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Abstract Recent years have seen a large amount of interest in epidemics on networks
as a way of representing the complex structure of contacts capable of spreading infec-
tions through the modern human population. The configuration model is a popular
choice in theoretical studies since it combines the ability to specify the distribution of
the number of contacts (degree) with analytical tractability. Here we consider the early
real-time behaviour of the Markovian SIR epidemic model on a configuration model
network using a multitype branching process. We find closed-form analytic expres-
sions for the mean and variance of the number of infectious individuals as a function
of time and the degree of the initially infected individual(s), and write down a system
of differential equations for the probability of extinction by time t that are numerically
fast compared to Monte Carlo simulation. We show that these quantities are all sensi-
tive to the degree distribution—in particular we confirm that the mean prevalence of
infection depends on the first two moments of the degree distribution and the variance
in prevalence depends on the first three moments of the degree distribution. In contrast
to most existing analytic approaches, the accuracy of these results does not depend on
having a large number of infectious individuals, meaning that in the large population
limit they would be asymptotically exact even for one initial infectious individual.
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1 Introduction

1.1 Background

Models of infectious disease transmission have, from relatively modest beginnings
(e.g. Bailey 1957), developed a rich domain of applicability covering the whole spec-
trum of human, animal and plant pathogens, and informing the study of questions
from viral evolution, through epidemiology of infectious diseases, to public health
policy (see Heesterbeek et al. 2015). Increasingly, networks have been seen as a way
of modelling the complex, heterogeneous patterns of contacts between individuals
(Danon et al. 2011).

In theoretical studies, the configuration model has been a popular choice due to the
ability to specify the number of contacts each individual has that are capable of spread-
ing disease, while allowing for analytic results to be obtained (e.g. Molloy and Reed
1995; Newman 2002). Ball and Neal (2008) used an effective degree approach (which
we describe in Sect. 2.2 below—cf. Lindquist et al. 2010) to derive a systemof ordinary
differential equations that describes the deterministic limit of the epidemic model as
the population size N → ∞. A much simpler (equivalent) system of only 4 ordinary
differential equations was obtained by Volz (2008) and subsequently shown by Miller
(2011), Miller et al. (2012) to be essentially one-dimensional (the 4 ODEs were also
shown by House and Keeling (2010) to be a special case of the much higher dimen-
sional pair approximation model of Eames and Keeling (2002), in which the degree
structure is explicit). Fully rigorous proofs of convergence in probability of the scaled
stochastic model to the deterministic limit are given by Decreusefond et al. (2012),
Bohman and Picollelli (2012), Barbour and Reinert (2013) and Janson et al. (2014).
These works are primarily concerned with the temporal behaviour of proportions of
the population in different epidemiological compartments (susceptible, infectious and
removed) over the main body of a large epidemic. Here, we are also concerned with
temporal behaviour, but focus on numbers infected early in the epidemic, including
the possibility of early stochastic extinction.

In a recent paper, Graham and House (2014) use a pairwise approximation in con-
junction with the central limit theorem for density dependent population processes
(Ethier and Kurtz 1986, Chap. 11) to obtain a closed-form approximation to the mean
and variance of prevalence in the linearised model which approximates the early
asymptotic exponential growth phase of a Markovian SIR epidemic on a configura-
tion network. In particular, they find that, under these approximations, the variance
in disease prevalence is determined by the first three moments of the network degree
distribution. In this paper, we use the effective degree approach of Ball and Neal
(2008) to approximate the early stages of the epidemic by a continuous-time, multi-
type Markovian branching process, which is then analysed in detail. For t ≥ 0, let
Z(t) denote the total number of individuals alive in this branching process at time
t , so Z(t) approximates disease prevalence in the epidemic model during its early
asymptotic exponential growth phase. Explicit closed-form expressions are derived
for the mean and variance of Z(t), the covariance of Z(t) and Z(s) to give the
behaviour over time, and also for the probability of extinction π(t) = P(Z(t) = 0).
As in Graham and House (2014), the mean and variance in disease prevalence
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Heterogeneous network epidemics… 579

depends on the degree distribution only through its first two and three moments,
respectively.

The results in Graham and House (2014) assume implicitly that the initial number
of infectives is sufficiently large for the density dependent population process central
limit theorem to yield a good approximation. In contrast, our results assume any arbi-
trary, but specified, initial number of infectives. The asymptotic distribution of types in
the branching process, when it does not go extinct, is also available in closed-form and
enables us to obtain a Gaussian process approximation, with explicit mean and covari-
ance function, for the prevalence in the early asymptotic exponential growth phase of
an SIR epidemic, with few initial infectives, which takes off and becomes established.
We show that this approximation can be applied togetherwith themethods ofRoss et al.
(2006) to estimate epidemiological parameters from early prevalence data of a simu-
lated epidemic provided the first three moments of the degree distribution are known.

1.2 Outline of the paper

The paper is organised as follows. The configuration networkmodel and aMarkov SIR
epidemic on that network are described in Sect. 2.1. The effective degree construction
of this epidemic is outlined in Sect. 2.2. Approximation of the early stages of this epi-
demic by a branching process is outlined in Sect. 2.3, where conditions are given for the
mean, variance and covariance functions of the number of infectives in the epidemic
process to converge to the corresponding quantities of the approximating branching
process as the population size tend to infinity. The representation of the approximating
branching process as a continuous-time, multitype Markov branching process is out-
lined in Sect. 2.3 and described more explicitly in Sect. 2.4. The mean, variance and
covariance functions of the total number of individuals alive in the branching process
are considered in Sects. 3, 4 and 5, respectively. Explicit closed-form expressions are
obtained for each of these quantities and for their limits as time t → ∞. The arguments
in Sects. 3, 4 and 5 assume that underlying degree distribution has a maximum degree.
In Sect. 6, we show that these expressions continue to hold in the unbounded degree
setting, subject to the degree distribution satisfying suitable moment conditions. The
probability that the branching process is extinct at time t is studied in Sect. 7. Closed-
form expressions for this probability, given the initial state of the branching process,
are not available so asymptotic results as t → 0 and t → ∞ are considered.

The mean, variance and covariance functions derived in Sects. 3, 4 and 5 are uncon-
ditional, so they include realisations of the branchingprocesswhich result in extinction.
However, in the epidemic setting, we are often interested in analysing the behaviour of
epidemics that take off and become established, which correspond to non-extinction
of the branching process. In Sect. 8, we first derive the mean and variance of the total
number of individuals alive in the branching process at time t , conditional upon the
process having survived to time t ; fully closed-form results are not available owing to
the absence of a closed-form expression for the survival probability. We then consider
realisations of the branching process which reach some specified size, K say, with
time being set to zero the first time the total number of individuals alive is K . The
results in Sect. 3 yield an explicit expression for the asymptotic distribution of types,
given that the branching process does not go extinct, which, provided K is sufficiently
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large, enables the above branching process starting from K individuals to be approx-
imated by a Gaussian process whose mean and covariance functions are determined
explicitly. The theory is illustrated by numerical examples of both forward simulation
and inference in Sect. 9 and some concluding comments are given in Sect. 10.

In general, we define notation as it is introduced; we also collect notation that is
used in multiple sections in Table 1.

2 Model and approximating branching process

2.1 Model

We consider the spread of an SIR epidemic on a network of N individuals, labelled
1, 2, . . . , N , constructed using the configuration model as follows (see e.g. Newman
2002). Let D be a random variable which describes the degree of a typical individual
and let pk = P(D = k) (k = 0, 1, . . .). Let D1, D2, . . . , DN be independent realisa-
tions of D and, for i = 1, 2, . . . , N , attach Di stubs (half-edges) to individual i . Pair up
these stubs uniformly at random to form the edges in the network. If D1+D2+· · ·+DN

is odd, there will be a left-over stub, which is ignored; the resulting network may have
other ‘defects’ such as self-loops and multiple edges between pairs of individuals
but, provided that D has finite variance, such imperfections become sparse in the
network as N → ∞ (see e.g. Durrett 2007, Theorem 3.1.2). An alternative to the
degrees D1, D2, . . . , DN being random is, for each N = 1, 2, · · · , to replace D =
(D1, D2, . . . , DN ) byD(N ) =

(
D(N )
1 , D(N )

2 , . . . , D(N )
N

)
, where the degree sequences

D(N ) (N = 1, 2, . . .) are prescribed and satisfy p(N )
k = N−1∑N

i=1 δ
k,D(N )

i
→ pk as

N → ∞ (k = 0, 1, . . .), where the Kronecker delta δk, j is 1 if k = j and 0 otherwise
(see e.g. Molloy and Reed 1995).

The epidemic is defined as follows. Initially some individuals are infective and the
remaining individuals are susceptible. Infective individuals have independent infec-
tious periods, each having an exponential distribution with rate γ (and hence mean
γ −1), after which they become recovered and play no further role in the epidemic.
Throughout its infectious period, an infective contacts each of its susceptible neigh-
bours in the network at the points of independent Poisson processes having rate τ , so
the probability that a given infective contacts a given neighbour before the infective
recovers is τ/(γ + τ). Any contacted susceptible immediately becomes infective and
may transmit the infection to any of its neighbouring susceptibles; i.e. there is no
latent period. All the infectious periods and Poisson processes governing transmis-
sion of infection are mutually independent. The epidemic ends as soon as there is no
infective present in the network.

2.2 The effective degree model

Ball and Neal (2008) introduced an ‘effective-degree’ construction of the above epi-
demic, in which the network is constructed as the epidemic progresses. The process
starts with some individuals infective and the remaining individuals susceptible, but
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Table 1 Notation used in multiple sections of this paper

Primary notation Meaning Equivalent notation

Network properties

N Size of the population

D A random variable for an individual’s degree D1, D2, . . .

pk Probability mass function for D evaluated at k

kmax The maximum degree

K The set of possible degrees {0, 1, . . . kmax}
D̃ A random variable for an individual’s size-biased

degree
D̃1, D̃2, . . .

p̃k Probability mass function for D̃ evaluated at k μ−1
D kpk

Vectors and matrices

v A column vector whose kth entry is vk (vk )

v� A row vector (transpose of a column vector)

M A matrix with (k, l)th entry Mkl or mkl [Mkl ], [mkl ]
|M| Determinant of matrix M

1 A column vector whose entries are all equal to 1

n A column vector whose i th entry is i

n2 A column vector whose i th entry is i2

I The identity matrix [δk,l ]
Probability

P(e) Probability of event e

μ f (X) Expected value of a function f of a random
variable X

E [ f (X)]

MX (θ) Moment generating function for random variable X E
[
exp(θX)

]

var(X) Variance of random variable X E

[
X2
]

− E [X ]2

cov(X, Y ) Covariance of random variables X and Y E [XY ] − E [X ]E [Y ]

Epidemic and branching process dynamics

τ Rate of transmission across a network link

γ Rate of recovery from infection

ωk Death rate for individual of type k

t Real time s

B The limiting branching process

EN The epidemic process in a population of size N

K A large value of infectious population size

Z (k)
i (t) Random number of individuals of type i in the

branching process at time t given initial type k

πk (t) Probability that the branching process is extinct at
time t given initial type k

1 − qk (t)
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with none of the stubs paired up. For i = 1, 2, . . . , N , the effective degree of indi-
vidual i is initially Di . Infected individuals transmit infection by pairing their stubs
with stubs attached to susceptible individuals in the following fashion. An infected
individual makes infectious contacts down its unpaired stubs independently at rate τ

and is removed at rate γ . When an infective, individual i say, transmits infection
down a stub that stub is paired with a stub (attached to individual j , say) cho-
sen independently and uniformly at random from all the unpaired stubs, to form
an edge. The effective degrees of individuals i and j are both reduced by 1. If
i = j then the effective degree of individual i is reduced by 2 but this will not
significantly affect the dynamics for large populations since the probability of it hap-
pening is O(N−1). If individual j is susceptible then it becomes infective and can
transmit infection down any of its unattached stubs. As before, the epidemic ends
as soon as there is no infective present. The network is then typically only par-
tially constructed but that does not matter if interest is focussed on properties of
the epidemic. In the original formulation of Ball and Neal (2008), when an infec-
tive recovers its unpaired stubs, if any, were paired with stubs chosen uniformly
at random without replacement from the set of unpaired stubs but that is unnec-
essary; the stubs from such an infective can simply be left in the set of unpaired
stubs.

