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Abstract Two-locus two-allele models are among the most studied models in popu-
lation genetics. The reason is that they are the simplest models to explore the role of
epistasis for a variety of important evolutionary problems, including the maintenance
of polymorphism and the evolution of genetic incompatibilities. Many specific types
of models have been explored. However, due to the mathematical complexity arising
from the fact that epistasis generates linkage disequilibrium, few general insights have
emerged. Here, we study a simpler problem by assuming that linkage disequilibrium
can be ignored. This is a valid approximation if selection is sufficiently weak relative to
recombination. The goal of our paper is to characterize all possible equilibrium struc-
tures, or more precisely and general, all robust phase portraits or evolutionary flows
arising from this weak-selection dynamics. For general fitness matrices, we have not
fully accomplished this goal, because some cases remain undecided. However, for
many specific classes of fitness schemes, including additive fitnesses, purely additive-
by-additive epistasis, haploid selection, multilinear epistasis, marginal overdominance
or underdominance, and the symmetric viability model, we obtain complete character-
izations of the possible equilibrium structures and, in several cases, even of all possible
phase portraits. A central point in our analysis is the inference of the number and sta-
bility of fully polymorphic equilibria from the boundary flow, i.e., from the dynamics
at the four marginal single-locus subsystems. The keymathematical ingredient for this
is index theory. The specific form of epistasis has both a big influence on the possible
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boundary flows as well as on the internal equilibrium structure admitted by a given
boundary flow.

Keywords Selection · Recombination · Epistasis · Linkage disequilibrium ·
Equilibrium structure · Phase portrait

Mathematics Subject Classification 92D15 · 37C25

1 Introduction

One of the central goals of the pioneers of population genetics was to demonstrate
that the inheritance and evolution of continuously varying traits could be explained
on the basis of Mendelian genetics (Fisher 1918, 1930). Haldane (1931) and Wright
(1935) were apparently the first who formulated explicit dynamical models for the
evolution of gene frequencies if selection acts on more than one locus. Under various
assumptions about dominance, Haldane considered two loci at each of which a wild
type and a deleterious variant segregate.Motivated by empirical examples, he assumed
that if both variants occur in the samegenotype, they have a selective advantage.Wright
investigated a model in which finitely many loci contribute to a quantitative trait that is
under quadratic selection toward an intermediate optimum. Both Haldane and Wright
assumed that gene frequencies at the loci are probabilistically independent, i.e., they
are in linkage equilibrium, and derived the stable equilibrium states as well as other
properties of their models.

In an investigation designed to show that selection can lead to tighter linkage,
Kimura (1956) derived and studied a full two-locus two-allele model, i.e., one that
takes into account linkage disequilibrium. The general (deterministic) two-locus two-
allele model for the evolutionary dynamics under selection and recombination was
derived and investigated by Lewontin and Kojima (1960). They deduced both general
properties as well as properties of special cases, such as additive gene action. Among
others, they showed that strong epistasis together with linkage disequilibrium can lead
to significantly different outcomes than would occur for independent loci.

Extensive analyses of a special class of fitness patterns, the so-called symmetric
viability model (which originated from Wright’s and from Kimura’s work), were
performed by Bodmer and Felsenstein (1967) and Feldman and Karlin (1970). The
latter authors derived all fifteen possible equilibria and determined their stability for
several special cases. Later, Feldman andLiberman (1979) showed that asmany as four
boundary equilibria and two polymorphic equilibria can be simultaneously stable, and
Hastings (1985) demonstrated that up to four stable internal equilibria may coexist.
The complexity of this model is also underlined by the finding of Ewens (1968) that
there is a gap in the range of recombination rates for which a pair of internal equilibria
is stable. A comprehensive review of this model and its extension to multiple loci can
be found in Christiansen (1999).

Other important special classes of fitness patterns are the additive and the multi-
plicative model, in which fitnesses of multilocus genotypes are obtained by adding
or multiplying the fitnesses of the constituent single-locus genotypes. In the former,

123
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additive epistasis is absent, in the latter, multiplicative epistasis is absent. For additive
fitnesses, mean fitness is a Lyapunov function (Ewens 1969), all equilibria are in link-
age equilibrium, and, generically, every trajectory converges to an equilibrium point
(Karlin and Liberman 1978, 1990; Nagylaki et al. 1999). The multiplicative model is
muchmore complicated, although the linkage-equilibriummanifold is invariant. In this
model and away from the linkage-equilibrium manifold, mean fitness may decrease
and, for intermediate recombination rates, asymptotically stable equilibria may exist
that are in linkage disequilibrium (e.g., Moran 1964, 1968; Bodmer and Felsenstein
1967; Nagylaki 1977; Karlin and Feldman 1978; Hastings 1981a). A detailed review
of the theory of two-locus and multilocus models is given in Bürger (2000, Chap. 2).

With general fitnesses, the dynamics in the two-locus two-allele model can be
complex. The existence of stable limit cycles has been demonstrated both for the
continuous-time model (Akin 1979, 1982) and the discrete-time model (Hastings
1981b; Hofbauer and Iooss 1984). Such complex behavior cannot occur if loci are
assumed to be independent, i.e., if linkage equilibrium is imposed. Then the dynamics
is gradient-like and mean fitness is a global Lyapunov function (Nagylaki 1989).

However, even the case of two independent, diallelic loci has never been analyzed
systematically. Although a Lyapunov function exists, the equilibrium structure can still
be quite complicated. For instance, Moran (1963) showed that, apart from degenerate
cases, the maximum number of internal (polymorphic) equilibria is five, and up to
three can be asymptotically stable.

In this study we perform a systematic analysis of the two-locus two-allele model
with constant fitnesses under the assumption of linkage equilibrium. The goal is
to determine and classify all possible equilibrium structures and phase portraits
(Sects. 3, 4).We assume continuous time for reasons outlined below.We have not fully
accomplished our goal, however, we identified all 42 possible (equivalence classes of)
boundary flows and 190 potentially possible extended boundary flows, i.e., flows at
or close to the boundary. Of these 190 extended boundary flows, the existence of 185
could be proved; the other cases remain undecided. In Section S1 of the Supplemen-
tary Information (SI), we present corresponding phase portraits. A large number of
extended boundary flows admits not only several non-equivalent phase portraits, but
also more than one equilibrium structure, as characterized by the number and stability
of boundary and internal equilibria.

We use this general analysis to obtain a detailed classification of equilibrium struc-
tures and phase portraits for a number of important special cases that have received
considerable attention in the literature. These include the case of marginal overdom-
inance or underdominance (Sect. 5); linear isoclines, which turn out to exist if and
only if fitnesses among loci are additive or the only epistatic interactions are additive-
by-additive (Sect. 6); multilinear epistasis (Sect. 7); equivalent loci (Sect. 8); and the
symmetric viability model (Sect. 9). These results provide considerable insight into
the interplay of dominance and epistasis in maintaining genetic polymorphism.

The analysis of this simplified model has immediate implications for the full two-
locus two-allele model. This is a consequence of a general theorem by Nagylaki
et al. (1999), which applies to multilocus systems. These authors proved under weak
technical assumptions that if selection is much weaker than recombination, then after
an evolutionarily short period, in which linkage disequilibrium decays to close to zero,
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the dynamics of the full model (either in discrete or in continuous time) is governed by
this weak-selection limit. The model investigated in this paper is the weak-selection
limit of the two-locus two-allele model with selection and recombination.

2 Model

We start with the standard two-locus two-allele model with viability selection and
discrete time. Thus, we assume a randomly mating, diploid population with discrete
and non-overlapping generations in which viability selection acts on two diallelic,
recombining loci. Therefore, gametes are in Hardy–Weinberg proportions. Mutation,
random drift, and other evolutionary forces are absent.

Let A1 and A2 be the alleles at locus A, and B1 and B2 those at locus B. Let the
frequencies of the four gametes A1B1, A1B2, A2B1, and A2B2 be denoted by x1, x2,
x3, and x4, respectively, where

∑4
i=1 xi = 1, and let wi j > 0 denote the (constant)

viability of an individual with genotype i j . In addition to positing absence of sex
effects, i.e., wi j = w j i , we posit absence of position effects, i.e., w14 = w23. The
recombination probability is denoted by r . The frequencies of alleles A1 and B1 are
denoted by p = x1 + x2 and q = x1 + x3, respectively. Letting D = x1x4 − x2x3 be
the classical measure of linkage disequilibrium, we obtain

x1 = pq + D,

x2 = p(1 − q) − D,

x3 = (1 − p)q − D,

x4 = (1 − p)(1 − q) + D.

(2.1)

Under the above symmetry assumptions, the fitnesses of genotypes are completely
specified by the following matrix:

B1B1 B1B2 B2B2

A1A1 w11 w12 w22
A1A2 w13 w14 w24
A2A2 w33 w34 w44

(2.2)

Then evolution of gamete frequencies is given by (Lewontin and Kojima 1960)

x ′
i = xiwi − ηiw14r D

ω̄
, i = 1, 2, 3, 4, (2.3)

where η1 = η4 = −η2 = −η3 = 1, wi = ∑4
j=1 wi j x j is the marginal fitness

of gamete i , and ω̄ = ∑4
j=1 w j x j is the mean fitness of the population. This is a

dynamical systemon the simplex S4 which has receivedmuch attention in the literature
but is well understood only in special cases (see Sect. 1). For a review consult Chapter
2 in Bürger (2000).

If the assumption of linkage equilibrium, i.e., D = 0, is imposed, the dynamics
(2.3) simplifies to the following system of difference equations defined on the unit
square [0, 1] × [0, 1],
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�p = p(1 − p)
1

2w̄

∂w̄

∂p
, (2.4a)

�q = q(1 − q)
1

2w̄

∂w̄

∂q
, (2.4b)

where by (2.1) mean fitness w̄ = ω̄(D = 0) is only a function of p and q; cf.
Haldane (1931) and Wright (1935, 1942). As shown more generally for multiple
multiallelic loci by Nagylaki (1989), w̄ is monotone increasing along trajectories of
(2.4) and constant only at equilibria. Therefore, if all equilibria are isolated points,
every trajectory converges to an equilibrium.

In general, the manifold D = 0 is not invariant under (2.3). However, assuming
weak selection, i.e., setting wi j = 1 + smi j , rescaling time according to t = �τ/s�,
and letting s ↓ 0, the so called weak-selection limit of (2.3) is obtained:

ṗ = p(1 − p)
1

2

∂m̄

∂p
, (2.5a)

q̇ = q(1 − q)
1

2

∂m̄

∂q
. (2.5b)

Here,
m̄ = m1 pq + m2 p(1 − q) + m3(1 − p)q + m4(1 − p)(1 − q) (2.6)

is the mean (Malthusian) fitness of the population and

mi = mi1 pq + mi2 p(1 − q) + mi3(1 − p)q + mi4(1 − p)(1 − q) (2.7)

the marginal (Malthusian) fitness of gamete i . We note that the dynamics (2.5) remains
unchanged if the same constant is added to every mi j . If every mi j is multiplied by
the same positive constant, only a change in time scale results. Therefore, in (2.5) we
could substitute wi j for mi j without changing the phase portrait. In particular, two of
the nine parameters in the fitness scheme (2.2) could be set to fixed, different values.

Nagylaki et al. (1999) proved (for multiple multiallelic loci) that if r > 0 is given,
selection is sufficiently weak, i.e., s > 0 is sufficiently small, and if all equilibria of
(2.5) are hyperbolic, then every trajectory of (2.3) converges to an equilibrium point
on an invariant manifold, �s , which is contained in an O(s) neighborhood of the
linkage-equilibrium manifold D = 0. The dynamics on �s is a small perturbation of
the time-s map of the weak-selection limit (2.5), which is gradient-like. In particular,
it is easy to show directly for (2.5), but also follows from a result by Nagylaki (1989)
for (2.4), that ˙̄m ≥ 0 for every (p, q) ∈ [0, 1]2 and ˙̄m = 0 if and only if (p, q) is an
equilibrium. Therefore, m̄ is a strict Lyapunov function for (2.5).

Because w̄ = 1+ sm̄, the equilibria of (2.4) and (2.5) are the same, and so are their
stability properties (since w̄ ≥ mini, j wi j > 0). Therefore, if selection is sufficiently
weak and after some (usually short) time has passed (Nagylaki 1993), the dynamics of
the full two-locus system (2.3) is closely approximated by the dynamics of the weak-
selection limit (2.5). Therefore, each solution of (2.3) converges to an equilibrium
point, and this equilibrium point is in an O(s) neighborhood of an equilibrium of (2.5)
(Theorem 3.1 in Nagylaki et al. 1999).
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Fig. 1 The state space with all
possible boundary equilibria.
The orientation is such that it
corresponds to the fitness matrix
in (2.2)

q

p

E13
E24

E34

E12

C3

C1 C2

C4

3 Equilibria and their stability

The four monomorphic equilibria Ci of (2.5), corresponding to fixation of gamete
i , exist always. They represent the corners of the state space [0, 1]2 (Fig. 1). The
eigenvalues of the Jacobian at Ci are easily calculated and are as follows:

p direction q direction
C1 = (1, 1) m13 − m11 m12 − m11
C2 = (1, 0) m24 − m22 m12 − m22
C3 = (0, 1) m13 − m33 m34 − m33
C4 = (0, 0) m24 − m44 m34 − m44

(3.1)

An equilibrium is called linearly stable, or a sink, if all eigenvalues (of its Jacobian)
have negative real part. If at least one eigenvalue has positive real part, it is linearly
unstable. It is called a source if all eigenvalues have positive real part, and it is a
saddle if eigenvalues with positive and negative real part occur. Obviously, the corner
equilibrium Ci is linearly stable if and only if the fitness of the homozygous genotype
i i is higher than each of the two ‘neighboring’ single-locus heterozygous genotypes
i j , where j differs from i by a single allele.

Next there may exist up to four equilibria at which one locus is polymorphic, so-
called single-locus polymorphisms (SLPs). They are located on the edges of the state
space. We denote the equilibrium on the edge connecting Ci with C j by Ei j (Fig. 1).
The coordinates of these edge equilibria are easily calculated and are given by

Ei j : q = mi j − m j j

2mi j − mii − m j j
and p = 0 if i j = 34, and p = 1 if i j = 12; (3.2a)

Ei j : p = mi j − m j j

2mi j − mii − m j j
and q = 0 if i j = 24, and q = 1 if i j = 13. (3.2b)

Therefore, the edge equilibrium Ei j exists, i.e., is in the interior of the edge, if and
only if (mi j − mii )(mi j − m j j ) > 0. Obviously, this is just the well-known con-
dition of either overdominance or underdominance applied to a one-locus boundary
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system. To distinguish this notion of overdominance (underdominance) from that of
marginal overdominance (underdominance) introduced below, we call this overdom-
inance (underdominance) on an edge.

The eigenvalues of the edge equilibria, hence their stability, can also be determined
quite straightforwardly, because the Jacobian is in triangular form, so that the eigen-
values appear on the diagonal. One eigenvalue, called internal, determines stability of
this equilibrium within its edge. For Ei j , it is given by

μi j = (mi j − mii )(mi j − m j j )

mii + m j j − 2mi j
. (3.3)

Therefore, as is well known, the SLP Ei j is linearly stable (unstable) within its edge
if and only if there is overdominance (underdominance) on this edge.

The other eigenvalue, called external, determines stability of the edge equilibrium
transversal to the boundary. If the external eigenvalue is negative, the equilibrium is
called strictly saturated or externally stable (Hofbauer and Sigmund 1998; Karlin
1980). This has the interpretation that the allele missing on this edge cannot invade
the population near this boundary equilibrium. The external eigenvalues are of more
complicated form than the internal eigenvalues and are presented in “Appendix A.1”.
The distinction between external and internal eigenvalues will be essential for our
analysis.

Thus, there are at least four boundary equilibria, but there may be up to eight. We
ignore the degenerate cases, in which every point on an edge is an equilibrium. This
occurs if and only if mii = mi j = m j j , where i and j are gametes differing by one
allele.

Finally, we turn to the internal, or fully polymorphic, equilibria. By (2.5), they are
the solutions of the two equations ∂m̄/∂p = 0 and ∂m̄/∂q = 0 that satisfy 0 < p < 1
and 0 < q < 1. Equivalently, these equations can be written as

p = f (q) = mA1A2 − mA2A2

2mA1A2 − mA1A1 − mA2A2

, (3.4a)

q = g(p) = mB1B2 − mB2B2

2mB1B2 − mB1B1 − mB2B2
, (3.4b)

where

mA1A1 = m11q
2 + 2m12q(1 − q) + m22(1 − q)2, (3.5a)

mA1A2 = m13q
2 + 2m14q(1 − q) + m24(1 − q)2, (3.5b)

mA2A2 = m33q
2 + 2m34q(1 − q) + m44(1 − q)2, (3.5c)

and

mB1B1 = m11 p
2 + 2m13 p(1 − p) + m33(1 − p)2, (3.6a)

mB1B2 = m12 p
2 + 2m14 p(1 − p) + m34(1 − p)2, (3.6b)
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mB2B2 = m22 p
2 + 2m24 p(1 − p) + m44(1 − p)2, (3.6c)

are the marginal fitnesses of the one-locus genotypes at A and B, respectively. (In
the presence of linkage disequilibrium, the expressions in (3.5) and (3.6) need to
be normalized; see Ewens and Thomson 1977.) Thus, the internal equilibria are the
intersection points of the isoclines p = f (q) and q = g(p).

