreover, when any of the conditions of Lemma 2(a) are satisfied, then the endemic
equilibria in point (iii) and (v) are guaranteed to be unique. Similarly, when any of
the conditions of Lemma 2(b) are satisfied, then under the assumptions of point (iv)
we can conclude that P2 is globally asymptotically stable on �\{P1}.

Proof Recall that R0 = β
δ
and Ra

0 = αa(0)
δa(0)

.
For part (i), when β ≤ δ, then the i-nullcline has no points with s < 1 and P1 is

the only equilibrium point of (1). From Lemmas 1 and 3, together with the Poincaré-
Bendixson theorem, it follows that P1 is globally asymptotically stable.

For part (ii), if αa(0) > δa(0), the a-nullcline intersects the a-axis at P2, and P3 is
ruled out as in case (i). So P1 and P2 are the only equilibria of the system. As we have
λ1(P1) > 0 and λ2(P1) = β − δ ≤ 0, it follows that P1 is a saddle point when the
inequality β < δ is strict. Moreover, as (αi (0)i)′ ≥ 0, the first row of the Jacobian at
P1 has two nonnegative entries. Thus the eigenvector with eigenvalue λ1(P1) cannot
intersect the interior of �. From the same facts that we used in part (i) it follows that
P2 is globally asymptotically stable on �\{P1}.

Under the assumptions of (iii), we have λ1(P1) = αa(0)−δa(0) ≤ 0 and λ2(P1) >

0, and it follows that P1 is a saddle point when the inequality αa(0) < δa(0) is
strict. Moreover, the eigenvector with non-positive eigenvalue lies on the line i = 0.
Thus at least one endemic equilibrium P3 must exist, and each trajectory that starts
with i(0) > 0 must eventually approach such an equilibrium.

Under the assumptions of (iv) and (v), the a-nullcline intersects the horizontal axis
at a(0) > 0 and P2 is always an equilibrium, while P1 is unstable. Recall that the i-
nullcline intersects the a-axis at (β−δ)/(β−βa) so that the sign of λ2(P2) determines
whether this intersection occurs to the left or to the right of P2. Note that this remains
true even when this intersection occurs outside of �. The former occurs in case (iv)
where P2 is locally asymptotically stable. The latter occurs in case (v), where P2 is
a saddle point with the stable direction on the line i = 0, while P1 is repelling. It
follows that at least one endemic equilibrium P3 must exist, and each trajectory that
starts with i(0) > 0 must eventually approach such an equilibrium. ��

For Ra
0 ≥ 1 (so that P2 ≥ 0), Theorem 1 shows that the reactive SAIS-model

predicts an elevated epidemic threshold which is given by λ2(P2) = 0. This threshold
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Oscillations in epidemic models with spread of awareness 1037

can bewritten by changing the inequality in (5) to an equality. Following the suggestion
of one of the reviewers, let us define

Rd
0 = βa

δ

as the basic reproduction number of aware individuals that would apply to a population
consisting entirely of aware hosts. After dividing numerator and denominator of the
left-hand side of (5) by δ and using the definitions of R0 and Ra

0 , inequality (5) now
reads

R0 − 1

R0 − Rd
0

> 1 − 1

Ra
0

= Ra
0 − 1

Ra
0

.

After passing all terms to the left-hand side of the inequality, multiplying by the
positive denominators, canceling R0Ra

0 , and then adding 1 to both sides, this can be
written equivalently in the usual format for epidemic thresholds as

R0 + (Ra
0 − 1)(Rd

0 − 1) > 1. (7)

When (7) holds and Ra
0 ≥ 1, the disease can always invade the population regardless

of how much awareness is initially present, and trajectories that start at an endemic
state will eventually approach an endemic equilibrium. In particular, when Ra

0 ≥ 1
and Rd

0 ≥ 1, then (7) holds, as R0 = β/δ > Rd
0 under the assumptions of our model,

and the epidemic will spread. On the other hand, if Ra
0 > 1 but Rd

0 < 1 (awareness
significantly reduces disease transmission), then having R0 > 1 is not enough to
guarantee the spread of the epidemic.

When the inequality in (7) is reversed and still Ra
0 ≥ 1, then the disease will not

be able to invade a population that has had some prior exposure to awareness, by
whatever means, and has reached a state in the basin of attraction of P2. However, it
might still be possible for the disease to persist outside of this basin of attraction; see
the example of Fig. 2, where the left-hand side of (7) evaluates to 0.888. Therefore,
when Ra

0 > 1 and Rd
0 < 1, which is feasible in a region of parameter space for our

model, (7) defines an elevated epidemic threshold. If in addition any of conditions
of Lemma 2(b) hold, then the disease will always be driven to extinction. Under our
most general assumptions, the basin of attraction of of P2 will include an open ball
around P2 as well as the line segment L that consists of all conditions with i = 0 and
a > 0. It follows that this basin of attraction of P2 must contain an open neighborhood
of L . Thus in the limiting case of infinite population size where introduction of a single
index case is treated as an initial condition with an infinitesimally small positive i(0),
any prior introduction of awareness (a(0) > 0) would be sufficient to guarantee that
the disease dies out before reaching endemic proportions. This conclusion may not
be valid under our general assumptions for small finite populations, but exposure
to awareness at a time that is sufficiently early relative to invasion of the disease
would still guarantee that it will be driven to extinction under the assumptions of
Theorem 1(iv).
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It may be of interest to point out that in the limiting case βa = 0 the behavioral
response that is triggered by awareness confers perfect immunity to becoming infec-
tious. This is quite similar to the assumption that is often made about vaccinations. In
this case the inequality in (5) will be reversed if R0 < Ra

0 . Under these conditions,
if all rate functions satisfy the monotonicity conditions of Lemma 2(b3), then any
trajectory that starts in �\{P1} will approach the equilibrium P2 with a proportion
of 1 − 1/Ra

0 aware hosts, which happens to be exactly the herd immunity threshold
for vaccinations that confer perfect protection for diseases with basic reproduction
number Ra

0 .