2.3 Approximating multitype branching process

Suppose that the size N of the network is large and the initial number of infectives
is small. Then during the early stages of an epidemic it is very likely that each time
an infective individual transmits infection down a stub that stub is paired with a stub
belonging to a susceptible individual. It follows that the early stages of such an epi-
demic can be approximated by a branching process in which each newly-infected
individual has their “full” effective degree (i.e. their actual degree minus one for the
stub that is paired with their infector). This approximation can be made fully rigor-
ous by considering a sequence of epidemics, indexed by N , and using a coupling
argument; see e.g. Ball and Neal (2008), which treats a more general model in which
infective individuals also make contacts with individuals chosen uniformly at random
from the population. Let EN denote the epidemic on a network of N individuals and
let B denote the approximating branching process. Then following Ball and Neal
(2008) (see “Appendix 1”) if μD = E [D] is finite then the epidemics E1, E2 . . .

and the branching process B can be constructed on a common probability space so
that, with probability one, over any finite time interval [0, t] the process of infectives
in EN and the branching process B coincide for all sufficiently large N . The same
result holds for the model with prescribed degree sequences provided that p(N )

k → pk
(k = 0, 1, . . .) and μ

(N )
D = ∑∞

k=0 p
(N )
k k → μD as N → ∞, where

∑∞
k=0 pk = 1

and μD < ∞.
As indicated in “Appendix 1”, the branching process B is not an almost sure

upperbound for the process of infectives in EN , so unlike in Theorem 3.1 of Ball
and Donnelly (1995) which considers homogeneously mixing epidemics, one cannot
simply use the dominated convergence theorem to deduce convergence of moments
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of the number of infectives in the epidemic process to corresponding moments of the
branching process as N → ∞. If there is a maximum degree kmax (i.e. pk = 0 for all
k > kmax, or p

(N )
k = 0 for all k > kmax and all N in themodel with prescribed degrees)

then, for all N , the process of infectives in EN is bounded above by a branching process
in which each newly-infected individual has themaximun effective degree kmax−1, so
in that case the dominated convergence theorem can be used to prove convergence of
moments. In “Appendix 1”,we consider the casewhen there is nomaximumdegree and
use uniform integrability arguments to determine sufficient conditions for the mean
and variance of the number of infectives at any given time t ≥ 0, and the covariance of
the number of infectives at any given times t, s ≥ 0, in the epidemic EN to converge
to the corresponding mean, variance and covariance of the branching process B as
N → ∞. Specifically, we prove that (i) in the model with prescribed degrees these
moments converge if, in addition to the conditions given above, there exists δ > 0
such that μ

(N )

D3+δ = ∑∞
k=0 p

(N )
k k3+δ → μD3+δ = ∑∞

k=0 pkk
3+δ as N → ∞, where

μD3+δ < ∞; and (ii) in the model with random degrees they converge if the moment-
generating function MD2(θ) = E

[
exp

(
θD2

)]
of D2 is finite for some θ0 > 0. Note

that the latter condition implies that E [Dα] < ∞ for all α ≥ 0.
In this context, we note that, for the model with prescribed degrees, the weakest

conditions obtained on the moments of the degree distribution for convergence of
the scaled stochastic epidemic on to its deterministic limit are given by Janson et al.
(2014), who require uniform boundedness of the second moment of D(N ). However
that paper, and the other related papers cited in the second paragraph of Sect. 1.1,
(i) are concerned with the entire time course of the epidemic; (ii) assume that either
the epidemic starts with a positive fraction of the population infected in the limit as
N → ∞, or if that limiting fraction is zero then the convergence is for epidemics
which take off and involves a random time translation describing when the epidemic
becomes suitably established; and (iii) consider the evolution of the proportion of
the population that is susceptible, infective or recovered. By contrast, this paper is
concerned with epidemics initiated by few infectives and considers the number, rather
than proportion, of infectives during the early phase of such an epidemic. Under
the coupling mentioned above, in the limit as N → ∞, if an epidemic takes off
then the duration of its early (exponentially growing) phase tends almost surely to
infinity.

The limiting branching process may be described by a continuous-time multitype
Markov branching process, with the type of an infective corresponding to its effective
degree. Let D̃ denote the (size-biased) degree of a typical neighbour of a typical
individual in the network and let p̃k = P(D̃ = k) (k = 1, 2, . . .). Then p̃k = μ−1

D kpk ,
where μD = E [D], since when a stub is paired it is k times as likely to be paired
with a stub from a given individual having degree k than it is with a stub from a given
individual having degree 1. Under the branching process approximation, the effective
degree of a newly infected individual is distributed according to D̃ − 1, since one
of that individual’s stubs is ‘used up’ when it is infected. Note for future reference
that μD̃ = μ−1

D μD2 and, more generally, μ f (D̃)
= μ−1

D μDf (D) for any real-valued
function f . (For a random variable, X say, we use μX to denote its expectation E [X ].
Thus, for example, μDf (D) = E [Df (D)].)
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584 F. Ball, T. House

2.4 Explicit form for the multitype branching process

We now assume that there is a maximum degree kmax. We show in Sect. 6 that our
results for moments of the branching process extend to the case of no maximum
degree size, subject to suitable moment conditions on D. Thus the type space for the
branching process isK = {0, 1, . . . , kmax}. Note that only initial infectives can have
type kmax. For k ∈ K , an individual of type k dies if either its infectious period comes
to an end or it transmits infection down one of its unattached stubs, whichever happens
first. If the former happens first then the individual has no offspring, otherwise it has
two offspring, namely an individual of type k − 1 and an individual whose type is
distributed according to D̃ − 1. Note that an individual of type 0 necessarily has no
offspring when it dies. Thus, for k ∈ K , the lifetime of an individual of type k has an
exponential distribution with rate

ωk = γ + τk, (2.1)

and when it dies its offspring is distributed as follows (recall that p̃kmax+1 = 0):

P (Offspring = ∅|Parent type = k) = γ

γ + τk
,

P (Offspring = {k − 1, l}|Parent type = k) = τk p̃l+1

γ + τk
(l = 0, 1, . . . , kmax − 1).

(2.2)

The joint probability-generating function (PGF) for offspring of a type-k individual is
therefore

Pk(s) = 1

ωk

(
γ + τksk−1

kmax−1∑
l=0

p̃l+1sl

)
, (2.3)

where s = (sk). In general we will write v = (vk) = (v0, v1, . . . , vkmax)
� for a column

vector inR
kmax+1, where � denotes transpose. Verbally, we will call v0 the 0th element

of such a vector, v1 the first element etc. For k ∈ K , let ∂Pk(s) be the column vector
whose i th element is ∂Pk (s)

∂si
and let ∂2Pk(s) be the matrix whose (i, j)th element is

∂2Pk (s)
∂si ∂s j

. We note for future reference that, for i, j, k ∈ K ,

(∂Pk(1))i = τk

γ + τk

(
p̃i+1 + δk−1,i

)
,

[
∂2Pk(1)

]
i, j

= τk

γ + τk

(
p̃i+1δk−1, j + p̃ j+1δk−1,i

)
, (2.4)

where 1 is the length-(kmax + 1) column vector of ones.
For t ≥ 0, let Z(t) = (Zi (t)), where Zi (t) denotes the number of individuals of type i
alive at time t , and let Z(t) = Z0(t)+Z1(t)+· · ·+Zkmax(t) = 1�Z(t) denote the total
number individuals alive at time t . For k ∈ K , we use the notation {Z(k)(t) : t ≥ 0},
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whereZ(k)(t) = (Z (k)
i (t)), to denote a process starting with a single individual, whose

type is k, at time 0 (i.e. where Z (k)
i (0) = δi,k , i ∈ K ). Further, Z (k)(t) = 1�Z(k)(t)

denotes the total number of individuals at time t in such a process.

3 Behaviour of means

In the next three sections we consider the behaviour of the mean, variance and covari-
ance function of the total number of individuals over time in the branching process
which approximates the initial phase of an epidemic. For t ≥ 0 and i, j, k ∈ K , let

M(t) = [mi, j (t)],where mi, j (t) = E

[
Z (i)
j (t)

]
,

m(k)(t) = E

[
Z(k)(t)

]
= M(t)�uk,

m(k)(t) = E

[
Z (k)(t)

]
= 1�m(k)(t) = u�k M(t)1,

where uk is a length-(kmax + 1) column vector with kth element equal to 1 and other
elements equal to 0. A standard argument using the Kolmogorov forward equation
(see e.g. Dorman et al. 2004, Sect. 7 and recall that p̃kmax+1 = 0) then yields that

d

dt
M(t) = M(t)Ω, M(0) = I, (3.1)

where I denotes the (kmax + 1) × (kmax + 1) identity matrix and Ω = [Ωl,k] is the
(kmax + 1) × (kmax + 1) matrix with elements given by

Ωl,k = τ l
(
p̃k+1 + δl,k+1

)− (γ + τ l)δl,k (l, k ∈ K ).

The solution to (3.1) is then straightforwardly given by

M(t) = eΩt =
∞∑
l=0

t lΩ l

l! . (3.2)

We show in “Appendix 2” that the eigenvalues of Ω are

λi =
{−γ − iτ for i ∈ {0, 2, 3, . . . , kmax},

τ
((∑kmax

l=0 l p̃l+1

)
− 1

)
− γ for i = 1.

(3.3)

We denote the dominant eigenvalue, λ1, by r , so

r = τ
((∑kmax

l=0 l p̃l+1

)
− 1

)
− γ = τμD̃−2 − γ. (3.4)

If r ≤ 0, the branching process {Z(t) : t ≥ 0} goes extinct almost surely. If r > 0,
then r gives the asymptotic exponential growth rate of {Z(t) : t ≥ 0} (and also of
{Zi (t) : t ≥ 0} for i ∈ K \ {kmax}) when {Z(t) : t ≥ 0} does not go extinct.
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For i ∈ K , letw�
i = (wi,k) be a left eigenvector ofΩ corresponding to the eigenvalue

λi , so

w�
i Ω = λiw�

i . (3.5)

The Perron–Frobenius theory implies that w1 can be chosen so that all of its elements
are positive andw�

1 1 = 1. The left-eigenvectorw1 then yields a probability distribution
which gives the asymptotic relative frequencies of the different types, as t → ∞, when
{Z(t) : t ≥ 0} does not go extinct.
Expanding (3.5) in components yields

kmax∑
l=0

w1,l
(
τ l
(
p̃k+1 + δl,k+1

)− (γ + τ l)δl,k
) = rw1,k (k ∈ K ). (3.6)

Let w(s) = ∑kmax
l=0 slw1,l (s ≥ 0) denote the (probability-)generating function of w1.

Multiplying (3.6) by sk and summing over k yields

τ f D̃−1(s)μW + τ(1 − s)w′(s) = (r + γ )w(s), (3.7)

where f D̃−1(s) = ∑kmax
k=1 p̃ksk−1 is the PGF of D̃ − 1 and μW = ∑kmax

k=0 kw1,k is the
mean of the distribution w1. Setting s = 1 in (3.7) and using (3.4) yields

μW = r + γ

τ
= μD̃−2. (3.8)

Note that (3.8) has a simple intuitive explanation. For large t , a typical individual
gives birth at rate

∑kmax
l=0 w1,l lτ = τμW and dies completely (i.e. without producing

any offspring) at rate γ , so the population growth rate r = τμW −γ and (3.8) follows
using (3.4) .

For i, k ∈ Z
+, let k[i] = k(k − 1) . . . (k − i + 1) denote a falling factorial, with

the convention k[0] = 1. For i = 0, 1, . . ., let μ
[i]
W = ∑kmax

k=0 k[i]w1,k be the i th

factorial-moment of the distribution w1, so μ
[0]
W = 1 and μ

[1]
W = μW . Note that

μ
[i]
W = w(i)(1) (i = 0, 1, . . .), where w(i)(s) denotes the i th derivative of w(s).