The following resultswere proved byMoran (1963).Wewill give a slightly different
proof of the first statement.

Theorem 3.1 (a) If all equilibria are isolated, then (2.5) has at most five internal
equilibria.

(b) Five internal equilibria can be realized, and up to three can be sinks.
(c) Sinks correspond to local maxima of m̄.

Proof (a) To determine the intersection points of the isoclines (3.4a) and (3.4b), we
have to solve the fixed point equation

p = f (g(p)). (3.7)

Because the numerators and denominators of f (q) and g(p) are polynomials of
degree two or less, numerator and denominator of the rational function f (g(p))
are polynomials of degree four or less. Therefore the intersection points, hence the
internal equilibria, are the zeros of a polynomial of degree five or less.

(b) SeeMoran (1963) and panel 6 in Fig. S1d of the SI, which shows the phase portrait
of Moran’s example. (c) is also shown by Moran (1963). It follows immediately
from the fact that m̄ is a strict Lyapunov function.

To determine the stability of an internal equilibrium, we need the Jacobian.

Lemma 3.2 The Jacobian at an internal equilibrium (p, q) is given by

J = J (p, q) =
(
p(1 − p)mA 2p(1 − p)m̃
2q(1 − q)m̃ q(1 − q)mB

)

, (3.8)

where mA = mA1A1 + mA2A2 − 2mA1A2 , mB = mB1B1 + mB2B2 − 2mB1B2 , and
m̃ = m1 − m2 − m3 + m4. The eigenvalues of J are real.

Proof A simple calculation shows that

1

2

∂m̄

∂p
= pmA + mA1A2 − mA2A2 . (3.9)

Therefore, (2.5a) yields

∂ ṗ

∂p
= (1 − 2p)

1

2

∂m̄

∂p
+ p(1 − p)

1

2

∂2m̄

∂p2
= p(1 − p)mA, (3.10)
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because ∂m̄
∂p = 0 at an internal equilibrium and mA = 1

2
∂2m̄
∂p2

. The other derivatives in
J are calculated in a similar way.

Finally, it is straightforward to compute the discriminant of J , which is the square
of the trace minus four times the determinant:

(tr J )2 − 4 det J = [p(1 − p)mA − q(1 − q)mB]2 + 16pq(1 − p)(1 − q)m̃2 > 0.

The inequality holds because (p, q) ∈ (0, 1)2. Therefore, all eigenvalues are real. �	
For the rest of this paper, we impose the assumption

All equilibria of (2.5) are hyperbolic. (H)

Therefore, eigenvalues at equilibria are negative or positive, but not zero. This
assumptions excludes not only curves of equilibria, but also complete dominance or
recessivity of an allele.

The stability of an internal equilibrium is most easily determined by employing the
planar Routh–Hurwitz criterion. It states that an equilibrium is (i) a saddle point if
det J < 0, (ii) a sink if det J > 0 and tr J < 0, and (iii) a source if det J > 0 and
tr J > 0.

Motivated by Lewontin and Kojima (1960), we say that a locus (e.g., A) exhibits
marginal, or induced, overdominance at (p, q) if the inequalities

mA1A2 > mA1A1 and mA1A2 > mA2A2 (3.11)

hold. If both inequality signs are reversed, one obtains marginal, or induced, under-
dominance. The following result was proved by Kojima (1959).Wewill give a similar,
but more direct, proof.

Corollary 3.3 An internal equilibrium (p, q) is linearly stable, i.e., a sink, if and only
if both loci exhibit marginal overdominance at (p, q) and mAmB > 4m̃2.

Proof By the Routh–Hurwitz criterion, the equilibrium (p, q) is a sink if and only if
p(1 − p)mA + q(1 − q)mB < 0 and

det J (p, q) = pq(1 − p)(1 − q)(mAmB − 4m̃2) > 0. (3.12)

Therefore, both mA and mB must be negative. Because 0 < p < 1 must hold, (3.4)
implies that mA, mA2A2 − mA1A2 , and mA1A1 − mA1A2 all have the same sign. This
together with an analogous argument for locus B proves that marginal overdominance
is necessary. The sufficiency condition follows immediately from (3.12). �	
Remark 3.4 (i) As pointed out by Kojima (1959), (3.12) is equivalent to the condition

that the geometric mean of the dominance variances of each locus exceeds the
additive-by-additive variance of the two-locus system.
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(ii) The proof of Corollary 3.3 shows that, at equilibrium, locus A displays marginal
overdominance if and only if (cf. Hastings 1982)

m2
A1A2

> mA1A1mA2A2 . (3.13)

4 Equilibrium structure and flows

Since the internal equilibria are obtained from the solutions of the quintic polynomial
equation (3.7), it is generally difficult to determine their number, position, or stability.
Therefore, we first study the possible flows on the boundary of the state space. Subse-
quently, we extend the flows to a neighborhood of the boundary. Using index theory,
we will be able to shed light on the equilibrium structure, i.e., the number and stability
properties of equilibria (for a precise definition, see Sect. 4.3), and on the possible
phase portraits, i.e., the topological structures of the flow (2.5). Finally, we exclude
several potentially possible equilibrium structures and generate phase portraits for
most of the remaining cases.

To facilitate the characterization of equilibrium structures and phase portraits, we
identify flows that are topologically equivalent or obtained by symmetry operations
corresponding to a relabeling of alleles at a locus (A1 or A2, B1 or B2) or of the loci
(A or B). More precisely, we call two systems of the form (2.5), or the corresponding
fitness schemes M and M̃ in R3×3 (2.2), or the flows, equivalent if there exists an
edge-preserving homeomorphism h of [0, 1]2 onto itself that maps orbits of (2.5)
generated by M onto orbits generated by M̃ (preserving the arrow of time), i.e., the
phase portraits are topologically equivalent. Here, edge-preserving means that each of
the four edges is mapped onto an edge, not necessarily onto itself.

An edge-preserving homeomorphism is a composition of one of the eight symmetry
operations of the square with a ‘proper’ or ‘pinned’ homeomorphism of the square,
i.e., a homeomorphism that leaves the four corners fixed and maps each edge onto
itself. The symmetry group of the square, the dihedral group D4, consists of four
reflections and four rotations (including the identity). Therefore, each equivalence
class is invariant under rotations by multiples of 90◦, reflections about the diagonal or
antidiagonal, and reflections about the middle vertical or horizontal axis of the matrix
(2.2), or of the unit square (Fig. 1).

Finally, we call a fitness scheme M [or its induced flow (2.5), or its phase portrait]
robust if it has a neighborhood of equivalents in R3×3. This is essentially the concept
of structural stability, adapted to the selection Eq. (2.5). For the single-locus two-allele
model, i.e., on every edge, there are three robust equivalence classes: they correspond
to the classical selection patterns of overdominance, underdominance, or intermediate
dominance (directional selection).

The goal of our paper is to find all robust (equivalence classes of) phase portraits
arising from (2.5). A necessary condition for robustness is that all equilibria are hyper-
bolic, i.e., condition (H) holds. A classical characterization of structural stability in
two-dimensional systems due to Andronov and Pontryagin (1937) implies:

If (2.5) satisfies (H) and there is no saddle connection in the interior of [0, 1]2, then
this system is robust.
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A saddle connection is an orbit which has one saddle as its α-limit and an other
as its ω-limit. Most phase portraits shown in Section S1 have no saddle connection.
Exceptions occur for the symmetry classes s, b, and e (defined below), where the
phase portraits were generated by matrices satisfying the corresponding symmetry
condition. In all these cases, however, breaking the symmetry yields phase portraits
that are members of the same class. Thus, they are robust in this sense.We now explain
how to obtain all phase portraits. This requires three steps.

4.1 Flows on the boundary

As shown in Sect. 3, on each edge there is either no or one equilibrium, and each edge
equilibrium can be internally stable or unstable. This gives 44 = 256 different types
of (nondegenerate) flows on the boundary. This type can be easily determined from
the selection scheme (2.2), by observing the order relations in each boundary row and
boundary column, i.e., overdominance, underdominance, or intermediate dominance.
Applying the symmetry operations, their number drops to 42 different boundary flows
or, more precisely, boundary-flow equivalence classes. They are displayed in Fig. 2.

We recall that a matrix is called centrosymmetric if it is invariant under reflections
about the central entry, and bisymmetric if it is symmetric and centrosymmetric. A
centrosymmetric fitness matrix (2.2) gives rise to the well-studied symmetric viability
model (Sect. 9). A symmetric fitness matrix (2.2) represents a model in which the loci
A and B are equivalent (Sect. 8).

The following code was used to label boundary flows: En
mCkx represents a flow of

symmetry class x ∈ {b, c, s,e,a} with n edge equilibria, m of them internally stable,
and k linearly stable corner equilibria. Here, b, c, or s means that at least one flow
in this class is generated by a bisymmetric, centrosymmetric, or symmetric matrix,
respectively. This does not imply that all matrices generating a flow in such a class
have the respective symmetry property. The letter e refers to a flow for which the flows
at (at least) one pair of opposite edges belong to the same single-locus class and have
the same direction if there is intermediate dominance. This is the case if the entries
in the two boundary columns (or rows) of the fitness scheme have the same order
relation. The letter a indicates asymmetry, i.e., the boundary flow cannot be generated
by a matrix with one of the properties b, c, s, or e. In one case, E2

1C1a, the above code
is not sufficient to identify the equivalence class; therefore, we used E2

1C1a′, E2
1C1a′′,

E2
1C1a′′′.
By reversing all arrows in a flow, the reversed flow is obtained. Equivalently, the

signs of all entries in the fitness matrix are reversed. It turns out that 10 of the 42 cases
are invariant under flow reversal. In Fig. 2, the other 32 cases are placed such that pairs
obtained by reversal are arranged vertically.

4.2 Extended boundary flows

Now we consider flows not only on the boundary, but in a sufficiently small neigh-
borhood of the boundary. Here, external stability of the edge equilibria plays a central
role (Fig. 3). We need some preparation and recall from below Eq. (3.3) when an
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E0
0C1s E0

0C1a E0
0C2b

×
E1
1C0e

×
E1
1C0a

×
E1
1C1e

×
E1
1C1a

E1
0C1e E1

0C1a E1
0C2e E1

0C2a

×

×

E2
2C0c

×
×

×
E2
2C0s

×

×
E2
2C0e

×
×

×
E2
2C0a

×
×

×
E2
2C1s

×
×

E2
1C1a

E2
0C2c

×

E2
0C2s E2

0C2e

×

E2
0C2a

×

E2
0C3s

×

×
E2
1C1a

×

E2
1C0e

×
×

E2
1C0a

×
×

E2
1C1a

×
E2
1C1a

×
E2
1C2e

×
××

E3
3C0e

××

E3
2C0e

×
×

E3
2C0a

×
×

E3
2C1a

E3
0C3e

×
E3
1C1e

×

E3
1C1a

×

E3
1C2a

×

×
××

E4
4C0b

×
××

E4
3C0e

E4
0C4b

×
E4
1C2e

×

×
E4
2C0c

×
×

E4
2C1s

(a)

(b)

(c)

(d)

(e)

Fig. 2 The 42 possible boundary flows, or boundary-flow equivalence classes, for (2.5). The 16 flow-
reversal pairs are arranged vertically. For instance,E2

0C2c is the reversed boundary flow ofE2
2C0c, whereas

E2
1C0e is self inverse. Internal stability is indicated by a solid dot (at a corner) or a cross (at an edge

equilibrium). A rhombus indicates an internally unstable edge equilibrium
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−1

+1

Fig. 3 The boundary-flow class E2
1C0e with positive (left) and negative (right) external eigenvalues at

the edge equilibria. In the left panel, the edge equilibria are not saturated. In the right panel, E12 is
asymptotically stable and saturated with index +1, and E34 is a saturated saddle with index −1. Therefore,
δ = 0 in both panels. If the flow in the left panel is reversed, i.e., all arrows are reversed, the flow in the
right panel is obtained after a rotation by 180◦. Extended boundary flows, where the flow reversal has the
same boundary flow and δ but a different external stability, can occur only for boundary-flow classes that
are invariant under flow reversal

equilibrium in our two-dimensional model is strictly saturated. Because we impose
the hyperbolicity assumption (H) throughout, we simply use the term saturated equi-
librium.

Therefore, a corner equilibrium is saturated if and only if both eigenvalues are
negative. An edge equilibrium is saturated if and only if the external eigenvalue is
negative. An internal equilibrium is, by definition, always saturated. For a hyperbolic
equilibrium x̂ , the index is defined by

ind(x̂) = sgn(det(−Jx̂ )) = (−1)k, (4.1)

where k denotes the number of positive eigenvalues of the Jacobian Jx̂ at x̂ . It follows,
that in a planar system an equilibrium with index −1 is a saddle point; sources and
sinks have index +1. The sum of the indices of all saturated boundary equilibria is
called the boundary index sum and is denoted by δ. If there are no saturated boundary
equilibria, then δ = 0.

In general, δ is not uniquely determined by the boundary flow because external
eigenvalues of edge equilibria may be positive or negative for a given boundary flow
(cf. Fig. 3). However, δ is uniquely determined by the extended boundary flow, which
we use as a short hand for the equivalence class (in the above sense) of flows with a
given boundary flow (class) together with the signs of the external eigenvalues of all
edge equilibria. Different extended boundary flows of the same boundary-flow class
may have the same δ.

Lemma 4.1 For a boundary flow of typeEn
mCk , the boundary index sum δ can assume

at most the (integer) values satisfying

k + m − n ≤ δ ≤ k + m. (4.2)
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Every boundary flow in Fig. 2 satisfies k + m − n ≥ −2 and k + m ≤ 4.

Proof We have to sum the indices of the saturated equilibria. Obviously, there are k
stable, hence saturated, corner equilibria and at most m saturated, internally stable
edge equilibria. This yields the upper bound k +m. Because the number of saturated,
internally unstable edge equilibria is at most n − m, the lower bound k − (n − m)

results.
The second statement follows easily by checking Fig. 2. �	
By systematic construction of the extended boundary flows for each of the 42

boundary flows, we obtain 200 potential extended boundary flows (see Table S1). It is
important to recall that for given δ more than one extended boundary flow may exist.
In the following we show that not all of these 200 extended boundary flows can be
realized for (2.5).

Theorem 4.2 Assume (2.5) and (H).

(a) The boundary index sum δ = −2 cannot occur.
(b) The boundary index sum δ = −1 cannot occur for any of the boundary flows

E4
2C0c, E3

2C0e, E3
1C1e, E2

1C0e, or E2
1C0a.

(c) The boundary index sum δ = 0 can neither occur for E3
2C0e nor E4

2C0c if the
edge equilibria E34 and E24 are saturated and the others are not.

(d) The boundary index sum δ = 0 cannot occur for E3
1C1e if the edge equilibrium

E13 is saturated and the others are not.

The proof of (a) is given in “Appendix A.2”. The other statements can be proved
in a similar manner.

Remark 4.3 (a) The extended boundary flow described in Theorem 4.2(d) is the
reversed flow of the first extended boundary flow in Theorem 4.2(c).

(b) Table S1 informs us that there is exactly one potential extended boundary flow
for each of the cases excluded by Theorem 4.2, except for E4

2C0c and δ = −1.
Then the two potentially possible extended boundary flows are the reversed flows
of each other and thus both are excluded by Theorem 4.2.

(c) We could not exclude the boundary index sum δ = −1 for the cases E3
2C0a,

E3
1C1a, E4

2C1s, E4
3C0e, and E4

1C2e. However, we conjecture that δ = −1 does
not occur (see Sect. 4.3).

(d) As a consequence of Theorem 4.2 and statement (b) of this remark, the number
of potentially possible extended boundary flows reduces to 190.

(e) It is important to note that statements (c) and (d) of Theorem 4.2 exclude the
existence of specific extended boundary flows and do not imply that the boundary
index sum δ = 0 does not occur in these cases.

(f) The above theorem constrains the range (4.2) of possible values of δ to

max{−1, k + m − n} ≤ δ ≤ k + m. (4.3)

An important tool for drawing conclusions about internal equilibria is the following
index theorem:
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Theorem 4.4 (Hofbauer 1990) Assume (2.5) and (H). Then

∑

x̂ saturated

ind(x̂) = +1, (4.4)

where the sum runs over all saturated equilibria.

This theorem has a number of important consequences. The simple proofs are left
to the reader.