3 SAUIS models

3.1 The model

SAISmodels ignore the degradation of information quality as it is transmitted fromone
individual to another. According to these models, aware individuals would always cre-
ate aware hosts with the same degree of responsiveness, which seems unrealistic. The
following approach to modeling degradation of information was introduced (Agliari
et al. 2006) and adopted in Funk et al. (2009) for an epidemic context: We assume
that direct information about the disease prevalence induces awareness of the risk of
infection and maximum observance of protective measures, while subsequent aware-
ness transmission decreases its impact on an individual’s reaction by a constant decay
factor. Following this idea, but simplifying it in order to get a manageable model, we
will introduce a new class of individuals whose behavioral response has been induced
indirectly through contacts with aware individuals. In contrast to aware individuals,
the latter are assumed to be unwilling to convince other people about the risk. They
may also show a weaker behavioral response. As they don’t actively participate in the
dissemination of awareness, we call them unwilling individuals and let u denote their
proportion in the population. Transmission of awareness can create both aware and
unwilling hosts.

We will investigate here the simplest equations describing such dynamics that are
constructed in direct analogy to the reactive SAIS models of Sect. 2:

da

dt
= αi s i + αa s a + p δ i − βa a i − δa a,

du

dt
= δa a + αu s a + q δ i − βu u i − δu u,

di

dt
= (β s + βa a + βu u − δ) i, s + a + u + i = 1.

(8)

Here αu a is the rate at which susceptible hosts become unwilling after having a
contact with an aware host, and δu is the rate of awareness decay of the unwilling
hosts. This model implicitly assumes that aware hosts first turn into unwilling hosts
before possibly entering the susceptible compartment. It also allows for coexistence
of three behavior patterns at the time of recovery from the disease: The host will
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then move into the A-compartment with probability p, into the U-compartment with
probability q, and into the S-compartment with probability 1− p− q. All other terms
play the same role as the corresponding terms in the reactive SAIS model.

We assume that all rate coefficients are constants and, with the possible exception
of βa and βu , are positive, with 0 ≤ βa, βu < β. Similarly to the SAIS model, one
could allow someof the rate coefficients to dependon i ; seeSect. 4 for a brief discussion
of these extensions of the model. However, we specifically restrict our attention here
to the case of constant rate coefficients to emphasize the point that their dependence
on i is not a necessary condition for observing periodic oscillations.

Lemma 4 The region � = {(a, u, i) ∈ R
3+ | 0 ≤ a + u + i ≤ 1} is positively

invariant.

Proof Direct inspection of the system (8) shows that (da/dt)|a=0 ≥ 0 and the inequal-
ity is strict when si > 0. Similarly, (du/dt)|u=0 ≥ 0, and the inequality is strict
when a > 0. On the other hand, (di/dt)|i=0 = 0. It follows that the (a, i)- and
(u, i)-coordinate planes repel the trajectories and that the (a, u)-plane is invariant.
So, we only need to see that trajectories cannot cross the boundary a + u + i = 1.
If v denotes the vector field defined by the right-hand side of the system, we can
see this by computing the scalar product of v on this boundary with the outward-
pointing normal vector n = (1, 1, 1). Since s = 0 in this region of the boundary,
we get v · n = −δu u − δ i (1 − p − q) ≤ 0. The inequality is strict except at the
point (1, 0, 0), where da/dt = −du/dt < 0 = di/dt . Therefore the vector field on
the boundary a + u + i = 1 never points towards the exterior of �. ��

3.2 Possible equilibria

The system (8) can have up to three types of equilibria in �.
The first one is the disease-free, awareness-free equilibrium P1 = (0, 0, 0).
The second one is the disease-free equilibrium P2 = (a∗

0 , u
∗
0, 0). From the first line

of (8) we have s∗
0 = δa/αa . In view of the equality u∗

0 = 1 − a∗
0 − δa/αa , the second

line of (8) implies:

a∗
0 =

δu

(
1 − δa

αa

)

δa

(
1 + αu

αa

)
+ δu

, u∗
0 =

(
1 − δa

αa

) δa

(
1 + αu

αa

)

δa

(
1 + αu

αa

)
+ δu

. (9)

The third kind of possible equilibrium is an endemic equilibrium, i.e., a point
P3 = (a∗, u∗, i∗) of � with

i∗ = 1 −
(
1 − βa

β

)
a∗ −

(
1 − βu

β

)
u∗ − δ

β
> 0. (10)

As the upper panel of Fig. 3 shows, theremay bemore than one endemic equilibrium
in the interior of �.
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3.3 Existence and linear stability of equilibria

The disease-free, awareness-free equilibrium P1 = (0, 0, 0) always exists. Evaluating
the Jacobian matrix of system (8) at P1 we have

J (P1) =
⎛
⎝αa − δa 0 αi + pδ

δa + αu −δu qδ

0 0 β − δ

⎞
⎠ , (11)

whose eigenvalues are

λ1(P1) = αa − δa, λ2(P1) = −δu, λ3(P1) = β − δ.

So, as expected, when β > δ, i.e., when R0 > 1, this equilibrium is unstable.
Moreover, as in the reactive SAIS model, when Ra

0 := αa/δa > 1, this equilibrium is
unstable independently of the sign of β − δ and P2 becomes biologically meaningful.

By (9), P2 exists in �\{P1} if, and only if, Ra
0 = αa/δa > 1. In this case it must be

in the interior of the intersection of the a-u-plane with �. The Jacobian matrix of (8)
at this equilibrium is

J (P2) =
⎛
⎝ −αa a∗

0 −αa a∗
0 αi s∗

0 − (αa + βa)a∗
0 + pδ

δa + αu(s∗
0 − a∗

0) −αua∗
0 − δu −αua∗

0 − βuu∗
0 + qδ

0 0 βs∗
0 + βaa∗

0 + βuu∗
0 − δ

⎞
⎠ , (12)

with s∗
0 = δa/αa . Here we have used the observation that the expression αa (s∗

0 −a∗
0)−

δa obtained from direct computation of the partial derivative in the upper left corner
of J (P2) simplifies to −αaa∗

0 . When one computes the determinant of the submatrix
formed by the intersection of the first two rows of J (P2) with its first two columns,
the only negative term cancels out. Moreover, the trace of this submatrix is negative,
so that J (P2) has two eigenvalues that are either negative or have negative real parts.