Repeated differentiation of (3.7) yields

μ
[i]
W = μD̃−2

μD̃−2+i

μ
[i]
D̃−1

, (3.9)

where μ
[i]
D̃−1

is the i th factorial-moment of D̃ − 1. Note that μ[i]
D̃−1

= 0 for i ≥ kmax.
It then follows, using the inversion formula which expresses the probability mass
function of a non-negative integer-valued random variable in terms of its factorial-
moments (see e.g. Daley and Vere-Jones 1988, p. 117), that

w1,k =
⎧
⎨
⎩
∑kmax−1

i=k (−1)i−k
(i
k

)μD̃−2μ
[i]
D̃−1

i !μD̃−2+i
if k = 0, 1, . . . , kmax − 1,

0 if k = kmax.

(3.10)
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Observe thatw1,kmax = 0 since only initial infectives can have type kmax. Observe also
that w1 is determined just by the degree distribution of the network and is invariant to
the epidemic parameters γ and τ .

For t ≥ 0, let m(t) = (m(i)(t)) = (M(t)1)�. Thus the kth element of m(t)
contains the mean total population size at time t given that the process starts with
a single individual whose type is k. We derive a simple expression for m(t). The
following proposition is useful.

Proposition 1 ForamatrixM and vectorsx,y such thatMx = ax+by andMy = cy,
where a, b and c are scalars satisfying a 	= c,

eMtx = eatx + b

a − c

(
eat − ect

)
y and eMty = ecty. (3.11)

Proof The second identity follows straightforwardly from the definition of the matrix
exponential and the fact that y is a right eigenvector with eigenvalue c. For the first
identity,

eMtx =
∞∑
i=0

1

i ! (Mt)ix

=
∞∑
i=0

t i

i !

⎛
⎝aix +

i−1∑
j=0

bci−1− j a jy

⎞
⎠

= eatx +
∞∑
i=0

t i

i !bc
i−1

( a
c

)i − 1( a
c

)− 1
y

= eatx + b

a − c

(
eat − ect

)
y. (3.12)


�
Let n = (0, 1, . . . , kmax)

�. Observe that

Ω1 = τn − γ 1 and Ωn = rn, (3.13)

so using Proposition 1 with M = Ω, x = 1, y = n, a = −γ, b = τ and c = r , and
recalling from (3.4) that r + γ = μD̃−2τ , we have

eΩx1 = μ−1
D̃−2

(
er x − e−γ x) n + e−γ x1 and eΩxn = er xn. (3.14)

Thus,

m(t) = μ−1
D̃−2

(
er t − e−γ t) n + e−γ t1 (3.15)

and

lim
t→∞ e−r tm(t) = μ−1

D̃−2
n. (3.16)
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While it is well known that asymptotically the mean prevalence grows exponentially
with rate constant r , i.e. that prevalence ∝ er t , these results allow us to see from (3.15)
that the rate of convergence to this asymptotic behaviour is r +γ , and from (3.16) that
the constant of proportionality is the degree of the initially infected individual divided
by μD̃−2.

We also consider the relationship between the equations above and the diverse
ODE approaches to the mean behaviour of the full network epidemic model. Miller
and Kiss (2014) consider several such approaches; their notation can be related to ours
by defining

I (t) = m(k)(t)�1, λ(t) = m(k)(t)�n. (3.17)

Substituting (3.17) and (3.13) into (3.1) gives

dI

dt
= τλ − γ I,

dλ

dt
= rλ. (3.18)

This pair of equations can be derived from various models considered by Miller and
Kiss (2014, c.f. Sect. 3.4.1) assuming an initially small infectious population and neg-
ligible susceptible depletion. Therefore, our results suggest that the ODE approaches
to mean behaviour do not require correction as the infectious population becomes
extremely small, and the typical assumption that 1  I (t = 0)  N for the ODE
system to hold may be too conservative, with N � 1 being all that is required.

4 Variance

The variance in infectious prevalence during the exponentially growing phase of an
epidemic was considered in Graham and House (2014), but using the diffusion limit
and an argument about the neighborhood around an infective. A branching process
limit lets us be more explicit. For k ∈ K , let uk denote the length-(kmax + 1) column
vector whose element corresponding to type k is 1 and all other elements are 0, so

uk = (δi,k). For t ≥ 0 and k ∈ K , let σ (k)
i j (t) = cov

(
Z (k)
i (t), Z (k)

j (t)
)

(i, j ∈ K ).

A matrix integrating factor argument gives

V (k)(t) =
[
σ

(k)
i j (t)

]
= E

[
Z(k)(t)Z(k)(t)�

]
− E

[
Z(k)(t)

]
E

[
Z(k)(t)�

]

=
∫ t

0
eΩ�(t−u)Bk(u)eΩ(t−u)du, (4.1)

where

Bk(t) =
kmax∑
l=0

(
eΩt

)
k,l

Cl ,

Ck = ωk

(
∂2Pk(1) + diag(fk) − ukf�k − fku�k + uku�k

)
,

fk = ∂Pk(1). (4.2)
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SeeDorman et al. (2004, Sect. 9), and alsoAthreya andNey (1972, p. 203), for details.1

For t ≥ 0 and k ∈ K , let v(k)(t) denote the variance of the total population size
at time t given that the process starts with a single individual, whose type is k. Then
v(k)(t) = 1�V (k)(t)1 and it follows using (4.1) that

v(k)(t) =
∫ t

0
(eΩ(t−u)1)�Bk(u)(eΩ(t−u)1)du

=
∫ t

0

(
μ−1
D̃−2

(
er(t−u) − e−γ (t−u)

))2
n�Bk(u)n du

+ 2
∫ t

0
μ−1
D̃−2

(
er(t−u) − e−γ (t−u)

)
e−γ (t−u)1�Bk(u)n du

+
∫ t

0
e−2γ (t−u)1�Bk(u)1 du, (4.3)

where we have used the first equation in (3.14) in deriving the last line. This quantity
has an exact but rather complex closed-form solution, which we give below and derive
in “Appendix 3”.

Let n2 = (02, 12, . . . , kmax
2)� and, for t ≥ 0, let v(t) = (v(i)(t)). Then

v(t) = α0(t)1 + α1(t)n + α2(t)n2, (4.4)

where

α0(t) = γ I2(t),

α1(t) = γμ−1
D̃−2

[
I1(t) − I2(t) + 2I3(t) + μ−1

D̃−2
μ−1
D̃

μ
(D̃−1)2+1(I4(t) − I5(t))

]

+ τ
[
I1(t) + 2I3(t) + μ−2

D̃−2
μ

(D̃−2)2 I4(t)
]
,

α2(t) = γμ−2
D̃−2

I5(t), (4.5)

with

I1(t) = er t − e−2γ t

r + 2γ
,

I2(t) = e−γ t
(
1 − e−γ t

)

γ
,

I3(t) = er t
(
1 − e−γ t

)

γ
− I1(t),

I4(t) = er t
(
er t − 1

)

r
− 2I3(t) − I1(t),

I5(t) = e2r t − e−(γ+2τ)t

2r + 2τ + γ
− 2

e−γ t
(
er t − e−2τ t

)

r + 2τ
+ e−γ t

(
e−2τ t − e−γ t

)

γ − 2τ
. (4.6)

1 There is a small error in the latter—in the expression for b(i)
jk on p. 203 of Athreya and Ney (1972),

δ jk − bi j δik − bikδi j + δi j δik should be replaced by bi j δ jk − bikδi j − bi j δik .
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In (4.6), if a denominator is zero then the expression is given by the limit as that
denominator tends to zero. For example, if γ = 0 then I2(t) = te−γ t , and if γ = 2τ ,
the final term in I5(t) is replaced by te−2γ t .

Equation (4.4) leads to a rather complex expression for v(t) in terms of ele-
mentary functions. However, its asymptotic form as t → ∞ is much simpler.
Note that limt→∞ e−2r t Ik(t) = 0, for k = 1, 2, 3, limt→∞ e−2r t I4(t) = 1

r and
limt→∞ e−2r t I5(t) = 1

2r+2τ+γ
= 1

2μD̃−1τ−γ
. Substituting these limits into (4.4)

and (4.5) yields

lim
t→∞ e−2r tv(t) = 1

μ2
D̃−2

(
2μD̃−1τ − γ

)
⎡
⎣2τμD̃−1

(
μ

(D̃−2)2τ + γ
)

r
n + γn2

⎤
⎦ .

(4.7)

Note that both the asymptotic and exact expressions for v(t) depend on the degree
distribution D only through its first three moments.

It follows from (3.16) and (4.7) that, for k ∈ K ,

lim
t→∞

var
(
Z (k)(t)

)

E
[
Z (k)(t)

]2 = 1

2μD̃−1τ − γ

⎡
⎣γ +

2τμD̃−1

(
μ

(D̃−2)2τ + γ
)

kr

⎤
⎦ . (4.8)

We note two features of these results. First, the Eqs. (4.4) and (4.5) involve many rates
that are linear combinations of r , τ and γ , with the dominant being 2r and the sub-
dominant being r . This leads to complex real-time behaviour as the system approaches
its asymptotic limit. In the diffusion limit, only the dominant and subdominant rates
are present, leading to the same overall rate of convergence r , but other rates are not
present (Graham and House 2014). Secondly, the dependence of the variance on initial
conditions is not simple proportionality,meaning that (4.7) contains terms proportional
to both n and n2 (unless γ = 0) and the right-hand side of (4.8) depends on k.

5 Covariance function

For t, s ≥ 0 and k ∈ K , let σ (k)(t, s) = cov
(
Z (k)(t), Z (k)(s)

)
denote the covariance

of the total population sizes at times t and s in the branching process which approx-
imates the early phase of an epidemic, given that the process starts with a single indi-
vidual, whose type is k. We assume without loss of generality that t ≤ s; although this
choice does not respect alphabetical order, the majority of results that follow take t as
an argument rather than s, and are thereforemore easily read as functions of time. Then

σ (k)(t, s) = E

[
cov

(
Z (k)(t), Z (k)(s)|Z(k)(t)

)]

+ cov
(
E

[
Z (k)(t)|Z(k)(t)

]
, E

[
Z (k)(s)|Z(k)(t)

])
. (5.1)
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The first term on the right hand side of (5.1) is zero, since Z (k)(t) is non-random
given Z(k)(t). Now, E

[
Z (k)(t)|Z(k)(t)

] = 1�Z(k)(t) and E
[
Z (k)(s)|Z(k)(t)

] =
Z(k)(t)�M(s − t)1, so

σ (k)(t, s) = cov
(
1�Z(k)(t),Z(k)(t)�M(s − t)1

)

= 1�V (k)(t)M(s − t)1

= μ−1
D̃−2

(
er(s−t) − e−γ (s−t)

)
1�V (k)(t)n + e−γ (s−t)v(k)(t), (5.2)

using (3.2), the first equation in (3.14) and noting that 1�V (k)(t)1 = v(k)(t). This leads
to an exact, closed-form expression for the covariance function in terms of elementary
functions, which we state below and derive in “Appendix 4”.

For t, s ≥ 0, let σ(t, s) = (
σ (0)(t, s), σ (1)(t, s), . . . , σ (kmax)(t, s)

)�
. Then

σ(t, s) = μ−1
D̃−2

(
er(s−t) − e−γ (s−t)

)
(β1(t)n + β2(t)n2) + e−γ (s−t)v(t), (5.3)

where

β1(t) = γμ−1
D̃−2

[
μ−1
D̃

μ
(D̃−1)2+1(I7(t) − I8(t)) + μD̃−2 I6(t)

]

+ τμ−1
D̃−2

[
μ

(D̃−2)2 I7(t) + μ2
D̃−2

I6(t)
]
,

β2(t) = γμ−1
D̃−2

I8(t), (5.4)

with

I6(t) = er t
(
1 − e−γ t

)

γ
,

I7(t) = er t
(
er t − 1

)

r
− I6(t),

I8(t) = e2r t − e−(γ+2τ)t

2r + 2τ + γ
− e−γ t

(
er t − e−2τ t

)

r + 2τ
. (5.5)

As at (4.6), an appropriate limit is taken if a denominator in (5.5) is zero.
The covariance function takes a simple form in the limit as t and s → ∞. Note

that limt→∞ e−2r t I6(t) = 0, limt→∞ e−2r t I7(t) = 1
r and limt→∞ e−2r t I8(t) =

1
2μD̃−1τ−γ

. Substituting these limits into (5.3) yields that, for any s ≥ 0,

lim
t→∞ e−2r tσ(t, t + s) = ers lim

t→∞ e−2r tv(t). (5.6)

It follows that, for k ∈ K and s > 0,

lim
t→∞ corr

(
Z (k)(t), Z (k)(t + s)

)
= 1,
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where corr denotes correlation. This is not surprising since it is well known that

e−r t Z (k)(t)
a.s.−→ W (k) as t → ∞,

where
a.s.−→ denotes almost sure convergence (i.e. convergence with probability 1) and

W (k) is a non-negative random which satsifies W (k) = 0 if and only if the branching
process goes extinct; see e.g. Athreya and Ney (1972, Theorem V.7.2).