Corollary 4.5 Assume (2.5) and (H).

(a) The number of saturated equilibria is odd;
(b) If δ is odd (even), the number of internal equilibria is even (odd);
(c) The number of internal equilibria is at least |1 − δ| and at most five;
(d) If δ > 1, there are at least δ − 1 internal saddle points;
(e) If δ < 1, the total number of sinks and sources is at least 1 − δ;
(f) The boundary index sum δ is invariant under flow reversal.

4.3 Established equilibrium structures and phase portraits

We show that 185 of the 190 theoretically possible extended boundary flows exist.
This task is simplified by taking flow reversals into account.

Importantly, flow reversal neither changes the number of internal equilibria nor
their index. Therefore, the boundary index sum δ is invariant under flow reversal; cf.
Corollary 4.5(f). If we identify flow-reversal pairs, it is sufficient to consider 16+ 10
boundary flow classes. Here, 16 is the number of representatives of boundary flows
in Fig. 2 that are not invariant under flow reversal, and 10 is the number of boundary
flows that are invariant. These 16 flows give rise to 79 theoretically possible extended
boundary flows (SI, Table S1). The 10 self-inverse boundary flows give rise to 42
extended boundary flows, 22 of which form flow-reversal pairs (Table S1). Thus, up
to flow reversal, there are 79+31 different extended boundary flows. By Theorem 4.2,
2 + 5 of these boundary flows cannot exist. Overall, we present phase portraits for
75+ 25 extended boundary flows (Section S1 of the SI). Applying flow reversal, this
proves existence of 2 × 75 + 35 = 185 different extended boundary flows. All these
flows have boundary index sum δ ≥ 0.

We could not realize 2+ 1 potential extended boundary flows (five, including flow
reversal), all of them having boundary index sum δ = −1. Therefore, their existence
remains undecided. For the following reasons, we conjecture that they do not exist.
(i) Theorem 4.2(b) excludes the other five extended boundary flows with δ = −1. (ii)
A boundary index sum of δ = −1 requires that the number of saddles in the interior
is less than the total number of sinks and sources in the interior minus one. Despite
extensive search no such equilibrium pattern could be found (see Section S1 of the
SI).

Twoflows yielding the same extended boundary flow (up to equivalence in the sense
defined above) may still differ in their equilibrium structure because they differ in the
number of internal equilibria or, if they have the same number of internal equilibria,
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in the number of sinks, sources, or saddles. In addition, some equilibrium structures
can be realized by non-equivalent phase portraits; see below.

We show existence of an extended boundary flow or equilibrium structure by pre-
senting a numerical fitness matrix (mi j ) yielding a flow on the entire state space,
[0, 1]2, that has the given extended boundary flow (Section S1 of the SI). We represent
each equivalence class of flows on [0, 1]2 by a phase portrait. In general, the phase
portrait is not uniquely determined by the extended boundary flow, because already
number and stability of internal equilibria are often not uniquely determined.

We present more than one phase portrait for several extended boundary flows. We
do this for cases for which we found more than one equilibrium structure. In addition,
we give examples of fitness matrices that yield the same equilibrium structure but
non-equivalent phase portraits. One particularly interesting case is E3

2C1awith δ = 1,
which admits three extended boundary flows and seven different phase portraits. One
of these extended boundary flows has two equilibrium structures, each with two phase
portraits (Fig. S2i, panels 1, 2, 3, 4). Another remarkable case is E4

3C0e with δ = 1,
which admits four different extended boundary flows (Fig. S2j, panels 2, 3, 4, 5).
However, there is also a considerable number of boundary flows for which the value
of δ uniquely determines the extended boundary and also the equilibrium structure
and the phase portrait (up to equivalence). See Table S1 and the phase portraits in
Section S1 for detailed information.

4.4 Permanence

In mathematical modeling of biological systems, the notion of permanence is very
important. The dynamical system (2.5) is permanent if there exists a compact subset
of (0, 1)2 such that every solution starting at (p0, q0) ∈ (0, 1)2 enters this subset and
remains there (consult Hofbauer and Sigmund 1998 for an account on permanence
theory). Permanence is equivalent to the boundary being a repeller. It can be shown
that it is sufficient that all stationary points on the boundary are repelling.

We want to identify which extended boundary flows can be permanent. First, δ �= 0
implies that at least one boundary equilibrium is saturated and, therefore, attracts at
least one orbit from the interior. Second, not all extended boundary flows with δ = 0
can be permanent, because there are extended boundary flows for which one equilib-
rium on the boundary is saturated with index−1 and an other has index+1. Therefore,
an extended boundary flow is permanent if and only if no boundary equilibrium is sat-
urated. Thus, we obtain:

Theorem 4.6 A full flow consistent with a boundary flow of type E j
i C0x is permanent

if and only if no edge equilibrium is saturated.

Corollary 4.7 Assume (2.5) is permanent. Then

(a) the extended boundary flow is of one of the 14 classes E1
1C0e, E1

1C0a, E2
2C0c,

E2
2C0s,E2

2C0e,E2
2C0a,E2

1C0e,E2
1C0a,E3

3C0e,E3
2C0e,E3

2C0a,E4
4C0b,E4

3C0e,
or E4

2C0c, and has no saturated edge equilibrium;
(b) there exists an internal equilibrium that is a sink, for example the global maximum

of the mean fitness.
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Proof (a) follows from Theorem 4.6 upon comparison with Fig. 2.
(b) follows because m̄ is a (strict) Lyapunov function. �	
We note that each of the extended boundary flows in Corollary 4.7 could give rise

to one, three, or five internal equilibria. However, the boundary flowE4
4C0b is the only

one for which we found a fitness matrix such that (2.5) has five internal equilibria (see
Fig. S1d, panel 6).

5 Continuous isoclines: marginal overdominance or underdominance

In this and the next section we study which equilibrium structures and phase portraits
are obtained by imposing specific properties on the isoclines. The structure of the two
isoclines is important because the internal equilibria are their intersection points. As
special cases, we will encounter well known models.

We start by investigating the equilibrium structure if the isoclines are continuous and
map [0, 1] into (0, 1). From (3.11),we recall the definitions ofmarginal overdominance
and underdominance.

Lemma 5.1 The isocline f (q) (g(p)), defined in (3.4), is continuous and maps [0, 1]
into (0, 1) if and only if locus A (B) exhibits either marginal overdominance or
underdominance for every q ∈ [0, 1] (p ∈ [0, 1]).
Proof From the definition of the isocline p = f (q), we obtain that f (q) is continuous
if andonly if its denominator (2mA1A2−mA1A1−mA2A2 ) does not change signon [0, 1].
The requirement 0 < f (q) < 1 is then satisfied if and only if both mA1A2 − mA1A1

and mA1A2 − mA2A2 have the same sign as the denominator. The argument for g(p)
is analogous. �	

This lemma implies that the graph of f (q) intersects the boundary of the state space
(precisely) at the equilibria E24 and E13, and the graph of g(p) does so at E34 and
E12. If both isoclines are continuous and map [0, 1] into (0, 1), we conclude from
Lemma 5.1 and Theorem 3.1 that the number of interior equilibria is between one and
five, and both bounds can be assumed.

Next we want to derive the possible equilibrium structures if both loci exhibit
marginal overdominance everywhere, i.e., at every (p, q) ∈ [0, 1]2. Obviously, this is
a much stronger assumption than marginal overdominance at an equilibrium, as used
in Corollary 3.3. We will need the following lemma:

Lemma 5.2 Locus A exhibits marginal overdominance everywhere if and only if

m13 > max{m11,m33} and m24 > max{m22,m44}, (5.1)

i.e., overdominance holds on the edges q = 0 and q = 1, and

m14 >max
{
m12 − √

(m13 − m11)(m24 − m22),

m34 − √
(m13 − m33)(m24 − m44)

}
. (5.2)
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Proof We observe that

ax2 + 2bx(1 − x) + cx2 > 0 for every x ∈ [0, 1] (5.3)

if and only if a > 0, c > 0, and b > −√
ac. Therefore, the conditions in the lemma

follow immediately because mA1A2 − mA1A1 and mA1A2 − mA2A2 can be written in
the form of (5.3) and need to be positive. �	
Theorem 5.3 Assume that both loci exhibit marginal overdominance everywhere.
Then the following holds:

(a) The boundary flow is of type E4
4C0b.

(b) No boundary equilibrium is saturated, whence δ = 0 and the system is permanent.
(c) There may exist one, three, or five internal equilibria.
(d) If there is a unique internal equilibrium, it is globally asymptotically stable.
(e) If there are three internal equilibria, two are sinks and one is a saddle.
(f) If there are five internal equilibria, three are sinks and two are saddles.

Proof Statement (a) is clear from Lemma 5.2. Combining (3.11) with (A.1) and The-
orem 4.6 yields (b). Statement (b) together with Corollary 4.5(b) gives claim (c).
Theorem 4.4 yields the desired numbers of saddles for (d), (e), and (f). Because the
trace of J (3.2) is negative due to (3.11), the internal equilibria with index +1 are
sinks. �	

Phase portraits with one or three internal equilibria are shown in Fig. S1d, panels
4 and 5. We could neither find an example for case (f) in Theorem 5.3 nor could we
exclude it.

Theorem 5.4 Assume that both loci exhibit marginal underdominance everywhere.
Then the following holds:

(a) The boundary flow is of type E4
0C4b.

(b) All boundary equilibria are saturated, whence δ = 0.
(c) There may exist one, three, or five internal equilibria.
(d) If there is a unique internal equilibrium, it is a source.
(e) If there are three internal equilibria, two are sources and one is a saddle.
(f) If there are five internal equilibria, three are sources and two are saddles.

Remark 5.5 The possible flows on [0, 1]2 for Theorem 5.4 are obtained by flow rever-
sal from flows occurring by Theorem of 5.3.

Finally, the following can be shown. We leave the simple proof to the reader.

Theorem 5.6 Assume one locus exhibits marginal overdominance everywhere and
the other marginal underdominance everywhere.

(a) The boundary flow is of type E4
2C0c.

(b) The two internally stable edge equilibria are saturated, whence δ = 2.
(c) There exists a unique internal equilibrium, and it is a saddle.
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Remark 5.7 It seems interesting that there exist fitness matrices that do not satisfy
the assumption of the above theorem and generate a phase portrait with three internal
equilibria and the boundary flowE4

2C0c. Thus, the assumptions of marginal overdom-
inance and underdominance everywhere do not only constrain the potential boundary
flows substantially, but also the phase portraits that can occur for a given boundary
flow.

6 Linear isoclines

Here, we study the dynamics of systems obtained by fitness matrices yielding linear
isoclines. This leads to a system of differential equations that has been investigated by
Schuster et al. (1981) to study the evolution of two strategies in asymmetric animal
contests, for example between two species. It also turns out to be equivalent to a
model used byZhivotovsky andGavrilets (1992) to study quantitative genetic variation
under epistatic selection. A number of well known models emerge as special cases,
for instance the additive model or the haploid model.

It will be convenient to reparameterize the fitnesses mi j as follows:

B1B1 B1B2 B2B2

A1A1 2a1 + 2a2 + e11 2a1 + a2 + d2 + e12 2a1
A1A2 a1 + 2a2 + d1 + e21 a1 + a2 + d1 + d2 + e22 a1 + d1
A2A2 2a2 a2 + d2 0

(6.1)

Here, ai are allelic effects, di dominance effects, and ei j epistatic effects. According
to the remark below (2.7), one additional parameter could be specified (e.g., by setting
a1 = 1), but we refrain from doing so. The general assumption (H) implies that we
exclude complete dominance or recessivity of an allele, i.e., |di | �= ai for i = 1, 2,
and analogous restrictions apply to e12 and e21.

A straightforward calculation shows that the dynamics (2.5) becomes

ṗ = p(1 − p)[a1 + d1(1 − 2p) + 2e22q + 2(e12 − 2e22)pq + (e21 − 2e22)q
2

+ (e11 − 2e12 − 2e21 + 4e22)pq
2], (6.2a)

q̇ = q(1 − q)[a2 + d2(1 − 2q) + 2e22 p + 2(e21 − 2e22)pq + (e12 − 2e22)p
2

+ (e11 − 2e12 − 2e21 + 4e22)p
2q]. (6.2b)

We note that the right-hand side of (6.2a) is simply the additive effect of allele A1
multiplied by p, and analogously the right-hand side of (6.2b) yields the additive effect
of allele B1.

Remark 6.1 A standard decomposition of the total genetic variance (e.g.,
Kempthorne 1955) shows that dominance-by-dominance interactions are absent if
and only if e11 − 2e12 − 2e21 + 4e22 = 0, additive-by-dominance interactions are
absent if and only if

e11 = 2e12 = 2e21 = 4e22, (6.3)
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additive-by-additive interactions are absent if and only if e11 = e12 = e21 = e22 = 0,
and dominance is absent if and only if d1 = d2 = 0 and (6.3) holds.

We infer from (6.2) that both isoclines are linear if and only if (6.3) holds. With
this assumption, (6.2) simplifies to

ṗ = p(1 − p)(a1 + d1 − 2d1 p + 2e22q), (6.4a)

q̇ = q(1 − q)(a2 + d2 − 2d2q + 2e22 p). (6.4b)

Interestingly, this is a model that was studied independently and in different con-
texts by Schuster et al. (1981) and Zhivotovsky andGavrilets (1992). The latter authors
introduced an n-locus version of the fitness scheme (6.1) with a generalized version of
constraint (6.3), as ‘the simplest generalization of the additive model to include dom-
inance and pairwise additive-by-additive epistasis’. Schuster et al. (1981) identified
all possible (non-degenerate) phase portraits for (6.4). Because they were interested
in a game-theoretical context, they studied a more general model in which one of the
coefficients e22 in (6.4) was substituted by a sixth, independent coefficient. Then limit
cycles can occur because the corresponding 4× 4 fitness matrix (mi j ) is not symmet-
ric. Here, we present the results of Schuster et al. (1981) that apply to our model (6.4)
in our terminology and complement them. They also follow directly from our results
in Sect. 4.

Since the isoclines are linear, there is either no or one internal equilibrium. There-
fore, by Corollary 4.5(c), the boundary index sum can assume only the values δ = 0, 1,
or 2. Furthermore, if two edge equilibria exist on opposite edges, they must have
the same internal stability. This rules out the following 10 of the 42 boundary
flows in Fig. 2: E2

1C0e, E2
1C1a′′′, E2

1C2e, E3
2C0a, E3

2C1a, E3
1C1a, E3

1C2a, E4
3C0e,

E4
1C2e, and E4

2C1s. In addition, the following boundary flows are easily ruled out:
E1
1C0a, E1

0C1a, E2
2C0a, E2

0C2a, E2
1C0a and E2

1C1a′′. Finally, the planar Routh–
Hurwitz criterion implies that the internal equilibrium ( p̂, q̂) resulting from (6.4) is

• a saddle if d1d2 < e222;• a sink if d1d2 > e222 and d1 p̂(1 − p̂) + d2q̂(1 − q̂) > 0; and
• a source if d1d2 > e222 and d1 p̂(1 − p̂) + d2q̂(1 − q̂) < 0.

We summarize the results:

Corollary 6.2 Assume (6.4).

(a) The following eight boundary flows can have δ = 0: E2
2C0c, E2

2C0s, E3
3C0e,

E4
4C0b (in each case the internal equilibrium is globally attracting); E2

0C2c,
E2
0C2s, E3

0C3e, E4
0C4b (in each case the internal equilibrium is a source). The

last four cases are the flow reversals of the first four cases.
(b) The following ten boundary flows and their flow reversals can have δ = 1:E1

1C0e,
E1
1C1e,E1

1C1a,E2
2C0c,E2

2C0s,E2
2C0e (if only E12 is saturated),E2

2C1s,E2
1C1a

(if both edge equilibria are not saturated),E3
3C0e (if only E13 is saturated),E3

2C0e
(if only E13 is saturated). In addition, E0

0C1s and E0
0C1a have δ = 1. In all these

22 cases, an internal equilibrium does not exist.
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(c) The following five boundary flows and their flow reversals can have δ = 2:E1
1C1a,

E2
2C0c, E2

2C0s, E2
1C1a, E3

2C0e. In addition, E0
0C2b and E4

2C0c have δ = 2. In
each of these twelve cases, the internal equilibrium is a saddle.

Therefore, a phase portrait is uniquely determined by its boundary flow and bound-
ary index sum δ. However, for 12 boundary flows, δ is not uniquely determined by
the boundary flow. For E2

2C0c, E2
0C2c, E2

2C0s, and E2
0C2s, δ can assume all three

possible values, 0, 1, and 2.

Zhivotovsky and Gavrilets (1992) derived results about the maintenance of a mul-
tilocus polymorphism, i.e., an internal equilibrium, and showed that several models
investigated previously, mainly in a quantitative-genetic context, can be obtained as
special cases of their model. Among others, they deduced the conditions for the exis-
tence and for the stability of a fully polymorphic equilibrium if all loci have equal
effects on fitness and selection is sufficiently weak that linkage disequilibrium can be
ignored. The assumption of equal effects is equivalent to a symmetric fitness matrix
(2.2), i.e., ai = a and di = d for every i .