The third eigenvalue λ3(P2) = β − (β − βa) a∗
0 − (β − βu) u∗

0 − δ is negative if
β < δ and P2 ∈ �. When β > δ and

β − βa

β − δ
a∗
0 + β − βu

β − δ
u∗
0 < 1, (13)

then λ3(P2) will be positive. By (9), the values of a∗
0 , u

∗
0 do not depend on the disease

transmission parameters, and it can be seen from (13) that there are large regions of
the parameter space where λ3(P2) is positive and large regions where it is negative
while β > δ.

3.4 Transcritical bifurcations

3.4.1 Transcritical bifurcation at Ra
0 = 1

Assume β < δ so that λ3(P1) < 0. As λ1(P1) changes from negative to positive
when the bifurcation parameter Ra

0 = αa
δa

increases past 1, the equilibrium P1 loses
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its stability at the bifurcation value 1. Simultaneously, P2 enters the biologically fea-
sible region � and becomes locally asymptotically stable as explained in the previous
subsection. Moreover, at the bifurcation value P1 and P2 coincide. Note also that the
plane i = 0 is invariant for the system (8), and when a∗

0 is negative, then the determi-
nant of the submatrix formed by the intersection of the first two rows of J (P2)with its
first two columns is negative. This implies that when P2 crosses into the biologically
feasible region, the equilibria P1 and P2 interchange their stability.

3.4.2 Transcritical bifurcation at R0 = 1

For the analysis of the bifurcations of the endemic equilibrium P3 from P1 and P2, we
will use standard results for the existence of a transcritical bifurcation [see the criterion
that is given right after Sotomayor’s Theorem in Perko (2001)]. In order to use them,
we introduce some notation. Let f denote the vector defined by the right-hand side
of system (8) and let fμ be the vector of partial derivatives of its components fi with
respect to a bifurcation parameterμ.Moreover, let Dfμ be the Jacobianmatrix of fμ and

let D2f(y, y) be the columnvectorwith components
(
D2f(y, y)

)
k := ∑

j,l
∂2 fk

∂x j ∂xl
y j yl ,

where y is a vector inR3, x1 = a, x2 = u, and x3 = i .Wewill use f BP , f BP
μ to indicate

that the relevant objects are computed at the bifurcation point.
The endemic equilibrium P3 can bifurcate from P1 when αa < δa (i.e., Ra

0 < 1). In
particular, since λ3(P1) = β −δ is a simple eigenvalue, a bifurcation occurs for β = δ

(i.e., at R0 = 1). Taking β as the bifurcation parameter and evaluating the Jacobian
matrix J (P1) at the bifurcation point, it follows that the rowvectoru = (0, 0, 1) and the
column vector v = (1, (δa+αu+ qδ(δa−αa)

αi+pδ )/δu, (δa−αa)/(αi + pδ))T are the left and

right eigenvectors for λ3 = 0, respectively. Moreover, fβ = (0, 0, (1− a − u − i)i)T .
A straightforward computation at the bifurcation point leads to

(1) u · f BP
β = 0,

(2) u · (Df BP
β v) = v3 = (δa − αa)/(αi + pδ) > 0, and

(3) u · (
D2f BP (v, v)

) = −2v3 ((β − βa)v1 + (β − βu)v2 + βv3) < 0.

Note that the inequality αa < δa and the assumption 0 ≤ βa, βu < β of the SAUIS
model imply that all coordinates of v and coefficients in (3) are positive, so that the
whole expression becomes negative and, in particular, nonzero. So, when Ra

0 < 1
system (8) experiences a transcritical bifurcation as β crosses the bifurcation value
β = δ (Perko 2001).Moreover, Theorem4.1 inCastillo andSong (2004), togetherwith
the inequality > 0 in (2) and the inequality < 0 in (3), implies that the direction of the
bifurcation is always the same, namely, system (3) experiences a forward bifurcation
at R0 = 1.

3.4.3 Transcritical bifurcation at λ3(P2) = 0

Let us now assume αa > δa to guarantee the existence of a positive P2, and β >

δ to allow λ3(P2) to be positive for some parameters values. From the discussion
surrounding (13) it follows that λ3(P2) = 0 if and only if
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β − βa

β − δ
a∗
0 + β − βu

β − δ
u∗
0 = 1, (14)

with a∗
0 and u∗

0 given by (9). That is, at this parameter combination, the endemic
equilibrium P3 bifurcates from P2, the disease-free equilibriumwith aware individuals.

When the Jacobian matrix (12) is evaluated at the bifurcation point, the value in the
lower right corner becomes zero. We get

J BP =
⎛
⎝ −αa a∗

0 −αa a∗
0 αiδa/αa − (αa + βa)a∗

0 + pδ
δa + αu(δa/αa − a∗

0) −αua∗
0 − δu −αua∗

0 − βuu∗
0 + qδ

0 0 0

⎞
⎠ ,

which has the row vector u = (0, 0, 1) as left eigenvector with eigenvalue λ3 = 0.
Since the determinant det

(
J BP
2

) = αaa∗
0(δa + δu + αuδa/αa) > 0 of the subma-

trix J BP
2 of J BP formed by the first two rows and the first two columns is strictly

positive, the first two columns of J BP
2 are linearly independent. Therefore, the third

component v3 of the right eigenvector v with eigenvalue λ3 = 0 must be different
from 0.

If we take μ = βa as the bifurcation parameter, then fβa = (−a i, 0, a i)T . As
before, a straightforward computation at the bifurcation point leads to:

(1) u · f BP
βa

= 0,

(2) u · (Df BP
βa

v) = a∗
0v3 	= 0, and

(3) u · (
D2f BP (v, v)

) = −2v3 ((β − βa)v1 + (β − βu)v2 + βv3).

Recall that v is by definition orthogonal to the first two rows of J BP and these are
linearly independent. Thus v cannot also be orthogonal to any vector that is linearly
independent of the latter two vectors. Therefore, since v3 	= 0, the inequality u ·(
D2f BP (v, v)

) 	= 0will followwhenever the vector given by b := (β−βa, β−βu, β)

is linearly independent of the two first rows of J BP . This may not always be the case,
but it will be generically true. For instance, the first two columns of J BP are linearly
independent and the parameter αi appears in only one position of J BP , while a∗

0 and
u∗
0 that give the location of P2 do not depend on it. Since it does not appear in b, one

can take αi as a free parameter in order to see whether the previous inequality fails for
a particular positive choice of αi given any choice of all other parameters.