6 Unbounded degree distributions

The above results have all assumed that there is a maximum degree kmax. Suppose
that is not the case, so the branching process has countably many types. For t ≥ 0,
let Z(t) = (Z0(t), Z1(t), . . .)�, where Zi (t) denotes the number of individuals of
type i alive at time t , and let Z(t) = ∑∞

i=0 Zi (t) denote the total number indi-
viduals alive at time t . (For ease of notation we drop explict reference to the type
of the initial individual.) For kmax = 1, 2, . . ., let {Z(t, kmax) : t ≥ 0} denote
the branching process derived from {Z(t) : t ≥ 0} by ignoring all individuals
having type strictly greater than kmax and any offspring of such individuals. For
t ≥ 0, let Z(t, kmax) = 1�Z(t, kmax) be the total number of individuals alive in
{Z(t, kmax) : t ≥ 0} at time t . Now, for any t ≥ 0, Z(t, kmax) is monotonically
increasing in kmax and converges almost surely to Z(t) as kmax → ∞. Thus, by the
monotone convergence theorem, E [Z(t)] = limkmax→∞ E [Z(t, kmax)].

The process {Z(t, kmax) : t ≥ 0} behaves like the branching process described in

Sect. 2.3 but with infection rate τ replaced by τ(kmax) = τP

(
D̃ ≤ kmax + 1

)
, and

size-biased degree distribution D̃ replaced by D̃(kmax), where

P

(
D̃(kmax) = k

)
=
⎧⎨
⎩

p̃k
P

(
D̃≤kmax+1

) if k = 1, 2, . . . , kmax + 1,

0 if k = kmax + 2, kmax + 3, . . . .

The presence of kmax + 1 rather than kmax is because contacts with individuals hav-
ing degree strictly greater than kmax+1 are ignored, as they yield individuals with
effective degree (and hence type) strictly greater than kmax. Now τ(kmax) → τ and

E

[
D̃(kmax)

]
→E

[
D̃
]
as kmax→∞, so the expression (3.15) for themean total popula-

tion size at time t continues to hold in the unbouded degree case, provided thatE
[
D̃
]
<

∞, or equivalently that E
[
D2
]
<∞. A similar argument shows that the expressions

for the variance of Z(t) and the covariance of Z(t) and Z(s), derived in Sects. 4 and 5,

respectively, continue to hold provided E

[
D̃2
]
<∞, or equivalently E

[
D3
]
<∞.

7 Probability of extinction

For t ≥ 0 and k ∈ K , let πk(t)=P
(
Z (k)(t)=0

)
be the probability that the branching

process is extinct at time t given that it starts with one individual of type k. Then in
general
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d

dt
πk(t) = −ωkπk(t) + ωk Pk(π(t)), (7.1)

where π(t) = (πi (t)). For our specific model, using (2.1) and (2.3), we have

d

dt
πk(t) = −(γ + τk)πk(t) + γ + τkπk−1(t)

kmax−1∑
l=0

p̃l+1πl(t). (7.2)

These equations are not amenable to closed-form solution. Note, however, that studies
of time to extinction for network epidemics—e.g. Holme (2013)—have tended to be
based on Monte Carlo methods, but (7.2) could provide a complementary approach
that is numerically cheaper and more analytically tractable.

We will now consider three regimes in which asymptotic methods can be used to
bound the real-time behaviour of the probabilities of extinction. In particular, we will
see that early real-time behaviour is bounded by the death rates ωk , while late-time
behaviour is bounded by the asymptotic real-time growth rate r provided r > −γ .

7.1 Late behaviour of the subcritical case

Suppose that r < 0, so the branching process is subcritical. For t ≥ 0 and k ∈
N0 = {0, 1, . . .}, we will work with the probability of survival qk(t) = 1 − πk(t) =
P
(
Z (k)(t) > 0

)
. Now P

(
Z (k)(t) > 0

) ≤ E
[
Z (k)(t)

]
, so using (3.15) a simple upper

bound for qk(t), valid also in the unbounded degree setting using the results in Sect. 6,
is

qk(t) ≤ kμ−1
D̃−2

(
er t − e−γ t)+ e−γ t . (7.3)

Note that μD̃ < ∞ is a necessary condition for r < 0. Under the stronger condition
thatμD̃2 < ∞, Windridge (2015) gives an exponential approximation, for large t , to a
quantity closely related to qk(t). He assumes that what we call type-0 individuals are

dead. For k = 1, 2, . . ., let q̂k(t) = P

(∑∞
i=1 Z

(k)
i (t) > 0

)
. Then, Windridge shows

that there exists a constant ĉ ∈ (0, 1] such that, for any a < min{τ,−r},

q̂k(t) = ĉker t
(
1 + O(ke−at )

)
as t → ∞, (7.4)

for any k ≥ 1. The constant ĉ = limt→∞ e−r t q̂1(t). Note that for some practical
purposes, q̂k(t)may be of more interest than qk(t), since type-0 individuals are unable
to transmit infection. In particular, in “Appendix 5” we sketch the argument that for
the case where r > −γ an analogous result to (7.4) holds, i.e. , for k ≥ 1,

qk(t) ∼ cker t as t → ∞, where c = lim
t→∞ e−r t q1(t) > 0. (7.5)

(For real-valued functions, f and g say, f (t) ∼ g(t) as t → ∞ if limt→∞ f (t)/g(t) =
1.)
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For the case where r < −γ (so, from (3.4), μD̃ < 2) we show in “Appendix 5”
that if μD̃2 < ∞ then, for k ≥ 0,

qk(t) ∼ (1 − kμ−1
D̃−2

)e−γ t as t → ∞. (7.6)

Note that in this case the asymptotic behaviour of the survival probability qk(t) is
independent of the infection rate τ . The case r < −γ could occur, for example, at
the end of an epidemic where τ � γ . Such an epidemic would consist primarily
of transmission events at early times, with the late behaviour dominated by recovery
events.

7.2 Late behaviour of the supercritical case

An approximation to qk(t) in the supercritical case (r > 0) can be obtained by
exploiting the fact that a supercritical branching process conditioned on extinction
is probabilistically equivalent to a subcritical branching process. For k ∈ N0, let
T (k) = inf{t ≥ 0 : Z (k)(t) = 0} denote the extinction time of the branching process
given that it starts with one individual of type k, where T (k) = ∞ if the branching
process survives forever, and let πk = P

(
T (k) < ∞) = πk(∞) be the probability that

the branching process ultimately goes extinct. Then,

qk(t) = 1 − πk + πkP

(
T (k) > t |T (k) < ∞

)
. (7.7)

Let {Z̃(k)(t) : t ≥ 0} be distributed as {Z(k)(t) : t ≥ 0|T (k) < ∞}. Then it follows
from Waugh (1958, Sect. 5), that {Z̃(k)(t) : t ≥ 0} is also a continuous-time multitype
Markov branching process, in which the lifetime of a typical type-k individual has an
exponential distribution with rate γ + τk, as at (2.1), but when it dies its offspring is
now distributed as follows:

P (Offspring = ∅|Parent type = k) = 1

πk

γ

γ + τk
,

P (Offspring = {k − 1, l}|Parent type = k) = πk−1πl

πk

τk p̃l+1

γ + τk
(l ∈ N0). (7.8)

Suppose now that there is a maximum degree size kmax. Let Ω̃ = [Ω̃l,k] be the
(kmax + 1) × (kmax + 1) matrix with elements given by

Ω̃l,k = πl−1πk

πl
τ l
(
p̃k+1 + δl,k+1

)− (γ + τ l)δl,k (l, k ∈ K ).

Then, recalling (3.2),

E

[
Z̃ (k)(t)

]
= u�k eΩ̃t1, (7.9)

where Z̃ (k)(t) = Z̃ (k)
0 (t) + Z̃ (k)

1 (t) + . . . + Z̃ (k)
kmax

(t).
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Let r̃ denote the dominant eigenvalue of Ω̃ and note that r̃ < 0. For t ≥ 0 and

k = 0, 1, . . . , kmax, let q̃k(t) = P

(
Z̃ (k)(t) > 0

)
be the probability that the branching

process {Z̃(k)(t) : t ≥ 0} is not extinct at time t given that it startswith one individual of
type k. Then we expect that arguments similar to those used in the proof of Heinzmann
(2009, Theorem 3.1), will show that there exists constants c̃1, c̃2, . . . , c̃kmax , satisfying
0 < c̃k < ∞, such for k = 1, 2, . . . , kmax,

q̃k(t) = c̃ke
r̃ t
(
1 + o(e−γ̃ t )

)
as t → ∞, (7.10)

for any γ̃ > 0. It then follows using (7.7) that

qk(t) = 1 − πk + πk c̃ke
r̃ t
(
1 + o(e−γ̃ t )

)
as t → ∞. (7.11)

Heinzmann (2009, Theorem 3.1), cannot be applied directly as it assumes that the
matrix Ω̃ is irreducible. We do not consider it here but we expect that Heinzmann’s
proof can be extended to our situation. If we assume that type-0 individuals are dead
and only consider initial individuals of types 1, 2, . . . , kmax − 1 (recall that only
initial infectives can have type kmax) then Ω̃ becomes a (kmax − 1) × (kmax − 1)
irreducible matrix. Heinzmann (2009, Theorem 3.1), then yields (7.10); note that now
πk is replaced by π̄k = 1 − limt→∞ q̄k(t) (k = 1, 2, kmax − 1) in the definition of

Ω̃ and q̃k(t) = q̃k(t) = P

(∑kmax−1
i=1 Z̃ (k)

i (t) > 0
)
. The approximation (7.11) then

holds with qk(t) and πk replaced by q̄k(t) and π̄k , repsectively. Moreover, if we then
let f̃�1 and b̃1 be left and right eigenvectors of Ω̃ corresponding to the eigenvalue r̃ ,

satisfying f̃�1 b̃1 = 1, then c̃k =
(
u�k b̃1

)
h∗, where h∗ = limt→∞ e−r̃ t f̃�1 q̃(t) and

q̃(t) = (
q̃i (t), q̃2(t), . . . , q̃kmax−1(t)

)�. Unfortunately, unlike with Ω , there do not
appear to be closed-form expressions for r̃ and its associated eigenvectors.

7.3 Early behaviour and matched asymptotics

Matched asymptotics is a standard technique in mathematical biology for writing
down approximations to non-linear models that match known asymptotic behaviour
(Murray 2002, 2003). While numerical solution of the ODEs (7.2) is efficient (as we
have noted above) we now obtain a crude approximation to the full system that takes
a closed form in terms of elementary functions.