A more detailed study of this symmetric model was performed by Gavrilets (1993).
If the fitness matrix is symmetric (ai = a and di = d), the conditions for the existence
and stability of an internal equilibrium become very simple. An internal (nondegener-
ate) equilibrium exists if and only if 0 < a+d

2(d−e22)
< 1. It exists and is linearly stable

if and only if −d < e22 < (d − a)/2. This condition can be satisfied only if d > a/3.
It also implies that there are internally stable equilibria on the edges p = 1 and q = 1.
The corresponding boundary flow is E2

2C0s with δ = 0. We will briefly return to this
model in Sect. 8, where we treat general symmetric fitness matrices.

Now we turn to two important special cases of the model (6.4).

6.1 The additive fitness model

This classical model (Bodmer and Felsenstein 1967; Ewens 1969) assumes that loci
contribute additively to fitness. Thus there is no epistasis, but dominance is admitted.
It is obtained from (6.1) by assuming

e11 = e12 = e21 = e22 = 0. (6.5)

In fact, this model has been analyzed without ignoring linkage disequilibrium, i.e., the
full four-gamete system (2.3), and indeed for any number of loci. Ewens (1969) proved
for an arbitrary number of multiallelic loci that mean fitness is a Lyapunov function.
Moreover, every equilibrium is in linkage equilibrium (for non-zero recombination,
as we assume here). For diallelic loci, an internal equilibrium exists if and only if at
every locus there is either overdominance or underdominance. An internal equilibrium
is unique if it is isolated; it is globally asymptotically stable if there is overdominance
on both loci (Karlin andLiberman1978, 1990).All trajectories converge exponentially
to an equilibrium on the linkage-equilibrium manifold D = 0 (Lyubich 1992). For a
more detailed review, seeBürger 2000 (pp. 48–50, 76–78). Therefore, the flows derived
by assuming D = 0 are representative for the full dynamics after a sufficiently long
time has passed and also for every trajectory that starts close to D = 0.
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The isocline ṗ = 0 simplifies to a horizontal straight line (in a representation as
in Fig. 1), and the isocline q̇ = 0 to a vertical straight line. It follows that locus
A (B) exhibits marginal overdominance if and only if it exhibits overdominance on
one of the respective edges, i.e., if and only if d1 > a1 (d2 > a2); analogously
for underdominance. Therefore, in accordance with the above mentioned results, we
obtain:

Corollary 6.3 For the additive fitnessmodel the following boundary flowswith bound-
ary index sum δ occur:

(a) E0
0C1s with δ = 1 if dominance is intermediate at both loci, i.e., −ai < di < ai ;

(b) E2
2C0e (E2

0C2e) with δ = 1 if dominance is intermediate at one locus and the
other locus is overdominant (underdominant);

(c) E4
4C0b (E4

0C4b) with δ = 0 if both loci are overdominant (underdominant);
(d) E4

2C0c with δ = 2 if one locus is overdominant, the other underdominant.

An internal equilibrium exists and is unique for the boundary flowsE4
4C0b,E4

0C4b,
and E4

2C0c. It is globally attracting, a source, and a saddle, respectively. Each of the
above boundary flows admits only one phase portrait.

6.2 The haploid model

If selection acts on haploids instead of diploids, fitnesses can be assigned directly to
gametes. Denoting the fitness of gamete i by vi , straightforward calculations show
that under the assumption D = 0 the following dynamics is obtained (cf. Haldane
1931):

ṗ = p(1 − p)[v2 − v4 + (v1 − v2 − v3 + v4)q], (6.6a)

q̇ = q(1 − q)[v3 − v4 + (v1 − v2 − v3 + v4)p]. (6.6b)

Comparison with (6.4) reveals that this is obtained from the fitness scheme (6.1) if
one sets d1 = d2 = 0, v4 = 0 (without loss of generality), v3 = a2, v2 = a1,
v1 = a1 + a2 + 2e22, and assumes (6.3). Therefore, there is additive-by-additive
epistasis but no dominance.

The isocline ṗ = 0 is given by the vertical line q = a1/(2e22), and the isocline
q̇ = 0 is given by the horizontal line p = a2/(2e22). Hence, there are no edge
equilibria, but there may exist one internal equilibrium given by these values. The
only possible boundary flows are E0

0C1s, E0
0C1a, and E0

0C2b. Their boundary index
sum is uniquely determined and δ = 1, 1, and 2, respectively. It is easy to show that
all three cases can be realized. An internal equilibrium exists only in the third case,
and it is a saddle. These results are in accordance with results obtained previously for
the following more general models.

In game theory, (6.6) is known as the replicator dynamics for 2 × 2 partnership
games, which is generalized by the replicator dynamics for 2 × 2 bimatrix games.
There, the coefficients of p and q in (6.6) may differ. Schuster and Sigmund (1981)
proved that periodic orbits occur if these coefficients have opposite signs (seeHofbauer
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and Sigmund 1998, Sections 10 and 11, for a treatment of bimatrix games and the
replicator dynamics).

The complete haploid selection model, i.e., without the assumption of linkage equi-
librium, was investigated by Felsenstein (1965), Feldman (1971), Rutschman (1994),
and Bank et al. (2012). The latter authors proved that there exists at most one internal
equilibrium and, if it exists, it is unstable. Then two vertex equilibria are asymptoti-
cally stable. This corresponds to the boundary flow E0

0C2b. Otherwise, one vertex is
globally asymptotically stable and the boundary flow is either E0

0C1s or E0
0C1a. Bank

et al. (2012) also identified the parameter combinations that lead to the respective
equilibrium structures.

7 The multilinear epistasis model

Hansen and Wagner (2001) introduced a model of gene interaction that assumes that
the effect of gene substitutions due to changes in the genetic background (the other
loci) can be described by a linear transformation. Although their model is formulated
in terms of genetic effects on quantitative traits, it can be applied to our context if we
consider fitness as the trait.A two-locus version of thismodel, and its applications to the
maintenance of genetic variation, was studied by Hermisson et al. (2003). Following
their formulation, the fitness of the two-locus genotype Ai A j Bk B
 can be written as

w(i j, k
) = μ + α(i j) + β(k
) + γα(i j)β(k
). (7.1)

Comparison with the fitness scheme (6.1) shows, after some calculation, that their
model is the special case of (6.1) obtained by assuming

e11 = 4a1a2e22
(a1 + d1)(a2 + d2)

, and e12 = 2a1e22
a1 + d1

, and e21 = 2a2e22
a2 + d2

. (7.2)

It follows that the isoclines ∂m̄/∂p = 0 and ∂m̄/∂q = 0 take the form

(a2 + d2 − 2d2 p)ϕ2(q)

(a1 + d1)(a2 + d2)
= 0, (7.3a)

(a1 + d1 − 2d1q)ϕ1(p)

(a1 + d1)(a2 + d2)
= 0, (7.3b)

where
ϕi (x) = (a1 + d1)(a2 + d2) + 2e22x(ai + di − di x). (7.3c)

Therefore, they are in product form. It is not difficult to show that the isoclines of (6.2)
are in product form if and only if (7.2) holds. In this case, which we assume below,
the dynamics has separated variables.

We define

p̃ = a2 + d2
2d2

and q̃ = a1 + d1
2d1

, (7.4)
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and observe that 0 < p̃ < 1 (0 < q̃ < 1) if and only if there is overdominance or
underdominance at locus A (B). If 0 < p̃ < 1 and 0 < q̃ < 1, we call the equilibrium
( p̃, q̃) the central equilibrium. We note that p = p̃ and q = q̃ are invariant lines of
the dynamics (6.2) with (7.2). As a consequence, saddle connections occur robustly
in this class, e.g., for the boundary flow E4

4C0b with δ = 2 (Fig. S3h, panel 6).
The isoclines may be composed of up to three straight lines. For ṗ = 0 (and in a

representation as in Fig. 1), these are the horizontal line p = p̃ and the two vertical
lines that are given by the solutions of ϕ2(q) = 0. If 0 < p̃ < 1, then the two
edge equilibria E13 and E24 exist and have the same value, p̃. Thus, edge equilibria
occur always in pairs on opposite edges. If in addition 0 < q̃ < 1, the other two edge
equilibria and the central equilibrium ( p̃, q̃) exist. Furthermore, the intersection points
of ϕ2(q) = 0 and ϕ1(p) = 0 may yield up to four additional internal equilibria. Thus,
in total there may be up to five internal equilibria.

The case of five internal equilibria can be realized for overdominance at both loci
as well as for underdominance at both loci, but not if one locus exhibits overdomi-
nance and the other underdominance (Theorem 7.1 and Table S3). The corresponding
boundary flows are E4

4C0b with δ = 4 and its flow reversal E4
0C4b .

Because opposite edge equilibria occur pairwise, flows of type E1
m or E3

m cannot
occur. The following theorem lists all possible equilibrium structures. Only 16 of the
42 boundary flows in Fig. 2 can occur. In particular, it states the extent to which the
equilibrium structure can be inferred from the boundary flow. The proof is given in
“Appendix A.3”. Parameter combinations that yield all possible equilibrium structures
are given in Table S3.

Theorem 7.1 Assume (6.2) and (7.2).

(a) All possible equilibrium structures in the interior are given in Table 1.
(b) For the top twelve boundary-flow classesEn

mCkx in Table 1, the number of asymp-
totically stable edge equilibria is min{m, δ}. For the other four classes, this is in
general wrong.

Remark 7.2 Because mean fitness is a strict Lyapunov function (Sect. 2), there is a
globally asymptotically stable equilibrium if and only if there is precisely one sink.
This occurs in the following cases:E0

0C1s andE0
0C1a (a corner equilibrium is globally

attracting); E2
2C0c, E2

2C0e, and E2
1C0e (an edge equilibrium is globally attracting);

E4
4C0b and E4

3C0e, each with δ = 0 (the central equilibrium is globally attracting);
E4
2C0c with δ = 0 (in this case the central equilibrium is a sink, hence globally

attracting).

Weobserve from (7.2) that themultilinearmodel reduces to thatwith linear isoclines
in Sect. 6 if and only if d1 = d2 = 0 or e22 = 0. Thus, themultilinearmodel of epistasis
coincides with the epistatic model of Zhivotovsky and Gavrilets (1992) if and only if
dominance is absent, when it simplifies to the haploid model (Sect. 6.2), or if epistasis
is absent, when it reduces to the additive model (Sect. 6.1). It is easy to show that if
dominance and epistasis are present, the multilinear model and that of Zhivotovsky
and Gavrilets are different and none is a special case of the other. The reason is that
in the model of Zhivotovsky and Gavrilets there are no additive-by-dominance or

123



Evolutionary dynamics in two-locus models 175

Table 1 Internal equilibrium structures for the multilinear epistasis model

Boundary flow δ = 0 δ = 1 δ = 2 δ = 3 δ = 4

E0
0C1s − 0 − − −

E0
0C1a − 0 − − −

E0
0C2b − − 1 saddle − −

E2
2C0c − 0 − − −

E2
0C2c − 0 − − −

E2
2C0e − 0∗ − − −

E2
0C2e − 0∗ − − −

E2
1C0e − 0 − − −

E2
1C1a′′′ − − 1 saddle − −

E2
1C2e − 0 − 2 saddles −

E4
4C0b 1 sink − 1 saddle − 1 source, 4

saddles

E4
0C4b 1 source − 1 saddle − 1 sink, 4

saddles

E4
3C0e 1 sink − 1 saddle or 1 source

and 2 saddles
− −

E4
1C2e 1 source − 1 saddle or 1 sink

and 2 saddles
− −

E4
2C0c 1 sink or 1

source
− 1 saddle − −

E4
2C1s − 1 sink or source,

1 saddle
− − −

A ‘−’ indicates that this value of δ does not occur, and ‘0’ indicates that the number of internal equilibria is
zero. A comma means ‘and’. ∗ Indicates that this case can be realized by matrices with different extended
boundary flows; thus there are two different equilibrium structures. For the four boundary flows at the
bottom, which admit two different internal equilibrium structures for one value of δ, each of the internal
equilibrium structures is generated by a different, but unique, extended boundary flow

dominance-by-dominance interactions, whereas they occur in the multilinear model
if dominance is present (as follows from Eq. 7.2 and Remark 6.1).

Remark 7.3 (a) The following (extended) boundary flows occur in the multilinear
epistasis model but not in the model of Zhivotovsky and Gavrilets (1992):E2

1C0e,
E2
1C1a′′′, E2

1C2e, E4
3C0e, E4

1C2e, E4
2C1s; E4

4C0b and E4
0C4b (each with δ = 2

and δ = 4) and E4
2C0c with δ = 0 (see Table S2).

(b) The extended boundary flows that occur both in the multilinear model and in
the model of Zhivotovsky and Gavrilets are those occuring in the haploid model
(no edge equilibria), those occuring in the absence of dominance and epistasis
(listed in Corollary 6.3), and E2

2C0c and E2
0C2c, each with δ = 1 (see Table S2).

However, in the latter case the fitness matrices are different.

Finally, we note that the above model was investigated by Bomze et al. (1983) in
the context of Mendelian game dynamics of asymmetric contests. Because then the
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fitness matrix (2.2) is in general not symmetric, periodic solutions may occur. Bomze
(1982) provided a classification of all possible phase portraits.

8 Equal locus effects

If both loci contribute to fitness equally, the 3 × 3 matrix in (6.1) is symmetric, i.e.,

a1 = a2 = a, d1 = d2 = d, and e21 = e12. (8.1)

Under this assumption, which we impose throughout this section, only the nine bound-
ary flows in Fig. 2 occur that have a code ending by an s or b. However, additional
restrictions on the possible phase portraits and equilibrium structures occur as we will
demonstrate now.

The symmetry implies that edge equilibria occur pairwise, i.e., (E24, E34) and
(E12, E13). Equilibria of a pair have the same internal and the same external stability.
Therefore, boundary flows with an odd number of stable corner equilibria give rise to
odd values δ; with an even number of stable corner equilibria δ is even.

Using the symmetry (8.1), we infer from (6.2) that the isoclines take the form

h(x) = a + d + 2e22x + (e12 − 2e22)x2

2d − 2(e12 − 2e22)x − (e11 − 4e12 + 4e22)x2
, (8.2)

where for the ṗ = 0 isocline we have h(p) = q, and for the q̇ = 0 isocline we have
h(q) = p. Therefore, we obtain up to three symmetric internal equilibria. They satisfy
p = q and are the solutions of the cubic equation h(x) = x . In addition, there may
exist a pair of internal equilibria that aremirror images of each other with respect to the
diagonal p = q. Since the internal equilibria are the zeros of the quintic polynomial
(3.7), this pair of equilibria is given by the zeros of a quadratic polynomial.

The following theorem determines the number of internal equilibria for all possible
boundary flows. We recall from Corollary 4.5 that the number of internal equilibria is
odd if and only if δ is even.

Theorem 8.1 Assume (6.2) and (8.1). Possible boundary flows are of class E2n
2mCks,

where n,m ∈ {0, 1, 2}, m ≤ n, and k ∈ {0, 1, 2, 3, 4}. The boundary index sum δ is
odd for boundary-flow classes with an odd number of stable corner equilibria, and δ

is even otherwise. In addition, the following holds:

(a) For the boundary-flow classes E2
2C1s and E2

0C3s, each with δ = 1 or δ = 3, and
for E4

2C1s with δ = 3, the number of internal equilibria can be zero (only for
δ = 1), two, or four.

(b) For the boundary-flow classes E4
4C0b and E4

0C4b, each with δ = 0 or δ = 4, the
number of internal equilibria can be one (only for δ = 1), three, or five.

(c) For the boundary-flow classes E0
0C1s (which has δ = 1), E0

0C2b (which has
δ = 2), E2

2C0s and E2
0C2s (which both have δ = 0 or δ = 2), E4

4C0b and
E4
0C4b with δ = 2, and E4

2C1s with δ = 1, the respective maximum number
of internal equilibria (four or five) cannot be assumed. Any smaller number of
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internal equilibria admitted by Corollary 4.5 (1 or 3 if δ = 0 or δ = 2, 0 or 2 if
δ = 1) can be assumed.

The proof is given in “Appendix A.4”. Without proof (which is simple), we note
that in this symmetric case, δ = −1 can be excluded for E4

2C1s. Therefore, the only
possible values are δ = 1 and δ = 3.