Thus the criterion given in Perko (2001) after Sotomayor’s Theorem guarantees that
for a nonempty open set of parameter settings at which P1 	= P2 ∈ � the system (8)
experiences a transcritical bifurcation as βa passes through the bifurcation value

βc
a := β − 1

a∗
0

(
β − δ − (β − βu)u

∗
0

)
.

However, in contrast to what happens at R0 = 1, the direction of the bifurcation is
not always the same. To illustrate this fact, Fig. 3 shows an example of forward and
backward bifurcations occurring at λ3(P2) = 0 for βa < β. Here p = q = 0, but
similar examples with p, q > 0 exist.
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Fig. 3 Transcritical bifurcation
diagrams of system (8) for
β = 2, βu = 1, δ = 1,
δa = 0.01, δu = 0.05, αi = 0.8,
αu = 0.1, p = q = 0, αa = 0.1
(top) and αa = 1 (bottom). The
stable (unstable) equilibria are
depicted with a solid (dashed)
line. Bifurcation values:
βc
a = 0.844 and β = 0.62 (for

the fold bifurcation) (upper
panel); βc

a = 0.988 (lower
panel)
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The same conclusion holds if we use β or βu as a bifurcation parameter. However,
the use of βa seems more appropriate because its value is related to the effectiveness
of the response adopted by aware hosts.

3.5 Hopf bifurcations

We will see that in contrast to the SAIS model, sustained oscillations are possible
in the SAUIS model thanks to the occurrence of Hopf bifurcations. A pair (σ, τ ) of
parameters of (8) will be called a Hopf pair if there exists an equilibrium point at
which the Jacobian matrix has a pair of pure imaginary eigenvalues. This definition
of course depends on chosen values of the other parameters. For simplicity we will
always implicitly assume that these other parameters are fixed and suppress them in
our notation.

An explicit criterion that specifies whether an n × n matrix M , with coefficients
that may depend upon parameters, has a pair of pure imaginary eigenvalues is given in
Guckenheimer et al. (1997). For our purposes the case when n = 3 and M = J is the
Jacobianmatrix at endemic equilibrium P3 is relevant. Let p(λ) = λ3+c2λ2+c1λ+c0
be the characteristic polynomial of J . Its coefficients are c0 = − det(J ), the sum c1
of the principal minors of J , and c2 = −trace(J ). According to Theorem 2.1 and
Table 1 in Guckenheimer et al. (1997), the matrix J has precisely one pair of pure
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Fig. 4 Hopf-bifurcation curve
H of system (8) for δ = 1,
δa = 0.01, δu = 0.05, β = 3,
βu = 0.5, αa = 0.01, αu = 1,
and p = q = 0. For pairs
(βa , αi ) inside the region
bounded by this curve and the
αi -axis system (8) has an
unstable endemic equilibrium
and a stable periodic orbit

βa

0 0.1 0.2 0.3 0.4 0.5

α
i

0

0.2

0.4

0.6

0.8

1

1.2

imaginary eigenvalues if and only if

c0 − c1c2 = 0 and c1 > 0. (15)

Therefore, to locate the Hopf pairs in a (σ, τ ) parameter space, we will use σ as
free parameter and solve the system given by the equilibrium equations

αi (1 − a∗ − u∗ − i∗)i∗ + αa(1 − a∗ − u∗ − i∗)a∗ − βaa
∗i∗ − δaa

∗ + pδi∗ = 0

δaa
∗ + αu(1 − a∗ − u∗ − i∗)a∗ − βuu

∗i∗ − δuu
∗ + qδi∗ = 0, (16)

combined with (10) and (15), for a∗, u∗, i∗, and τ , while all other parameters are set
to fixed values.

The component τ of the solution, if any, and the corresponding value of σ define
a Hopf pair (σ, τ ) for which a Hopf bifurcation occurs at the endemic equilibrium
P3 = (a∗, u∗, i∗). The set of Hopf pairs defines the so-called Hopf-bifurcation curve
H in (σ, τ ) parameter space,

H = {(σ, τ ) ∈ R
2+ | ∃P3 ∈ R

3+ for which (10), (15), and (16) hold}.

Note that H can be parametrized by i∗ (or any of the components of P3) (Szabó et al.
2012).

We will focus here on the case σ = βa and τ = αi . This choice appears to be of
particular interest, as αi may be most amenable to alteration by increased epidemio-
logical monitoring (see Sect. 4), while βa can be thought of as inversely proportional
to the effectiveness of the behavioral response in aware hosts (see Sect. 4). An example
of a curve H in the (βa, αi ) parameter space is shown in Fig. 4. For each value of
βa within the range [0, 0.4379), there exist two solutions of Eqs. (15) and (16). The
prevalence of the disease at the bifurcation points along the curve H is presented in
Fig. 5. The figure clearly shows how i∗ decreases monotonously with the value of αi

at the Hopf pairs.
The (sub- or supercritical) character of theHopf bifurcation canbe foundby comput-

ing the first Lyapunov exponent, which is close to −2.5 for intersection of the straight
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Fig. 5 Fraction of infectious
hosts as a function of αi along
the Hopf-bifurcation curve H of
system (8) for δ = 1, δa = 0.01,
δu = 0.05, β = 3, βu = 0.5,
αa = 0.01, αu = 1, and
p = q = 0. At both ends of the
curve, βa = 0

αHopf
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line βa = 0.2 with the upper branch of the curve of predicted bifurcation points and
close to −0.25 for the intersection of this line with the lower branch. Thus for each
pair (βa, αi ) insideR, the endemic equilibrium P3 is unstable, as J (P3) has two com-
plex eigenvalues with positive real part and a third eigenvalue that is real and negative,
while stable periodic orbits appear around P3. Outside this region, P3 is asymptotically
stable. Therefore, the points on the curve H define supercritical Hopf bifurcations of
the system (8). The numerical explorations in Fig. 6 confirm this prediction.

Numerical simulations confirm our predictions regarding the Hopf pairs shown
in Fig. 4. In particular, for βa = 0.2 and the parameter settings as specified in the
caption of Fig. 4, Hopf bifurcations in system (8) are predicted for α∗

i = 0.2251 and
α∗∗
i = 0.8916. Figure 6 illustrates what happens if we increase αi from below α∗

i to
above α∗∗

i for trajectories with initial condition a(0) = u(0) = 0 and i(0) = 0.1, far
from the endemic equilibrium P3.