First note that for k ∈ K , πk(0) = 0 and πk(t) is monotonically increasing with t .
If we neglect the quadratic terms in π in (7.2) then, since these are only positive and
increasing over time, we get a lower bound for the extinction probabilities:

πk(t) ≥ π
(0)
k (t) = γ

ωk

(
1 − e−ωk t

)
. (7.12)

Note that in standard matched asymptotics, we would identify a small parameter from
a ratio of rate constants as the basis for a systematic approximation scheme (Murray
1984); an alternative would be to approximate systematically by, for example, letting
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π
(1)
k = πk − π

(0)
k , substituting into (7.2) and neglecting quadratic terms to give a

linear set of equations for the next order of approximation. Here we consider only the
lowest order approximation, and hence define an ‘internal’ solution for the survival
probability as:

q(I )
k (t) = 1 − π

(0)
k (t) = 1

ωk

(
τk + γ e−ωk t

)
. (7.13)

Next, supposing we are in the subcritical case so that our result (7.5) holds. We will
call this the ‘external’ solution

q(E)
k (t) = cker t . (7.14)

To fix the constant c, we match the late behaviour of the internal solution with the
early behaviour of the external solution:

q = lim
t→∞ q(I )

k (t) = lim
t→0

q(E)
k (t) ⇒ q(E)

k (t) = τk

ωk
er t . (7.15)

Finally, the matched asymptotic solution is

q(A)
k (t) = q(I )

k (t) + q(E)
k (t) − q = 1

ωk

(
τker t + γ e−ωk t

)
. (7.16)

We compared this approximation as well as the internal and external solutions to the
exact solution qk(t), with results shown in Fig. 1. As advertised, this is a relatively
crude approximation, but is expressed in terms of elementary functions and satisfies
known asymptotic limits.
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Fig. 1 Extinction probability for a subcritical epidemic compared to approximations. Results are for a
3-regular graph with γ = 1 and values of τ indicated in the figure titles. The internal and external solutions
each fail severely at certain points, but the approximate solution crudely captures the overall behaviour
(colour figure online)
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8 Fluctuations in the emerging phase of a major outbreak

Wenow consider the early behaviour of supercritical epidemics that take off (i.e. do not
go extinct early on but ultimately end owing to long-term depletion of susceptibles).
The early stages of such an epidemic are approximated by the branching process
defined in Sect. 2.3 but conditioned on non-extinction. It is straightforward to adapt
the results on means and variances in Sects. 3 and 4 to condition on Z (k)(t) > 0.
Elementary calculation shows that, for t ≥ 0 and k ∈ N0,

E

[
Z (k)(t)

∣∣∣Z (k)(t) > 0
]

= E
[
Z (k)(t)

]

qk(t)
,

var
(
Z (k)(t)

∣∣∣Z (k)(t) > 0
)

= var
(
Z (k)(t)

)

qk(t)
− πk(t)

(
E
[
Z (k)(t)

]

qk(t)

)2

.

Expressions for E

[
Z (k)(t)

∣∣∣Z (k)(t) > 0
]
and var

(
Z (k)(t)

∣∣∣Z (k)(t) > 0
)
then follow

using (3.15) and (4.4), respectively, though there is no closed-form formula for qk(t)
or πk(t). Note that, assuming r > 0 so πk < 1,

lim
t→∞

var
(
Z (k)(t)

∣∣∣Z (k)(t) > 0
)

E

[
Z (k)(t)

∣∣∣Z (k)(t) > 0
]2 = (1 − πk) lim

t→∞
var

(
Z (k)(t)

)

E
[
Z (k)(t)

]2 − πk,

which depends on the degree k of the initial infective.
The diffusion approximation studied in Graham and House (2014) corresponds to

the case where the number of infectives at time t = 0 is large. Return to the case where
there is a maximum degree kmax and suppose that the branching process does not go
extinct. Then it follows from Athreya and Ney (1972, Theorem V.7.2), that, for any
k ∈ K ,

Z(k)(t)

Z (k)(t)
a.s.−→ w1 as t → ∞,

where w1, given by (3.10), is a left eigenvector of Ω corresponding to the dominant
eigenvalue λ1 = r . Thus if an epidemic takes off and is still in its exponentiallly
growing phase then the relative frequencies of the different types of infectives will
be close to w1. Hence, we now assume that the initial number of individuals in the
branching process Z(0) = K , where K is large, and that Zi (0) ≈ w1,i K for i ∈ K .
Label the initial individuals 1, 2, . . . , K . Then, for t ≥ 0, the total population size
is Z(t) = Ẑ1(t) + Ẑ2(t) + . . . + ẐK (t), where Ẑi (t) denotes the total number of
descentants of the initial individual i that are alive at time t , including i itself if it is still

alive. Thus,E [Z(t)] = ∑K
i=1 E

[
Ẑi (t)

]
, for all t ≥ 0, and, since the processes {Ẑi (t) :

t ≥ 0} (i = 1, 2, . . . , K ) are mutually independent, var (Z(t)) = ∑K
i=1 var

(
Ẑi (t)

)
,

for all t ≥ 0, and cov (Z(t), Z(s)) = ∑K
i=1 cov

(
Ẑi (t), Ẑi (s)

)
, for all t, s ≥ 0.
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Note that (3.9) implies that

w�
1n =

kmax∑
i=0

iw1,i = μD̃−2 and w�
1n2 =

kmax∑
i=0

i2w1,i = μD̃−2μ(D̃−1)2+1

μD̃

.

Assuming that the above approximation is exact, then, for t ≥ 0, it follows from (3.15)
that

E [Z(t)] = Kw�
1m(t) = K er t (8.1)

and, after a little algebra, it follows from (4.4) that

var (Z(t)) = Kw�
1 v(t)

= K
(
γ
[
I9(t) + μ−1

D̃
μ−1
D̃−2

(
σ 2
D̃

+ 2
)
I4(t)

]

+τμ−1
D̃−2

[
μ2
D̃−2

I9(t) + σ 2
D̃
I4(t)

])
, (8.2)

where σ 2
D̃

= var(D̃) and

I9(t) = er t
(
er t − 1

)

r
.

Comparison of (8.1) and (8.2) with the diffusion-based result of Graham and House
(2014) in the limit of large t gives agreement when γ = 0 (i.e. for the SImodel) but not
for γ > 0. We believe that this is due to the fact that the diffusion model was only four
dimensional, so a heuristic argument (given in Sect. 3.3 of Graham and House 2014,
which gave results that were in good agreement with simulation) about the neighbour-
hood of an infective node had to be made, in contrast to the approach here that deals
with each effective degree explicitly and so has kmax + 1 dimensions. The argument
about the neighbourhood around an infective tries to account for correlations caused
by variability in recovery times, and so if γ → 0 then these correlations do not exist.

Recent work by Constable and McKane (2014) considered the reduction of high-
dimensional stochastic models to low-dimensional diffusions and this approach was
shown to be asymptotically exact for some systems in the small-noise limit by Parsons
and Rogers (2015). It is an open question whether the argument in Sect. 3.3 of Graham
andHouse (2014) could be justified rigorously by a similar argument, however we note
that a branching-process approach makes fewer assumptions than a low-dimensional
diffusion limit and so will be more generally applicable.

Considering further results that can be obtained, it follows from (5.3) and a little
algebra that, for 0 ≤ t ≤ s,

cov (Z(t), Z(s)) = e−γ (s−t)var (Z(t)) + Kμ−1
D̃−2

(
er(s−t) − e−γ (s−t)

)

×
{
γμ−1

D̃

[
μ

(D̃−1)2+1 I9(t) −
(
σ 2
D̃

+ 2
)
I6(t)

]

+ τ
[
μ2
D̃−2

I9(t) − σ 2
D̃
I6(t)

]}
. (8.3)
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It seems plausible that these results extend to the case when there is nomaximal degree
but that would involve results for countably infinite matrices which we do not consider
here.

Recall that the processes {Ẑi (t) : t ≥ 0} (i = 1, 2, . . . , K ) are mutually inde-
pendent. It follows using the central limit theorem that, for sufficiently large K , the
process {Z(t) : t ≥ 0}, which approximates the prevalence of infection during the
early growth of an epidemic, is approximately Gaussian with mean function given
by (8.1) and covariance function given by (8.3).

9 Numerical examples

9.1 Forward simulations

We conducted a series of numerical experiments to provide specific examples of the
general results presented here. M = 104 Monte Carlo simulations were performed
on three different configuration model networks, each of size N = 104, and with
the degree distributions shown in Fig. 2 Row (a). (Note that each Monte Carlo sim-
ulation consisted of first simulating a network and then simulating a single epidemic
on it.) Two different scenarios were considered. In the first – most commonly con-
sidered in the literature when simulations are compared to analytic approaches –
time = 0 was defined as the first point when prevalence is at a given level, K . In
our simulations we took K = 100, but in general K should take a value where
the probability of extinction has become negligible, but the depletion of the suscep-
tible population has not had a significant effect on the epidemic dynamics. In the
second, each epidemic was started from one node, picked uniformly at random, so
the probability of extinction played a major role. This scenario is less commonly
considered when comparing real-time simulated epidemics to differential equation
models because the latter are typically designed to hold when the epidemic is already
established.

Since analytic results for the probabilities of extinction πk(t) are not available,
the branching process results required numerical integration of ordinary differential
equations (in our case using Runge–Kutta methods). We stress that the computational
effort required to do this is much less than that involved in performing Monte Carlo
simulations, and has the benefit of not depending on N .

The results for the first approach (restarting time at the first time prevalence reaches
100) are given in Fig. 2. Row (b) shows sample trajectories (which all agree on preva-
lence at time 0). Row (c) shows the simulated mean after time 0 on a logarithmic scale,
which initially grows at the constant rate predicted by the branching process model,
and then reduces as the susceptible population is depleted. Row (d) shows the variance,
which has not converged to its asymptotic growth regime by the time prevalence is
equal to 100, an effect that is captured by the branching process model. The variance
does not take its largest value at the peak prevalence, but instead has local maxima
before and after the peak.

Figure 3 shows the results for the second approach in which there is one ran-
domly chosen initial infective at time 0. Row (a) shows some sample trajectories.
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Fig. 2 Epidemic simulations that set time = 0 when prevalence is equal to 100. Parameters are τ = 2,
γ = 1 throughout. a Degree distribution histograms, b 100 sample trajectories, c Mean prevalence. Black
solid simulations; Red dashed branching process d Variance in prevalence. Black solid simulations; Red
dashed branching process (colour figure online)

Row (b) shows the extinction probabilities, which are accurately captured in the
branching process model until very close to the end of the epidemic when preva-
lence is low and extinction becomes likely again. Row (c) shows the mean, which
does not start growing at a constant rate with the convergence rate accurately captured
in the branching process model. Row (d) shows the variance and convergence onto
its asymptotic value; in this case there is a single maximum just before the peak in
prevalence.
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Fig. 3 Epidemic simulations starting from one node selected uniformly at random. Parameters are τ = 2,
γ = 1 throughout. Degree distributions are as for Fig. 2 above. a 100 sample trajectories, b Extinction
probabilities, Black solid simulations; Red dashed branching process, c Mean prevalence. Black solid
simulations; Red dashed branching process, d Variance in prevalence. Black solid simulations; Red dashed
branching process (colour figure online)

Another important point is that while mean numbers infected are comparable
between Figs. 2 and 3, the variability in the time for the epidemic to take off, as
well as the contribution from extinct epidemics, makes the real-time variance in Fig. 3
orders of magnitude larger than in Fig. 2.
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9.2 Statistical inference

In order to demonstrate the potential use of the real-time effective degree branching
process model for statistical inference, we carried out a simulation study. Here we
simulated one epidemic that tookoff on a configurationmodel network of size N = 106

with degree distribution D(3) as in the right-hand column of Fig. 2 (d(3)
1 = 1/8,

d(3)
3 = 5/6, d(3)

9 = 1/24) and true rates τ0 = 2, γ0 = 1. Letting I (t) be the prevalence
of infection in the network model, we set time t = 0 when I (t) = 100 for the first
time and make 40 evenly-spaced observations (with gap δt = 0.05 between each) of
I (t) up to tend = 2.

We then define an approximate likelihood based on the methods of Ross et al.
(2006), in which a Gaussian process approximation based on known first and second
moments is used, which will be more accurate for larger N , larger I (0) and smaller δt .
There should be, however, no a priori obstacle to fitting our model to data on smaller
populations even with incomplete data, for example by using Markov chain Monte
Carlo methods to perform multiple imputation as suggested by O’Neill and Roberts
(1999).

Explicitly, we let the probability density function f for sequential observations be
given by

f (I (t + δt)|I (t)) = N (E[Z(t + δt)|Z(t) = I (t)], var(Z(t + δt)|Z(t) = I (t)),

(9.1)

whereN (m, V ) is the probability density function of a normal distribution with mean
m and variance V , and the expectation and variance of Z(t+δt)|Z(t) = I (t) are given
by the results of Sect. 8 above. The likelihood is then

L =
∏

t∈{0,δt,...,tend−δt}
f (I (t + δt)|I (t)). (9.2)

We consider values of this likelihood across the range of rate constant parameters τ and
γ under two different degree distributions: the correct one, D(3), and a misspecified
degree distribution D(1), which is the one used in the left-hand column of Fig. 2
(d(1)

3 = 1).
Figure 4 shows the first quarter of the simulated epidemic together with the

Gaussian process approximation, as well as likelihood surfaces for the correct and
misspecified degree distributions. Performing maximum likelihood estimation using
MATLAB’s mle() function allows us to obtain point estimates for parameters τ̂

and γ̂ , as well as asymptotic 95% confidence intervals and the parameter covari-
ance matrix Ĉ from the inverse Hessian. We quote results to 2 significant figures;
the asymptotic approximations also give very slightly negative lower confidence
intervals for γ̂ which we round up to 0. For the correct degree distribution we
obtain
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Fig. 4 Simulation study. The top plot a shows the first quarter of the timepoints a Simulated epidemic, b
Likelihood surfaces (observations as black dots, full trajectory as black solid line, Gaussian approximation
mean as red dashed line, Gaussian approximation 95% prediction interval as red dotted line). The bottom
plots b show likelihood surfaces for a Gaussian approximation model as described in Sect. 9.2. True
parameters are τ0 = 2, γ0 = 1. Correct degree distribution D(3) is as given in the third columns of Figs.
2 and 3 above, and the misspecified distribution D(1) is the distribution from the first column. Likelihood
at a point is proportional to the intensity of shading, and with three straight lines, corresponding to the true
values of τ, γ and r , are shown each plot as dashed red lines (color figure online)

(
τ̂ (3)

γ̂ (3)

)
=
(
1.9 [1.4, 2.4]
0.8 [0, 1.7]

)
, Ĉ

(3) =
(
0.069 0.11
0.11 0.19

)
, (9.3)

and for the misspecified degree distribution we obtain

(
τ̂ (1)

γ̂ (1)

)
=
(
3.2 [2.3, 4.0]
0.8 [0, 1.7]

)
, Ĉ

(1) =
(
0.0045 0.011
0.011 0.030

)
. (9.4)

This shows that knowledge of the correct distribution allows both τ and γ to be
estimated; although as would be expected the early asymptotic growth rate r is much
more closely constrained by simulated data than other directions in parameter space.
It also shows that misspecification of the degree distribution allows r to be identified,
but biases the estimate of, in this case, τ .
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10 Concluding comments

10.1 Summary of results

In this paper, we have provided explicit closed-form expressions for the real-time
mean, variance and covariance function for disease prevalence during the early stages
of the Markovian SIR model on a configuration model network, as well as deriving
differential equations for the probabilities of extinction over time that are relatively
numerically cheap to solve. These allow for a more explicit treatment of e.g. rates of
convergence to asymptotic behaviour than has previously been possible.

10.2 Future directions

We believe that the methods of real-time, multitype branching processes could be
more widely applied in infectious disease epidemiology, since they provide results
concerning extinction and variance that are not available using deterministic differen-
tial equation models. For example, the effective-degree based methodology presented
heremay be extended to include degree correlation (e.g. in the sense of Newman 2002)
by keeping track of the actual, as well as effective, degrees of individuals, though the
type space becomes larger and explicit analytic results are unlikely to be available.
We note that there is increasing interest in the eradication of infections (e.g. Klepac
et al. 2013) and that arguably calculating extinction probabilities and variability in
outbreak sizes is of equal or greater importance in this context than calculation of
mean behaviour.

The explicit closed-form expressions derived have the potential to enhance statis-
tical work on epidemic prevalence curves. In particular, many empirically observed
epidemics of human pathogens exhibit more variability around the trend than simple
models would predict (see Black et al. 2014, particularly Section 1, for a discussion of
this), which can bias parameter estimation if an insufficiently variable model is used.
Application of our methods to real data would be an interesting extension of our work.

The possibility of amore general non-Markovian stochastic epidemic being approx-
imated by an appropriate real-time branching process is raised by the results ofBarbour
andReinert (2013) and it would be interesting to investigatewhether our analysis could
be adapted to this scenario.

Finally, there is the question of low-dimensional PGF-basedmodelling of thewhole
network epidemic that incorporates stochasticity accurately. For example, the work
of Miller (2014) considered accounting for early fluctuations and Graham and House
(2014) considered a diffusion approximation once early fluctuations were negligible,
but the results presented here as well as those of Barbour and Reinert (2013) suggest
that a more unified low-dimensional stochastic approach that explicitly models early
fluctuations may be possible.
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Appendix 1: Convergence of moments

We determine sufficient conditions for the first two moments of the number of infec-
tives in the epidemic EN among a population of N individuals to converge to the
corresponding moments of the limiting branching process B. For ease of exposition,
in EN we assume that at time t = 0 there is one infective and the remaining N − 1
individuals are susceptible. The initial infective is chosen by sampling a stub uniformly
at random from all stubs used to form the network, with the individual attached to that
stub being the initial infective. The arguments are easily extended to other choices of
initial infective(s).

In the independent and identically distributed (i.i.d.) degree case, we assume that
a single sequence D1, D2, . . . of i.i.d. copies of D is used to construct a sequence
of epidemics (EN ), where, for N = 1, 2, . . . , the epidemic EN is constructed using
D1, D2, . . . , DN . In the prescribed degree case (see Sect. 2.1), recall that p(N )

k (k =
0, 1, . . . ) denotes the empirical degree distribution in the epidemic EN and, for f :
R → R, let μ f (D(N )) = ∑∞

k=0 p
(N )
k f (k).

For N = 1, 2, . . . and t ≥ 0, let YN (t) be the number of infectives in EN at
time t and let Z(t) be the number of individuals in the limiting branching processB.
Then arguing as in the proof of (Ball and Neal 2008, Theorem A.1), shows that in the
i.i.d. degree case, if μD < ∞ then the sequence of epidemics (EN ) and the limit-
ing branching process B can be constructed on a common probability space so that,
with probability one, for any t > 0, YN (u) and Z(u) coincide for all u ∈ [0, t]
for all sufficiently large N . The same conclusion holds in the prescribed degree
case provided p(N )

k → pk (k = 0, 1, . . .) and μ
(N )
D → μD as N → ∞, where∑∞

k=0 pk = 1 and μD < ∞. Thus, under these conditions, in both cases, for any
t ≥ 0, YN (t) converges almost surely to Z(t) as N → ∞. We obtain further condi-
tions, under which, for fixed t ≥ 0, the sequence

(
YN (t)2

)
is uniformly integrable,

which then (e.g. Grimmett and Stirzaker 2001, Chap. 7, Sect. 10) implies immediately
that limN→∞ E [YN (t)] = E [Z(t)] , limN→∞ E

[
YN (t)2

] = E
[
Z(t)2

]
and, for any

0 ≤ s ≤ t , limN→∞ cov (YN (s),YN (t)) = cov (Z(s), Z(t)). To show that
(
YN (t)2

)
is uniformly integrable it is sufficient to show that the sequence

(
E
[
YN (t)2+δ

])
is

bounded above for some δ > 0.
For ease of exposition, we use notation from the i.i.d. degree case. The construction

in Ball and Neal (2008) involves for each N constructing a realisation of a branching
process,BN say,which is defined analagously toB but using the empirical distribution
of D1, D2, . . . , DN rather than the distribution of D. In BN , for each birth a stub is
chosen independently and uniformly from all the D1 + D2 + · · · + DN stubs and
the degree of the individual that the chosen stub belongs to gives the degree of the
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individual born at that birth. The process of infectives in EN followsBN except when
(i) a sampled stub has previously been chosen, in which case stubs are resampled until
one that has not been chosen previously is obtained, or (ii) a sampled stub has not been
chosen previously but is attached to an individual that has already been infected, in
which case the corresponding birth and all descendants of that individual in BN are
ignored in EN . Note that (i) implies thatBN need not be an almost sure upper bound
for the process of infectives in EN . The branching processesBN (N = 1, 2, . . . ) and
B are coupled so that with probability one, for any fixed t > 0, BN and B coincide
over [0, t] for all sufficiently large N .

Let D(1), D(2), . . . , D(N ) be the order statistics of D1, D2, . . . , DN , i.e. D1, D2,

. . . , DN arranged in increasing order. For ε ∈ (0, 1), let BN ,ε be the branching
process that is defined analagously to B, but using the empirical distribution of
D([Nε]+1), D([Nε]+2), . . . , D(N ). (For x ∈ R, [x] denotes the greatest integer ≤ x .)
For t ≥ 0, let ZN ,ε(t) be the number of individuals alive in BN ,ε at time t and let
TN ,ε(t) denote the total progeny of BN ,ε by time t , including the initial ancestor.

Then YN (t)
st≤ ZN ,ε(t), provided that TN ,ε(t) ≤ Nε, where

st≤ denotes stochastically
smaller than. (Up until [Nε] infections have occurred in EN , the empirical distribu-
tion of the degrees of unsampled stubs, where the degree of a stub is the degree of
the individual to which it is attached, is stochastically smaller than that of the stubs
belonging to the top N − [Nε] individuals when ordered by degree.) As YN (t) is at
most N , it follows that

E

[
YN (t)2+δ

]
≤ E

[
ZN ,ε(t)

2+δ
]

+ N 2+δ
P
(
TN ,ε(t) > Nε

)
.

By Markov’s inequality,

P
(
TN ,ε(t) > Nε

) ≤ 1

(Nε)2+δ
E

[
TN ,ε(t)

2+δ
]
.

Also, ZN ,ε(t)
st≤ TN ,ε(t), so

E

[
YN (t)2+δ

]
≤
(
1 + ε−(2+δ)

)
E

[
TN ,ε(t)

2+δ
]
. (10.1)

We now boundE
[
TN ,ε(t)2+δ

]
, for δ ∈ (0, 1). Note that this moment is smaller than

the corresponding moment for the branching process in which γ = 0 and individuals
retain their original effective degree throughout their lifetime. Moreover, by rescaling
the time axis, we can assume without loss of generality that τ = 1. Thus consider
a multitype Markov birth process, with types 0, 1, . . . , J , in which an individual of
type i gives birth at rate i and the types of successive births are i.i.d. with probability
mass function p̂ j ( j = 0, 1, . . . , J ). For i = 0, 1, . . . , J , let T̂i (t) denote the total
number of individuals alive in this process at time t given that at time 0 there is

one indivdiual, whose type is i . For α > 0 and t ≥ 0, let μ̂
(α)
i (t) = E

[
T̂i (t)α

]

(i = 0, 1, . . . , J ) and let μ̂(α)(t) = ∑J
i=0 p̂i μ̂

(α)
i (t). It is possible using a backward

argument to derive explicit expressions for μ̂(k)
i (t) for k = 1, 2, . . . , though the algebra
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soon becomes very tedious. As our aim is to bound μ̂(2+δ)(t), we simply derive bounds
for μ̂

(1)
i (t), μ̂(2)

i (t) (i = 0, 1, . . . , J ) and finally μ̂(2+δ)(t). Moreover, our bounds are
deliberately coarse to facilitate easy application to E

[
TN ,ε(t)2+δ

]
. For f : R → R,

let μ̂ f (D) = ∑J
i=0 f (i) p̂i .

For i = 0, 1, . . . , J , the backward equation for μ̂
(1)
i (t) is

dμ̂(1)
i

dt
= iμ̂(1), μ̂

(1)
i (0) = 1. (10.2)

Multiplying (10.2) by p̂i and summing over i = 0, 1, . . . , J , yields

dμ̂(1)

dt
= μ̂Dμ̂(1), μ̂(1)(0) = 1.