Finally, we briefly treat two special cases. For the model of Gavrilets (1993) men-
tioned in Sect. 6, i.e., Eq. (6.4) with (8.1), the following boundary flows and values δ

can occur: All eight boundary flows from Corollary 6.2 ending with an s or b occur.
For E0

0C1s, E0
0C2b, E2

2C1s, E2
0C3s, E4

4C0b, and E4
0C4b, the boundary index sum is

already uniquely determined (δ = 1, 2, 1, 1, 0, and 0, respectively). For E2
2C0s and

E2
0C2s the case δ = 1 is easily excluded, whence only δ = 0 or δ = 2 are possible.
If the symmetry assumption (8.1) is imposed on the multilinear epistasis model

treated in Sect. 7, the following boundary flows and equilibrium structures occur.
E0
0C1s (δ = 1) and E0

0C2b (δ = 2); in both cases, the equilibrium structure is
unique.

E4
2C1s (δ = 1): both cases (sink and saddle, source and saddle) can be realized.

E4
4C0b and E4

0C4b: each with δ = 0 and δ = 4. δ = 2 cannot occur because this
would require neighboring edge equilibria to differ in their external stability.

Interestingly, there are no equilibrium structures with two edge equilibria in the
multilinear model if loci have equal effects.

9 The symmetric viability model

As already outlined in the Introduction, the so-called symmetric viability model has
received much attention in the literature. One reason is that special cases of it arise
naturally when two diallelic loci determine a quantitative character that is under stabi-
lizing selection toward an intermediate optimum (e.g., Wright 1935, 1952; Hastings
1987; Nagylaki 1989; Gavrilets and Hastings 1993; Bürger and Gimelfarb 1999; Wil-
lensdorfer and Bürger 2003). For a detailed review, consult Bürger (2000, Chap. 6.2).

It has the property that fitnesses of genotypes are invariant under the simultaneous
exchange of A1 with A2 and B1 with B2. Therefore the resulting fitness matrix (2.2)
is centro-symmetric and depends only on four parameters. We shall use the following
parametrization (cf. Nagylaki 1989):

B1B1 B1B2 B2B2

A1A1 r1 + r2 + m r1 − l r1 + r2 − m
A1A2 r2 − l 0 r2 − l
A2A2 r1 + r2 − m r1 − l r1 + r2 + m

. (9.1)

This is equivalent to the most general form, as first introduced by Bodmer and Felsen-
stein (1967). The model studied by Lewontin and Kojima (1960) corresponds to the
special casem = 0. Interestingly, this is also a special case of the multilinear epistasis
model treated in Sect. 7 [by setting a1 = a2 = e11 = e12 = e21 = 0 in (6.1)]. Bodmer
and Parson (1962) assumed r1 = r2, which makes the matrix symmetric, in addition
to being centro-symmetric. Thus, only boundary flows ending with b can be realized.
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The most general models of stabilizing selection (among those referred to above)
require all four parameters in (9.1). However, because the double heterozygote has the
highest fitness and fitness of trait values decays symmetrically with distance from the
optimum, the four parameters have to satisfy certain inequalities (see Nagylaki 1989).

We analyze the general model (9.1). Instead of (p, q) ∈ [0, 1]2, we use the coordi-
nates (x, y) ∈ [−1, 1]2 defined by

p = 1 + x

2
, q = 1 + y

2
. (9.2)

This transforms the system (2.5) into

ẋ = (1 − x2)(r1x + my + lxy2), (9.3a)

ẏ = (1 − y2)(r2y + mx + lyx2), (9.3b)

which will form the basis for the subsequent analysis.
It is immediate that the origin O = (0, 0) is an equilibrium and the dynamics is

point-symmetric with respect to it. In particular, if (x̂, ŷ) is an equilibrium of (9.3),
so is (−x̂,−ŷ), and both have the same eigenvalues because the respective Jacobian
matrices are equal. We observe that the isoclines of (9.3) are in product form ifm = 0,
whence a special case of the multilinear epistasis model emerges. The isoclines are
linear if l = 0.

If the isoclines are not linear, they are given by

x = ψ1(y) = −my

r1 + ly2
, (9.4a)

y = ψ2(x) = −mx

r2 + lx2
. (9.4b)

Theorem 9.1 (a) The central, or symmetric, equilibrium O exists always.
(b) If l �= 0 and r1r2 �= 0, the following pairs of unsymmetric internal equilibria may

exist:

y1,2 = ±

√
√
√
√−r1 − m

√
r1
r2

l
, x1,2 =

√
r2
r1

y1,2, (9.5a)

y3,4 = ±

√
√
√
√−r1 + m

√
r1
r2

l
, x3,4 = −

√
r2
r1

y3,4. (9.5b)

In particular, the following holds:

(i) If sgn r1 = sgn r2 = sgn l, then at most one of these pairs is admissible.
(ii) If sgn r1 = sgn r2 = − sgn l, then both pairs may be admissible.
(iii) If sgn r1 = − sgn r2, then O is the only internal equilibrium.

The proof is given in “Appendix A.5.1”.
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It is straightforward to compute the Jacobian of (9.3). At an internal equilibrium
(x̂, ŷ) it simplifies to

J (x̂, ŷ) =
(

(1 − x̂2)(r1 + l ŷ2) (1 − x̂2)(m + 2l x̂ ŷ)
(1 − ŷ2)(m + 2l x̂ ŷ) (1 − ŷ2)(r2 + l x̂2)

)

; (9.6)

cf. Lemma 3.2. Evaluation at the central equilibrium O yields

JO =
(
r1 m
m r2

)

. (9.7)

From the Routh–Hurwitz criterion we infer immediately:

Lemma 9.2 Let

ρ = det JO = r1r2 − m2, (9.8a)

tr JO = r1 + r2. (9.8b)

Then O is

(a) a saddle with index −1 if ρ < 0,
(b) a sink with index +1 if ρ > 0 and tr JO < 0,
(c) a source with index +1 if ρ > 0 and tr JO > 0.

Note that the sign of tr JO can be determined immediately from the fitness scheme
(9.1). If the fitness of the double heterozygous genotpye A1A2B1B2 exceeds the
arithmetic mean fitness of, for instance, the homozygous genotypes Ai Ai B1B1 and
Ai Ai B2B2 (i = 1 or 2), then tr JO < 0.

Remark 9.3 (a) Lemma 9.2 settles the internal equilibrium structure for the case
l = 0, in which O is the only internal equilibrium.

(b) Let r1r2 = 0. If r1 = r2 = 0, the equilibrium O is a saddle, and there exists
either no other internal equilibrium (if |m/ l| > 1) or the curve of equilibria
y = −m/(lx), yielding a degenerate flow. If r1 = m = 0, then y = 0 is a line of
equilibria, hence again degenerate. If r1 = 0 and m �= 0 and l �= 0, then O is the
unique internal equilibrium, and it is a saddle.

For the remainder of this section, we assume l �= 0 and r1r2 �= 0. As a corollary to
the above theorem, we obtain

Corollary 9.4 If sgn r2 = − sgn r1, then O is the unique internal equilibrium. It is a
saddle point and δ = 2.

Proof We already know from Theorem 9.1 that O is unique. If sgn r2 = − sgn r1,
then ρ < 0 and O is a saddle. Since the index of a saddle point is −1, Theorem 4.4
shows that the boundary index sum is δ = 2. �	

Here is the main result of this section.

Theorem 9.5 (a) The internal equilibrium structures that can occur in the symmetric
viability model are given in Table 2.
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Table 2 Internal equilibrium configurations for the symmetric viability model

Boundary flow δ = 0 δ = 2 δ = 4

ρ < 0 ρ > 0 ρ < 0 ρ > 0 ρ < 0 ρ > 0

E0
0C2b − − 1 saddle 1 sink or sourceb ,

2 saddles
− −

E2
2C0c 1 saddle, 2

sinks
1 sink 1 saddle 1 sink or sourcea ,

2 saddles
− −

E2
0C2c 1 saddle, 2

sources
1 source 1 saddle 1 sink or sourcea ,

2 saddles
− −

E4
4C0b 1 saddle, 2

sinks
1 sink 1 saddle 1 source, 2 saddles 3 saddles 1 source, 4

saddles

E4
0C4b 1 saddle, 2

sources
1 source 1 saddle 1 sink, 2 saddles 3 saddles 1 sink, 4

saddles

E4
2C0c × 1 sink or 1

sourceb
1 saddle 1 sink or sourceb ,

2 saddles
− −

A ‘−’ indicates that this value of δ does not occur (see Table S1) and ‘×’ indicates that this combination
of ρ and δ cannot occur. A comma means ‘and’. a Whether O is a sink or a source needs to be determined
from the sign of r1 + r2. b The stability of O switches under flow reversal, which (in these classes) does
not alter the extended boundary-flow class

(b) The stability of the boundary equilibria can be inferred from the boundary flow
type En

mCk as follows:
(b1) The number of asymptotically stable corner equilibria is k.
(b2) The number of asymptotically stable edge equilibria is min{m, δ}.

The proof is given in “Appendix A.5.2”. Examples of all possible flows can be
found in Section S1 of the SI.

From Table 2, we infer immediately that O is the unique internal equilibrium if
either δ = 0 and ρ > 0 or if δ = 2 and ρ < 0. In fact, the table shows that the number
of internal equilibria can always be determined from the extended boundary flow and
ρ.

Nagylaki (1989) identified all equilibrium structures and phase portraits for the spe-
cial case of the symmetric viability model that arises from stabilizing selection toward
an optimum situated on the genotypic value of the double heterozygote. He admitted
arbitrary functions decaying from the optimummonotonically and symmetrically, and
he assumed absence of linkage equilibrium. Thus, his model is a special cases of (9.3)
(after transformation between (p, q) and (x, y) coordinates). He proved that only the
two phase portraits forE0

0C2b can occur and four of the five listed forE2
2C0c (if δ = 2

and ρ > 0, then O is a sink in his model).

10 Discussion

The analysis of the classical two-locus two-allele selection-recombination model is
notoriously difficult. As outlined in the Introduction, despite considerable efforts only
special cases are well understood, for instance, the models with additive or multi-
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plicative fitnesses. We investigated a simplification of the full two-locus two-allele
model (2.3) by assuming that the two loci are independent, i.e., in linkage equilib-
rium. This simplified model is given by (2.5) and, essentially, goes back to Wright
(1942), although special cases had been studied earlier (Haldane 1931; Wright 1935).

The model (2.5) is not only more accessible to mathematical analysis than (2.3), it
is also of biological relevance because it has been derived as the weak-selection limit
of the full model. Therefore, it provides a good approximation if selection is not too
strong and the two loci are unlinked or only weakly linked. Indeed, under the non-
degeneracy assumption (H), a theorem by Nagylaki et al. (1999) demonstrates that
in the full model (2.3) and for sufficiently weak selection relative to recombination,
every trajectory converges to an equilibrium point, and every such equilibrium point
is a perturbation of an equilibrium point of the weak-selection limit (2.5). Throughout
this paper, we imposed condition (H).

Importantly, mean fitness is a strict Lyapunov function for (2.5). Hence, every
solution converges to an equilibrium point (Sect. 2). This is not always the case in the
full model, neither for (2.3) nor its continuous-time analog. For each the existence of
stable limit cycles was demonstrated (Akin 1979, 1982; Hastings 1981b; Hofbauer
and Iooss 1984) if selection and recombination are of similar strength. For the weak-
selection limit (2.5), Moran (1963) showed that, in addition to the eight possible
boundary equilibria, there may exist up to five internal equilibria, and three can be
simultaneously stable (Theorem 3.1). For the full model (2.3), the maximum number
of equilibria is 15, seven of them being internal equilibria. This is an immediate
consequence of a result of Altenberg (2010), who proved the conjecture of Feldman
andKarlin (1970) that themaximumnumber of equilibria in a selection-recombination
model with n gametes is 2n − 1.

10.1 Boundary flows, extended boundary flows, and phase portraits

Although we could not fully accomplish our goal of deriving and classifying all
possible equilibrium structures and (equivalence classes of) phase portraits of the
weak-selection limit (2.5), we identified the extended boundary flows and determined
all equilibrium structures for several important types of fitness patterns. These results
yield interesting insights into the role of epistasis and dominance in generating equi-
librium structures.

For general fitnesses, we identified all possible boundary flows, i.e., flows on
the boundary of the state space [0, 1]2 (Fig. 1). The four corners correspond to the
monomorphic equilibria. The dynamics on the edges correspond to the single-locus
dynamics when the other locus is fixed for one or the other allele. There are 42 (topo-
logically) different boundary flows or, more precisely, boundary-flow classes because
boundary flows that are obtained by relabeling loci or alleles are identified (Sect. 4,
Fig. 2). Of these 42 boundary flows, there are 16 pairs for which a member of a pair
is obtained by reversing the flow of the other member. The other 10 boundary-flow
classes are self inverse under flow reversal.

These boundary flows are by far not sufficient to describe all possible phase por-
traits, i.e., the topological structure of the flow on [0, 1]2. As an intermediate step, we
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studied the extended boundary flows (Sect. 4.2). They describe the dynamics in a small
neighborhood of the boundary, in particular, the external stability of the edge equilib-
ria. A key ingredient for deriving the possible equilibrium structures and phase portaits
on the full state space [0, 1]2 from a given extended boundary flow is the boundary
index sum δ (defined below Eq. 4.1). The possible values of δ are constrained by
Lemma 4.1, and Theorem 4.2 shows that for specific boundary flows additional val-
ues δ can be excluded. Thus, we are still left with 190 potentially possible extended
boundary flows. The most important tools for drawing conclusions about the internal
equilibrium structure are Theorem 4.4, which is a special case of a more general index
theorem (Hofbauer 1990), and Corollary 4.5. Overall, we showed existence of 185
extended boundary flows by providing a fitness matrix and a phase portrait generating
such an extended boundary flow (SI, Figs. S1–S5, Table S1).

For a given boundary-flow class and a value of δ, there may still exist more than
one extended boundary flow yielding this boundary-flow class and this δ. Moreover an
extended boundary flowmay be compatible with more than one equilibrium structure,
and an equilibrium structure may be generated by non-equivalent phase portraits (see
Sect. 4.3 and Table S1, as well as the phase portraits in Section S1). Apart from
characterizing all possible equilibrium structures or even all possible phase portraits,
also more specific problems remain unresolved. For instance, can a sink and a source
in the interior coexist? There are also five extended boundary flows, all with δ = −1,
whose existence we could not exclude. We conjecture that they do not exist (see
Sect. 4.3).

10.2 Permanence

An important notion in modeling biological systems is permanence. This is a general-
ization of the notion of a protected polymorphism, which is mainly used for one-locus
two-allelemodels in (spatially) structured populations. Loosely speaking, permanence
means that no type or species will be lost because its frequency will remain above a
certain threshold. For our model (2.5), this implies that a permanent system can exhibit
only 14 types of extended boundary flows (Corollary 4.7), all having δ = 0. At least
one of these extended boundary flows (E4

4C0b) can be generated by permanent flows
with one, three, or five internal equilibria (Fig. S1d, panels 4, 5, 6). Thus, the phase
portrait is not uniquely determined by the extended boundary flow.

For every given fitness matrix generating one of the 14 boundary-flow classes of
Corollary 4.7 and parametrized as in (6.1), a sufficiently strong increase of the epis-
tasis parameter e22 yields a permanent flow. This is a consequence of Corollaries 4.7
and A.1, since in the parametrization (6.1), e22 is the only parameter in m14 that is
independent of the given boundary flow.

10.3 Marginal overdominance or underdominance

In Sect. 5, we assumed that each locus exhibits either marginal overdominance at
every point (p, q) or marginal underdominance; see (3.11) and Lewontin and Kojima
(1960). This is equivalent to having continuous isoclines (3.4) that map [0, 1] into
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(0, 1). If there is marginal overdominance at both loci, thenE4
4C0b is the only possible

boundary-flow class and no boundary equilibrium is saturated. Therefore, the extended
boundary flow is uniquely determined, δ = 0, and the system is permanent. This is
compatible with having one, three, or five internal equilibria, of which one, two, or
three, respectively, are sinks (Theorem 5.3). We could find phase portraits with one
or three internal equilibria, but not with five. However, we could not prove that five
internal equilibria cannot be realized. AlthoughMoran’s (1963) example (Figure S1d,
panel 6) has boundary-flow classE4

4C0b and δ = 0, it does not satisfy the assumptions
of Theorem 5.3.

A result analogous to Theorem 5.3 holds if both loci exhibit marginal underdomi-
nance because then every flow can be obtained by flow reversal. If one locus exhibits
marginal overdominance and the other marginal underdominance, then the boundary-
flow class is E4

2C0c, there exists a unique internal equilibrium, which is a saddle, and
the two internally stable edge equilibria are linearly stable (Theorem 5.6). Hence, the
phase portrait is uniquely determined by the boundary-flow class.

Table S2 lists the extended boundary flows and indicates by which of the special
fitness patterns they can be generated.

10.4 Linear isoclines, or additive-by-additive epistasis

A particularly interesting special class arises if linear isoclines are posited (Sect. 6).
With the fitness parameterization (6.1) and the assumption (6.3), the dynamics (2.5)
simplifies to (6.4). This type of model has been studied independently, in different
generality and in different contexts, by Schuster et al. (1981) and by Zhivotovsky and
Gavrilets (1992) and Gavrilets (1993); see Sect. 6 for a more detailed appraisal. In
population genetics terms, (2.5) has linear isoclines if and only if epistatic interactions
are absent or there are only additive-by-additive interactions. The assumption of linear
isoclines rules out 16 of the 42 possible boundary flows and greatly reduces the number
of possible phase portraits because there can be at most one internal equilibrium. Also
the stability of the internal equilibrium, if it exists, is easily determined. Corollary 6.2
lists all possible flows. In particular, the phase portraits of (6.4) are uniquely determined
by the boundary flow and by δ. For 12 boundary flows, however, δ may assume more
than one value.

Corollary 6.2 shows also that a stable internal equilibrium cannot exist unless there
is at least one internally stable edge equilibrium, i.e., there is overdominance in at least
one single-locus boundary system. Analogously, an internal source can occur only if
there is underdominance in at least one single-locus boundary system.

As discussed in Sect. 6.1 on the additive model, in the absence of epistasis all
trajectories of the full model (2.3) converge to the linkage-equilibrium manifold if
the recombination rate is positive. Therefore, the phase portraits derived for (2.5) are
representative for the full model. In addition, every possible boundary flow determines
the phase portrait uniquely (Corollary 6.3).

Another important special case with linear isoclines is the haploid selection model
(6.6). Since there is no dominance, the only possible boundary flows are E0

0C1s,
E0
0C1a, and E0

0C2b. As in the additive case, the phase portraits of (6.6) are uniquely
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determined by the boundary flows: in the first two cases there is no internal equilib-
rium, in the third case there is a saddle. The weak-selection limit (6.6) of the haploid
model captures all possible equilibrium structures and phase portraits of the full hap-
loid model with linkage disequilibrium, at least for continuous time (Bank et al. 2012
and Sect. 6.2).

10.5 Multilinear epistasis

The so-called multilinear model of epistasis was introduced by Hansen and Wagner
(2001). It assumes that the effects of gene substitutions due to changes in the genetic
background can be described by a linear transformation (Sect. 7). In this model, all
types of epistatic interactions can occur. In the two-locus case, these are additive-
by-additive, additive-by-dominance, and dominance-by-dominance interactions (cf.
Remark 6.1). Interestingly, the multilinearity assumption (7.1) turns out to be equiv-
alent to assuming that the isoclines are in product form; see (7.3). Therefore, they are
composed of vertical or horizontal straight lines. In the absence of dominance, the
multilinear model and that of Zhivotovsky and Gavrilets (1992) coincide. In this case,
both models reduce formally to the haploid model (6.6). Otherwise, they differ. In fact,
up to five internal equilibria may occur in the multilinear model. It is also possible to
have overdominance on every edge, i.e., in each marginal one-locus system, but no
stable internal equilibrium (Table 1, boundary flow E4

4C0b with δ = 4). All possible
equilibrium structures could be identified (Theorem 7.1). Seven of the 16 possible
boundary flows determine the phase portrait uniquely.

10.6 Equivalent loci

In Sect. 8, we briefly treat the equilibrium structures generated by symmetric fitness
matrices. This is equivalent to assuming that both loci are equivalent, an assump-
tion made in many investigations. Only the nine boundary flows of Fig. 2 ending
with an s or b can occur. The symmetry properties of this model greatly simplify
its analysis, so that for every possible boundary flow the possible values of δ and
the possible number of internal equilibria can be determined (Theorem 8.1). Moran’s
(1963) example of a flow with three stable internal equilibria is symmetric. Thus,
the assumption of symmetry reduces the complexity of the two-locus model only in
certain aspects.

10.7 The symmetric viability model

As indicated in the Introduction and in Sect. 9, the symmetric viability model may
be one of the best studied dynamical systems in population genetics. Although it
depends on only four parameters, its complexity seems to preclude a comprehensive
mathematical analysis. Even the subclass arising from models of stabilizing selection
on a quantitative trait toward an intermediate optimum is well understood only for
special cases, such as quadratic or Gaussian stabilizing selection (Bürger 2000, Chap.
6.2; Willensdorfer and Bürger 2003).
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The weak-selection limit, Eq. (9.3) in our parameterization (9.1) and in the trans-
formed coordinates, is still sufficiently complex to admit a wide variety of equilibrium
structures and phase portraits. Nevertheless, it is simple enough to admit the identifi-
cation of all possible equilibrium structures (Theorem 9.5 and Table 2). This requires
knowledge of the boundary-flow class (by definition, the types ending with b or c
occur), the boundary index sum, and the sign of two simple compound parameters
(ρ = r1r2 − m2 and r1 + r2).

Theorem 9.5 shows that the maximum number of internal equilibria of (9.3) is
five and the maximum number of stable internal equilibria is two. This is different
in the full two-locus symmetric viability model with linkage disequilibrium. Then
the maximum number of internal equilibria is seven (Feldman and Karlin 1970), and
four can be simultaneously stable (Hastings 1985). Interestingly, the same maximum
numbers of internal and of stable internal equilibria occur in the special case arising
from Gaussian stabilizing selection on a quantitative trait (Willensdorfer and Bürger
2003). In the full two-locus model, three of the seven internal equilibria are so called
symmetric equilibria whose gamete frequencies satisfy x1 = x4 and x2 = x3. In the
weak-selection limit, these symmetry conditions collapse to p = 1

2 and q = 1
2 or, in

the (x, y) coordinates of Sect. 9, to x = y = 0. Thus, in the weak-selection limit,
the manifold defined by x1 = x4 and x2 = x3 collapses to the single point (x, y) =
(0, 0). The four unsymmetric equilibria determined by Feldman and Karlin (1970) for
the full model correspond to the four unsymmetric internal equilibria determined by
Theorem 9.1.

10.8 Multiplicative fitnesses

The readermay have noticed that we did not considermultiplicative fitnesses, although
the multiplicative viability model has received great attention in the literature. This
model has always been treated in discrete time because then multiplicate fitnesses
have an immediate biological meaning. In contrast to the additive viability model, it
has the property that the linkage-equilibrium manifold (D = 0) is invariant under
the map (2.3). Also in contrast to the additive model, solutions do not necessarily
approach linkage equilibrium, and stable equilibria with D �= 0 may exist. By per-
forming the weak-selection limit, multiplicative fitnesses become additive because
(1+ εa)(1+ εb) ≈ 1+ ε(a + b). Thus, the weak-selection limits of the additive and
the multiplicative model coincide.

10.9 Inferring stable two-locus polymorphisms

An interesting, old question is whether the maintenance of a stable two-locus poly-
morphism requires some form of overdominance at the individual loci. Kojima (1959)
showed for independent loci, i.e., our model (2.5), that marginal overdominance
(3.11) on both loci at the equilibrium point is necessary for the maintenance of a
stable two-locus polymorphism. However, this condition is not sufficient (Corol-
lary 3.3). For the full two-locus model, Hastings (1982) showed that for a small
range of recombination rates stable internal equilibria (sinks) may display marginal
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underdominance. Theorem 5.3 and Fig. S1d (panel 5) show that unstable internal equi-
libria may exist even if both loci display marginal overdominance on the whole state
space.

A simpler and more general question is whether inferences about existence and
stability of internal equilibria can be drawn from knowledge of the boundary flow.
In general, the answer is negative. Without further restrictions on the fitness scheme,
(2.2) or (6.1), there is no boundary flow that determines the phase portrait uniquely.
The boundary-flow class E0

0C2b is the only one for which an internal equilibrium
exists always. All other boundary-flow classes can have δ = 1 and all can be realized
without an internal equilibrium (Figs. S2a – S2k). It is even possible to maintain an
internal sink if no edge equilibrium exists, i.e., if all four marginal one-locus systems
display intermediate dominance. Indeed, all three boundary-flow classes E0

0 admit an
internal sink (Fig. S2a, panels 2 and 4; Fig. S3a, panel 2), but none of our special
fitness patterns does so.

In the model with linear isoclines, a stable internal equilibrium can occur only if
there is overdominance at least at two edges (boundary flowsE2

2C0c,E2
2C0s,E3

3C0e).
Overdominance at all four edges (E4

4C0b) is sufficient for the existence of an internal
sink (Corollary 6.2). For multilinear epistasis, which admits not only additive-by-
additive but also additive-by-dominance and dominance-by-dominance interactions
(though not in their most general form), an internal sink can exist only if there are
four edge equilibria. However, for each of the six resulting boundary flows, there may
exist either an internal sink or an internal source (Theorem 7.1). For the symmetric
viabilitymodel, at least twoedge equilibria are necessary for the existenceof an internal
sink. However, for each of the five resulting boundary flows, there may exist either
an internal sink or an internal source (Theorem 9.5). Nevertheless, for the models
with linear isoclines (i.e., only additive-by-additive epistasis) and with multilinear
epistasis, many boundary-flow classes determine the equilibrium structure uniquely
(Corollary 6.2 and Theorem 7.1).

Our treatment of special fitness patterns is not exhaustive. For instance, Hastings
and Hom (1990) determined the equilibrium structure of a model with stabilizing
selection toward an optimum with arbitrary position by assuming absence of linkage
disequilibrium. More recently, Feldman and Puniyani (2006) examined an extension
of the Lewontin–Kojima version of the full two-locus symmetric viability model, in
which substitutions at locus A do not depend on the background alleles at locus B,
but substitutions at locus B depend on the background locus A. The boundary flow
classes that arise in this framework are E2

2C0e, E2
1C0e, E2

1C2e, E4
4C0b, E4

3C0e,
and E4

2C0c.
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A Appendix

A.1 The external eigenvalues

First we evaluate the Jacobian for the system (2.5) at each of the edges and obtain
an interesting connection between the external eigenvalues and the marginal fitnesses
(3.5) and (3.6):

λ34 = mA1A2 − mA2A2 , (A.1a)

λ12 = mA1A2 − mA1A1 , (A.1b)

λ24 = mB1B2 − mB2B2 , (A.1c)

λ13 = mB1B2 − mB1B1 . (A.1d)

Here, λi j is the external eigenvalue at the boundary that contains Ei j . On each edge
of the unit square one allele is missing, and the marginal fitnesses of the one-locus
genotypes that contain the present allele define the external eigenvalue.

The eigenvalues λi j evaluated at the equilibria Ei j are

λ̂34 = 1

ξ234

[
(m13 − m33)(m34 − m44)

2 + 2(m14 − m34)(m34 − m44)(m34 − m33)

+ (m24 − m44)(m34 − m33)
2
]
, (A.2a)

λ̂12 = 1

ξ212

[
(m13 − m11)(m12 − m22)

2 + 2(m14 − m12)(m12 − m22)(m12 − m11)

+ (m24 − m22)(m12 − m11)
2
]
, (A.2b)

λ̂24 = 1

ξ224

[
(m12 − m22)(m24 − m44)

2 + 2(m14 − m24)(m24 − m44)(m24 − m22)

+ (m34 − m44)(m24 − m22)
2
]
, (A.2c)

λ̂13 = 1

ξ213

[
(m12 − m11)(m13 − m33)

2 + 2(m14 − m13)(m13 − m33)(m13 − m11)

+ (m34 − m33)(m13 − m11)
2
]
, (A.2d)

where ξi j = 2mi j − mii − m j j for (i, j) ∈ {(1, 2), (1, 3), (2, 4), (3, 4)}. The sign of
λ̂i j determines whether Ei j is (strictly) saturated or not. Therefore, we omit the leading
positive factor in many computations in the main text as well as in the appendix.

Corollary A.1 For sufficiently large |m14| the external eigenvalue λ̂i j has the same
sign as m14.

Proof This holds because m14 shows up in every λ̂i j at the same position and is
independent of the given boundary flow and the two other factors multiplied with it,
which have always the same sign if the corresponding edge equilibrium is admissible.

�	
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A.2 Proof of Theorem 4.2

(a) Since δ = −2 can occur only for E4
2C0c, it is sufficient to exclude this case.

The boundary flow E4
2C0c has four equilibria on the boundary edges. The upper

(E12) and the lower (E34) one are internally stable, while the two others (E24, E13) are
internally unstable. We assume that E34 and E12 are not saturated, whereas the other
two are. Then δ = −2. Now, we derive the conditions that the viability parameters
have to satisfy. λ̂34 and λ̂12, given by (A.2), need to be positive, i.e.,

(m13 − m33)(m34 − m44)
2 + 2(m14 − m34)(m34 − m44)(m34 − m33)

+ (m24 − m44)(m34 − m33)
2 > 0, (A.3)

(m13 − m11)(m12 − m22)
2 + 2(m14 − m12)(m12 − m22)(m12 − m11)

+ (m24 − m22)(m12 − m11)
2 > 0, (A.4)

whereas λ̂24 and λ̂13 need to be negative, i.e.,

(m12 − m22)(m24 − m44)
2 + 2(m14 − m24)(m24 − m44)(m24 − m22)

+ (m34 − m44)(m24 − m22)
2 < 0, (A.5)

(m12 − m11)(m13 − m33)
2 + 2(m14 − m13)(m13 − m33)(m13 − m11)

+ (m34 − m33)(m13 − m11)
2 < 0. (A.6)

For λ̂34 and λ̂12, the first and the third term are negative because there is underdom-
inance at these edges. Therefore, the second term must be positive, otherwise the
eigenvalues would be negative for all choices of parameters. For λ̂24 and λ̂13, the
signs of the first and third terms are positive and this implies a negative second term.
Therefore, we obtain the following inequalities:

m12,m34 < m14 < m24,m13. (A.7)

From the boundary flow of E4
2C0c one can read off the relations

m24 < m12,m34 and m13 < m12,m34, (A.8)

which yields the desired contradiction.
(b)–(d) These proofs are similar to the one above and left to the reader.

A.3 Proof of Theorem 7.1

First we investigate when ϕi (x) = 0 has zero, one, or two solutions in (0, 1). From
(7.3c) we find

ϕi (0) = (a1 + d1)(a2 + d2), (A.9a)
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ϕi (1) = (a1 + d1)(a2 + d2) + 2ai e22, (A.9b)

ϕ′
i (xi ) = 0 if and only if xi = ai + di

2di
, (A.9c)

ϕi

(
ai + di
2di

)

= (a1 + d1)(a2 + d2) + (ai + di )2e22
2di

, (A.9d)

where we recall from (7.4) that p̃ = a1+d1
2d1

and q̃ = a2+d2
2d2

. As a simple consequence
we obtain:

Lemma A.2 The number of zeros in (0, 1) of the isocline ϕi is

(a) one if and only if
sgn ϕi (1) = − sgn ϕi (0); (A.10)

(b) two if and only if the following three conditions hold:

sgn ϕi (1) = sgn ϕi (0), (A.11a)

0 <
ai + di
2di

< 1, i.e., |di | > ai , (A.11b)

sgn ϕi

(
ai + di
2di

)

= − sgn ϕi (0); (A.11c)

(c) zero if neither (A.10) nor (A.11) are fulfilled.

Obviously, (b) requires 0 < q̃ < 1 if i = 1, and 0 < p̃ < 1 if i = 2.
Lemma A.2 has a number of important consequences:

Remark A.3 (i) Because ṗ = 0 if and only if p = p̃ or ϕ2(q) = 0, the flows on the
opposite edges q = 0 and q = 1 are equivalent if and only if ϕ2(q) = 0 has zero
or two solutions in (0, 1) which, in turn, is equivalent to ϕ2(0) and ϕ2(1) having
the same sign. Otherwise, one is the flow reversal of the other. An analogous
statement holds for the flows on the opposite edges p = 0 and p = 1.

(ii) If ϕ2(q) = 0 has two solutions, q1 and q2, then sgn ṗ(p, q) = − sgn ṗ(p, 0)
= − sgn ṗ(p, 1) for every q ∈ (q1, q2). This applies in particular to q̃ . Therefore,
the edge equilibrium E12 = (1, q̃) is externally stable if and only if ṗ < 0 on
the edges q = 0 and q = 1 for p close to 1. An analogous statement holds if
ϕ1(p) = 0 has two solutions.

(iii) If ϕ2(q) = 0 has no solutions in (0, 1), then ṗ does not change sign in small
neighborhoods of p = 0 and of p = 1. Therefore, E12 is externally unstable if
and only if C1 (or C2) is unstable on the edge q = 1 (q = 0).

(iv) If there is (precisely) one pair of edge equilibria, the number of intersection points
of ϕ1(p) = 0 and ϕ2(q) = 0 in (0, 1)2 can be 0, 1, or 2. Since in this case the
equilibrium ( p̃, q̃) does not exist, the number of internal equilibria can be only
0, 1, or 2.

(v) If there are four edge equilibria, the number of intersection points of ϕ1(p) = 0
and ϕ2(q) = 0 in (0, 1)2 can be 0, 1, 2, 4, and the number of internal equilibria
can be 1, 2, 3, or 5.
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In the main text, we already showed that edge equilibria occur only in pairs at
opposite edges. This excludes all boundary flows of type E1

mCk and E3
mCk , but also

some others (see below).

Boundary flows with no edge equilibria Because opposite edge equilibria occur
pairwise, they occur if and only if dominance is intermediate at both loci, i.e., if and
only if −ai < di < ai for i = 1 and i = 2. The possible boundary flows are E0

0C1s,
E0
0C1a, and E0

0C2b. By Lemma A.2b, there is at most one solution of ϕi (x) = 0 in
(0, 1), whence the number of internal equilibria is zero or one. Because one internal
equilibrium can occur only if ϕ1(p) = 0 and ϕ2(q) = 0 intersect, which implies that
the flows at opposite edges have different direction, the boundary flow E0

0C2b is the
only in this class with an internal equilibrium. Because δ = 2, it is a saddle. This
proves statement (a) of Theorem 7.1 for the top three boundary flows in Table 1.

Boundary flows with one pair of edge equilibria Without loss of generality we
assume that the pair E12 = (1, q̃) and E34 = (0, q̃) exists, and −a1 < d1 < a1.
Although not necessary, for the ease of the argument we compute the eigenvalues at
the edge equilibria. Recall from (3.3) and (A.2) that the internal eigenvalue at the edge
equilibrium Ei j is denoted by μi j and the external by λ̂i j . We obtain

μ34 = (a2 − d2)q̃, λ̂34 = a1 + d1 + e22q̃, (A.12a)

μ12 = ϕ1(1)

ϕ1(0)
μ34, λ̂12 = d1 − a1

d1 + a1
λ̂34. (A.12b)

Therefore, E34 and E12 have the same internal stability if and only if ϕ1(0) and ϕ1(1)
have the same sign. They have different external stability because there is intermediate
dominance at the other locus.

As a consequence, since there is only one pair of edge equilibria, their total con-
tribution to the boundary index sum δ is either −1 or 1. These considerations restrict
the possible boundary flows and boundary index sums δ to (cf. Fig. 2, Lemma 4.1,
Theorem 4.2): E2

2C0c and E2
2C0e, their flow reversals E2

0C2c and E2
0C2e, E2

1C0e (all
with δ = 1), E2

1C1a′′′ with δ = 0 or δ = 2, and E2
1C2e with δ = 1 or δ = 3.

Because the internal equilibria can result only from intersection points ofϕ1(p) = 0
and ϕ2(q) = 0, there are two internal equilibria if and only if

sgn ϕ2(q̃) = − sgn ϕ2(1) = − sgn ϕ2(0) (A.13a)

and
sgn ϕ1(1) = − sgn ϕ1(0) ; (A.13b)

cf. Remark A.3(ii), (iv). (A.13) can be satisfied only if the opposite edge equilibria
have different internal stability and if the flows on the other pair of edges have different
direction. As a consequence of (A.13), the flows E2

2C0c, E2
2C0e, E2

0C2c, E2
0C2e, and

E2
1C0e, which all have δ = 1, cannot have an internal equilibrium. Thus, in all these

cases the phase portrait is uniquely determined by the boundary flow and statement
(a) of Theorem 7.1 is proved for these five boundary flows.
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The boundary flow E2
1C1a′′′ with δ = 0 can be excluded, as follows. Concordant

with Fig. 2, we assume that E12 is internally unstable and E34 is internally stable. Then
δ = 0 requires that E12 is externally stable and E34 is externally unstable. Therefore,
(A.12b) implies sgn ϕ1(0) = − sgn ϕ1(1). To obtainE2

1C1a′′′, we need ṗ > 0 ifq = 0,
and ṗ < 0 if q = 1. These assumptions are equivalent to the following conditions:
−a1 < d1 < a1, and d2 > a2 > 0 and sgn ϕ2(1) = − sgn ϕ2(0). Therefore, we have
ϕ1(0) = ϕ2(0) = (a1 + d1)(a2 + d2) > 0 and external instability of E34 requires
λ̂34 > 0. Since we also need ϕi (1) = (a1 + d1)(a2 + d2) + 2ai e22 < 0 for i = 1 and
i = 2, we obtain a contradiction because, by (A.12a), e22 had to satisfy

− 2d2(a1 + d1)

a2 + d2
< e22 < − (a1 + d1)(a2 + d2)

2a2
. (A.14)

This is impossible because the expression on the left exceeds that on the right. There-
fore, only δ = 2 is possible and the internal equilibrium is a saddle. This proves
statement (a) of Theorem 7.1 for the boundary flow E2

1C1a′′′.
Finally, we treat the only remaining boundary flow, E2

1C2e. This has either zero
or two internal equilibria. Obviously, if δ = 3, there must be two internal saddles.
If δ = 1, two internal equilibria can be excluded because this would require that the
internally unstable edge equilibrium be also externally unstable, which is impossible
by the argument in (ii) above. This completes the proof of statement (a) of Theorem 7.1
for all boundary flow with two edge equilibria.

Boundary flows with two pairs of edge equilibria Since there are two pairs of
opposite edge equilibria, the central equilibrium ( p̃, q̃) exists, and opposite equilibria
have the same external stability by (A.12) and its analog for the other locus. Therefore,
the total contribution of the edge equilibria to the boundary index sum δ is −4, −2, 0,
2, or 4. These considerations restrict the possible boundary flows and boundary index
sums δ to (Fig. 2, Lemma 4.1, Theorem 4.2): E4

4C0b with δ = 0 or δ = 2 or δ = 4;
E4
3C0e with δ = 0 or δ = 2; their flow reversals E4

0C4b and E4
0C4b with the same

values of δ; E4
2C0c with δ = 0 or δ = 2; and E4

2C1s with δ = 1.
From Lemma A.2(b) we infer that ϕ1(p) and ϕ2(q) can have four intersection

points in (0, 1)2 only if at each locus their is either overdominance at both edges, or
underdominance at both edges (by Remark A.3(i), the flows on opposite edges are
equivalent if there are four intersection points). If there is overdominance at both loci
(di > ai for i = 1, 2), a simple calculation shows that there are four intersection
points if and only if

− (a1 + d1)(a2 + d2)

2ai
< e22 < −2di (a1 + d1)(a2 + d2)

(ai + di )2
for i = 1, 2. (A.15)

It is easily shown that this condition on e22 can be satisfied for every choice of |di | > ai .
If there is underdominance at both loci (di < −ai for i = 1, 2), the condition for

four admissible intersection points is again (A.15). If there is overdominance at one
locus and underdominance at the other, then ϕi (0) < 0 for i = 1, 2. This leads to

a contradiction with the requirement ϕi

(
ai+di
2di

)
> 0 (A.11c), which is equivalent to
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e22
(ai+di )2

2di
> −(a1 +d1)(a2 +d2), because the left-hand side assumes different signs

for i = 1 and i = 2, whereas the right-hand side is positive.
Therefore, five internal equilibria can occur only for the boundary flow E4

4C0b and
its flow reversal E4

0C4b. For all other equilibrium structures with four edge equilibria,
the number of internal equilibria is at most three by Remark A.3(v).

The eigenvalues of the central equilibrium ( p̃, q̃) are easily calculated and can be
written as

ν1 = a1 − d1
2d1(a2 + d2)

ϕ2(q̃) and ν2 = a2 − d2
2d2(a1 + d1)

ϕ1( p̃). (A.16)

The external eigenvalues of the edge equilibria are obtained from (A.12) and its anal-
ogon for the second locus.

For the boundary flow E4
4C0b, the number of intersection points of ϕ1(p) = 0 and

ϕ2(q) = 0 can be only zero or four because the flows on opposite edges are equivalent.
Therefore, the number of internal equilibria can be only one or five. If there are five,
then ( p̃, q̃) is a source (by LemmaA.2b and because ϕi (0) > 0) and all edge equilibria
are externally stable. Therefore, δ = 4 and the other internal equilibria are saddles.
If ( p̃, q̃) is the only internal equilibrium, it is a saddle if δ = 2, and it is globally
asymptotically stable if δ = 0. All these cases can be realized (Table S3). This proves
statement (a) of Theorem 7.1 for E4

4C0b and its reversed boundary flow E4
0C4b.

We treat E4
3C0e. We have already shown that the boundary index sum is either

δ = 0 or δ = 2. Following Fig. 2, we assume without loss of generality that E34 is the
internally unstable equilibrium. Remark A.3(i) implies that ϕ1(p) = 0 has precisely
one solution in (0, 1) and ϕ2(q) = 0 has zero or two solutions in (0, 1). Therefore,
the number of intersection points of ϕ1(p) and ϕ2(q) is zero or two and the number
of internal equilibria is one or three. If there are no intersection points, the central
equilibrium is a sink if δ = 0 (because then, by A.3(iii), all four edge equilibria are
externally unstable), and it is a saddle if δ = 2. If there are two intersection points and
δ = 2, the central equilibrium is a source (because all edge equilibria are externally
stable) and the other two internal equilibria are saddles. With two intersection points,
the case δ = 0 can be excluded as follows:As in Fig. 2, assume that E34 is the internally
unstable equilibrium. Because the other three edge equilibria are internally stable, we
have the conditions d2 < −a2 < 0, d1 > a1 > 0, (a1 + d1)(a2 + d2) + 2a2e22 < 0,
and (a1 + d1)(a2 + d2) + 2a1e22 > 0 [see (A.9), (A.10) and statement (i) above]. By
(A.11c) or (A.12a), for two intersection points also (a1 + d1) + e22q̃ < 0 needs to be
satisfied. This easily leads to a contradiction and proves statement (a) for E4

3C0e and
its reversed flow E4

1C2e.
For E4

2C0c flows on the opposite edges are equivalent and therefore, the number of
intersection points of ϕ1(p) = 0 and ϕ2(q) = 0 can only be zero or four. The latter
was excluded above. Therefore, the internal equilibrium is a sink or a source if δ = 0,
and it is a saddle if δ = 2. Since these cases can be realized, statement (a) is proved
for E4

2C0c.
Finally, for E4

2C1s (which can only have δ = 1) there exists the central equilibrium
( p̃, q̃) and precisely one additional equilibrium because (A.10) holds for i = 1 and
i = 2. The central equilibrium can be a sink or a source, the other equilibrium is a
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saddle (this follows easily from the eigenvalues at ( p̃, q̃) and the fact that opposite
edges have different flow direction). This proves statement (a) of Theorem 7.1 for
E4
2C1s.
Since all other cases have been excluded, we have proved that all possible equi-

librium structures are listed in Table 1. Statement (b) of Theorem 7.1 follows easily
from Table 1. Parameter combinations that yield all possible equilibrium structures
are given in Table S3.

A.4 Proof of Theorem 8.1

The statement about the possible boundary flows and the values of δ was proved below
Eq. (8.1). The existence of equilibrium structures listed in Theorem 8.1 is shown in
Section S1 of the SI: Figures S2d (panels 1,2,3), S4a (panels 1,2), and S4b (panels
5,6) show (a); Figures S1d (panels 4,5,6) and S4c (panels 1,3,5) show (b); Figures S1a
(panels 5,6), S2a (panels 1,2), S2k (panels 2,3), S3a (panels 1,2), S3b (panels 2,3,4),
and S3h (panels 4,5) show (c). What remains to be proved is that four or five internal
equilibria cannot occur for the boundary flows listed in statement (c).

As already stated in the main text, the quintic polynomial f (g(p))− p (3.7), which
yields all internal equilibria, factorizes into a quadratic and a cubic polynomial. Since
wewant to applyDescartes’ rule of signs (which states that the number of positive roots
of a polynomial is either equal to the number of sign changes between consecutive
nonzero coefficients which are ordered by ascending variable exponent, or is less than
it by an even number), we transform theses polynomials using u = p/(1 − p). Then
the zeros p ∈ (0, 1) correspond to the zeros u ∈ (0,∞).

For the cubic polynomial r(u) = ∑3
i=0 ri u

i that yields the symmetric equilibria
(i.e., those satisfying p = q), we obtain

r0 = −(a + d), r1 = −3a − d − 2e22, (A.17a)

r2 = −3a + d − 3e12 + 2e22, r3 = −a + d − e11 + e12, (A.17b)

and for quadratic polynomial s(u) = ∑2
i=0 si u

i that yields the pair of asymmetric
equilibria, we obtain

s0 = −4d2 − d(e12 + 2e22) − a(e12 − 2e22), (A.18a)

s1 = −8d2 − d(e11 − 4e12 + 12e22) − a(e11 − 2e12) + 2e22(e12 − 2e22),
(A.18b)

s2 = −4d2 + d(e11 − 3e12 − 2e22) − a(e11 − 3e12 + 2e22) + e12(e12 − 2e22).
(A.18c)

From symmetry it follows immediately that if only one zero of s(u) is positive, the
resulting equilibrium cannot be admissible. Therefore, to obtain a pair of admissible
equilibria from s(u) = 0, the coefficients s0 and s2 must have the same sign and the
coefficient s1 must have the opposite sign.

We start with the boundary flows E4
4C0b (with δ = 2), E4

0C4b (with δ = 2), and
E4
2C1s (with δ = 1), for which the proof is simple and based on the observation that
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the external eigenvalues λi j at the edge equilibria Ei j satisfy λ12 = λ13 = −s2r3
and λ24 = λ34 = s0r0. We prove the claim for E4

4C0b with δ = 2; then the case
E4
0C4b follows from flow reversal, and the case E4

2C1s is analogous. Because δ =
2, sgn(λ̂12) = − sgn(λ̂34) has to hold, whence sgn(s2r3) = sgn(s0r0) follows. In
addition, admissibility and internal stability of the equilibria E12 and E24 implies
r0 < 0 and r3 > 0. Hence, s2 and s0 have opposite signs. This rules out equilibria off
the diagonal p = q, whence the maximum number of internal equilibria is three.

For the boundary flows E0
0C1s, E0

0C2b, E2
2C0s, and E2

0C2s, the proofs are more
technical and different proofs are needed for each case.

First, we consider the boundary flow E0
0C2b. Without loss of generality, we can

assume a + d = −1 and a < 0 in (6.1) with (8.1). Then the boundary flow E0
0C2b is

realized if and only if the inequalities d > − 1
2 and 1 < e12 < e11 − 1− 2d hold. The

proof is by contradiction. Therefore, assume that five internal equilibria exist. Then
the signs of the coefficients of r(u) have to change three times, where we already
know that r0 = 1 > 0. The conditions r1 < 0 and r2 > 0 result in the additional
inequalities d < − 3

2 + e22 and 3e12 < 3 + 4d + 2e22, respectively. From the last
together with d > − 1

2 we conclude e22 > 1. Also the signs of the coefficients of s(u)

have to change, and both − + − and + − + are possible. We give the proof for the
case − + −. By combining s0 < 0, s1 > 0, and s2 < 0 with the above inequalities,
we arrive at

d > −1

2
and e22 > 1, (A.19a)

e12 < 2e22 + 4d(d + e22), (A.19b)

3e12 < 3 + 4d + 2e22, (A.19c)

2[e12 + (d + e22)(4d − e12 + e22)] < e11

<
4d2 + 6de12 − (e12 − 3)e12 + 2(e12 − 1)e22

1 + 2d
, (A.19d)

where the inequalities in (A.19d) are due to the conditions s1 > 0 and s2 < 0, and
the right inequality in (A.19b) comes from s0 < 0. However, we have not invoked
1 < e12 < e11 − 1 − 2d. Simple rearrangements shows that (A.19d) is satisfied for
some e11 if and only if

(1 + 4d − e12 + 2e22)(−e12 + 2e22 + 4d(d + e22)) < 0

holds. (A.19b) implies that the second factor is positive. By multiplying the first factor
with three, we can apply (A.19c) and find, using (A.19a),

3 + 12d − 3e12 + 3e22 > 4(2d + e22) > 4(−1 + 1) = 0.

This yields the desired contradiction.
The proof for the sign sequence + − + for s0, s1, and s2 is very similar and left to

the reader.
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Next,we study the boundary flowE2
2C0s.We can scale fitnesses such that a+d = 1.

In addition, we have a + d > 2a, which implies d > 1
2 . The flow on the edge p = 1

implies e11 < 2d − 1+ e12 and e12 < −1. Together with the assumption of three sign
changes of r(u), we obtain the following conditions:

1

2
< d < −e22

2
, (A.20a)

e22 < −1, (A.20b)
1

3
(−3 + 4d + 2e22) < e12 < −1, (A.20c)

e11 < 2d − 1 + e12. (A.20d)

We will show that (A.20) implies s0 > 0 and s2 < 0, whence the pair of asymmetric
internal equilibria never exists. Assume s0 < 0. Then

2e22 − 4d(d + e22) < e12 < −1

holds, and 2e22 − 4d(d + e22) < −1 together with (A.20a) implies

−1 + 4d2

2(1 − 2d)
< e22 < −2d,

which cannot be satisfied if d > 1
2 . Hence, s0 > 0 must hold.

Now assume s2 > 0. This yields the left inequality in

4d2 + e12(6d − 3 − e12 + 2e22) − 2e22
2d − 1

< e11 < 2d − 1 + e12,

and the right inequality is (A.20d). Then the inequality between the left and the right
term can be rewritten as

(1 + e12)(1 − 4d + e12 − 2e22) > 0,

which is impossible because 1+ e12 < 0 by (A.20b) and 1− 4d + e12 − 2e22 > 0 by
(A.20c). This finishes the proof of the caseE2

2C0s. BecauseE2
0C2s is the flow reversal

of E2
2C0s, we have also excluded five internal equilibria for this case.

Finally we show, again by contradiction, that four internal equilibria are impossible
for boundary flow class E0

0C1s. Here we scale the fitnesses such that a + d = −1,
and we have d > − 1

2 .
If there are four internal equilibria then, since in this case r0 and r3 are both positive,

there are three possibilities for r(u) to have two sign changes. It is easily seen that
+−−+ is impossible. We give the proof only for +−++. This yields the following
inequalities:

− 1
2 < d < e22 − 3

2
, (A.21a)
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e12 < 1 < e22, (A.21b)

e11 < 1 + 2d + e12 . (A.21c)

Next we want to show that s0 < 0 and s1 < 0 if (A.21) holds.
Assume s0 > 0.Using (A.21a)weget −4d2+e12

2(1+2d)
> e22 > d+ 3

2 . The outer inequality
together with (A.21b) is equivalent to

8(1 + d)d + 3 < e12 < 1,

where now the inequality between the left and the right term implies 2(1+ 2d)2 < 0,
which is a contradiction and therefore s0 < 0.

Now assume s1 > 0. Applying (A.21c), we get

8d2 + 2e12 − 2de12 + 12de22 − 2e12e22 + 4e222 < e11 < 1 + 2d + e12.

The inequality between the outer terms is equivalent to

(−1 + 2d + 2e22)(1 + 4d − e12 + 2e22) < 0.

By using (A.21a) and subsequently (A.21b) for both factors, we find for the first

−1 + 2d + 2e22 > 2(−1 + e22) > 0,

and for the second

1 + 4d − e12 + 2e22 > −1 − e12 + 2e22 < 1 − e12 > 0.

Thus we have again a contradiction and know that there can be at most one sign
change in the polynomial s(u). Hence a pair of asymmetric equilibria is impossible
under (A.21). The proof for the case + + −+ is left to the reader. This finishes the
proof for case E0

0C1s.

A.5 Proofs for the symmetric viability model

A.5.1 Proof of Theorem 9.1

Statement (a) of the theorem follows immediately from the dynamics (9.3). To prove
(b), we need some preparation.

Let l �= 0 and r1r2 �= 0. First, we compute the coordinates yi, j and xi, j of the
potential unsymmetric equilibria. These are given by the intersection points of the
isoclines (9.4). Since the central equilibrium (0, 0) exists always, we assume (x, y) �=
(0, 0). It follows immediately from (9.4) that then x �= 0 and y �= 0. Therefore, we
can eliminate x and obtain after a short calculation

m2 r1
r2

=
(
r1 + ly2

)2
. (A.22)
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Thus, (A.22) can have real solutions only if sgn r2 = sgn r1. This proves statement
(iii) of Theorem 9.1.

From now on we assume sgn r2 = sgn r1. Taking square roots in (A.22), we obtain

± |m|
√
r1
r2

= r1 + ly2, (A.23)

and define

y± =
−r1 ± |m|

√
r1
r2

l
. (A.24)

If y± > 0, the corresponding square roots exist and yield the expressions yi, j in (9.5)
of Theorem 9.1. Substituting the expressions yi, j (9.5) into (9.4a) gives

x1,2 =
√
r2
r1

y1,2 and x3,4 = −
√
r2
r1

y3,4. (A.25)

The following lemma lists the conditions for admissibility of the internal equilibria.

Lemma A.4 Define
hi = ri + l for i = 1, 2 (A.26)

and

εi = ri
r j

−
(
hi
m

)2

for i = 1, 2 and j �= i. (A.27)

If |r1| ≥ |r2|, Table 3 states the conditions under which each of y+ and y− gives rise to
a pair of internal equilibria. If |r1| < |r2|, an analogous table gives these conditions,
in which the roles of x and y are exchanged, and r1, h1, and ε1 are substituted by r2,
h2, and ε2, respectively.

Obviously, the coordinates of the equilibria are given by (9.5).

Proof As shown above, the solutions are admissible only if sgn r2 = sgn r1, which we
assume henceforth. The conditions in each of the cells are determined quite straightfor-
wardly. For illustration, we prove the case r1 > 0 and l > 0, and leave the other cases
to the reader. Because r1 > 0 and l > 0, only y+ can give rise to equilibria. Because
|r1| ≥ |r2|, the resulting pair of equilibria is admissible if and only if 0 < y+ < 1; cf.
(9.5). Because l > 0, 0 < y+ < 1 is equivalent to

0 < −r1 + |m|
√
r1
r2

< l. (A.28)

Multiplication of the left inequality by
√

r2
r1

shows that the left inequality holds if and

only if ρ < 0. The right inequality is equivalent to

|m|
√
r1
r2

< r1 + l = h1, (A.29)
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Table 3 Each cell lists the conditions for the validity of the inequalities on top under the respective
assumptions on r1 and l on the left

0 < y+ < 1 0 < y− < 1

r1 > 0 ∧ l > 0 ρ < 0 ∧ ε1 < 0 −
r1 < 0 ∧ l < 0 − ρ < 0 ∧ ε1 < 0

r1 > 0 > l (ρ > 0 ∧ h1 < 0) ∨ (ρ > 0 ∧ h1 >

0 ∧ ε1 > 0)
h1 < 0 ∧ ε1 < 0

r1 < 0 < l h1 > 0 ∧ ε1 > 0 (ρ > 0 ∧ h1 > 0) ∨ (ρ > 0 ∧ h1 <

0 ∧ ε1 > 0)

The symbols ∧ and ∨ mean ‘and’ and ‘or’

where h1 > 0. Squaring and rearranging shows that the inequality is equivalent to
ε1 < 0. Thus, we have proved the conditions in the first row of the table.

The statement about the case |r1| < |r2| follows immediately from the symmetry
of x and y in the dynamics (9.3) and the according symmetry of yi, j and xi, j . �	

Now we can finish the proof of Theorem 9.1. Statement (b)(i) follows immediately
from the first two rows of Table 3, and statement (b)(ii) follows from the third and
forth row. This finishes the proof.

A.5.2 Proof of Theorem 9.5

Before proving the theorem, we present a number of results that will be needed. We
begin by presenting the coordinates and eigenvalues of the SLP’s in (x, y)-coordinates:

E12:
(

1,− m

h2

)

, E34:
(

−1,
m

h2

)

, (A.30a)

E24:
(
m

h1
,−1

)

, E13:
(

− m

h1
, 1

)

. (A.30b)

The internal eigenvalues are

μ34 = μ12 = h22 − m2

h2
, (A.31a)

μ24 = μ13 = h21 − m2

h1
, (A.31b)

and the external eigenvalues are

λ̂34 = λ̂12 = r2
h22

− r1
m2 , (A.32a)

λ̂24 = λ̂13 = r1
h21

− r2
m2 . (A.32b)
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The following lemmas will help to keep the proof simple.

Lemma A.5 (a) E34 and E12 are admissible if and only if
(
h2
m

)2
> 1.

(b) E24 and E13 are admissible if and only if
(
h1
m

)2
> 1.

These statements follow immediately from (A.30).

Lemma A.6 Let sgn r2 = sgn r1. Then

(a) λ̂34 = λ̂12 > 0 if and only if sgn ε2 = sgn r2.
(b) λ̂24 = λ̂13 > 0 if and only if sgn ε1 = sgn r2.

These statements follow easily from (A.32) and the definition of εi (A.27).

Lemma A.7 Let sgn r2 = sgn r1 and r1 �= r2.

(a) If E24 and E13 are admissible and sgn λ̂24 = sgn λ̂13 = − sgn(r1 − r2), then
sgn r2 = sgn(r1 − r2).

(b) If E34 and E12 are admissible and sgn λ̂34 = sgn λ̂12 = sgn(r1 − r2), then
sgn r2 = − sgn(r1 − r2).

Proof Let sgn(r1 − r2) = −1. Then r2 > r1 and the following implications hold:

sgn r1 > 0 ⇒ m2r1 − h21r2 < r1(m
2 − h21) < 0 ⇔ λ̂24 = λ̂13 < 0 (A.33)

and

sgn r2 < 0 ⇒ m2r2 − h22r1 > r2(m
2 − h22) > 0 ⇔ λ̂34 = λ̂12 > 0. (A.34)

Here, we used that m2 − h21 < 0 (m2 − h21 < 0) if E24 and E13 (E34 and E12)
are admissible (Lemma A.5). By reversing the inequalities and the implications in
(A.33) and (A.34), we get statements (a) and (b) for the case sgn(r1 − r2) = −1. If
sgn(r1 − r2) = +1, a similar argument applies. �	

These lemmas help us to prove the following statements.

Corollary A.8 (a) For E4
4C0b with δ = 4 and ρ > 0, O is a source.

(b) For E4
4C0b with δ = 2 and ρ > 0, O is a source.

Proof Without loss of generality (cf. LemmaA.4), we can assume |r1| ≥ |r2|. Because
we assume ρ > 0, the index of O is +1.

(a) Since δ = 4 is assumed, there must be four internal equilibria, in addition to O .
Therefore, Theorem 9.1 implies that sgn r1 = sgn r2 = − sgn l. To achieve δ = 4,
we need sgn λ̂34 = sgn λ̂12 = sgn λ̂24 = sgn λ̂13 = −1. Suppose r1 < r2 < 0.
Then sgn(r1 − r2) = −1 and Lemma A.7(b) informs us that sgn r2 = − sgn(r1 −
r2) = 1, a contradiction. Therefore, l < 0 < r2 ≤ r1 and tr Jo = r1 + r2 > 0
(9.8b). Because ρ > 0, the central equilibrium is a source.
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(b) Assume O is a sink. Then r1 + r2 < 0. Because δ = 2 and the index of O is +1,
there must be at least two additional internal equilibria. Theorem 9.1 implies that
sgn r1 = sgn r2, whence sgn r1 = sgn r2 = −1 follows. Table 3 from Lemma A.4
shows that l > 0 is necessary for the existence of at least two additional inter-
nal equilibria. Because δ = 2 and no corner equilibrium is saturated, we have
sgn(λ̂13) = − sgn(λ̂12). Lemma A.6 shows that only λ̂12 > 0 is compatible with
r1 < r2 < 0, because otherwise statement (a) yields ε2 > 0, which implies
r2 <

( m
h1

)2
r1 < r1, a contradiction (here, the second inequality follows from by

Lemma A.5b). From the boundary flow itself, we get the inequalities

r2 + l + m <0 > r2 + l − m, (A.35a)

h1, h2 <0. (A.35b)

This yields
0 > −l > r2 > r1. (A.36)

We define ω(r1) = h21m
2λ̂13 = r1m2 − r2(r1 + l)2. Then ω(0) = −r2l2 > 0,

ω(−l) = −lm2 < 0, and ω(r2) = −r2(r2+ l−m)(r2+ l+m) > 0 by (A.35a). Since
ω is quadratic in r1 with the positive leading coefficient −r2, it follows that ω(r1) > 0
for r1 < r2. This yields the desired contradiction because sgn(ω(r1)) = sgn(λ̂13) < 0.

�	
Now we are able to prove Theorem 9.5.

Proof We prove the statements about the internal equilibrium structures in Table 2
column by column. Table S1 shows that the boundary flows in Table 2 marked by
‘−’ cannot by realized for the given δ. Therefore, it is sufficient to validate the cells
with non-trivial entries and the one marked by ‘×’. For each of these cells we show
that the given equilibrium structures are the only possible. Existence follows from the
corresponding figures in Section S1 of the SI.

Case 1, ρ < 0 Lemma A.4 and Table 3 show that at most one pair of unsymmetric
internal equilibria can exist. Thus, the number of internal equilibria is one or three.
Lemma 9.2 ensures that O is a saddle with index −1.

δ = 0 To achieve an index sum of +1 from the internal equilibria, one pair of
unsymmetric equilibria with index+1 must exist. Three internal equilibria can indeed
be realized for the four indicated boundary flows. The two unsymmetric equilibria
must be sinks for the boundary flows E2

2C0c and E4
4C0b, because otherwise no stable

equilibrium would exist. The two flow reversal cases follow immediately.
It remains to prove that for the boundary-flow class E4

2C0c two unsymmetric equi-
libria cannot exist. Unsymmetric equilibria exist only if sgn r1 = sgn r2 (Theorem9.1).
Because for one pair of edge equilibria the internal eigenvalues are negative and
for the other positive, and because

( hi
m

)2
> 1 by Lemma A.5, Eq. (A.31) implies

sgn h1 �= sgn h2. Therefore, r1 �= r2.Without loss of generality we assume |r1| > |r2|.
If r1 > r2 > 0, then h1 = r1 + l > r2 + l = h2 and h1 > 0 > h2. This implies
r1 > 0 > l. Because ρ < 0, Table 3 shows that two unsymmetric equilibria could
exist only if h1 < 0, which is impossible. If r1 < r2 < 0, then l > 0 and h1 < 0
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follow. Again, Table 3 shows that two unsymmetric equilibria cannot exist. Therefore,
this boundary flow cannot be realized if ρ < 0 and δ = 0.

δ = 2 Three internal equilibria cannot be realized because at most one pair of
unsymmetric equilibria can exist, and each of these equilibria has the same index (see
Sect. 9 below Eq. 9.3). Thus, a total index sum of 1 can be realized only if O is the
unique internal equilibrium.

δ = 4 Here, one pair of unsymmetric equilibria, each with index −1, must exist to
achieve a total index sum of 1.

Case 2, ρ > 0 Lemma 9.2 shows that O has index 1.
δ = 4 Four saddles need to exist in the interior to realize this case. Corollary A.8

informs us that O is a source.
δ = 2 The sum of the indices of the unsymmetric equilibria must be−2. This can be

realized only if there is one pair of unsymmetric equilibria, because the two members
of each pair have the same index. Corollary A.8 informs us that O is a source for
E4
4C0b, whence O is a sink in the flow-reversal case E4

0C4b. In the other four cases,
O can be a sink or a source.

δ = 0 We already know that O has index is 1. For E2
2C0c and E4

4C0b it must be
a sink because otherwise no stable equilibrium would exist. This also settles the two
flow reversal cases E2

0C2c and E4
0C4b. For E4

2C0c, O can be a sink or a source.
If more than one internal equilibrium exists, then sgn r1 = sgn r2 by Theorem 9.1.

Without loss of generality (Lemma A.4), we assume |r1| ≥ |r2|. Table 3 shows that
because ρ > 0, we must have sgn r1 = sgn r2 = − sgn l.

Assume three internal equilibria. Because O has index 1, the indices of the two
unsymmetric equilibriamust be of different sign, which is impossible in the symmetric
viability model.

Assume five internal equilibria. Then Theorem 9.1 implies sgn r1 = sgn r2 =
− sgn l. Table 3 shows that this implies sgn ε1 = sgn h1 = − sgn r1. By Lemma A.6,
this implies λ̂24 = λ̂13 < 0.

We need to treat the boundary-flows classes separately. Because of the flow-reversal
cases, it is sufficient to study E2

2C0c, E4
4C0b, and E4

2C0c. The boundary flow E4
4C0b

can have δ = 0 only if no edge equilibrium is saturated, i.e., if all external eigenvalues
are positive. This contradicts λ̂24 = λ̂13 < 0.

For E4
2C0c, δ = 0 can be realized also if there are four saturated edge equilibria.

Lemma A.6 implies sgn ε1 = sgn ε2 = − sgn r2 = − sgn r1. Because one pair of
internal eigenvalues is negative and the other positive, and

( hi
m

)2
> 1 by Lemma A.5,

equation (A.31) implies sgn h2 = − sgn h1. Assume r1 ≥ r2 > 0. Then h1 = r1+ l >

r2 + l = h2 and Table 3 shows that five internal equilibria require h1 < 0. Therefore,
h2 < 0, which contradicts sgn h2 = − sgn h1. An analogous argument applies if
r1 ≤ r2 < 0.

It remains to exclude five internal equilibria for E2
2C0c. Assume that E12 and E34

are admissible. Then they are internally stable. From the fitness scheme (9.1) we infer
r1 > r2 and h2 < − |m| ≤ 0. Because δ = 0, these edge equilibria must be externally
unstable, whence sgn ε2 = − sgn r2 follows from Lemma A.6. Lemma A.7(b) shows
that r2 < 0, whence r2 < 0 < l and ε2 > 0 follow. The analog of Table 3 for the case
|r2| > |r1| shows that five equilibria require h2 > 0, a contradiction. �	
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