The top left panel of Fig. 6 shows a simulation with αi = 0.2, right below the
first Hopf bifurcation. The solution quickly approaches an endemic equilibrium with
disease prevalence i∗ = 0.1249. When we increase αi slightly above α∗

i , to 0.24, then
we observe significant oscillations in the top right panel. Moreover, these oscillations
correspond to a stable limit cycle in the phase portrait of the system that attracts
other trajectories whose initial conditions are not necessarily close to the endemic
equilibrium. For the (unstable) endemic equilibrium we get i∗ = 0.0651 in this case.
Due to the oscillations, the long-term mean prevalence will be even slightly lower,
around 0.0592.

A similar picture of persistent oscillations is shown in the bottom left panel of Fig. 6
where we chose αi = 0.5, about half-way between α∗

i and α∗∗
i . The existence of a

stable limit cycle becomes clearly noticeable in simulations over a longer time horizon.
Here the prevalence at endemic equilibrium is i∗ = 0.0148, very close to the mean
prevalence i = 0.0150 in the long run. Note that for these settings long periods of very
low disease prevalence alternate with short spikes that indicate periodic small flare-
ups. These flare-ups are followed by a rapid increases in awareness, which indicate a
panic-like spread of information.

Finally, when we further increase αi beyond α∗∗
i to 0.94, we initially observe a

similar pattern of alternating periods of extremely low disease prevalence, interrupted
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Fig. 6 Evolution of the fraction of infectious (solid line), aware (dashed line), and unwilling (dot-dashed
line) hosts according to system (8) for different values ofαi along the vertical section in Fig. 4 corresponding
to βa = 0.2: αi = 0.2 (top left), 0.24 (top right), 0.5 (bottom left), 0.94 (bottom right). Fixed parameters:
αa = 0.01, αu = 1, δ = 1, δa = 0.01, δu = 0.05, β = 3, βa = 0.2, βu = 0.5, p = q = 0. Initial
condition: a(0) = u(0) = 0, i(0) = 0.1

by small flare-ups with panic-like spread of awareness (see the bottom right panel
in Fig. 6). The prevalence at endemic equilibrium further decreases to i∗ = 0.0065.
However, as this panel indicates, the amplitude of these oscillations now decreases,
albeit very slowly, because the pair (βa, αi ) = (0.2, 0.94) is very close to the
curve H .

It is interesting to compare Fig. 6 with Fig. 7. The parameter settings in the latter
are similar to those in the upper left panel of Fig. 6, except that now p and q assume
small positive values. In particular, compare the upper left panels of these figures.
While sustained oscillations are absent when p = q = 0 (Fig. 6), they do occur when
p = 0.05 and q is very small. As the two lower panels of Fig. 7 show, increasing q
first dampens and then eliminates these oscillations. Thus we conclude that for these
settings of the remaining parameters the oscillations are driven by having a positive
proportion of hosts who move into the A-compartment upon recovery. The upper
right panel of Fig. 7 corresponds to the upper right panel of Fig. 6 and shows similar
oscillations, but with decreased amplitude when p, q > 0.
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Fig. 7 Evolution of the fraction of infectious (solid line), aware (dashed line), and unwilling (dot-dashed
line) hosts for different values of q corresponding to p = 0.05; q = 0.05 (top left), 0.1 (bottom left), 0.2
(bottom right). Initial condition: a(0) = u(0) = 0, i(0) = 0.1. In the left and bottom right panels, αu = 1,
δ = 1, δa = 0.01, δu = 0.05, β = 3, βu = 0.5, αa = 0.01, βa = 0.2 and αi = 0.2. In the top right panel,
αi = 0.24, p = 0.1, q = 0.1, and all the other parameters stay the same

While p and q are fairly small in the parameter settings for Fig. 7, we found that
sustained oscillations are possible even when p + q = 1. Figure 8 shows the Hopf
bifurcation curve for the Hopf pair (p, q) for a similar setting of the other parameters.
The first Lyapunov exponent for the point on the Hopf bifurcation curve with p = 0.1
is close to−2.6. Thus sustained oscillations occur in the area under the curve. The line
segment inside this region indicates locations where p+q = 1. Interestingly enough,
for q around 0.18, the curve predicts no oscillations for values of p that are very small
or very close to 1, while it predicts sustained oscillation when p takes moderate values.
For more explorations of the influence of parameters p and q on the dynamics of the
model, see Xin (2016).

4 Discussion

Previous results on various types of SAIS models had suggested that a behavioral
response of hosts who are aware of an ongoing outbreak of a disease can be effective
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Fig. 8 Hopf-bifurcation curve
H of system (8). The straight
line sets the boundary
p + q = 1, so only the part of
the Hopf-bifurcation curve that
lies on the left of this line makes
biological sense. When
p = 0.05, q∗ = 0.1923 is the
only Hopf-bifurcation point.
Here, αu = 3, δ = 1, δa = 0.01,
δu = 0.05, β = 3, βu = 0.5,
αa = 0.012, βa = 0.2,
αi = 0.05 0 0.2 0.4 0.6 0.8 1

0

0.04

0.08

0.12

0.16

0.2

p

q
in eliminating the endemic equilibriumor driving it to very low levels. For non-reactive
SAISmodels (αa = 0) it was shown in Sahneh et al. (2012) that if there is no awareness
decay (δa = 0), then there is an elevated epidemic threshold so that all outbreaks will
be minor as long as βa < δ < β and αi is sufficiently large. In Juher et al. (2015),
it was proved that this elevation of the epidemic threshold disappears if one assumes
that awareness will decay over time. The reason is that in order to suppress epidemic
spreading, we need a permanent fraction of aware hosts. If awareness is eventually
lost, then the presence of aware individuals created at the early stages of an epidemic is
not enough to contain an outbreak, and the classic disease-invasion epidemic threshold
R0 = β/δ = 1 drives the dynamics.

Here we have introduced and studied reactive SAIS models that make the natural
assumption that awareness can also be transmitted from an aware host to a susceptible
one (αa > 0).Wehave shown that under certain conditions in thesemodels a permanent
fraction of aware individuals can be sustained even in the presence of awareness decay,
which again can lead to elevation of the epidemic threshold above R0.