Thus

μ̂(1)(t) = eμ̂Dt , (10.3)

which on substituting into (10.2) yields μ̂
(1)
i = 1 + i

∫ t
0 e

μ̂Dsds, so

μ̂
(1)
i ≤ i(1 + t)eμ̂Dt (i = 1, 2, . . . , J ). (10.4)

For i = 0, 1, . . . , J , the backward equation for μ̂
(2)
i (t) is

dμ̂(2)
i

dt
= 2iμ̂(1)

i μ̂(1) + iμ̂(2), μ̂
(2)
i (0) = 1. (10.5)

Substituting from (10.3) and (10.4), and then multiplying (10.5) by p̂i and summing
over i = 0, 1, . . . , J , yields

dμ̂(2)

dt
≤ 2μ̂D2(1 + t)e2μ̂Dt + μ̂Dμ̂(2), μ̂(2)(0) = 1,

whence

μ̂(2)(t) ≤ eμ̂Dt +
∫ t

0
eμ̂D(t−s)2μ̂D2(1 + s)e2μ̂Dsds

≤ (
1 + 2μ̂D2 t (1 + t)

)
e2μ̂Dt .

Substituting this bound into (10.5) and noting that the right-hand side of (10.5) is
increasing in t yields

μ̂
(2)
i (t) ≤ i2g(t, μ̂D2)e2μ̂Dt (i = 1, 2, . . . , J ), (10.6)
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where

g(t, μ̂D2) = 1 + t
[
1 + 2(1 + t)(1 + μ̂D2 t)

]
. (10.7)

Let δ ∈ (0, 1). For i = 0, 1, . . . , J , the backward equation for μ̂
(2+δ)
i (t) is

dμ̂(2+δ)
i

dt
= −iμ̂(2+δ)

i (t) + iE

[(
T̂i (t) + T̂ (t)

)2+δ
]

, μ̂
(2+δ)
i (0) = 1, (10.8)

where T̂i (t) and T̂ (t) are independent and T̂ (t) is distributed as a mixture of
T̂0(t), T̂1(t), . . . , T̂J (t) with mixing probabilities p̂0, p̂1, . . . , p̂J .

Let a and b be nonnegative real numbers. Application of the mean value theorem
yields that

(a + b)2+δ ≤ a2+δ + (2 + δ)b(a + b)1+δ.

Further, (a + b)1+δ ≤ 2δ
(
a1+δ + b1+δ

)
, so

(a + b)2+δ ≤ a2+δ + 2δ(2 + δ)
(
ba1+δ + b2+δ

)
.

Setting a = T̂i (t) and b = T̂ (t) in this inequality, taking expectations exploiting the
independence of T̂i (t) and T̂ (t), substituting into (10.8) and noting that 2δ(2+ δ) < 6
gives

dμ̂(2+δ)
i

dt
≤ 6i

[
μ̂(1)(t)μ̂(1+δ)

i (t) + μ̂(2+δ)(t)
]
, μ̂

(2+δ)
i (0) = 1. (10.9)

Now

μ̂
(2)
i (t) = E

[(
T̂i (t)

1+δ
) 2

1+δ

]
≥
(
μ̂

(1+δ)
i (t)

) 2
1+δ

,

by Jensen’s inequality, so

μ̂
(1+δ)
i (t) ≤

(
μ̂

(2)
i (t)

) 1+δ
2 ≤ i1+δg(t, μ̂D2)e(1+δ)μ̂Dt , (10.10)

using (10.6) and noting that g(t, μ̂D2) ≥ 1. Substituting (10.10) into (10.9), multiply-
ing by p̂i and summing over i = 0, 1, . . . , J , yields

dμ̂(2+δ)

dt
≤ 6μ̂D2+δg(t, μ̂D2)e(2+δ)μ̂Dt + 6μ̂Dμ̂(2+δ).

Hence,

μ̂(2+δ) ≤ e6μ̂Dt +
∫ t

0
e6μ̂D(t−s)6μ̂D2+δg(s, μ̂D2)e(2+δ)μ̂Dsds

≤ e6μ̂Dt
[
1 + 6μ̂D2+δ tg(t, μ̂D2)

]
. (10.11)
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We return to epidemics on networks and introduce some more notation. For ε ∈
(0, 1), let k0(ε) = min{k : p0 + p1 + . . . , pk > ε} and, for k = 0, 1, . . . , let

pk(ε) =

⎧⎪⎨
⎪⎩

0 if k < k0(ε),

1 − 1
1−ε

∑∞
k=k0(ε) pk if k = k0(ε),

pk
1−ε

if k > k0(ε).

For f : R → R, let μ f (D(ε)) = ∑∞
k=0 pk(ε) f (k). As above, we assume without loss

of generality that τ = 1.
Consider first the model with prescribed degrees. Let D(N )

(1) , D(N )
(2) , . . . , D(N )

(N )

be the order statistics of D(N )
1 , D(N )

2 , . . . , D(N )
N . For ε ∈ (0, 1), let p(N )

k (ε) =
(N − [Nε])−1∑N

i=N−[Nε] δk,D(N )
(i)

(k = 0, 1, . . . ) and, for f : R → R, let

μ f (D(N )(ε)) =
∞∑
k=0

p(N )
k (ε) f (k) = 1

N − [Nε]
N∑

k=[Nε]+1

f
(
D(N )

(k)

)α

.

Let p̃(N )
k (ε) = kp(N )

k (ε)/μ
(N )
D(ε) (k = 1, 2, . . . ). For f : R → R, let

μ
f
(
D̃(N )(ε)

) =
∞∑
k=1

p̃(N )
k (ε) f (k) = μD(N )(ε) f (D(N )(ε))

μD(N )(ε)

.

Fix the population size N and ε ∈ (0, 1). In the birth process used to bound the
right-hand side of (10.1), the types of individuals born are distributed according to

p̂i = p̃(N )
i+1(ε) (i = 0, 1, . . . , J ), where J = max

{
D(N )

(k) : k = 1, 2, . . . , N
}
. Thus,

for δ ∈ (0, 1), it follows using (10.1) and (10.11) that

E

[
YN (t)2+δ

]
≤ h1(N , ε, t),

where

h1(N , ε, t) =
(
1 + ε−(2+δ)

) [
1 + 6μ

(D̃(N )(ε)−1)2+δ tg
(
t, μ

(D̃(N )(ε)−1)2

)
exp

(
6μD̃(N )(ε)−1t

)]
.

Suppose that there exists δ ∈ (0, 1) such that μD3+δ < ∞ and μ(D(N ))3+δ → μD3+δ

as N → ∞. It is easily verified that these conditions imply that, for each ε ∈ (0, 1)
and any α ∈ [0, 3+δ],μD(ε)α < ∞ andμ(D(N )(ε))α → μD(ε)α as N → ∞. Hence, for
any α ∈ [0, 2+ δ], μ

(D̃(N )(ε)−1)α → μ
(D̃(ε)−1)α as N → ∞, where μ

(D̃(ε)−1)α < ∞.
It follows that h1(N , ε, t) → h1(ε, t) as N → ∞, where

h1(ε, t) =
(
1 + ε−(2+δ)

) [
1 + 6μ

(D̃(ε)−1)2+δ tg
(
t, μ

(D̃(ε)−1)2

)
exp

(
6μD̃(ε)−1t

)]
< ∞.

Thus the sequence
(
E
[
YN (t)2+δ

])
is bounded and, for any t ≥ 0 and any α ∈ [0, 2],

E [YN (t)α] → E [Z(t)α] as N → ∞.
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Turn now to the model with i.i.d. degrees. Recall that we construct a sequence of
epidemics (EN ) from a single sequence D1, D2, . . . of i.i.d. copies of D. For N =
1, 2, . . . , let D(N )

k = Dk (k = 1, 2, . . . , N ). Using the formulae derived previously for
the prescribed degree case, but noting that now the degrees are random, by conditioning
on the degree sequence D1, D2, . . . we obtain that

E

[
YN (t)2+δ

]
≤ h2(N , ε, t), (10.12)

where

h2(N , ε, t) = E

[(
1 + ε−(2+δ)

) {
1 + 6μ

(D̃(N )(ε)−1)2+δ tg
(
t, μ

(D̃(N )(ε)−1)2

)
exp

(
6μD̃(N )(ε)−1t

)}]
.

Fix ε ∈ (0, 1). Recalling the definition (10.7) of the function g, to obtain an upper
bound for h(N , ε, t), it is sufficient to obtain upper bounds for

E

[
μ

(D̃(N )(ε)−1)2+δ exp
(
6μD̃(N )(ε)−1t

)]
and

E

[
μ

(D̃(N )(ε)−1)2+δμ(D̃(N )(ε)−1)2 exp
(
6μD̃(N )(ε)−1t

)]
.

Nowμ
(D̃(N )(ε)−1)2 ≤ μ

(D̃(N )(ε)−1)2+δ and, by Jensen’s inequality,
(
μ

(D̃(N )(ε)−1)2+δ

)2 ≤
μ

(D̃(N )(ε)−1)2(2+δ) , so, since δ ∈ (0, 1), it is sufficient to obtain an upper bound for

E

[
μ

(D̃(N )(ε)−1)6 exp
(
6μD̃(N )(ε)−1t

)]
. Further, using the Cauchy-Schwarz inequality,

E

[
μ

(D̃(N )(ε)−1)6 exp
(
6μD̃(N )(ε)−1t

)]
≤
√

E

[
μ2

(D̃(N )(ε)−1)6

]
E

[
exp

(
12μD̃(N )(ε)−1t

)]
.

Let MD2(θ) = E
[
exp

(
θD2

)]
(θ ∈ R) be the moment-generating function of D2

and suppose that there exists θ0 > 0 such that MD2(θ0) < ∞. Note that this implies
that E [Dα] < ∞ for all α ≥ 0.

Assume first that p0 = 0, so μD(N )(ε) ≥ 1 almost surely. Now

μ
(D̃(N )(ε)−1)6 = μD(N )(ε)(D(N )(ε)−1)6)

μD(N )(ε)

≤ μD(N )(ε)(D(N )(ε)−1)6) almost surely

= 1

N − [Nε]
N∑

k=[Nε]+1

D(N )
(k)

(
D(N )

(k) − 1
)6

≤ 1

N (1 − ε)

N∑
k=1

D7
k , (10.13)
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since D(N )
k = Dk (k = 1, 2, . . . , N ). Thus, since D1, D2, . . . , DN are i.i.d.,

E

[
μ2

(D̃(N )(ε)−1)6

]
≤ 1

N 2(1 − ε)2
E

⎡
⎣
(

N∑
k=1

D7
k

)2⎤
⎦

= 1

N 2(1 − ε)2

[
NμD14 + N (N − 1)μ2

D7

]

≤ 1

(1 − ε)2

(
μD14 + μ2

D7

)
.

A similar argument to (10.13) yields μ
(D̃(N )(ε)−1) ≤ 1

N (1−ε)

∑N
k=1 D

2
k , so

E

[
exp

(
12μD̃(N )(ε)−1t

)]
≤ E

[
exp

(
12t

N (1 − ε)

N∑
k=1

D2
k

)]
=
[
MD2

(
12t

N (1 − ε)

)]N
.

Fix t ≥ 0. Then E

[
exp

(
12μD̃(N )(ε)−1t

)]
< ∞ for N ≥ N (ε, t), where N (ε, t) =

12t
(1−ε)θ0

. Now
MD2(θ) = 1 + μD2θ + o(θ) as θ → 0, so

lim
N→∞ E

[
exp

(
12μD̃(N )(ε)−1t

)]
≤ lim

N→∞

[
1 + 12t

N (1 − ε)
μD2 + o

(
1

N

)]N

= exp

(
12tμD2

1 − ε

)
< ∞.

The above arguments show that there exists h2(ε, t) < ∞ such that h2(N , ε, t) <

h2(ε, t) for all N ≥ N (ε, t). Now YN (t) ≤ N for all N , soE
[
YN (t)2+δ

] ≤ N (ε, t)2+δ

for N < N (ε, t). Thus, recalling (10.12), the sequence
(
E
[
YN (t)2+δ

])
is bounded

and, for any α ∈ [0, 2], E [YN (t)α] → E [Z(t)α] as N → ∞.

Suppose now that p0 > 0. Then D
st≤ D′, where D′ has distribution given by

P(D′ = 1) = p0 + p1 and P(D′ = k) = pk (k = 2, 3, . . . ). It follows that for fixed

population size N , fixed ε ∈ (0, 1) and any t ≥ 0, TN ,ε(t)
st≤ T ′

N ,ε(t), where T
′
N ,ε(t)

is the total progeny at time t of the branching process defined analagously to BN ,ε

but using the empirical distribution of D′
1, D

′
2, . . . , D

′
N , where D′

1, D
′
2, . . . , D

′
N are

i.i.d. copies of D′. Further, MD′2(θ0) < ∞ if MD2(θ0) < ∞ and the above argument
can be used to show that the sequence

(
E
[
YN (t)2+δ

])
is bounded.

The above argument is easily adapted to show that in the prescribed degree case
limN→∞ E [YN (t)] = E [Z(t)] under theweaker condition that there exists δ > 0 such
that μD2+δ < ∞ and μ(D(N ))2+δ → μD2+δ as N → ∞. Moreover, although we have
not worked through all of the details, it seems likely that the argument can also be
adapted to prove that, for any α > 1, if there exists δ > 1 such that μDα+δ < ∞
and μ(D(N ))α+δ → μDα+δ as N → ∞ then limN→∞ E [YN (t)α] = E [Z(t)α]
for all t ≥ 0. Again we have not worked through all of the details but in the
i.i.d. degree case it seems likely that the above condition on MD2(θ) quarantees that
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limN→∞ E [YN (t)α] = E [Z(t)α] for all α, t ≥ 0. Finally, in the i.i.d. degree case it
seems likely that weaker conditions will suffice when the limiting branching process
B is subcritical, i.e. when r < 0, as in that case the exponential functions appearing
in E

[
TN ,ε(t)2+δ

]
, prior to taking expectations, will all have negative arguments.

Appendix 2: Eigenvalues of Ω

Let A = [al,k] = Ω − λI . Observe that a0,0 = −(λ + γ ), a0,k = 0 for k =
1, 2, . . . , kmax, al,kmax = 0 for l = 1, 2, . . . , kmax −1 and akmax,kmax = −(kmaxτ +λ+
γ ). Thus, expanding the determinant |A| along the 0th row and then the cofactor A0,0
down the last column yields

|A| = (λ + γ )(kmaxτ + λ + γ )|B|, (10.14)

where

B =

⎡
⎢⎢⎢⎣

τ( p̃2 − 1) − λ − γ τ p̃3 · · · τ p̃kmax

2τ( p̃2 + 1) 2τ( p̃3 − 1) − λ − γ · · · 2τ p̃kmax

...
...

. . .
...

(kmax − 1)τ p̃2 (kmax − 1)τ p̃3 · · · (kmax − 1)τ ( p̃kmax − 1) − λ − γ

⎤
⎥⎥⎥⎦ .

More precisely, B is the (kmax − 1) × (kmax − 1) matrix with elements

bl,k = τ l
(
p̃k+1 + δl,k+1

)− (γ + τ l + λ)δl,k (l, k = 1, 2, . . . , kmax − 1).

Subtracting l× the first row of B from the lth row of B, for l = 2, 3, . . . , kmax − 1,
now gives |B| = |C|, where

C =

⎡
⎢⎢⎢⎢⎢⎣

τ( p̃2 − 1) − λ − γ τ p̃3 · · · τ p̃kmax

2(2τ + λ + γ ) −2τ − λ − γ · · · 0
3(τ + λ + γ ) 3τ · · · 0

...
...

. . .
...

(kmax − 1)(τ + λ + γ ) 0 · · · −(kmax − 1)τ − λ − γ

⎤
⎥⎥⎥⎥⎥⎦

has elements given by

c1,k = τ p̃k+1 − (γ + τ + λ)δ1,k (k = 1, 2, . . . , kmax − 1),

cl,k = τ lδl,k+1 − (γ + τ l + λ)δl,k + l(γ + τ + λ)δ1,k

(l = 2, 3, . . . , kmax − 1; k = 1, 2, . . . , kmax − 1).
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In particular, c1,1 = τ( p̃2 − 1) − γ − λ, c1,k = τ p̃k+1 for k = 2, 3, . . . , kmax − 1,
and cl,k = 0 for 2 ≤ l < k ≤ kmax − 1. Thus, adding k× the kth column of C to the
first column of C , for k = 2, 3, . . . , kmax − 1, yields |C| = |D|, where

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

τ
((∑kmax

l=0 l p̃l+1

)
− 1

)
− λ − γ τ p̃3 · · · τ p̃kmax

0 −2τ − λ − γ · · · 0
0 3τ · · · 0
...

...
. . .

...

0 0 · · · −(kmax − 1)τ − λ − γ

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Note that d1,1 = τ
[(∑kmax

l=0 l p̃l+1

)
− 1

]
− γ − λ and, for l ≥ 2, that dl,1 = 0, dl,l =

−(γ +τ +λ) and dl,k = 0 for k > l. Thus expanding |D| down the first column gives

|D| =
{

τ

[(
kmax∑
l=0

l p̃l+1

)
− 1

]
− γ − λ

}
(−1)kmax−2

kmax−1∏
l=2

(lτ + γ + λ) .

Recalling (10.14) and |B| = |C| = |D|, it follows that the eigenvalues of Ω are given
by (3.3).

Appendix 3: Derivation of variance

Recall the definition of Ck at (4.2). Note, using (2.4), that for k ∈ K ,

1�Ck1 = τk + γ,

1�Ckn = n�Ck1 = (r + 2γ )k,

n�Ckn = τμ
(D̃−2)2k + γ k2. (10.15)

Now let c11 be a column vector whose kth element is 1�Ck1, and define c1n and cnn
similarly, using 1�Ckn and n�Ckn, respectively. Noting that r + 2γ = γ + τμD̃−2,
in this more compact notation (10.15) becomes

c11 = τn + γ 1,

c1n = (
γ + τμD̃−2

)
n,

cnn = τμ
(D̃−2)2n + γn2, (10.16)

and (4.3) yields

v(t) =
∫ t

0

(
μ−1
D̃−2

(
er(t−u) − e−γ (t−u)

))2
eΩucnn du

+ 2
∫ t

0
μ−1
D̃−2

(
er(t−u) − e−γ (t−u)

)
e−γ (t−u)eΩuc1n du

+
∫ t

0
e−2γ (t−u)eΩuc11 du. (10.17)
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Now

Ωn2 = τμ
(D̃−1)2+1n − (2τ + γ )n2, (10.18)

so, using Proposition 1, with M = Ω, x = n2, y = n, a = −(2τ + γ ), b =
τμ

(D̃−1)2+1 and c = r , and recalling from (3.4) that r + γ = μD̃−2τ so a − c =
−τ(2 + μD̃−2) = −τμD̃ , we have

eΩun2 = μ−1
D̃

μ
(D̃−1)2+1

(
eru − e−(2τ+γ )u

)
n + e−(2τ+γ )un2. (10.19)

Hence, using also (3.14),

eΩuc11 = μ−1
D̃−2

(
γ + τμD̃−2

)
erun + γ e−γ u

(
1 − μ−1

D̃−2
n
)

,

eΩuc1n = (
γ + τμD̃−2

)
erun,

eΩucnn =
(
τμ

(D̃−2)2 + γμ−1
D̃

μ
(D̃−1)2+1

)
erun + γ e−(2τ+γ )u

(
n2 − μ−1

D̃
μ

(D̃−1)2+1n
)

.

(10.20)

Let I1(t) = ∫ t
0 e

−2γ (t−u)eru du, I2(t) = ∫ t
0 e

−2γ (t−u)e−γ u du, I3(t) = ∫ t
0

(
er(t−u)

−e−γ (t−u)
)
e−γ (t−u)eru du, I4(t) = ∫ t

0

(
er(t−u) − e−γ (t−u)

)2
eru du and I5(t) =∫ t

0

(
er(t−u) − e−γ (t−u)

)2
e−(2τ+γ )u du. It is easily verified that these integrals are

given by (4.6). Substituting (10.20) into (10.17) and using (4.6) yields (4.4).

Appendix 4: Derivation of covariance function

For t ≥ 0, let u(t) be the column vector whose kth element is 1�V (k)(t)n. Arguing as
in the derivation of (10.17) yields

u(t) =
∫ t

0
μ−1
D̃−2

(
er(t−u) − e−γ (t−u)

)
er(t−u)eΩucnn du

+
∫ t

0
e−γ (t−u)er(t−u)eΩuc1n du. (10.21)

Using (10.20) now gives

u(t) = β1(t)n + β2(t)n2, (10.22)

where

β1(t) = γμ−1
D̃−2

[
μ−1
D̃

μ
(D̃−1)2+1(I7(t) − I8(t)) + μD̃−2 I6(t)

]

+ τμ−1
D̃−2

[
μ

(D̃−2)2 I7(t) + μ2
D̃−2

I6(t)
]
,

β2(t) = γμ−1
D̃−2

I8(t), (10.23)
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with I6(t) = ∫ t
0 e

−γ (t−u)er(t−u)eru du, I7(t) = ∫ t
0

(
er(t−u) − e−γ (t−u)

)
er(t−u)eru du

and I8(t) = ∫ t
0

(
er(t−u) − e−γ (t−u)

)
er(t−u)e−(2τ+γ )u du. It is easily verified that

these integrals are given by (5.5). The expression (5.3) for the covariance follows
using (5.2), (10.21), (10.22) and (4.3).

Appendix 5: Late behaviour of subcritical survival probabilities

To bound the late probabilities of survival in the subcritical case, first note that due to
the inability of type-0 individuals to transmit we have

q0(t) = e−γ t . (10.24)

Recalling that qk(t) = 1−πk(t), it follows from (7.2), with kmax = ∞, that for k > 0,

dqk
dt

= −(γ + τk)qk + τkqk−1 + τk(1 − qk−1)

∞∑
l=0

p̃l+1ql . (10.25)

This leads to the equation for k = 1 in the form

dq1
dt

= rq1 + h(t), (10.26)

where

h(t) = τe−γ t

(
1 + p̃1 −

∞∑
k=0

p̃l+1qk(t)

)

︸ ︷︷ ︸
h1(t)

+ τ

∞∑
k=1

p̃l+1 (qk(t) − kq1(t))

︸ ︷︷ ︸
h2(t)

. (10.27)

We assume first that r > −γ . Integrating (10.26) gives

e−r t q1(t) = 1 −
∫ t

0
e−r t h(u)du.

The limit limt→∞ e−r t q1(t) therefore exists if r is within the region of convergence
of the Laplace transform of h. Considering h1(t) in (10.27), since qk(t) ∈ [0, 1], for
all k, we have that p̃1 ≤ h1(t) ≤ τ(1 + p̃1)e−γ t , so the Laplace transform of h1
converges by the assumption that r > −γ .

Now considering h2, we followWindridge (2015) and consider an initial individual
with effective degree k, and stubs labelled by integer i = 1, 2, . . . , k. Let Ti be the
time that the individual and its progeny through stub i exist, and let T be the lifetime
of the branching process. Then, using the Bonferroni inequalities as in Windridge
(2015), for k ≥ 1,
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{T > t} =
k⋃

i=1

{Ti > t}, qk(t) ≤ kq1(t) and qk(t)≥kq1(t) − k2P(T1 > t, T2 > t).

(10.28)

Therefore, we have that

0 ≤ h2(t) ≤ τμ
(D̃−1)2P(T1 > t, T2 > t).

Now, from (7.3) we have that for some constant κ ,

qk(t) ≤ kκer t . (10.29)

Writing R for the lifetime of the initial infective individual we have that

P(T1 > t, T2 > t) = P(R > t) + P(T1 > t, T2 > t, R ≤ t).

We then recall that P(R > t) = q0(t) = e−γ t , after which the argument follows
closely that of Windridge (2015) (as in the derivation of (10.36) below) and we find
that

lim
t→∞

∫ ∞

0
e−r t

P(T1 > t, T2 > t)dt < ∞. (10.30)

Thus the Laplace transform of h2 converges at r , whence limt→∞ e−r t q1(t) is equal to
a finite constant, c say. Note that c is strictly positive since c ≥ limt→∞ e−r t q̂1(t) =
ĉ > 0. