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Abstract The recently elucidated definition of fitness employed by Fisher in his
fundamental theorem of natural selection is combined with reproductive values as
appropriately defined in the context of both random environments and continuing
fluctuations in the distribution over classes in a class-structured population. We obtain
astonishingly simple results, generalisations of the Price Equation and the fundamen-
tal theorem, that show natural selection acting only through the arithmetic expectation
of fitness over all uncertainties, in contrast to previous studies with fluctuating demog-
raphy, in which natural selection looks rather complicated. Furthermore, our setting
permits each class to have its characteristic ploidy, thus covering haploidy, diploidy
and haplodiploidy at the same time; and allows arbitrary classes, including con-
tinuous variables such as condition. The simplicity is achieved by focussing just
on the effects of natural selection on genotype frequencies: while other causes are
present in the model, and the effect of natural selection is assessed in their pres-
ence, these causes will have their own further effects on genoytpe frequencies that are
not assessed here. Also, Fisher’s uses of reproductive value are shown to have two
ambivalences, and a new axiomatic foundation for reproductive value is endorsed. The
results continue the formal darwinism project, and extend support for the individual-
as-maximising-agent analogy to finite populations with random environments and
fluctuating class-distributions. The model may also lead to improved ways to measure
fitness in real populations.
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1 Introduction

The individual-as-maximising-agent analogy is a central principle in many sub-
disciplines of biology, but in other sub-disciplines is regarded as inaccurate and
misleading. Here, we study this question in structured populations with stochastic
demography, that is, with continuing fluctuations in class distribution. Such popula-
tions have previously been discussed and studied by Tuljapurkar (1989, 1990) from
a demographic point of view, and in population genetic terms by Rousset (2004);
but the results presented here, in pursuit of fitness-maximising ideas, are new and
astonishingly simple by comparison.

The main novel results here are a generalisation of the Price Equation (Price 1970,
1972) and of Fisher (1930)’s fundamental theorem. These do not immediately map
on to more traditional conclusions and their relevance is still being discussed in other
applications (e.g. Ewens 2004; Edwards 2014; Grafen 2015a; Ewens and Lessard
2015), as well as in the ‘Reproductive value’ section of the Discussion below. The
simplicity of the formulae is a powerful additional reason to seek useful interpreta-
tions in the context of fluctuating demography. The formulae are rigorously proved,
but unfortunately it has not been possible here to set out definitive links to, for example,
ESS theory and related ideas, even though that is a very desirable next step. The exis-
tence of an individual fitness with very attractive properties will offer hope, however.

Tuljapurkar (1989, section 4.4), Rousset (2004, eqn 10.15) and Rousset and Ronce
(2004, eqn 8) each define reproductive value under fluctuating demography, and the
simple results here follow from taking an essentially similar definition of reproduc-
tive value, though technically different because of the setting, and using it to define
‘fitness’ following Fisher (1930)’s definition, as recently clarified by Grafen (2015a).
Conceptually here, reproductive value is the fraction of a long distant gene pool whose
ancestral paths pass through an individual or a class of individuals today—see the Dis-
cussion for alternatives.

The work of Rousset (2004) and colleagues (notably including Rousset and Ronce
2004; Lehmann et al. 2006; Lehmann and Rousset 2014b), deals with the popula-
tion genetics of fluctuating demography in great depth, and uses essentially the same
definition of reproductive value as the present paper. The difference of approach of
the present paper has been to pursue a very general model, so general that it lacks
dynamic sufficiency, to study connections with Darwinian design, through focussing
on individuals and a particular definition of individual fitness. The costs of losing
dynamic sufficiency need to be balanced against the advantages of the simple and
general outcomes proved here.

The technical definitions of reproductive value and fitness, with all their apparatus,
are complicated: now, we provide a simple exposition of the simple central idea for
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Defining fitness in an uncertain world 1061

defining fitness from reproductive value. We let the class of an individual i this year
be xi . The definition of reproductive value attributes to each individual i , in each year,
a real number that is its reproductive value, which depends only on its class, and we
notate the reproductive value assigned in thisway as vxi .We follow the lead ofWilliams
(1966) in constructing for an individual i , regarded as a parent, a quantity here called
the ‘Williams’ reproductive value’ denotedWi , which is the sum over its offspring and
its own surviving self of its share of reproductive value from those descendants. In the
case of diploid offspring, only half of the offspring’s reproductive value belongs to each
parent. In the case of the surviving self, the contribution of reproductive value must be
devalued by the chance of survival, and note that the class may change. Specialising to
age classes, an individual of age 10whohas a chance 0.9of survivingwith a class-based
expected reproductive value next year of v11, and has 3 offspring with a class-based
expected reproductive value of v0, will have a Williams’ reproductive value of

Wi = 0.9v11 + (3/2)v0.

Wi may differ from the reproductive value expected for an age 10 individual because
not all age 10 individuals are the same. We are particularly interested in how these
deviations from expected are associated with genotypes, and this is what the Price
Equation and fundamental theorem work with. To define fitness Fi for individual i ,
we combine the Williams’ reproductive value with the class-predicted reproductive
value as follows,

Fi = Wi − vxi

vxi
, (1)

and this formula is simply Fisher’s definition transferred to a discrete-time setting
(Grafen 2015a, eqn 39).

This relativising ofWilliams’ reproductive value to the class-predicted reproductive
value provides a concept of fitness with a number of technically convenient properties,
that together permit the generalisations of the Price Equation and fundamental theorem
inwhich fitness appears only as an arithmetic expectation over relevant uncertainties. It
ismathematically inevitable that, when dealingwith fluctuating demographic structure
and population size, approacheswithout this definition or some affine equivalentwould
bring in higher moments of their different version of fitness (or reproductive success
or equivalent) in finding equations for the expectation (over that uncertainty) of gene
frequency change. The linearity and expectations in those two main results make a
very strong case for the naturalness of this extension of Fisher’s definition of fitness
to populations with fluctuating demography. The division by reproductive value looks
very natural if we accept the dictum of Fisher (1930, p. 36) that all population means
should be calculated with reproductive value weighting, and note that the Williams’
reproductive value essentially counts expected number of gene copies. The first thing
the weighting does is to cancel with the divisor of fitness, so that we are summing
expected number of gene copies, as we need to do.

The concept of fitness has further significant properties suitable for a maximand in
the ‘individual-as-maximising-agent’ analogy. It is not a single ‘tombstone’ measure
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for an individual, but is defined in each year, and in each year is based entirely on
future reproduction. It equals zero for an individual who performs as expected for
an individual in that class, and equals one for an individual who performs twice as
well. Fitness does not measure an absolute contribution to future gene pools (repro-
ductive value does measure an absolute expected contribution), but rather how well
an individual performs relative to what is expected for its class. Fitness is defined for
a population with class-based ploidy, thus including in the same framework haploidy,
diploidy and haplodiploidy, and also for arbitrary classes thatmay include age, butmay
also incorporate continuous variables such as condition even though the population is
finite.

Thus, the results obtained suggest that fitness-maximisation ideas can be extended
to a very complex stochastic setting, but their surprising simplicity also suggests that
they deserve attention from demographers and population geneticists. Metz et al.
(1992) began to define individual fitness within a population genetic context in a very
general way. A major question is what a Price Equation and fundamental theorem can
contribute to those areas, but one possible prize is being able to draw conclusions about
natural selection without having to tackle the complexities of Lyapunov exponents, the
approach indicated by Tuljapurkar (1989). The simplicity of the results may inform
how selection is best measured empirically, in sophisticated work such as Coulson
et al. (2010) that deals with class-structured populations. In this informal preview of
the results, we have omitted many central details, which must be fully specified in the
sequel. We hope this introduction provides enough motivation for further reading.

2 Preliminaries

Wefirst define our basic fullmodel of a class-structured populationwith environmental
and class-distribution stochasticity. This allows the construction of a ‘neutral stochastic
process’ that assumes phenotypic uniformity, and then of a ‘Taylor switch stochastic
process’. The neutral process will be used to define the key concept of reproductive
value, through the construction of a transition operator on a relevant product space.
Reproductive value will be one central ingredient of the definition of ‘fitness’. The
Taylor switch process takes its initial conditions from the ergodic distribution of the
neutral process, and allows genotype and class to affect phenotypes in the first year,
but thereafter reverts to the same uniform phenotype as the first process. That special
first year, over which we study evolution, is called the ‘Taylor year’.

The idea of defining reproductive value in some ‘null situation’, and then applying
it in a ‘non-null situation’, is a technique explained and employed by Taylor (1990,
1996) and later used extensively, and which we will call the ‘Taylor switch’. Taylor’s
null situation had a fixed asymptotic class distribution and constant environment, but
we have fluctuating demography and varying environments, and so our reproductive
value depends not just on class but also on environment and the population class
distribution. Taylor’s genetic switch is to have a mutant allele, which is rare and has
its effect in only one year, thus his ‘null’ population is phenotypically homogeneous,
and genetically homogeneous apart from a rare allele at a single locus, and he looks
for an increase in the (reproductive-value-weighted) frequency of that allele. Here,
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the genetic switch is that an arbitrary genotype-phenotype map is permitted for one
year, and our ‘null’ population is again phenotypically homogeneous, but genetically
heterogeneous (maintained by recurrent mutation) at an arbitrary number of loci with
arbitrary linkage patterns. Our Price Equation gives a formula for the expected change
in the frequency of any one allele (and, as the formula is the same for each allele and
is linear, of an arbitrary weighted sum of allele frequencies). The extra complexities
make a formalisation worthwhile.

Class plays a major role in the model. Class must not be determined by an indi-
vidual’s genotype, though a parent’s genotype may affect the class of its offspring,
including of its own surviving self. In positive terms, it must allow a dynamically suffi-
cientmodel of class demography in any population inwhich genotypic variation has no
influence on phenotypes. One candidate trait is sex in species with sex chromosomes,
when we are studying evolution at autosomes. Another is individual condition. The
heritability of height makes it at first sight an unlikely candidate, because it depends
on genotype, but the heritability may be due to mutation-selection balance around an
equilibrium whose position would be indicated by regarding height as a class.

The dynamic suffiency required here for class structure stands in contrast to the very
weak assumptions made about genetics in our model, which imply that the genetic
system is not characterised in a dynamically sufficient way. This restricts the kinds of
results that can be obtained, but it allows all the conclusions that can be drawn to be very
general, as they do not depend on mating system, linkage patterns, linkage disequilib-
rium, epistasis, dominance and so on. The generalities ascribed to the Price Equation
and to the fundamental theorem of natural selection have the same source. In earlier
days in population genetics (e.g. Lewontin 1974), dynamic sufficiency was impor-
tant because erroneous conclusions were being drawn through making convenient but
false assumptions. The advantages and disadvantages today of dynamic sufficiency,
in models using genetics to study phenotypes, are discussed, with generally opposite
conclusions, by Grafen (2008) and Lehmann and Rousset (2014b).

2.1 Basic model

The notation in the introduction was used just to sketch the definition of fitness. Here,
we begin again more formally. Consider a finite population in discrete time with over-
lapping generations, inwhich each individual belongs to a single class from a (possibly
infinite) measure space of classes X , and also possesses a genotype from the finite
set G. We study the evolution of the population state with an emphasis on the role of
individuals. In a given year, the population considered as parents will be described by
finite arrays whose i th elements describe the class and genotype of the i th individual.
The number of elements of each of these arrays is the population size, which will
vary from year to year. Formally, the array x denoting the class of each member of
the population belongs to Xk if the population is of size k, and so unconditionally
belongs to X̃ = ⋃

k=1,2... X
k . We note that X̃ is the union of a countable number of

measure spaces, and so itself forms ameasure space with an appropriate sigma algebra
(Schechter 1997). Similarly, the array g denoting the genotype of each member of the
population belongs to the measure space G̃ = ⋃

k=1,2... Gk . Thus the population in
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year t is described by arrays (x(t), g(t)) representing the class and genotype of each
individual, with typical elements x (t)

i and g(t)
i . The environment will be modelled

as a Markov process, so that the environment e′ in the next year will take values in
the measure space (E,Σ), according to the measure Π(e, ·), where e is the current
environment. The environment in year t will be written as e(t). In order to help under-
standing, we use x ′ in place of x and g′ in place of g to index the sets X and G when
the individuals referred to are in the offspring year.

Since offspring may be spread over different classes and genotypes, we write the
reproductive output of an individual i as an arraywi = (wi

x ′,g′)x ′∈X,g′∈G , wherewi
x ′,g′

is the number of whole offspring of i in class x ′ with genotype g′, per haploid set of
the parent, weighted by the parent’s genetic contribution. Thus if a diploid parent i
contributes exactly one haploid gamete to a diploid offspring in class x ′ with genotype
g′, we would have wi

x ′,g′ = 1/4, because the parent’s genetic contribution to that
offspring was 1/2, and that half was distributed between the parent’s two haploid sets.
As the population is finite, only a finite number of class-genotype combinations have
non-zero elements of wi .

The array of the number of individuals in each class and genotype in the next year
is just the ploidy-weighted sum of the offspring arrays of the parents

∑

i∈I
Li · wi =

( ∑

i∈I
Li · wi

x ′,g′

)

x ′∈X,g′∈G
,

where Li is the ploidy of i . As the framework is stochastic, the reproductive outputwi

of each individual i is an array-valued random variable, whose distribution depends
on (e, x), on a probability space (Ω,F ,P). Thus to understand the evolution of
the process for the class and genotype arrays (x, g) we need to understand the joint
distribution of the offspring functions as the population and environment fluctuate.

Remark 1 (i) Throughout this paper ploidywill always be the same for allmembers of
any given class, with the ploidy of class x written Lx . For example in haplodiploid
insects, LMales = 1 and LFemales = 2.

(ii) In the common situation in which a parent contributes one haploid set to an
offspring, the contribution is measured as one over the offspring ploidy (the
share of the offspring that belongs to this parent rather than its other parents)
times one over the parent’s ploidy (because the contribution is measured per
parental ploidy). Hence, in this case if a parent contributes to just one offspring
of class x ′ with genotype g′, then

wParent
x ′,g′ = 1

Lx ′LParent
.

(iii) Overlapping generations are handled in the usual way by counting an individual’s
survival to the next year as an offspring, all of whose genes come from the
individual itself (and, if the model is age structured, in the next age class) (Taylor
1990). Thus, if its own surviving self is the individual’s only “offspring” in class
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x ′ with genotype g′, then parent and offspring ploidies will usually be equal, and
the ploidy rules lead to

wParent
x ′,g′ = 1

LParent
= 1

Lx ′
.

(iv) Throughout the paper, bold lowercase Roman letters such as u, v and w will be
arrays, while their elements will be written ui , vi and wi

x ′,g′ . A year superscript
will be added in parentheses where needed.

(v) It is convenient to explain here why the framework applies to a set of loci that
all belong to one coreplicon (Cosmides and Tooby 1981), but not when the
loci are spread over more than one coreplicon. Suppose a diploid mated pair
under XY sex-determination have two daughters and one son, that the classes are
{female,male}, and for simplicity assume there is only one genotype, g′. Then
at autosomes, Lmother = L father = 2, and

wmother
female,g′ = 1/2 wfather

female,g′ = 1/2 (2)

wmother
male,g′ = 1/4 wfather

male,g′ = 1/4, (3)

whereas for the X -chromosomes, Lmother = 2, L father = 1, and

wmother
female,g′ = 1/2 wfather

female,g′ = 1 (4)

wmother
male,g′ = 1/2 wfather

male,g′ = 0. (5)

The values for Y -chromosomes and for mitochondria are each different again.
Thus, when a vertebrate is regarded as having 3 offspring in a Price Equation
or a fundamental theorem, we must have already taken a view on whether we
are discussing an autosomal locus, or a locus on some other coreplicon. This
means that Price (1970)’s equation is restricted to diploids and to autosomal
loci; and that the discussion of Ewens (2004, pp. 64–67) of Fisher’s fundamental
theorem, framed explicitly in terms of diploidy, is restricted to autosomal loci
by the repeated assumption that each individual has two alleles at each locus in
question. These points are not controversial, and are made simply to highlight an
assumption that is not always noticed or understood. Thus, the most basic data
depends on which coreplicon a locus belongs to, and so our analysis will assume
that all loci are restricted to just one coreplicon. There are many discussions of
the genetic conflicts that arise as consequence of the opposing effects of natural
selection in different coreplicons (starting with Cosmides and Tooby 1981).

The philosophy of our approach is that the reproduction of individuals should be
thought of as random (as in Rice 2008), and that it is the probability distribution of
reproductive outcomes, as determined by class, genotype, phenotype, environment
and the population, which determines the course of evolution.

Definition 1 (Population reproduction map, w) In addition to xi for the class, and
gi for the genotype, of individual i , we will write the phenotype ai ∈ A for one
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individual and for thewhole population as a ∈ Ã := ⋃
k=1,2... Ak .We suppose that the

reproduction of the population between each year is encapsulated by a single random
variable w, the population reproduction map, on the probability space (Ω,F ,P) that
takes an environment e and class, genotype and phenotype arrays x, g, and a and
returns an |I | × |X | × |G| array for the number of offspring-equivalents (per parental
haploid set) of individual i in class x ′ andwith genotype g′. Our notational conventions
already imply that a full notation for wi

x ′,g′ would be

(w(e, x, g, a))ix ′,g′ = wi
x ′,g′(e, x, g, a),

which establishes the joint distribution of the wi
x ′,g′ in terms of our single random

functionw. Note that parental population arrays x and g appear as arguments ofw, but
single classes and genotypes of offspring x ′ and g′ appear as indices of the resulting
array. For the avoidance of doubt, also note that w is a map from (Ω,F ,P) to the
space of maps from the possible values of (e, x, g, a) to the possible rational arrays
of size |I | × |X | × |G|. These sets are complicated to notate, but the effect is that a
given element of ω ∈ Ω specifies the precise reproductive consequences (including
the outcomes ofMendelian segregation) of every possible environment and population
structure. Thus, w is indeed a random variable on (Ω,F ,P).

It is worth noting that the offspring population is characterised by
∑

i Li wi as an
array over class and genotype spaces. When we need to treat this offspring population
as the parents in the following year, we need to convert from this array description to
the list of individuals that we use for parents. This conversion will be denoted by

(x, g)′ = extract

(
∑

i

Liwi

)

.

We will abuse this notation by using it to extract only x′ where that is all we require.
This conversion is needed because the attractions of the Price Equation include its
treatment of the parent population as individuals, so we can make assumptions at
that level; but the offspring population cannot be represented as individuals because
we never make assumptions about how gametes combine to form individuals, which
makes our results more general over genetic architectures. Thus, a somewhat awkward
notational transition is a necessary consequence of the analytical strategy of the argu-
ment. The same conversion will be familiar to those readers who analyse categorical
data, sometimes expressed with one individual per record, which contains the cate-
gorical variable values for that individual, and sometimes as tabulated data showing
how many individuals share each given combination of variable values.

This extraction of individually indexed arrays from the tabulated array leaves the
order of the individuals unspecified. We are about to make assumptions on w that
make this indeterminacy entirely benign.

We make the following assumptions about w. The effect of applying any permuta-
tion to the elements of each of the population arrays that comprise the second, third
and fourth arguments of w is to apply the same permutation to the first dimension
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(which indexes the parental population) of the |I | × |X | × |G| array that w delivers.
This assumption prevents the order in which the population is listed from carrying any
information about geographical location or local environment, for example, apart from
information carried purely by class, and ensures that just the set of triples (xi , gi , ai )i∈I
affects the outcome. It constrains how the environment can affect individuals, enforc-
ing a symmetric treatment of them in distribution, and preventing the environment
making special links between parents and offspring or between siblings. This assump-
tion implies that the condition of pairwise exchangeability (assumed by Grafen 2002,
2006a, b; Batty et al. 2014, for fitness-maximixisation results) is met here too. It also
prevents one individual affecting other individuals according to coancestral links. We
further assume that the probability that the value ofw implies a zero-size population in
the next year is zero, as is the probability that the value ofw renders a future zero-size
population inevitable (such as an all-male population in a sexual species). This has
much the same effect as conditioning our analysis on non-extinction, but is mathe-
matically simpler. If we were interested in the chances of extinction, this assumption
would be unhelpful: however, here our aim is to characterise the nature of adapta-
tion in populations that do survive. A further technical assumption is that the entries
of w are uniformly bounded, but this should be uncontroversial against a biological
background.

A further, ‘genotype-through-phenotype’, assumption about w is that g does not
affect wi

x ′,+(e, x, g, a), where the subscript ‘+’ indicates summing over the subscript
g′. This asserts that genotypes affect the distribution of individuals’ offspring number
and classes only via phenotypes; hence the inclusion of a in the list of arguments
excludes any effect of g when the offspring are added up by class and parent, ignoring
the offspring’s own genotypes. Of course, the genotypes do affect the genotypes of the
offspring directly and not through phenotypes, and so while the sum is independent
of g the summands are of course not. A formal expression of the assumption is

∑

g′
wi
x ′,g′(e, x, g1, a) =

∑

g′
wi
x ′,g′(e, x, g2, a).

This assumption is regarded as simply requiring that the term ‘phenotype’ is being
used in line with standard usage, and not as placing further restrictions. Without
some formal requirement of this kind, a theory cannot make the genotype-phenotype
distinction that is so central to our understanding of natural selection.

Remark 2 The functionw lies at the heart of our model. It encapsulates how, given an
environmental state e, a population of individuals with given phenotypes ai , classes
xi , and genotypes gi will reproduce. In particular, for each individual it gives its share
of individuals in each class and genotype in the next year. It is a random function, so
it gives a probability distribution over all the possible outcomes. We have not placed
many restrictions on w, and so our conclusions are very general. If specialising to a
particular case, it would be necessary to specify the functional form of w, and also
the functional form of the environmental processΠ . Summarising, our first restriction
is that the possibility of geographical, group or family structure is eliminated by the
permutation assumption, except where that structure can be created by classes alone;
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our second prevents extinction from occurring; and our third insists that all effects of
genotype, except on the actual genotypes of the offspring, must act through phenotype.
Extending the framework to include kin interactions is the subject of current work, but
the present framework does allow social interactions that depend on class, phenotype,
and chance alone.

This very general definition of w is used to define two stochastic processes with
t = 0, 1, 2, 3 . . ., in the following sections.

2.2 The neutral stochastic process

The neutral process tracks the class and genotype arrays (x, g)(t) of a population over
time (t = 0, 1, 2 . . .) in which there is a uniform ‘background’ phenotype, say a0,
in all years, so the genotypes are irrelevant to the evolution of the classes and the
population size, though of course they remain relevant to the changes in genotypes.
We assume that this process tends to an ergodic distribution (e.g. Rosenblatt 1971)
over time that is independent of the starting conditions.

Let the random function M : ⋃∞
k=1 (G × X)k → G̃ represent mutation: we assume

it affects each individual’s genotype independently of all others and of all the other
random variables in the model. The inclusion of X in the domain allows the mutation
rate to be different for different classes, for example newborns versus surviving adults.
The formal role of mutation is to maintain genetic variability in the neutral process,
so that in the Taylor year there is genetic variability with which to create phenotypic
variability. The choice of function M does not affect the reproductive values, as geno-
types do not affect phenotypes in the neutral process, or classes. Thus, the effects of
reproduction take g(t) and produce g∗(t+1), and mutation then takes place to complete
the iteration as g(t+1) = M((g∗, x)(t+1)).

The neutral process has arbitrary initial conditions, which will be assumed not to
affect the asymptotic distribution of the process, and we can summarise our informal
discussion as

e(t+1) ∼ Π(e(t), ·)
(x, g∗)(t+1) = extract

(∑

i

Li wi (e(t), x(t), g(t), a0)
)

(x, g)(t+1) = (x(t+1), M((g∗, x)(t+1))).

The assumption that there is an ergodic distribution of this process, independent of
the initial conditions (x0, g0), will allow us to define reproductive value. We denote
the ergodic distribution by D(a0), noting that our other assumptions are much too
weak to prove existence.

It is convenient here tomake a technical remark on the treatment ofmutation.Unlike
most developments of the Price Equation and the fundamental theorem, mutation is
included in the model. This is required to maintain genetic variability asymptotically
in a finite population, and so without it there would be no genetic variability to cause
phenotypic variability, and neither kind of result would be of use. The introduction of
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mutation does introduce a complication, in that mutation will alter gene frequencies
(for the Price Equation), and alter fitnesses (for the fundamental theorem). This is
managedbyplacingmutation as the last step in each generation, and by applying results
to the changes in gene frequencies before the mutation takes place. This elimination
is contrasted with the approach of Tarnita and Taylor (2014) in the Discussion.

Definition 2 (Expectation over neutral stochastic process, E) For use in following
sections, we define the expectation E to be over the ergodic distribution D(a0) of
the neutral process. Conditioning on the initial state, this expectation is over chance
events within one generation. Unconditionally, the expectation depends on the ergodic
distribution and will be referred to as an expectation over the ‘ensemble’.

2.3 The transition operator and reproductive value

Now, we implement the central idea that reproductive value should represent the frac-
tion of an asymptotic gene pool that descends from an individual or a class—we will
see in the discussion that this idea corresponds to Fisher (1930)’s verbal explanation
but not to his mathematical formulation. This approach has been followed by Tul-
japurkar (1989, 1990) and Rousset (2004) in models with continuing fluctuations in
the population class distribution, and here we apply the same basic idea, in a finite
population with class-based ploidies. New features here are permitting infinite classes,
though we leave to future work exploring the consequences of permitting a continuous
trait such as condition to be regarded as a class; and allowing the current population
demographic structure to influence in an arbitrary way the per-capita reproduction of
individuals in each class. We study this gene pool in the neutral stochastic process, in
which all phenotypes equal a0, and this allows us to focus, for this purpose, on the
evolution of the class distribution only, ignoring the genetic aspect. Genotypes will
have phenotypic consequences later in our second, ‘Taylor switch’, stochastic process.

For recursions in a phenotypically uniform population, we need to keep track only
of the structure of the class distribution, which is captured by the population class array
x. This is because the phenotypes do not vary, and the ‘genotype-through-phenotype’
assumption then ensures that the genotypes do not affect the class distribution. Sup-
pressing in its notation dependence on the value of the uniform phenotype, say a0, we
now define x′, the population class array next year, as

x′ = x′(e, x) = extract
( ∑

i,g∈G
Li wi (e, x, g, a0)

)
. (6)

It is important that this notation of x′ as a function of the current environment
and population class arrays will be used only under the assumption of phenotypic
uniformity, though x′ without arguments will continue to be used to denote the class
array of the following year even when that assumption does not hold. Note that (e, x)
determines the distribution of x′, and not its value, so x′(e, x) is still a random variable
conditional on (e, x).

In a model with stochastic environment and non-constant class distribution, the
interpretation of reproductive value as fraction of an asymptotic gene pool can
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hold only if the reproductive values vary with the environment and with the class-
distribution of the population, and these extra dependencies are key to our argument.
Therefore we introduce the space BM := BM(X × E × X̃) of bounded, measurable,
real-valued functions on X × E × X̃ , where we recall that X̃ = ⋃

k=1,2... X
k is the

space of non-zero, finite class arrays. An element of BM represents an allocation of
a real number to each class, at each combination of environment and population class
array. If reproductive value exists, it will be an element of BM .

It is convenient to define a function n : X × X̃ → N ∪ {0} that counts how many
elements of an array x are equal to a particular element of X . Thus,

n(x, x) := card{ j : x = x j }

represents the number of individuals in the population in class x .
The reproductive values will be per-capita per-ploidy, and so we restrict ourselves

to elements of BM that sum (over the population) to one, over its first argument,
when weighted by each individual’s ploidy, for each pair of values of the second and
third arguments, representing environment and population class array. To formalise,
we define Z .

Definition 3 (Z) Let the set of candidate reproductive values, Z , be defined by

Z :=
{
f ∈ BM : f ≥ 0, n(x, x) = 0 
⇒ f (x, e, x) = 0,

∑

i

f (xi , e, x) · Lxi = 1 for all e ∈ E and x ∈ X̃ ,

f (xi , e, x) = f (xi , e, σ (x)) for all permutations σ : X̃ → X̃ of the elements of x
}
.

(7)

The population model inherent in w and Π allows us to take a candidate function
for reproductive value in the descendant year, and calculate what the parental year
reproductive values would be, simply by adding up the expected value of the sum of a
parent’s shares in the reproductive value of its offspring. The calculation is conditional
on the information available in the parental generation. Thus, the candidate descendant
reproductive value function defines a resulting parental reproductive value for each
combination of class, environment, and population class array.Wewill therefore define
a transition operator onZ that takes candidate descendant reproductive values as input
and delivers parental reproductive values. If these are equal for any given candidate
values, we will call these reproductive values. The first step in formalising is to define
the class mean offspring arrays.

Definition 4 (Class mean offspring array, ux ) It is useful to define for each parental
class the mean array of offspring production retaining the division by offspring class
but summing over genotypes, and we will denote this as uxy′ , a random variable over
(Ω,F ,P)whose distribution is determined by (e, x). We define it in a phenotypically
uniform population with phenotype a0. Then, in terms of our population reproduction
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map w, we simply add up the output of the individuals in each class, and divide by
their number, as follows

ux = (uxy′)y′∈X =
⎧
⎨

⎩

∑
i : xi=x,g′ wi

y′,g′ (e,x,g,a0)
n(x,x) n(x, x) > 0

0 n(x, x) = 0
,

where we note that the ordering of the elements of x does not affect the sum, by the
permutation assumption onw, and g does not affect the sum by the ‘genotype-through-
phenotype’ assumption. ux is the random array of mean offspring of members of class
x in the next year, so uxy′ is the mean number of y′-offspring (evaluated as shares
according to genetic contribution of haploid sets) of an x-parent, per parental ploidy.
As with x′(e, x) this notation will be used only under the assumption of phenotypic
uniformity.

We are now in a position to define the transition operator onZ . For f ∈ BM define
the function T f : X × E × X̃ → R by

(T f )(x, e, x) :=
∫

E
Ex′

[ ∑

y′∈X
f (y′, e′, x′(e, x)) · Ly′ uxy′

]

Π(e, de′)

= Ee′Ex′
[ ∑

y′∈X
f (y′, e′, x′(e, x)) · Ly′ uxy′

]

. (8)

Here Ex′ is expectation over the random variable x′, with respect to the probability
measure P on Ω (the randomness in the reproduction of individuals in a given year,
given the population structure) and Ee′ is with respect to the probability measure
Π(e, ·) on E , i.e., the conditional expectation of a function of the environment in year
t + 1, given that the environment at t is e.

The transition operator T takes a bounded function f (x, e, x) defined over the
classes in each environment and population andmaps it to a new function (T f )(x, e, x)
given by the expected value of the ploidy-weighted average of f over the offspring
in year t + 1 of parents who were in class x , in environment e and population x, in
year t . This use of T in essence extracts from the theory of Markov processes (see,
e.g. Rosenblatt 1971) just what we need for current purposes.

Remark 3 Since f takes a value at each point of X × E × X̃ and f , u and Π(e, ·) are
bounded, T is well defined as a bounded linear operator on BM .

It is important for our argument that a candidate function, which sums to one over
the population, is transformed by T into a parental function that also sums to one.
This corresponds to the idea that reproductive value sums to one over each population
state, and makes it possible to prove under various kinds of additional assumptions
that there is a fixed point of T in Z . The following lemma is proved in Appendix A.

Lemma 1 The set Z is non-empty and T -invariant, that is, (T f ) ∈ Z for all f ∈ Z .
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Definition 5 (Reproductive value, φ∗, φ) Suppose there exists a fixed point of T inZ ,
that is, a function φ∗ ∈ Z such that (Tφ∗) = φ∗. Given such a function φ∗, we define
the reproductive value per haploid set of an individual in class x ∈ X , living in an
environment e ∈ E amidst a population described by the array x ∈ X̃ to be φ∗(x, e, x).
We now define the corresponding reproductive value of the individual (that is, not per
haploid set) as

φ(x, e, x) := Lx φ∗(x, e, x).

Where it is clear from the context we will sometimes write φx for φ(x, e, x). Repro-
ductive value relies on the existence of an asymptotic distribution of the process, and
measures for an individual (or, by summing, for a class) in a given year the fraction of
the gene pool in a very distant generation that derives from that individual (or class)
in that year.

It may be the case that no such fixed point φ∗ exists or that φ∗ is non-unique: the
present level of abstraction is simply too high to prove existence or uniqueness in
general. The biological interpretation is discussed elsewhere (Grafen 2006b). Despite
this apparent weakness, defining reproductive value in this way is a powerful tool
and in simple models the construction of reproductive value is often straightforward
(Grafen 2006b). For a case where existence can be proven see Appendix B. This def-
inition differs from previous mathematical definitions of reproductive value, but we
argue in the discussion that here we have implemented Fisher’s verbal, asymptotic
characterisation, which is appropriate for a long-run average growth rate of zero, but
allowing for year-to-year variation. Fisher (1930) also had a mathematical, demo-
graphic definition, according to which the total reproductive value of the population
increased (or decreased) at a constant exponential rate over time, as do others such as
Engen et al. (2009). For models with a constant population size (e.g. Grafen 2006b;
Barton and Etheridge 2011; Batty et al. 2014), the distinction between demographic
and asymptotic gene pool definitions is without a significant difference. There are
definitions that maintain the sum of reproductive value over the population as one,
and include fluctuating demography. Compared to Tuljapurkar (1989), our model has
an infinite class set X , and allows the relative successes of individuals in different
classes to depend on the class distribution (as opposed to assuming, in his notation,
that Xt+1 is independent of Yt ). Compared to Rousset (2004, eqn 10.15), our model
does not assume there is a typical individual whose fitness depends only on its own trait
value, the mean in its group, and the mean in the population. In particular our formu-
lation allows individuals in different classes to have quite different fitness functions,
in contrast to Rousset’s main interpretation of his population subdivisions as demes.
Rousset and Ronce (2004, eqn 8) define reproductive values for demes in a structured
population with fluctutating demography, and allow arbitrary dependence of individ-
ual offspring numbers on the demographic state. Their definition is thus very similar
to ours, apart from the possibiity of infinite classes, and some minor details. These
technicalities make a difference, but much more significant is Rousset and Ronce’s
use of reproductive values: ‘The only point of the choice of [reproductive values] as
weights is that the expected change in allele frequency is null in the neutral model
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[...], which simplifies later computations’ (Rousset and Ronce 2004, p. 131). Here, we
use reproductive values in a more general model of how individual fitnesses are deter-
mined, and we define fitness for individual organisms in such as way as to establish a
Price Equation and a fundamental theorem of natural selection: thus we choose a route
foregrounding individual organisms rather than gene frequencies. As mentioned in the
Introduction, this choice comes at the significant cost of losing dynamic sufficiency.

Remark 4 Some key properties of reproductive value are as follows:

(i) The reproductive value of an individual in class x in a given year is equal to
the expected value of the sum of a class x individual’s genetic share (i.e., 1

2 for
diploids) of the reproductive value of its offspring in the following year, plus the
reproductive value due to its surviving self. It is important that the class reproduc-
tive values in the parental populationwill generically be different from those in the
descendant population (i.e. (φ(x, e, x))x∈X �= (φ(x, e′, x′(e, x))x∈X ), because
the population class array will have changed (x �= x′(e, x), even allowing per-
mutations) and the environment will be different (e �= e′).

(ii) Reproductive values sum to one over the population, whatever values are taken
by the population class array and the environment, and so they can be used as
weights to construct convenient population averages.

In the next section, a martingale property of reproductive value is established.

2.4 Reproductive value as a martingale

This section proves a theorem that links reproductive value in the neutral stochas-
tic process to martingale theory. To deal with asymptotic gene pools, we extend our
notation slightly by adding a year index, so that (ux,(t)y′ )y′∈X is the class mean off-

spring array for class x in year t . Let H (t) be the transition matrix derived from
w(e(t−1), x(t−1), g(t−1), a0) that converts the class-distribution of the population from
the beginning of year t − 1 to the beginning of year t . H (0) is understood to be the
initial population arrays (x(0)), so that the sequence (e(k), H (k))k=0,1...t effectively
defines the whole history of the process (population and environment) up to the start
of year t . We may ignore the genetic arrays g because the genetics has no influence
on the course of the neutral stochastic process, and in particular on the class arrays.

A martingale is a sequence of random variables measurable with respect to a filtra-
tion, which is a sequence of nested sigma-algebras, which grow more refined as the
years go by, representing increasing knowledge as random variables are realised. In
this case, we define (H(t))t=0,1,2... as the filtration generated by (e(t), H (t))t=0,1,2....
Conditioning on H(t) is equivalent to conditioning on all values of those generating
variables, up to and including year t , and they have been chosen to make this the entire
history of the process. This significantly includes ux,(t)y′ , which allows us to keep track
of which ancestral classes have contributed to each descendant class in each year.

The quantity at the centre of the theorem is an individual’s share of reproductive
value in succeeding years. An individual in class x will have descendants in a given
year, and it has a share of each descendant according to the ancestral links. Those
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fractions of the reproductive values of the descendants can be added up and regarded as
the reproductive value descending from the individual. This depends on the realisation
of random variables representing how many offspring each class of individual has. To
improve readability, we drop for this section the convention of adding a prime to
offspring subscripts. We make formal definitons as follows.

Definition 6 (ck,lx,z) Let c
k,l
x,z , for k, l = 0, 1, 2 . . . and x, z ∈ X be recursively defined

by

ck,kx,z =
{
1 x = z

0 x �= z

ck,k+l+1
x,z =

∑

y

L y u
y,(k+l)
z ck,k+l

x,y ,

and note that ck,k+l
x,z is a random variable over H(k+l). This quantity represents the

expected number-equivalent of descendants in class z in year k + l of one individual
in class x in year k. The reproductive value in year t descended from an individual in
class x in year 0 may now be defined by

R(t)
x :=

∑

z∈X
c0,tx,z Lz φ∗(z, e(t), x(t)). (9)

This does not represent the actual fraction of the gene pool in year t descending
from the individual, because that will depend on the details of segregation in the
intervening years. In conventional diploidy, the fraction of a grandoffspring’s genome
deriving from a grandparent will not be exactly a quarter, but will vary depending on
the outcomes ofmeiosis, andwill be different at different loci. However, in expectation
over fair Mendelian segregation, the expected fraction is a quarter at each autosomal
locus. Similarly, R(t)

x is a random variable over H(t) that tracks all the other sources
of randomness, but takes expectations over Mendelian segregation.

These definitions allow us to state

Theorem 1 (Reproductive value as a martingale) In the neutral stochastic pro-
cess, the random process (R(t)

x )t=0,1,2... is a martingale with respect to the filtration
(H(t))t=0,1,2..., for each x ∈ X.

Proof To establish the martingale property it will suffice to prove

Ee(t+1)Ex(t+1)

[
R(t+l+1)
x − R(t+l)

x

∣
∣ H(t) ] = 0 (10)

for all t, l ≥ 0.
As a preliminary, we rewrite the formula (8) defining T applied to the fixed point

φ∗, to make explicit the conditioning on the state of the process and employ time
superscripts. Formally,
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φ∗(x, e(k), x(k)) = (Tφ∗)(x, e(k), x(k))

= Ee(k+1)Ex(k+1)

[ ∑

y∈X
φ∗(y, e(k+1), x(k+1)) · Ly u

x,(k)
y

∣
∣
∣
∣H(k)

]

.

(11)

Now expand R(t+l+1)
x , using the definition of c, to find an equality between random

variables on H(t+l+1) as follows

R(t+l+1)
x =

∑

z∈X
c0,t+l+1
x,z Lz φ∗(z, e(t+l+1), x(t+l+1))

=
∑

z∈X

∑

y∈X
Ly u

y,(t+l)
z c0,t+l

x,y Lz φ∗(z, e(t+l+1), x(t+l+1))

=
∑

y∈X
Ly c

0,t+l
x,y

∑

z∈X
uy,(t+l)
z Lz φ∗(z, e(t+l+1), x(t+l+1)).

We take expectations of both sides with respect to H(t+l). The inner sum is the
only remaining random variable on the RHS, and the expected value of that inner sum
equals φ∗(y, e(t+l), x(t+l)) by Eq. (11). The Definition (9) of R(t)

x then allows us to
obtain

Ee(t+l+1)Ex(t+l+1)

[
R(t+l+1)
x

∣
∣H(t+l) ] =

∑

y∈X
Ly c

0,t+l
x,y φ∗(y, e(t+l), x(t+l)) = R(t+l)

x .

It now remains to observe that we can take expectations with respect toH(t) of both
sides, and that the inner expectation on the LHS collapses into the new expectation by
the tower property (see, e.g. Schechter 1997), leading to

Ee(t+1)Ex(t+1)

[
R(t+l+1)
x

∣
∣H(t) ] = Ee(t+1)Ex(t+1)

[
R(t+l)
x

∣
∣H(t) ]

,

which immediately implies Eq. (10), completing the proof. �
Remark 5 The theorem shows that the fraction of the total reproductive value of the
population in year t tracing back to an individual in year 0 is a martingale, i.e. con-
ditional on the realised value of that reproductive value in year t , the expected value
at every future year is the same as its value in year t . There is no novel biological
point here. Rather, it is a formal justification for our informal assertion that, under
Mendelian mixing, the reproductive value of Definition 5 does represent the expected
fraction of the gene pool of some distant future generation that traces its descent to an
individual or set of individuals in some earlier year.

2.5 The Taylor switch stochastic process

The role of the Taylor switch process is discussed at the start of Sect. 2, and the process
itself (x, g)(t)t=0,1,2... is the same as the neutral process except for two properties. The
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state at t = 0 is random, being drawn from the ergodic distribution of the neutral
process. The second difference is that in year t = 0, the phenotypes are determined
by an arbitrary (measurable) function of the genotypes and classes, contrasting with
all other years in the Taylor switch process and with all years in the neutral process, in
which the phenotype is uniformly the backgroundphenotypea0. This allowsus to study
the effect of an arbitrary genotype and class to phenotypemap, on the basis of a uniform
background phenotype in all other years. One important property is that the arbitrary
genotype-phenotypemap is tested in a randomyear in the ensemble distribution created
by the uniform phenotype. Another is that themap creates differences in frequencies of
genes and classes which are then played out in, and can be evaluated according to the
reproductives values calculated from, a population with the background phenotype.

We recall the definition of D(a0) in Sect. 2.2, and then we formally define the
process by

(e, x, g)(0) ∼ D(a0)

a(t)
i =

{
h(x (0)

i , g(0)
i ) t = 0

a0 t ≥ 1

e(t+1) ∼ Π(e(t), ·)
(x, g∗)(t+1) = extract

( ∑

i

Li wi (e(t), x(t), g(t), a(t))
)

(x, g)(t+1) = (x(t+1), M((g∗, x)(t+1))).

The lack of subscript on h implies that each individual’s phenotype depends only on
its own genotype and class and not on the genotypes or classes of other individuals. The
formalism allows an arbitrary function h, and the Price Equation and the fundamental
theorem to be proved below are focussed on the consequences for natural selection of
the function h that links genotypes to phenotypes.

Definition 7 (Extension for E to Taylor year, V) For use in the following section,
we extend the definition of the expectation E, so that as well as taking expectations
over the ergodic distribution D(a0) of the neutral process, it also takes expectations
over the phenotypes created by the classes, genotypes and environment at t = 0 of
the Taylor switch process. This allows genetic effects on phenotype and fitness, so
selection can occur. The corresponding variance V is also defined: note it will be used
only in Theorems 3 and 4.

3 The Price equation

As a preliminary, we introduce some useful notation. One Price Equation for the
Taylor year is then proved that takes the initial state as known, and then a further Price
Equation is proved taking expectations over the initial state. Each version is used in
Sect. 4 to prove a corresponding version of Fisher’s fundamental theorem of natural
selection.

123



Defining fitness in an uncertain world 1077

3.1 Population means and covariances

We introduce Price’s notation (Price 1972), as slightly extended (Grafen 2015b), for
weighted population means and covariances, which will allow us to express results
briefly and clearly. The subscript i that runs over members of the population is sup-
pressed. All the weighting is with respect to φ, so we are weighting by the individual’s
reproductive value. This corresponds to theweighting inGrafen (2015b), as hisweights
correspond to our Liφ

∗
i .

Given functions f, g, h : I → R, we define ave, cov and var, as

aveh f =
∑

i hi fi∑
i hi

covh ( f, g) = aveh( f g) − (aveh f )(aveh g)

varh f = covh ( f, f ) .

A further definition ofΔ∗ involves the notation of ′ to mean the same corresponding
value in the next year, as follows,

Δ∗ aveh f = aveh′ f ∗′ − aveh f,

which indicates that both the weights and the main variables take a prime. The super-
script ∗ indicates before mutation, as in the definition of the stochastic processes,
implying that while the gene frequency in the current year will be based on the geno-
type array g, the gene frequency in the next year is based on the pre-mutation genotype
array g∗′.

There are two reasons to use this notation, rather than to use standard expectation
notation by making these simple expectations conditional on the full demographic
state of the population and on the environment. First, these population, or statistical,
means and covariances are very different from the probabilistic versions used else-
where in this paper, a distinction drawn elsewhere (van Veelen 2005). Employing the
standard notation to represent a population mean implies an ancillary and somewhat
artificial randomness of selecting one individual from the population at random, and
furthermore that selection should be done weighting by reproductive value; whereas
the other randomness, such as caused by weather, is more naturally understood as
random, at least by biologists. The terms ‘population mean’ and ‘population covari-
ance’ will be used when it is helpful to make verbally that mathematical distinction.
Second, biologists who think about real populations will find it useful to understand
that ave, cov and var represent quantities that might be measured in a population,
while the other expectations involve averaging over environmental uncertainty. This
formulation allows all population means and population covariances to have the same
weights, whereas an earlier, less satisfactory treatment by Batty et al. (2014) used
different weights over the same population (see discussion in Grafen 2015b). Expec-
tations over random processes have already been defined using E, so keeping the two
kinds of means notationally distinct. The simple and easily interpretable form of the
final results is also a consequence of the use of this notation.
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3.2 The Price equation

Weproceed to our next result, a Price (1970)—type covariance equation for the change
of gene frequencies over the Taylor year, before mutation occurs. The general mod-
elling philosophy, including more on the Price Equation approach, is outlined in the
‘Reproductive value’ section of the Discussion. So far, the array of genotypes g has
been carried along formally in the definition of the two stochastic processes, and now
we begin to use it. Suppose we have a set K of alleles, associated with the set G̃ of
genotype arrays. A genotype array has a typical element gi , which is a simple element
considered as a genotype. However, a genotype may itself be considered as an array of
allele frequencies, and we therefore define gki to be the fraction of alleles in individual
i at the locus containing allele k ∈ K which are in fact allele k. The alleles may be at
an arbitrary number of loci, and have an arbitrary linkage map, and arbitrary linkage
disequilibrium. We assume, however, that all the loci belong to the same coreplicon
(Cosmides and Tooby 1981—see discussion in Sect. 2.1). These are standard assump-
tions for the Price Equation and the fundamental theorem (see, e.g. Price 1970; Ewens
2004). We also assume that meiosis is fair and transmission is unbiased. We take this
to mean that the expected frequency of any allele, and so the expectation of any linear
combination of allele frequencies, in a gamete is equal to its value in the individual
producing the gamete: under this condition, the second, population average, term in
the usual Price Equation (Price 1970) will be exactly zero in expectation.

We apply the Price Equation to the transition from t = 0 to t = 1 in the Taylor
switch stochastic process, that is, the Taylor year, as that is the only moment at which
genotype affects phenotype. To exclude the effect of mutation during the year, we
compare g to the pre-mutation genotype array g∗′. We prove a result that conditions
on the values of (e, x, g)(0), and then a second that takes an expectation over the initial
conditions of the stochastic process, that is, over the ergodic distribution of the neutral
stochastic process. We will drop the year superscript where possible, and continue to
follow the notation of a prime for ‘next year’, such as x′.

Definition 8 (p-score, π ) We say that a function p : I → R is a p-score if p is a
linear combination of allele frequencies. In order toweight a p-score p by reproductive
value, we define π : X → R by setting πx to be the sample mean of p over members
of class x ,

πx :=
{ ∑

i : xi=x pi
n(x,x) if n(x, x) �= 0,

0 otherwise.

Remark 6 As in previous work on reproductive value in structured populations, the
important quantity for the evolution of the population is not the raw average of gene
frequencies or p-scores but the reproductive-value-weighted mean of these quantities.
From the perspective of a gene, its presence in individuals with greater reproductive
value (those more likely to pass it on in greater numbers) is proportionally more
important to the spread of that gene than its presence in low-value individuals and so the
correct metric of the gene’s spread is to weight every individual by their reproductive
value. This was stated as a principle by Fisher (1930, p. 36) in his exposition of the
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fundamental theorem and reinforced for stochastic demography by Rousset and Ronce
(2004). By weighting in this way, we capture the effect of short term frequency change
on expected long term trends.

Given a p-score p, the reproductive-value-weightedmean p-score of the population
with class array x in an environment e ∈ E is

aveφ p =
∑

x∈X
πx n(x, x) φ(x, e, x) =

∑

i

pi φ(xi , e, x). (12)

We also need an expression for the weighted mean p-score in the population next
year beforemutation. In expectation over fair meiosis, the gene frequencies of gametes
are equal to the gene frequency of their parent. For each class y′ ∈ X the expected
sum of p-scores of offspring in a class y′ is equal to the sum over the population of
the parents’ p-scores multiplied by their number of offspring in class y,

∑

i∈I
pi Li w

i
y′,+.

Whence the weighted mean p-score in the next year’s population before mutation,
whose class and genotype arrays we will denote x′ and g∗′ as a convenient shorthand
for x(1) and g∗(1), is a random variable over the natural product of (Ω,F ,P) and E ,
whose expectation satisfies

E
[
aveφ′ p∗′] = E

[ ∑

y′∈X
φ(y′, e′, x′) ·

(∑

i∈I
pi Li w

i
y′,+

)]

, (13)

where e′ is the next year’s environment, an E-valued random variable with distribution
Π(e, ·). A formula for aveφ′ p∗′ without a surrounding expectation would contain an
additional right hand term for biassed transmission and Mendelian uncertainty, but
this term equals zero in expectation on our assumption of unbiassed transmission, and
so does not appear in Eq. (13).

Definition 9 (Fitness, Fi ) For an individual i ∈ I , we define its fitness to be the sum
of (i’s share of) the reproductive values of the offspring of i , minus the reproductive
value i itself expects, and this difference is expressed relative to the reproductive
value i itself expects. (An informal version of this definition is given in Eq. (1) in the
introduction.) Thus,

Fi := Li
∑

y′∈X φ(y′, e′, x′) wi
y′,+ − φ(xi , e, x)

φ(xi , e, x)
,

where e′ ∈ E is again the next year’s environment. Parental ploidy appears in each
of the three terms, twice implicitly as φi = Liφ

∗
i , and so cancels out, showing fitness

has no tendency to increase with ploidy. Thus, we arrive at a view of fitness as an
individual measure of the tendency to increase the representation of each allele an
individual possesses, relative to the expectation for its class.
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Remark 7 Consider what we know about individual i’s contribution to the asymptotic
gene pool before and after the actions in the Taylor year are performed. Beforehand, we
have only the expected share according to the individual’s class, namely φ(xi , e, x),
while afterwards we know the individual’s shares in descendants and their classes,
and we know the environment next year, so our best guess at the contribution is
Li

∑
y′∈X φ(y′, e′, x′) wi

y′ . The definition of fitness we shall adopt (following Fisher
1930, as articulated by Grafen 2015a), is ‘(after–before)/before’, that is, the propor-
tional change in our expectation of i’s contribution to the asymptotic gene pool as a
result of moving forward one year in our state of knowledge. By this definition, fitness
is a random variable of both the uncertainty in the individual’s reproductive outcome
(Ω,F ,P) and in the next year’s environment (E,Σ,Π(e, ·)). Though intimately
related, it is distinct from reproductive value. For the Taylor year only, we allow an
arbitrary genotype-phenotype map, and so fitness is a function of the individual not
the class. During that year, individuals may differ from their class-mates, including
for genetic reasons, which creates the possibility of natural selection. We record two
technical statements about F in a lemma.

Lemma 2 (Technical properties of fitness) In general over the Taylor year,

aveφ F = 0.

Further, if the phenotype in the Taylor year is uniformly the background phenotype,
which will certainly be implied when h(x, g) = a0 for all x, g, then

E
[Fi |e, x, g

] = 0 ∀i.

Proof The first statement holds because

aveφ F =
∑

i

φiFi =
∑

i

Li

∑

y′∈X
φ(y′, e′, x′) wi

y′,+ −
∑

i

φ(xi , e, x)

and we proceed to show that both sums equal 1, each on the grounds that the total
reproductive value in a population always equals 1, which is also why no denominator
for ‘sum of weights’ is required. The second sum is the total reproductive value of
individuals in the parental year. The first sum is the sum in the offspring year, because
Liw

i
y′,+ equals the shares of offspring in class y′ of individual i , so Liw

i
y′,+φ(y′, e′, x′)

equals the corresponding shares in the reproductive values. When these shares are
summed over all offspring classes y′ and over all parents i , they amount to the total
reproductive value in the offspring year, establishing the statement.

The second statement holds because in a phenotypically uniform population, Defi-
nition 4makes uxiy′ the average of thewi

y′,+ for individuals i in class x . The permutation

assumption on w now ensures that E[wi
y′,+|e, x, g] = uxiy′ . The fixed-point property

for reproductive value in Definition 5 then implies

Li

∑

y′∈X
φ(y′, e′, x′) wi

y′,+ = φ(xi , e, x),
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which shows that the expectation of the numerator of the definition of fitness in Defi-
nition 9 equals zero. �
Remark 8 (Possibly infinite fitnesses) It is possible that φi = 0 in the Definition 9 of
fitness, when the numerator is positive. This arises when a class that, under the uniform
phenotype, obtains no reproductive value through offspring or survival,manages under
the Taylor switch to obtain some reproductive value. Fitness for that class is then in a
sense ‘infinite’ and so technically undefined, but infinite fitness accurately represents
the ratio of advantage compared to the background phenotype. The theorems still
hold in a biologically meaningful way, as the gene frequencies change in a finite way,
representing a balance between the zero reproductive value of a class (based on its
failure to reproduce with the background phenotype) and its infinite fitness.

We are now in a position to prove

Theorem 2 (The Price equation) The expected change in the reproductive-value-
weighted mean of an arbitrary p-score p, over the Taylor year, conditioning on the
state of the population at t = 0, and before mutation, is

E
[
Δ∗ aveφ p

] = covφ ( p, E[F ] ) . (14)

Remark 9 The covariance expression in Eq. (14) exhibits the Price equation in paral-
lel form to the original (Price 1970, 1972), with three important differences. First,
by assuming unbiassed transmission, we have no second term on the right hand
side representing deviations: this result is exact because we are taking expectations
over Mendelian segregation. This difference would be a disadvantage if we aimed to
study meiotic drive, for example, but we are restricting the loci to belong to a single
coreplicon (Cosmides and Tooby 1981). Second, this form holds for a class-structured
population by adopting class weights that satisfy a principle of ‘neutrality’, namely
that whenever all the current genetic variability is currently phenotypically neutral,
the additive genetic variance in fitness equals zero. Neutrality in a similar sense has
been recognised as a property of reproductive value since Taylor (1990), and as the
main property under stochastic demography byRousset (2004) andRousset andRonce
(2004). Grafen (2015b) shows in a deterministic model that guaranteeing neutrality
requires using reproductive values as weights. The third, novel, aspect here is that the
result holds under great generality including stochastic environment and continuing
fluctuations in class distribution, with exactly the same form except that the change on
the left hand side is an expectation, as is the fitness inside the covariance operator on
the right hand side. It is remarkable that such a simple equation holds under stochastic
demography, and greatly extends the part that the combination of the Price equation
and Fisher’s reproductive value can play in our understanding of natural selection.

Proof First note that the sum of pi − πxi is zero over any class, and therefore, since
i �→ uxi and Li are constant on classes we have

∑

i

(
πxi − pi

)
Li uxi = 0.
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Briefly employing the notation wi+ for the array of the classes of the offspring of
individual i (that is, for (

∑
g′ wi

x ′,g′)x ′∈X ), we can now write the array
∑

i pi Li wi+
from the expression for the average p score among descendants (13) in the following
form

∑

i

pi Li wi+ =
∑

i

pi Li wi+ +
∑

i

(
πxi − pi

)
Li uxi

=
∑

i

pi Li
(
wi+ − uxi

) +
∑

x∈X
πx n(x, x) Lx ux . (15)

Substituting (15) into (13) and swapping the order of summation gives

E
[
aveφ′ p∗′] =

∫

E
Ex′

[ ∑

y′∈X
φ(y′, e′, x′) ·

(∑

i

pi Li w
i
y′,+

)]

Π(e, de′)

=
∫

E
Ex′

[ ∑

y′∈X
φ(y′, e′, x′) ·

(∑

i

pi Li
(
wi

y′,+ − uxiy′
)
)

+
∑

y′∈X
φ(y′, e′, x′) ·

( ∑

x∈X
πx n(x, x) Lx u

x
y′

)]

Π(e, de′)

=
∑

i

pi Li ·
∫

E
Ex′

[ ∑

y′∈X
φ(y′, e′, x′) · (

wi
y′,+ − uxiy′

)
]

Π(e, de′)

+
∑

x∈X
πx n(x, x) Lx ·

∫

E
Ex′

[ ∑

y′∈X
φ(y′, e′, x′) · uxy′

]

Π(e, de′)

=
∑

i

pi Li ·
(
φ∗(xi , e, x)E

[Fi
] + φ∗(xi , e, x) − (

Tφ∗)(xi , e, x)
)

+
∑

x∈X
πx n(x, x) Lx · (

Tφ∗)(x, e, x), (16)

where the final equality comes from the definitions of F and T . The per-ploidy repro-
ductive value (φ∗) has been substituted, so that by the definition of reproductive value
we may use (Tφ∗) = φ∗, which together with Eq. (12) gives

∑

x∈X
πx n(x, x) Lx · (Tφ∗)(x, e, x) =

∑

x∈X
πx n(x, x) Lx · φ∗(x, e, x) = aveLφ∗ p.

(17)

Combining (16) and (17) we get

E
[
aveφ′ p∗′] =

∑

i∈I
φi · pi E

[Fi
] + aveφ p,
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and, as
∑

i φi = 1,

E
[
Δ∗ aveφ p

] = aveφ

(
pE

[F]) = covφ

(
p, E

[F])
,

where the second equality follows when we recall from Lemma 2 that aveφ(F) = 0,
hence aveφ(E

[F]
) = 0. The equality of the outer terms is the statement of the theorem.

�
This first Price Equation holds conditional on the initial condition (e, x, g)(0) of the

Taylor switch stochastic process. It will be useful to find a form in which the Price
Equation holds in expectation over the different possible initial conditions.

3.3 Removing dependence on initial conditions

Theorem 2 gives us the expected change in weighted allele frequencies for a given
population I with environment e and class and genotype arrays (x, g) , and a function
p : I → R denoting the p-scores. In this section we remove that dependency and ask
what the expected reproductive-value-weighted change in a p-score is on average over
the initial conditions of the Taylor year. As a preliminary, we re-write the statement
of Theorem 2 to highlight the dependencies on e and (x, g), which requires us to say
what we mean by a p-score when the population is not of fixed size or known class-
composition. A p-score is a weighted sum of allele frequencies, and so we define a
p-score by weights λk for each allele k. Then, in any population with given individual
genotypes gi , we can calculate the p-score of individual i as pi = ∑

k λkgki . This
definition allows us to reach conclusions about mean p-scores in a random population
drawn from the ergodic distribution of the neutral stochastic process. On this basis,
we rewrite Theorem 2 as

E
[
Δ∗ aveφ p

∣
∣ e, x, g

] = covφ

(
p, E[F ∣

∣ e, x, g ] ) . (18)

The next step is to take unconditional expectations on both sides, thus averaging
over the ergodic distribution of the neutral stochastic process. This leads to a formula
for the expected change in the reproductive-value-weighted frequency of p over the
set of possible initial conditions.

Corollary 1 (The Price Equation—ensemble version) The expected change in the
reproductive-value-weighted mean of an arbitrary p-score p, over the Taylor year,
before mutation, is

E
[
Δ∗ aveφ p

] = E
[
covφ

(
p, E

[F ∣
∣ e, x, a

] ) ]
.

Note that the genotype-through-phenotype assumption onw allows the expectation
of F to be conditioned on a with exactly the same effect as conditioning on g, which
removes an additional genetic element from the statement of the Price Equation. The
conditional and unconditional Price Equations will each be employed now to derive a
corresponding fundamental theorem of natural selection.
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4 A generalised fundamental theorem of natural selection

The technical side of Fisher (1930)’s fundamental theorem of natural selection is
now well understood (Grafen 2015a), though see Ewens and Lessard (2015) for an
alternative view. Here we prove one further version that conditions on the state at
the beginning of the Taylor year, and so simply shows that the theorem holds under
the uncertainty that unfolds in the course of one generation, and then a further fully
stochastic version over the random starting state of the Taylor switch process.

Theorem 3 (FTNS precursor for one year, with stochastic fitnesses) Suppose the
breeding values for expected fitnesses in the Taylor year, conditioning on the initial
state, are βi , and that these equal the values of some p-score p. Then the expected
change in the mean of p, before mutation, equals the variance in p. Formally,

E[ Δ∗ aveφ p | e, x, a ] = varφ p. (19)

Although this is a discrete-time version of the theorem, it lacks the denominator
on the right hand side noted by Ewens (1989), which has disappeared because of the
requirement here that the total reproductive value remains constant, which in turn
causes the mean fitness to be zero and so the denominator to be one.

Proof We follow the standard way to move from the Price Equation to the fun-
damental theorem, by applying the Price Equation to the p-score that defines the
breeding values of fitness. Here the breeding value is of expected fitness. Let (βi )i∈I
be defined as weighted sums of allele frequencies (

∑
k λkgik)i∈I that minimise

aveφ(E[Fi |e, x, g, a] − βi )
2, where we exceptionally notate the subscript i for clar-

ity. Appendix C calculates normal equations on this basis. We begin with the Price
Equation in Eq. (18), apply the definition of covariance, eliminating the second term
because aveφ F = 0 as noted in Lemma 2, and then apply the normal Eq. (21), to
obtain

E
[
Δ∗ aveφ p | e, x, a ] = covφ ( p, E[F |e, x, a ] )

= aveφ( p E[F |e, x, a] ) − aveφ(p) aveφ(E[F |e, x, a ])
= aveφ(p2).

Now, the normal Eq. (20) tells us that aveφ p = 0, and so the final line equals
varφ p, thus completing the proof. �

We now prove an unconditional fundamental theorem, in which the breeding values
are the best predictors of fitness over the ensemble of possible years, and not for any
one specific year.

Theorem 4 (FTNS precursor over the stochastic ensemble) Let ensemble breeding
values βi (g) := ∑

k λkgki be defined by the minimisation with respect to (λk)k∈K of
E

[
aveφ

(
(E[F |e, x, a ]−β(g))2

)]
. Let the p-score defined by these allelic weights be

p. Then the expected change in the reproductive-value-weighted mean of p over the
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Taylor year, before mutation, is given by the sum of the ensemble expectation of the
population variance of breeding value and the ensemble variance of the population
mean breeding value. Formally,

E
[
Δ∗ aveφ p

] = E[varφ p] + V[aveφ p].

Proof The argument of the previous proof, but with each termwrapped in an uncondi-
tional expectation and with ensemble breeding values and using the normal Eq. (23),
takes us up to

E
[
Δ∗ aveφ p

] = E
[
aveφ(p2)

]
,

but now aveφ(p2) is a random variable, to which we apply the definition of variance,
and then note that E[aveφ p] = 0 by the normal Eq. (22), to obtain

E
[
Δ∗ aveφ p

] = E
[
(aveφ p)2 + varφ(p)

] = E[ varφ p ] + V[ aveφ p ],

completing the proof. �
Remark 10 It is hard to imagine a clearer demonstration of the value not only of
keeping distinct the population statistical operators from the expectation and variance
operators over uncertainty, as recommended by van Veelen (2005), but also of the fact
that both kinds of operators are useful in studying stochastic finite populations.

Both theorems are expressed in terms of a p-score that equals the βi , to avoid the
confusion over whether the change in breeding value is between the mean breeding
value at t = 0 and the mean breeding value at t = 1 (which is not the case), or instead
the difference in the mean of breeding value, calculating the t = 1 breeding values
on the basis of the t = 0 allelic weights (which is the case). As with Fisher’s original
version, if any selection takes place, it will alter the phenotypes in the population
and change the reproductive values, so that fitness and the breeding values will also
change, and the background phenotype a0 will have to be reconsidered.

These two fundamental theorems have different interpretations. The first theorem
deals with quantities that are conditional on the initial state of the Taylor switch pro-
cess. It asserts that some quantity is increased over the Taylor year when averaging
over the uncertainty that unfolds during that year, and specifies that quantity with a
set of allelic weights. It makes sense that different environments will favour different
traits, and so those allelic weights will differ according to the environment. The sec-
ond, unconditional, theorem asserts the ensemble mean of some quantity increases on
average, and specifies a single set of allelic weights for the whole ensemble. Those
allelic weights are the breeding values of a notion of fitness that is ‘best on average
over the whole set of stochastic environments and population class arrays’. It is, per-
haps, surprising that such a quantity exists, ready to inherit the term ‘fitness’, and this
demonstration is one major point of fundamental theorems. Here, fitness is discovered
in a very general and abstract model, still operating as the property of an individual,
and still with at least a sense of being maximised because the expected change in its
mean cannot be negative.
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5 Discussion

We begin by setting bounds on the considerable generality aspired to by our model,
by placing it in the wider context of other models of evolution. Reproductive value
is a central concept: using it in our model has uncovered two ambiguities in Fisher’s
use of the term, and we also discuss replacing the current ‘asymptotic gene pool’
definition with a more here-and-now axiomatic alternative that in many ways makes
more sense. The model is part of the formal darwinism project, and we briefly sketch
the turning point it represents there. Finally, we consider briefly the implications of
our main results.

5.1 Different mathematical approaches to the study of evolution

There are many mathematical literatures that link Mendel’s rules to Darwinian evolu-
tion, but they have different emphases. Mathematical population genetics stays very
close to the Mendelian machinery (e.g. Ewens 2004), with the work of Charlesworth
and colleagues (seeCharlesworth 1980, 1994) going furthest towardsDarwinian ideas;
adaptive dynamics makes necessary assumptions to provide an ecologically useful
representation of the effects of natural selection, including extinction and speciation
(seeMetz et al. 1992, 1996; Dieckmann and Law 1996; Geritz et al. 1998; Durinx et al.
2008; Metz 2012); other literatures such as that of Taylor and colleagues (e.g. Tay-
lor 1990, 1996; Taylor et al. 2007) and that of Rousset and colleagues (e.g. Rousset
2004; Lehmann et al. 2006), aim to make reasonable genetic assumptions to solve
important modelling problems suggested by behavioural ecology, and within their
frameworks to provide general results about inclusive fitness. There are also litera-
tures (e.g. Hammerstein 1996; Eshel et al. 1998) that aim to investigate how well the
theory of evolutionarily stable strategies (Maynard Smith and Price 1973; Maynard
Smith 1982) represents the outcome of full genetic models. The formal darwinism
project (Grafen 1999, 2002, 2006a, b; Batty et al. 2014) aims to justify the individual-
as-maximising agent analogy in terms of population genetics, but eschews dynamic
sufficiency in order to obtain results that apply to a wider range of genetical sys-
tems. Recent work by Lehmann and Rousset (2014a) and Lehmann et al. (2015) also
investigate the individual-as-maximising-agent analogy, within dynamically sufficient
models. For clarity, fitness-maximisation is used to mean that a variant phenotype
could not spread in the context set by a resident phenotype, and not that the resi-
dent phenotype maximises some global function (in the sense of Metz et al. 2008),
an important distinction also specifically remarked on technically by, for example,
Rousset (2004, pp. 103 and 195), and made non-technically by Dawkins (1980). At
the most abstract level, in which biologists ask ‘what is biological design?’ or ‘what
can be said about the operation of natural selection in general?’, two main formalisms
have been developed, namely the fundamental theorem of natural selection of Fisher
(1930) and the covariance selection mathematics of Price (1970, 1972).

The model of the present paper extends the formal darwinism project, and gen-
eralises the fundamental theorem and the Price Equation to fluctuating demography,
all the time recognising that this whole approach is only one of many to the mathe-
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matical study of evolution. The model lacks the dynamic sufficiency of mathematical
population genetics, it assumes a stationary (if Markov) environment and a single
species while adaptive dynamics is about longer term evolutionary change, it does
not articulate (though does not rule out) interactions between individuals unlike the
ESS theories, and it does not permit those interactions to depend on genetic similarity
unlike inclusive fitness models.

5.2 Reproductive value

It has not to our knowledge been noted before that Fisher (1930)’s verbal and math-
ematical conceptions of reproductive value are inconsistent with each other. Fisher
describes reproductive value on page 27 as answering the question “To what extent
will persons of this age, on the average, contribute to the ancestry of future genera-
tions?”. But the contribution to future ancestry of an individual must equal the sum
of its genetic share of the contributions of its offspring, as the contribution is made
up of those parts, whereas in Fisher’s mathematical definition he discounts offspring
contributions by the time of their production, using a discount factor that turns out to
equal the population growth rate. Fisher never uses his concept to decide whether a 40
year old in 1930 makes the same contribution to ‘the ancestry of future generations’ as
a 40 year old in 1958, but his two definitions would give different answers (except in
populations with a zero growth rate). In stochastic models, in which the environment
and class-distribution are different in different states of the world next year, the differ-
ence between the two definitions also matters as it affects how we average this year
over the possible environments and class distributions next year. The simple results
obtained above derive from applying Fisher’s verbal definition, by insisting that the
total reproductive value of the population is always constant (here taken to be one), and
that an individual’s reproductive value equals the expected sum of the reproductive
values of its descendants next year (including its possibly surviving self). A number
of previous authors including Tuljapurkar (1989), Rousset (2004); Rousset and Ronce
(2004) also impose a constant sum, and the calculation based on a total reproductive
value of 1 is now standardly derived using coalescent theory (Rousset 2004; Rousset
and Ronce 2004). This approach converts Fisher (1927)’s pretty demographic result
that the population growth rate measured as total reproductive value is always constant
even while the population size and structure are not constant, into a dull definitional
imposition of a zero growth rate.

A second ambiguity in Fisher’s use of reproductive value is that in the demographic
application for the fundamental theorem, he ensures (by assuming the age-schedule
of vital rates remains the same, and by applying the discounting mentioned in the pre-
vious paragraph) that the per-capita reproductive values of each age remain constant
over time, while in his sex ratio argument (Fisher 1930, pp. 158–160) he shows it is
the total reproductive values of the classes (females and males) that remain constant.
A significant advance in the present stochastic model incorporates both of these pos-
sibilities, as it permits density dependence that would alter the age-schedule of vital
rates, and its derivation incorporates the underlying logic of Fisher’s argument that
total reproductive values of females and males are equal. (Incidentally, it is not widely
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understood that even under diploidy, this equality holds good in general only with non-
overlapping generations; Goodman 1982; Grafen 2014b). Thus, the current paper’s
concept unites Fisher’s two uses of reproductive value, though this is not strictly a
generalisation as the definition is different from the demographic use, as noted above.

Fisher (1930) and Price and Smith (1972) both worried about the definitions of
reproductive value and fitness. One kind of puzzle is reconciling the results with ecol-
ogy. Fisher (pp. 41–46) constructs his ‘deteriorating environment’ model to try to
reconcile the fundamental theorem’s insistence that natural selection increases mean
fitness with the ecological reality that mean fitnessmust be about zeromost of the time.
The current model has a more sophisticated treatment and, applied to Fisher’s model,
allows the age-specific schedule of vital rates to depend also on the population size
and age-structure, and on the environment. This in turn allows density-dependence
to operate, with population growth and shrinkage when the population is small and
large, respectively, without any genetic changes having to take place. The second kind
of worry is whether the results hold when natural selection is changing the genotypes
and phenotypes of the population. The issue, both for Fisher and the present paper,
is that the genetic changes alter the basic parameters on which reproductive value
is calculated. In Fisher’s case these are the whole age-schedule of vital rates, and
here the background phenotype a0 in the neutral stochastic process. Fisher’s ‘deteri-
orating environment’ model attempts to elevate the viewpoint, and study how natural
selection’s improvement of the population is balanced by the changes to the species’
environment. Price and Smith’s whole paper is about how to define reproductive value,
and assumes that it should in principle bemeasured in a ‘real’ population that is subject
to natural selection and other changes; they then say they cannot see how to implement
this principle, and resort to a ‘null hypothesis’ evaluation faute de mieux. We regard
the principled position as completely unimplementable, as it would require knowing
the whole evolutionary future of the species: it is unhelpful to decide that reproductive
value cannot be usefully modelled in a species whose lineage eventually becomes
extinct (the fate of all lineages), and even on a shorter term view we would need
to decide which daughter to follow after speciation (following more than one would
create problems of non-uniquess of reproductive value). Over such a longer term, the
environment will be expected to change radically and non-stationarily, rendering that
future irrelevant to evolution today. Thus, we employ the ‘Taylor switch’ as a version
of the ‘null hypothesis’ approach that suits our needs. The illogicality of the asymptotic
view when taken to extremes, together with the fact that reproductive value seems to
do something sensible in our models, suggests there may be an alternative conceptual
framework that represents our real purpose, for which the asymptotic calculation is
merely one implementation.

Such an alternative logical basis for reproductive value is employed by Grafen
(2015b), in a deterministic model. This approach takes one well-known property of
reproductive value, and essentially turns it into the definition of reproductive value, but
through a condition on fitnesses. The well-known property is that reproductive-value
weighting of frequencies implies that neutral genes do not change in their frequencies
(e.g. Taylor 1990; Rousset 2004; Rousset and Ronce 2004). The ‘neutrality condition’
on fitnesses is that the additive genetic variance in fitness must be exactly zero, when-
ever all of the genotypic variability currently in the population is currently neutral, in
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the sense that differences between genotypes do not cause differences between phe-
notypes. In these circumstances, natural selection cannot be operating, as it requires
variability in genotypes to bring about variability in phenotypes that in turn changes
gene frequencies. This switch of logical basis articulates Grafen (2015a)’s claim that
the real value in the fundamental theorem lies not in calculations about some hypothet-
ical distant gene pool, but rather in detecting natural selection in the present. Indeed, if
the fundamental theorem is regarded as essentially defining natural selection, then the
name ‘fundamental theorem of natural selection’ seems very appropriate. The current
stochastic model still uses the asymptotic gene pool basis of reproductive value, but a
refoundation may be possible.

Choosing reproductive value so as to define how much of evolutionary change is
‘due to natural selection’ is, contrary perhaps to first impressions, an important way to
choose. If we believe Darwin’s characterisation of natural selection as an improving
process, it is reasonable to ask of aMendelianmodel ‘what does improvement mean?’,
and to hope for a definition ofwhat exactly is improved. Clearly, the improvementmust
be understood as ‘improvement caused by natural selection, even though other forces
may lead to a net deterioration’, and on average for a species the net improvement
is likely to be zero on average. This point was already clear to Fisher (1930, pp.
41–46). This isolation of the effect of natural selection was characterised by Price
(1972) as a partial change in mean fitness. Grafen (2015a) claims that the point of the
fundamental theorem is the combination of the definition of fitness and the proof that
the effect of natural selection is always to improve it. Pursuing this philosophy also
led to the handling of mutation in the present model by looking at changes over the
cycle of genetic events from just after one year’s mutation events to just before the next
year’s; the incompleteness is notationally marked by using Δ∗ rather than plain Δ.
This simple exclusion avoids the complications, studied by Tarnita and Taylor (2014),
that arise in overlapping generations because mutation occurs in newborns but not in
adults, which can lead to mutation affecting different classes differently. To undertake
an exact description of the changes in genotype frequencies, these complications must
of course be included, but we regard them as not always necessary when a study is
focussed on natural selection.

Thus, the biological viewpoint that we wish to understand the effects of natural
selection has suggested a modification to the straightforward ‘dynamical systems’
approach of studying equilibria in population genetic models. The Price Equation
(Price 1970, 1972) can be regarded as a generalisation of the secondary theorem of
natural selection of Robertson (1966, 1968): both share a wish with Fisher (1930, pp.
36–37) to draw conclusions about observables without denying the underlying genet-
ics, which is regarded as unobservable. Like the fundamental theorem, they both hold
without considering how gametes combine to form individuals, and so by themselves
lack the capacity to track exact genotype frequencies through time (though see Frank
1998, for an argument that the Price Equation can.). We have just noted the point that
the change in mean fitness calculated in Fisher (1930)’s fundamental theorem of nat-
ural selection is a partial change: specifically, that part due to natural selection. There
are two approaches to this focus of the Price Equation and the fundamental theorem
on the effects of natural selection. One is to regard the true aim as predicting the full
change in mean fitness and the complete change in each trait mean, which requires
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articulating or abolishing-by-assumption the other causes. The fullest treatment of the
fundamental theorem in this ‘completing’ vein is probably Nagylaki (1993), and see
also the discussions by Bürger (2000, Chapter III, section 6) and Ewens (2004), on
the ‘Mean Fitness Increase Theorem’. The approach taken here, most explicitly in the
axiomatic refoundation of reproductive value advocated above, is to regard the partial
nature of these evolutionary results as very useful for the study of natural selection,
specifically isolating its effects from changes due to other genetic and environmental
causes in Mendelian systems: we develop more fully what we regard as Fisher’s phi-
losophy to extend it to the stochastic case. The most immediate use is establishing a
fundamental theorem that provides a formal version of the claim that natural selection
is an improving process. Our conceptual focus is useful for understanding biological
adaptation, and is not intended for the prediction of genotype frequencies.

A number of these points about reproductive value will be returned to in the rest of
the discussion.

5.3 In the context of formal darwinism

The formal darwinism project has core papers (Grafen 1999, 2000, 2002, 2006a, b;
Gardner and Grafen 2009; Batty et al. 2014; Grafen 2015b) and an interpretative
penumbra (Grafen 2007c, 2014a), along with two applications (Grafen 2007a, b)
and discussions (Birch 2014; Bourke 2014; Ewens 2014; Gardner 2014; Haig 2014;
Lehmann and Rousset 2014a; Okasha and Paternotte 2014; Sarkar 2014; Shelton and
Michod 2014). The current paper continues the core development, extending the phi-
losophy to arbitrary classes, Markov environments and fluctuating demography. It
simplifies the mathematical development considerably by having a finite population.

Compared to the other core papers, and in line with Grafen (2015b), the current
paper has a Price Equation as usual (Theorem2 andCorollary 1) but also a fundamental
theorem (Theorems 3 and 4), but does not move on to explicit fitness-maximisation
results that link the Price Equation to optimisation programs under further explicit
genetic assumptions.Not only is the construction of the PriceEquation arduous enough
for one paper, but the generality of the recent results leads to hope for a more direct
argument about fitness-maximisation that does not involve specialising to particular
genetic architectures. In fact, one main purpose of the explicit fitness-maximising
results was to establish that the fitness measure deserved that name: in the more recent
work, the surprising simplicity of the results goes a considerable way to showing that
this measure of fitness is the right one. Previously, themeasure was constructed ad hoc,
and then justified by the explicit results. Here, themeasure is very naturally constructed
on reproductive value. Further work is needed to explore the possibility that these two
connections are enough. A likely direction is to follow Grafen (2015b) even more
closely, and replace our definition of reproductive value in line with the suggestion in
the preceding part of the discussion, which would regard the fundamental theorem as
defining natural selection, and confirm that our measure of fitness is appropriate and
essentially unique.

The current paper improves in its fitness definition on previous models that incor-
porated classes, namely Grafen (2006b) and Batty et al. (2014), which effectively used
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Williams’ reproductive value as fitness (Grafen 2015b, reconciles the two approaches),
and differs from both by having a finite population. Batty et al. (2014) does have an
explicit treatment of fitness-optimisation, which has the advantage of articulating the
strategic (including informational) situation of the individual organism regarded as a
maximising agent. It shows that natural selection should lead to organisms having a
correct prior distribution over uncertainty, and reacting in a Bayesianly optimal way
to whatever information they possess.

A more detailed point is that Grafen (2015b) has a cliff-hanger quality. It greatly
simplifies and extends formal darwinism by employing Fisher’s definition of fitness
(as articulated by Grafen 2015a) and applying it to an arbitrary class structure, but
ends up by providing two Price Equations and two fundamental theorems, which was
unsatisfactory for a project that aims to show individuals acting as maximising agents,
and which hopes for a unique maximand. The cause of the split was the ambiguity in
whether per-capita or total-class reproductive values should be regarded as remaining
constant over time. As explained in the preceding part of the discussion, the stochastic
version of reproductive value embraces both of those possibilities, and so the current
paper re-unifies the threatened split in the formal darwinism project. The refounding
of stochastic reproductive value on the axiomatic basis mentioned above would fully
combine (Grafen 2015b) with the present paper. That version of the project would still
await interactions between relatives (dealt with more primitively in Grafen 2006a) for
a putatively final formulation.

One point for further consideration within formal darwinism is the difference
between the contributions of the conditional and the ensemble results. The condi-
tional and ensemble Price Equations in Theorem 2 and Corollary 1 are simply related
within the model. A difference may lie in trying to apply them to a real situation, when
we need to ask what background phenotype value a0 to choose to work with. In the
fundamental Theorems 3 and 4, although fitness is the same, we have an ensemble
breeding value of fitness for the whole process, and a conditional breeding value of
fitness for each configuration of a year, and generically these are all different. In each
case, a more detailed consideration should show for which purposes the shorter-term
result is relevant, and for which purposes the longer-term result should be preferred.
Applications to model systems may be the best way forward.

5.4 Interpretations of the main results

The significance of PriceEquations and fundamental theorems in deterministic settings
is still unsettled (Ewens 2004; Edwards 2014; Grafen 2015a; Ewens and Lessard
2015), and no attempt at a final account can be offered here. Here, we note some
uncontroversial technical starting points for considering the stochastic versions, and
some general remarks. First, the results of the present paper hold with great generality
so far as the genetics of the population is concerned. The standard generalities (Price
1970; Ewens 1989) are arbitrary numbers of loci, each with arbitrary numbers of
alleles, no restrictions on dominance or epistasis, and arbitrary linkage maps and
linkage disequilibrium. Phenotypes depend on genotypes and class in an arbitrary
way, and no assumptions are made about the mating system. Here, we also added
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arbitrary ploidies for each class in an arbitrary class-structure for the population, as
well as proving results that hold for any given class-distribution, and that hold with a
class distribution that fluctuates over time in response to environmental uncertainty,
which itself follows an arbitrary Markov process. One important restriction is that all
the loci are assumed to belong to the same coreplicon (Cosmides and Tooby 1981).

A significant caution is that while the results hold exactly, the use of the ‘Taylor
switch’ device implies the results hold exactly when there is only one year in which
the genotype of an individual can influence its phenotype (although the knock-on
effects of that one year may be felt in gene frequencies for ever after), and thus these
generalities may not be entirely straightforward to interpret (though for some comfort
in that direction, see Grafen 2000; Metz and de Kovel 2013). The lack of dynamic
sufficiency is discussed in Sect. 2, and the isolation of the effect of natural selection
from other causes is discussed above in Sect. 5.2. One positive feature is that the
assumptions are very general, and so the simplicity of the results may suggest new
ways of measuring fitness in natural populations.

Now consider the content of our main results. Theorem 1 links reproductive value
to martingale theory, as a formal demonstration that reproductive value does represent
the ‘fraction of an asymptotic gene pool’. In the context of the alternative foundation
of reproductive value, this may seem backwards looking, but it has the merit of set-
ting out exactly what a refoundation has to match in logical terms. The original Price
Equation (Price 1970) holds for an arbitrary weighted sum of allele frequencies, and
shows that the expected change in the population mean of the weighted sum equals
the covariance of that sum with individual fitness, which is regarded as ‘the change
due to natural selection’, plus a second ‘property-change’ term (Price 1970; Frank
2012). Here, two further results are proved. First, Theorem 2 conditions on initial con-
ditions for a year, and is very similar to the deterministic class-based result, in which
fitness and the change in mean p-score are replaced with their expected values, and
the second right hand term disappears, because we assume unbiassed transmission and
take expectations over Mendelian segregation. Thus, so far as identifying ‘the change
due to natural selection’ is concerned, essentially the same result holds in the much
more complex setting. Corollary 1 takes an expectation over the ensemble of possible
initial conditions for the population, and shows that the expected change in a mean
p-score equals the unconditional expectation of the covariance of p-score with the
conditional expectation of fitness, on environment, class and phenotype arrays. The
Price Equations have corresponding fundamental Theorems 3 and 4, which show that
the expected change in fitness brought about by natural selection is non-negative, a for-
mal embodiment of the idea that natural selection is an improving process, and which
can hold good only for very special definitions of fitness while still simultaneously
satisfying the neutrality condition of Grafen (2015b).

One major conclusion is that Fisher’s ingenious definition of fitness and his basic
approach to combining classes of descendant by reproductive values are very produc-
tively applied to the stochastic setting with fluctuating demography. In this setting,
we provide a definition of fitness at the individual level under which the fundamental
theorem is able to show that natural selection is on average an improving process, and
under which the Price Equation can show that natural selection on all traits operates
through the expected value of fitness. This goes far beyond mere consistency, but can
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be regarded as following Fisher’s program to found Darwinism on Mendelism. The
ease of extension and simplicity of the results show that Fisher’s logic cuts to the core
of the connection between genetics and adaptation.

One major conceptual point concerns the effect of uncertainty on selection. Our
Price Equations show that a straightfoward arithmetic average of fitness, over uncer-
tainty of all kinds, predicts the expected effect of selection, in contrast to the common
biological theme that the variability of fitness also plays a role (for a general discus-
sion, see Seger and Brockmann 1987). Of course, the discrepancy arises because the
definitions of fitness are different. Ours certainly has one advantage, of being defined
in the same way over a wide range of situations. More substantively, it is desirable to
reanalyse models of bet-hedging in terms of the present approach, to see how the new
structure re-interprets those models, and to ask whether the linear-fitness-expectation
approach outlined here makes as good, or perhaps even better, sense of the biological
phenomena being modelled than the risk-avoiding interpretations.

We conclude by emphasising the major conceptual points at stake. In many whole-
organism studies, it is simply assumed that natural selection leads individuals to act
as though maximising an individually based quantity called fitness. As partial reas-
surance that this is a reasonable position to take, the first major point is our Price
Equations show that the same formula for expected change applies to all p-scores,
and so all loci are subjected to the same selection pressure, and we should expect no
intra-genomic conflict within a coreplicon. The second is the expected change in a
p-score is equal to its expected covariance with an individual based measure of fit-
ness, and therefore we expect all tissues within an organism to be selected to dovetail
towards individual adaptation. Third, our fundamental theorems show that in each
specific set of circumstances, and also averaging over possible circumstances, natural
selection acts to improve mean fitness on average. These major points, already estab-
lished for deterministic cases, are extended in the current work to environmental and
class-distribution stochasticity, at the cost of an appropriate definition of reproduc-
tive value, and replacing some terms with their expected values. It is the extension to
stochasticity not the biological meaning of the results that is new here. These ques-
tions are not the usual concern of the dynamically sufficient models of mathematical
population genetics, but they underlie the everyday practice of many whole-organism
biologists. Our results, therefore, significantly extend, but by no means complete,
the articulation of Darwinian ‘improvement’ and ‘fitness’ in terms of Mendelian
genetics.
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A Proof of Lemma 1

Lemma 1 states that the set Z is non-empty and T -invariant.

Proof For Z non-empty, choose an arbitrary measurable function g : X × E →
(α, β) ⊂ (0,∞) and define f : X × E × X̃ → [0,∞) by

f (x, e, x) =

⎧
⎪⎨

⎪⎩

g(x, e)
∑

y∈X g(y, e) · Ly n(y, x)
n(x, x) ≥ 1,

0 n(x, x) = 0.

Then f is non-negative, bounded by 1, and

∑

x∈X
f (x, e, v) · Lx n(x, x) =

∑
x∈X g(x, e) · Lx n(x, x)

∑
y∈X g(y, e) · Ly n(y, x)

= 1

for all e ∈ E and x ∈ X̃ . Hence f ∈ Z and Z is non-empty.
For T -invariance, let f ∈ Z . We have already observed, in establishing that T is a

well defined linear operator, that (T f ) ∈ BM , and (T f ) is non-negative since f ≥ 0.
Fix (e, x) ∈ E × X̃ .

∑

x∈X
n(x, x) Lx · (

T f
)
(x, e, x)

=
∑

x∈X
n(x, x) Lx ·

∫

E
Ex′

[ ∑

y′∈X
f (y′, e′, x′(e, x)) · Ly′ uxy′

]
Π(e, de′)

=
∫

E
Ex′

[ ∑

y′∈X
f (y′, e′, x′(e, x)) · Ly′ ·

∑

x∈X

(
n(x, x) Lx u

x
y′

)]
Π(e, de′)

=
∫

E
Ex′

[ ∑

y′∈X
f (y′, e′, x′(e, x)) · Ly′ n(y′, x′(e, x))

]
Π(e, de′)

=
∫

E
Ex′

[
1
]
Π(e, de′)

= 1,

where the third line is by Definition 6 of x′(e, x), and the fourth by Definition 7 of Z .
Hence (T f ) ∈ Z as required. �

B Existence and uniqueness of reproductive value

B.1 Existence

While reproductive value as defined in Sect. 2 may not always exist in general, it is
often possible to arrive at a reproductive value function computationally as the solution
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to a system of linear equations. We present in this section an abstract existence result
for the simplest case of a bounded haploid population on a finite class spacewith a finite
number of possible environments. Existence and uniqueness for a similar definition
of reproductive value is discussed for various examples by Grafen (2006b).

Let X := {1, 2, . . . , n} be a class space, E := {1, 2, . . . ,m} a set of environments
and suppose there is a maximum possible population size K .

Proposition 1 In this case, there exists a reproductive value function φ∗ : X × E ×
X̃ → [0, 1] such that Tφ∗ = φ∗.
Proof The set of population arrays X̃ = ⋃

k=1,2...K Xk is now finite, and thus so is

the Cartesian product X × E × X̃ . The fixed point space Z is a subset of functions on
X × E × X̃ , and is clearly convex. The set of functions bounded by 1 on the now finite
X × E × X̃ may be identified with a closed ball in Euclidean space, and it follows
that Z is closed and compact. The T -invariance of Z is proved in Lemma 1. Hence
T is continuous from a compact, convex subset of a Euclidean space to itself, so by
Brouwer’s fixed point theorem, T has a fixed point φ∗ in Z . Thus we have shown
that there exists a reproductive value function φ∗ : X × E × X̃ → [0, 1] such that
Tφ∗ = φ∗. �

While this is merely a non-constructive proof of existence, in practice, finding the
fixed point of a linear operator amounts to solving a system of linear equations and
can often be easily implemented in software.

B.2 Uniqueness

Neither Brouwer’s fixed point theorem as used in the example above, nor the definition
of reproductive value assert the uniqueness of the fixed point. It should be noted that
non-uniqueness also occurs for previous definitions (such as in Grafen 2006b or Engen
et al. 2009) of reproductive value as a normalised left eigenvector of some population
transition matrix in the case where the eigenspace has dimension >1.

Suppose that φ∗
1 and φ∗

2 satisfy the definition of reproductive value functions. It is
easily seen that the convex combination tφ∗

1 + (1 − t)φ∗
2 is also a reproductive value

function for all t ∈ (0, 1) so the set of reproductive value functions is a convex subset
of Z . One example where we should expect such behaviour is when the class space
is partitioned into sets X = X1 ∪ . . . ∪ Xn and individuals in a set Xk have offspring
only in the same set (perhaps class represents geographical separation). In this case
the proportion of the total reproductive value contained in each Xk remains fixed over
time but any initial distribution of the total reproductive value over the partition is
equally valid. In other words, for any α1, . . . , αn ∈ [0, 1] such that

∑n
k=1 αk = 1, if

φ∗ is a reproductive value then so is the function φ∗
α defined for x ∈ Xk by

φ∗
α(x, e, x) := α(x) · φ∗(x, e, x)

∑
y∈Xk

n(y, x) · Ly · α(y) · φ∗(y, e, x)
,

where understand α(y) = αk when y ∈ Xk . Non-uniqueness of reproductive value
does not affect any of the results or conclusions above. The reproductive-value-
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weighted p-score changes according to Eq. (14) for any function φ∗ satisfying
Definition 5.

C Ensemble breeding values

Calculation of breeding values in a single defined population is a well-known proce-
dure (Falconer 1981). In the text, breeding values are defined over a population with
stochastic fitnesses, and also over an ensemble of populations and environments, and
here we spell out the rather simple extensions required. Each combination (e, x, g) can
be regarded as defining a population. Individual i’s frequency of allele k is gki , where
the sum of gki over the alleles at a single locus equals 1 in each individual, and the
breeding valuewill be defined by allelicweights (λk)k∈K, and denotedβi := ∑

k λkgik .
This appendix presents normal equations for use in the main text, and we note that the
quantity to be minimised must also be weighted by reproductive value, if the breeding
values are to fulfil their role in the argument.

The breeding values for a population simply replace fitness with expected fitness.
For a deterministic derivation with reproductive-value weighting, see Grafen (2015b).
The normal equations for the regression defining breeding value are then

aveφ

(
E[F |e, x, a ] − β)

) =0 (20)

aveφ

(
β · (E[F |e, x, a ] − β)

) =0 (21)

The ensemble breeding values will be elaborated further. It is convenient that the
use of allelic weights allows us to define breeding values in any given type of year, even
though the population varies, including in size, over the ensemble. We will indicate
the dependence of the allelic weights on the genotype array by writing βi = βi (g),
partly to emphasise that it does not depend on any of the other variables. The quantity
to be minimised by choice of allelic weights λk is the expectation over the ensemble
of the population reproductive-value-weighted mean squared deviation of individual
fitness from breeding value, formally

E
[
aveφ

(
(E[F |e, x, a ] − β(g))2

)]
.

Substituting
∑

k λkgki for β(g) gives

A := E

[

aveφ

( (
E[F |e, x, a ] −

∑

k

λkg
k
i

)2
)]

,

and differentiating A with respect to λk gives

Ak := E

[

aveφ

(
− 2gki

(
E[F |e, x, a ] −

∑

k

λkg
k
i

))]

.
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Setting these derivatives to zero sufficiently defines the minimising values λ∗
k . Now

letting nL denote the number of loci, so that
∑

k g
k
i = nL for each individual, we

obtain the normal equations by forming sums as follows,

0 = −1

2nL

∑

k

Ak = E

[

aveφ

(
E[F |e, x, a ] −

∑

k

λ∗
k g

k
i

)]

0 = −
∑

k

λ∗
k Ak = E

[

aveφ

(( ∑

k

λ∗
k g

k
i

)
·
(
E[F |e, x, a ] −

∑

k

λ∗
k g

k
i

))]

.

We now complete the work of the appendix as we write the normal equations by
substituting in βi (g) as appropriate, returning to our usual convention of suppressing
the individual subscript i inside population statistical operators, and suppressing the
notation for the dependence of βi on g:

E

[
aveφ

(
E[F |e, x, a ] − β

)] = 0 (22)

E

[
aveφ

(
β · (

E[F |e, x, a ] − β
))]

= 0. (23)

References

Barton NH, Etheridge AM (2011) The relation between reproductive value and genetic contribution. Genet-
ics 188:953–973

Batty CJK, Crewe P, Grafen A, Gratwick R (2014) Foundations of a mathematical theory of darwinism. J
Math Biol 69:295–334. doi:10.1007/s00285-013-0706-2

Birch J (2014) Has grafen formalized darwin? Biol Philos 29:175–180
Bourke AFG (2014) The gene’s-eye view, major transitions and the formal darwinism project. Biol Philos

29:241–248
Bürger R (2000) The mathematical theory of selection, recombination and mutation. Wiley, Chichester
Charlesworth B (1980) Models of kin selection. In: Markl H (ed) Evolution of social behaviour: hypotheses

and empirical tests. Verlag Chemie, Weinheim, pp 11–26
Charlesworth B (1994) Evolution in age-structured populations, 2nd edn. Cambridge University Press,

Cambridge
Cosmides LM, Tooby J (1981) Cytoplasmic inheritance and intragenomic conflict. J Theor Biol 89:83–129
Coulson T, Tuljapurkar S, Childs DZ (2010) Using evolutionary demography to link life history theory,

quantitative genetics and population ecology. J Anim Ecol 79:1226–1240
Dawkins R (1980) Good strategy or evolutionarily stable strategy. In: Barlow G, Silverberg J (eds) Socio-

biology: beyond nature/nurture?. Westview Press, Colorado, pp 331–337
Dieckmann U, Law R (1996) The dynamical theory of coevolution: a derivation from stochastic ecological

processes. J Math Biol 34:579–612
Durinx M, Metz JAJ, Meszéna G (2008) Adaptive dynamics for physiologically structured population

models. J Math Biol 56:673–742
Edwards AWF (2014) R.A. Fisher’s gene-centred view of evolution and the fundamental theorem of natural

selection. Biol Rev 89:135–147
Engen S, Lande R, Saether B-E (2009) Reproductive value and fluctuating selection in an age-structured

population. Genetics 183:629–637
Eshel I, Feldman MWF, Bergman A (1998) Long-term evolution, short-term evolution and population

genetics. J Theor Biol 191:391–396
EwensWJ (1989) An interpretation and proof of the fundamental theorem of natural selection. Theor Popul

Biol 36:167–180
Ewens WJ (2004) Mathematical population genetics I. Theoretical introduction. Springer, Berlin

123

http://dx.doi.org/10.1007/s00285-013-0706-2


1098 P. Crewe et al.

Ewens WJ (2014) Grafen, the Price equations, fitness maximization, optimisation and the fundamental
theorem of natural selection. Biol Philos 29:197–205

Ewens WJ, Lessard S (2015) On the interpretation and relevance of the fundamental theorem of natural
selection. Theor Popul Biol 104:59–67

Falconer DS (1981) Introduction to quantitative genetics, 2nd edn. Longman, London
Fisher RA (1927) The actuarial treatment of official birth records. Eugen Rev 19:103–108
Fisher RA (1930) The genetical theory of natural selection. Oxford University Press, Oxford (See Fisher

(1999) for a version in print)
FisherRA (1999)The genetical theory of natural selection.OxfordUniversity Press,Oxford, 1999.Variorum

Edition of 1930 OUP edition and 1958 Dover edition, edited by J. Henry Bennett
Frank S A (1998) The foundations of social evolution. Princeton University Press, Princeton
Frank S A (2012) Wright’s adaptive landscape versus Fisher’s fundamental theorem. In: Svensson E,

Calsbeek R (eds) The adaptive landscape in evolutionary biology. Oxford University Press, Oxford,
pp 41–57

Gardner A (2014) Life, the universe and everything. Biol Philos 29:207–215
Gardner A, Grafen A (2009) Capturing the superorganism: a formal theory of group adaptation. J Evol Biol

22:659–671. doi:10.1111/j.1420-9101.2008.01681.x
Geritz SAH, Kisdi E, Meszéna G, Metz JAJ (1998) Evolutionarily singular strategies and the adaptive

growth and branching of the evolutionary tree. Evol Ecol 12:35–57
Goodman D (1982) Optimal life histories, optimal notation, and the value of reproductive value. Am Nat

119:803–823
Grafen A (1999) Formal Darwinism, the individual-as-maximising-agent analogy, and bet-hedging. Proc

R Soc Ser B 266:799–803
Grafen A (2000) Developments of Price’s equation and natural selection under uncertainty. Proc R Soc Ser

B 267:1223–1227
Grafen A (2002) A first formal link between the Price equation and an optimisation program. J Theor Biol

217:75–91
Grafen A (2006a) Optimisation of inclusive fitness. J Theor Biol 238:541–563
Grafen A (2006b) A theory of Fisher’s reproductive value. J Math Biol 53:15–60. doi:10.1007/

s00285-006-0376-4
Grafen A (2007a) Inclusive fitness on a cyclical network. J Evol Biol 20:2278–2283
Grafen A (2007b) Detecting kin selection at work using inclusive fitness. Proc R Soc Ser B 274:713–719
Grafen A (2007c) The formal Darwinism project: a mid-term report. J Evol Biol 20:1243–1254
Grafen A (2008) The simplest formal argument for fitness optimization. J Genet 87:421–433
Grafen A (2014a) The formal darwinism project in outline. Biol Philos 29:155–174
Grafen A (2014b) Total reproductive value for females and for males in sexual diploids are not equal. J

Theor Biol 359:233–235
Grafen A (2015a) Biological fitness and the fundamental theorem of natural selection. Am Nat 186:1–14
Grafen A (2015b) Biological fitness and the Price Equation in class-structured populations. J Theor Biol

373:62–72
Haig D (2014) Genetic dissent and individual compromise. Biol Philos 29:233–239
Hammerstein P (1996) Darwinian adaptation, population-genetics and the streetcar theory of evolution. J

Math Biol 34:511–532
Lehmann L, Rousset F (2014a) Fitness, inclusive fitness and optimization. Biol Philos 29:181–195
LehmannL,Rousset F (2014b)The genetical theory of social behaviour. PhilosTransRSocB369:20130357
Lehmann L, Perrin N, Rousset F (2006) Population demography and the evolution of helping behaviors.

Evolution 60:1137–1151
Lehmann L, Alger I, Weibull J (2015) Does evolution lead to maximizing behavior? Evolution 69:1858–

1873
Lewontin RC (1974) The genetic basis of evolutionary change. Columbia University Press, New York
Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge
Maynard Smith J, Price GR (1973) The logic of animal conflict. Nature 246:15–18
Metz JAJ (2012) Adaptive dynamics. In: Hastings A, Gross LJ (eds) Encyclopedia of theoretical ecology.

California University Press, New York, pp 7–17
Metz JAJ, de Kovel CGF (2013) The canonical equation of adaptive dynamics for mendelian diploids and

haplo-diploids. Interface Focus 3:20130025

123

http://dx.doi.org/10.1111/j.1420-9101.2008.01681.x
http://dx.doi.org/10.1007/s00285-006-0376-4
http://dx.doi.org/10.1007/s00285-006-0376-4


Defining fitness in an uncertain world 1099

Metz JAJ, Nisbet RM, Geritz SAH (1992) How should we define “fitness” for general ecological scenarios?
Trends Ecol Evol 7:198–202

Metz JAJ, Geritz SAH, Meszéna G, Jacobs FJA, van Heerwaarden JS (1996) Adaptive dynamics, a geo-
metrical study of the consequences of nearly faithful reproduction. In: van Strien S, Lunel SV (eds)
Stochastic and spatial structures of dynamical systems. North-Holland, A’dam, pp 183–231

Metz JAJ, Mylius SD, Dieckmann O (2008) When does evolution optimize? Evol Ecol Res 10:629–654
Nagylaki T (1993) The evolution of multilocus systems under weak selection. Genetics 134:627–647
Okasha S, Paternotte C (2014) Adaptation, fitness and selection-optimality links. Biol Philos 29:225–232
Price GR (1970) Selection and covariance. Nature 227:520–521
Price GR (1972) Extension of covariance selection mathematics. Ann Hum Genet 35:485–490
Price GR, Smith CAB (1972) Fisher’s Malthusian parameter and reproductive value. Ann Hum Genet

36:1–7
Rice S (2008) A stochastic version of the Price equation reveals the interplay of deterministic and stochastic

processes in evolution. BMC Evol Biol 8:262
Robertson A (1966) A mathematical model of the culling process in dairy cattle. Anim Prod 8:95–108
Robertson A (1968) The spectrum of genetic variation. In: Lewontin RC (ed) Population biology and

evolution. Syracuse University Press, New York, pp 5–16
Rosenblatt M (1971) Markov processes. Structure and asymptotic behavior. Springer, New York
Rousset F (2004) Genetic structure and selection in subdivided populations. Princeton University Press,

Princeton
Rousset F, Ronce O (2004) Inclusive fitness for traits affecting metapopulation demography. Theor Popul

Biol 65:127–141
Sarkar S (2014) Formal darwinism. Biol Philos 29:249–257
Schechter E (1997) Handbook of analysis and its foundations. Academic Press, London
Seger J, Brockmann HJ (1987) What is bet-hedging? Oxf Surv Evolut Biol 4:182–211
Shelton DE, Michod RE (2014) Levels of selection and the formal darwinism project. Biol Philos 29:217–

224
Tarnita CE, Taylor PD (2014) Measures of relative fitness of social behaviors in finite structured population

models. Am Nat 184:477–488
Taylor PD (1990) Allele-frequency change in a class-structured population. Am Nat 135:95–106
Taylor PD (1996) Inclusive fitness arguments in genetic models of behaviour. J Math Biol 34:654–674
Taylor PD, Day T,Wild G (2007) Evolution of cooperation in a finite homogeneous graph. Nature 447:469–

472
Tuljapurkar S (1989)An uncertain life: demography in random environments. Theor Popul Biol 35:227–294
Tuljapurkar S (1990) Population dynamics in variable environments. Springer, New York
van Veelen M (2005) On the use of the Price equation. J Theor Biol 237:412–426
Williams GC (1966) Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am

Nat 100:687–690

123


	Defining fitness in an uncertain world
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basic model
	2.2 The neutral stochastic process
	2.3 The transition operator and reproductive value
	2.4 Reproductive value as a martingale
	2.5 The Taylor switch stochastic process
	3 The Price equation
	3.1 Population means and covariances
	3.2 The Price equation
	3.3 Removing dependence on initial conditions

	4 A generalised fundamental theorem of natural selection

	5 Discussion
	5.1 Different mathematical approaches to the study of evolution
	5.2 Reproductive value
	5.3 In the context of formal darwinism
	5.4 Interpretations of the main results

	Acknowledgements
	A Proof of Lemma 1
	B Existence and uniqueness of reproductive value
	B.1 Existence
	B.2 Uniqueness
	C Ensemble breeding values
	References