The question of when the response will be sufficient to prevent future flare-ups from
low endemic levels had not previously been addressed in the literature. This question
is of interest for models where awareness will decay over time. Lemma 3 of Sect. 2
indicates that when there is not much differentiation between hosts in their propensity
to share information about the disease with other hosts, future flare-ups are ruled out.
This result applies both to SAIS models with constant rates and to SAIS models in
which the rate coefficients depend on the prevalence of the disease.

However, in most real human populations hosts will significantly differ in how
effectively they contribute to growing awareness of other hosts. We constructed a new
class ofmodels, SAUISmodels, that incorporate this phenomenon.We think of themas
the simplest possible straightforward generalization of SAIS models in this direction.
SAUIS models permit persistent cycles of flare-ups that induce panic-like spread of
information, which will temporarily drive the prevalence to low levels without leading
to elimination of the disease or providing permanent protection against future major
outbreaks. What we observe in such dynamics are flare-ups of the disease, closely
followed by steep rises of hosts who are willing to spread awareness, which in turn are
followed by increases in the number of unwilling hosts and corresponding decreases
in the size of the S-compartment. This drives the disease prevalence to low levels while
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the numbers of unwilling hosts stay high, but the spread of awareness slows down until
the S-compartment gets sufficiently replenished for the next flare-up of the disease.

This phenomenon does not depend on variable rate coefficients, as all of these
are assumed constant in the version of SAUIS models presented here. It can occur
regardless of whether some or all hosts are assumed to move into the union of the A-
compartment and the U-compartment at the time of recovery from the disease. While
increasing the fraction of hosts who move to the U-compartment tends to dampen
and eventually prevent oscillations, increasing the fraction of hosts who move into
the A-compartment as a result of direct experience can sometimes induce and some-
times prevent oscillations. This, together with the contrasting result for the closely
related SAIS models, clearly demonstrates that the observed oscillations are in fact
driven by the unequal propensity of hosts to share information when differences in the
willingness to share information arise from the degradation of the information during
subsequent transmission events as modeled in Funk et al. (2009).

These findings seemobviously relevant from the point of viewof designing effective
policies for controlling infections. As the two top panels of Fig. 6 suggest and our
calculations confirmed, the average disease load, as interpreted as themean prevalence
calculated from the area under the solid curve, may in the long run be similar and
sometimes even lower in the presence of periodic flare-ups than for similar parameter
settings where an endemic equilibrium is approached. Thus if the primary goal of
control is a reduction of average load, then elimination of periodic flare-ups may
sometimes evenbe counterproductive.However, peak loadmaybemore important than
average load in terms of the danger of overwhelming the health care system (Fefferman
2014), and it will be higher under oscillatory dynamics. Thus if the primary goal of
control is to reduce peak load of the disease asmuch as possible, then control measures
should be targeted at elimination of possible flare-ups.

One possible control strategy is to commit resources to continuous monitoring
the prevalence i of the disease and dissemination of this information by health care
professionals and the media. In terms of SAUIS models, this can be interpreted as
increasing the parameter αi . It seems plausible that this strategy will decrease the
value of i∗ at the endemic equilibrium and the long-term average disease load ī .
Our numerical explorations suggest that this intuition is correct. When αi crosses
the threshold represented by the lower branch of the curve in Fig. 4 the endemic
equilibrium will become unstable, with oscillatory dynamics for values above the
threshold. However, as Fig. 6 shows, right above the threshold the resulting oscillations
may result in an increased peak load relative to values of αi right below it. A further
increase of αi beyond a second threshold represented by the upper branch of the curve
in Fig. 4will lead to renewed local asymptotic stability of the endemic equilibrium.But
as the lower-right panel Fig. 6 shows, even above this threshold damped oscillations
may remain observable for a considerable time horizonwhen trajectories start far away
from the equilibrium. These and other results presented in Sect. 3 reveal a surprisingly
rich and intricate dynamics of SAUIS models. It becomes clear that optimizing the
dynamics by controlling one or more parameters that govern the spread of awareness
will usually be quite delicate even if one could treat the model at face value.

Our findings open several avenues of future research. It would be interesting to ana-
lytically derive necessary and/or sufficient conditions on the informationflowabout the
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disease between different types of hosts that would preclude the existence of sustained
oscillations. However, in order to base actual public health policy on such results, they
would need to be sufficiently robust and carry over to wider classes of models of
transmission of awareness and degradation of information. The SAUIS models that
we introduced and explored here are useful for clearly demonstrating effects that are
precluded by the simplifying assumptions of previously studied SAIS models. How-
ever, in biologically more realistic models one would presumably want to consider
more fine-grained scenarios of degradation of information, perhaps by incorporating
a chain of compartments A1, A2, . . . , Am that would represent progressively decreas-
ing willingness to share the information and/or decreasing strength of the behavioral
response. Such chains could also be used to more directly adapt the model of Funk
et al. (2009).

Moreover, the assumption of constant rate coefficients is clearly an oversim-
plification. We already discussed in the context of SAIS models how and why
α(i), αa(i), δa(i) might depend on the actual prevalence i . While at low levels of
prevalence the information received by susceptible hosts is unlikely to be confirmed
by first-hand knowledge of actual cases, at moderate or high prevalence such con-
firmation by direct observation is more likely. Thus if such confirmation determines
whether receiving information moves a given host into the A-compartment or the U-
compartment, the ratio of newly created aware to newly created unwilling hosts may
increase with the prevalence of the disease.

It is also of interest to investigate to what extent differences in the propensity to
share information play a role in either inducing or enhancing sustained oscillations
when the underlying disease dynamics is, for example, of type SIRS rather than SIS,
or if demographics are included in the model.

Another possible direction of future research is to recast our models in the frame-
work of stochastic processes. This might allow us to address the question of how long
it takes to reach the absorbing disease-free state when populations are relatively small
and trajectories are predicted to visit states with very low disease prevalence. It also
would allow us to study the spread of the disease and of awareness on the relevant
contact networks, similar to the work on nonreactive SAIS models in Sahneh et al.
(2014).

Predictions of oscillatory dynamics have been reported for a number of previously
studied models of behavioral epidemiology, both for models that incorporate demo-
graphics, and for models that, similarly to the ones studied here, ignore demographics.
However, to the best of our knowledge, variability in the propensity of hosts to further
disseminate awareness had not yet been identified as a possible driving mechanism for
this phenomenon. We conclude this paper with a brief discussion of some related pre-
vious results. This review is not intended to be exhaustive; our goal is only to illustrate
the variety of other mechanisms that appear to be capable of generating oscillations
in disease prevalence.

Damped oscillations can be observed in non-reactive SAISmodels when an asymp-
totically stable interior equilibrium has complex eigenvalues (Juher et al. 2015). They
are also possible when the underlying disease dynamics is of type SIR without demo-
graphics. For example Epstein et al. (2008), considers spatially structured models
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where flight from endemic regions is identified as a key factor that will drive the
overall dynamics.

Hopf bifurcations and sustained oscillations have been found in SEI- and SIR-
based models with demographics (Lu et al. 2017) or with the related mechanism
of prevalence-dependent recruitment of susceptibles into a core group (Velasco-
Hernández et al. 1996). It is interesting to note that while the model of Lu et al. (2017)
incorporates a reaction to media coverage, a type of awareness, it admits Hopf bifur-
cations even when the parameter that represents the strength of this reaction is zero.
Sustained oscillations can also occur in models with demographics where the behav-
ioral response represents compliance with vaccination and the driving mechanism
involves real or perceived benefits of failing to adopt the behavioral response (Bauch
2005; d’Onofrio et al. 2007a, b; Reluga et al. 2006). Such benefits are absent in SAUIS
models. They were also reported for models of vaccination compliance for influenza
with fixed populations (Breban et al. 2007; Vardavas et al. 2007). In these models,
vaccination decisions are made from year to year for different strains, so that the
underlying disease dynamics is closer to type SIS than SIR. There is no direct infor-
mation transfer in these models, and decisions are based on experience with past
outbreaks rather than on current incidence levels. The latter features are also present
in the models of d’Onofrio et al. (2007a, b).

Sustained oscillations also have been reported for a model that in some aspects
resembles a reactive SAIS model, but makes an assumption about a fixed number of
susceptibles. The authors of that paper conjectured that this assumption is needed for
sustained oscillations in their model (see p. 1353 of Pawelek et al. 2014).

In Grassly et al. (2005) it is argued that oscillations observed in longitudinal studies
of incidence data of syphilis may be entirely explainable by the underlying disease
dynamics of type SIRS even though clear patterns of behavioral changes over time
were present. This explanation is not consistent with an underlying disease dynamics
of type SIS, and the authors of Grassly et al. (2005) partly base their conclusion on
the absence of such oscillations in corresponding data sets on gonorrhea for the time
frame of 1941–2001. However, as we mentioned in the introduction, a recent increase
in the incidence of gonorrhea and other STIs that appears to be driven by changing
behavior patterns has been reported (Wilton 2015).

Finally, there exists a substantial literature on oscillations in models with a behav-
ioral response that involve rewiring the contact network (see, for example, Gross et al.
2006; Risau-Gusmán and Zanette 2009; Shaw and Schwartz 2008; Zhou et al. 2012).
While these are individual-based models, analytical confirmation can sometimes be
obtained by coarse-graining (Gross andKevrekidis 2008) or using pair-approximations
to build corresponding ODE-models with nonuniform mixing (Szabó-Solticzky et al.
2015; Szabó et al. 2012). Thus the mechanism that drives oscillations in these models
is very different from the one in our SAUISmodels, where uniformmixing is implicitly
assumed.
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Appendix: Proof of Lemma 2

Proof of Lemma 2 We can rewrite the Eq. (2) of the i-nullcline as

a1(i) = β − δ

β − βa
− β

β − βa
i. (17)

We will be using subscripts 1 and 2 in this proof to distinguish the function defined
by (17) from the right-hand side of (4) that defines the positive branch a2(i) of the
a-nullcline:

a2(i) = 1

2

⎛
⎝1 − i − (αi (i) + βa)i + δa(i)

αa(i)

+
√(

1 − i − (αi (i) + βa)i + δa(i)

αa(i)

)2

+ 4
αi (i)

αa(i)
i (1 − i) + 4p(i)δ

αa(i)
i

⎞
⎠ .

(18)

Note that for i = 1 − δ
β
, we get

a1

(
1 − δ

β

)
= 0 < a2

(
1 − δ

β

)
. (19)

All biologically feasible interior equilibria must have their coordinate i∗ in the

interval
(
0, 1 − δ

β

)
, as the graph of the linear function a1(i) cannot intersect int (�)

for other values of i .
Note also that in this terminology Eq. (5) is equivalent to

a1(0) > a2(0). (20)

Under the assumptions of part (a), this guarantees the existence of at least one

i∗ ∈
(
0, 1 − δ

β

)
with a1(i∗) = a2(i∗). Moreover, the intersection of the graphs

of a1(i), a2(i) occurs in int (�). For δ ≥ βa this immediately follows because a1(i)
lies entirely inside � for i ∈ (0, 1 − δ/β) since a1(0) < 1.

For δ < βa , notice that a2(1) ≥ 0 and consider the values i0, i1 such that a2(i)
enters � crossing the boundary a + i = 1 at (i0, 1 − i0), and (i1, 1 − i1) is the
intersection point of a1(i) with the same boundary. After substituting a(i0) = 1 − i0
into the left-hand side of (3), solving for i0, and simplifying we obtain:

i0 = βa − δa − pδ + √
(βa − δa − pδ)2 + 4βaδa

2βa
> i1 = 1 − δ

βa
.

Therefore, the graphs of a1(i) and a2(i)must intersect on the part of the graph of a1(i)

that connects
(
1 − δ

β
, 0

)
and (i1, 1 − i1), inside of �.
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To show uniqueness, under the assumptions of (a1), consider the function obtained
by substituting the above expression for a1(i) into the left-hand side of (3). This
substitution results in a quadratic function Q(i) that can have at most two roots. The
combination of (19) and (20) immediately rules out the existence of 0 < i∗ < i∗∗ <

1 − δ
β
at which the graphs of the functions a1(i) and a2(i) would actually cross.

Moreover, if the the graphs were tangential at i◦ ∈ {i∗, i∗∗}, then i◦ would be a root
of Q of multiplicity 2, and the other equilibrium would need to be a third root of Q,
which is impossible.

For the proof of part (b1), consider the limiting case where αi = p = 0. While we
have explicitly ruled it out in our model assumptions, it will be useful in our argument.
In this case, after substituting the expression for a1(i) in (17) into the left hand side
of (3), we obtain a quadratic function in i :

H(i) =
(

β − δ

β − βa
− β

β − βa
i

)2

−
(
1 − i − βai + δa

αa

) (
β − δ

β − βa
− β

β − βa
i

)
.

Then there exists an interior equilibrium if and only if H(i) = 0 for some 0 < i <

1 − δ
β
. By directly evaluating H(i) at i = 0 and at i = 1 − δ

β
, we get

H(0) ≤ 0 and H

(
1 − δ

β

)
= 0, (21)

where the first part relies on the assumption that inequality in (5) is reversed.
By evaluating H ′(i) at i = 1 − δ

β
, we get

H ′
(
1 − δ

β

)
= αaδ + βaδ − ββa − βδa

αa(β − βa)
.

Under the assumptions of our model, the denominator is positive, and inequality (6)

is equivalent to H ′
(
1 − δ

β

)
≥ 0. It then follows from (21) that H(i) < 0 for all

0 < i < 1− δ
β
. Hence, the graphs of a1(i) and a2(i) do not intersect in int (�). Since

the inequality (20) is assumed to be reversed, we can infer

a2(i) > a1(i) for all 0 < i < 1 − δ

β
. (22)

When αi + p > 0, compared to the limiting case above where αi = p = 0, the
expression for a1(i) stays the samewhile a2(i) becomes larger for each 0 < i < 1− δ

β
.

That is, in int (�), when αi + p > 0, we still have (22).
Therefore, there is no interior equilibrium.
For the proof of (a2), suppose (i∗, a∗) is an interior equilibrium, which must be a

point on the line segment a1(i) for some 0 < i∗ < 1 − δ
β
. On this line segment, a(i)

is decreasing, and s(i) := 1− a(i) − i is increasing, as can be seen if we rewrite (17)

in its equivalent form given in (2) i(a) = 1 − δ
β

−
(
1 − βa

β

)
a:
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s(i) = 1 − a(i) −
[
1 − δ

β
−

(
1 − βa

β

)
a(i)

]
= δ

β
− βa

β
a(i). (23)

We dropped the subscript here since we are only considering a(i) = a1(i) in this
proof. Now we can rewrite the right hand side of the first line of (1), treating a and s
as functions of i as in (17) and (23), to define the following function:

F(i) = αi (i)s(i)i + αa(i)s(i)a(i) + p(i)δi − βaa(i)i − δa(i)a(i)

=
(

αi (i)
s(i)i

a(i)
+ αa(i)s(i) − βai − δa(i) + p(i)δi

a(i)

)
a(i)

=
[
αi (i)

δ
β

− βa
β
a(i)

a(i)
i + αa(i)

(
δ

β
− βa

β
a(i)

)
− βai − δa(i) + p(i)δi

a(i)

]
a(i).

Let f (i) be the first factor so that F(i) = f (i)a(i). It can be expressed as:

f (i) = αi (i)g(i)i + αa(i)h(i) − δa(i) + p(i)δi

a(i)
, where

g(i) =
δ
β

− βa
β
a(i)

a(i)
= δ

βa(i)
− βa

β
,

h(i) = δ

β
− βa

β
a(i) − βa

αa(i)
i

= δ

β
− βa

(
a(i)

β
+ i

αa(i)

)

= δ

β
− βa

( β−δ
β−βa

− β
β−βa

i

β
+ i

αa(i)

)

= δ

β
− βa

β

(
β − δ

β − βa
− β

β − βa
i + β

αa(i)
i

)

= δ − βa

β − βa
+ βai

(
1

β − βa
− 1

αa(i)

)
. (24)

Then at (i∗, a∗) we must have f (i∗) = 0. Under the assumptions of (a2), g(i) and
h(i) are increasing functions in i that take positive values at any interior equilibrium.
Hence f (i) is a strictly increasing function in i and we can rule out the existence of
two interior equilibria.

The result in part (b2) follows now by the same argument that was used in the proof
of part (a1): Under the assumptions of (b2),

a1

(
1 − δ

β

)
< a2

(
1 − δ

β

)
,

a1(0) < a2(0).
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Then an interior equilibrium could exist only if the graphs of a1(i) and a2(i)would
cross at twoormore of them, or ifa1(i) anda2(i) are tangential at one such equilibrium.
The former is ruled out by our uniqueness argument for part (a2). Note that this
argument does not rely on inequality (5), which is only needed to prove existence.
Situations where the graphs would cross at one equilibrium i∗ and be tangential at
another equilibrium i∗∗ can also be ruled out on purely geometrical grounds: Note
thata2(i)does not dependonβ, buta1(i)does.Whenwe slightly increaseβ, botha1(0)
and 1 − δ

β
increase. Thus by slightly altering β without violating the assumptions

of (a2), we would obtain a parameter setting with three interior equilibria, which we
have already shown to be impossible.

For the proof of (a3), consider again the function f (i) defined in (24) and rearrange
its terms in the following way:

f (i) = αi (i)
δ
β

− βa
β
a(i)

a(i)
i + αa(i)

(
δ

β
− βa

β
a(i)

)
− βai − δa(i) + p(i)δi

a(i)

= δ − βaa(i)

β

(
αi (i)

a(i)
i + αa(i)

)
+ p(i)δi

a(i)
− βai − δa(i).

Note that under the assumptions of (a3), the sum of the terms that enter this expression
with a positive sign is strictly increasing in i , and the sum of the terms −βai − δa(i) is
nondecreasing. Thus, f (i) is strictly increasing in i and we can rule out the existence
of two interior equilibria.

The derivation of part (b3) from part (a3) is exactly analogous to the derivation of
part (b2) from part (a2). ��
Remark Note that the argument in the proof of (b1) relies only on the sign

of H ′
(
1 − δ

β

)
. Additional sufficient conditions that preclude the existence of interior

equilibria could be derived by considering other properties of H(i) or of its counter-
part G(i) that allows for αi + p > 0. Our lemma is not meant to be exhaustive in
this respect. For example, the leading coefficient of the quadratic function H(i) can
be written as

β

β − βa

(
β

β − βa
− 1 − βa

αa

)
,

and is positive if, and only if, αa > β − βa , which together with (21) gives a proof
of (b2) for the special case of a constant function αa(i).
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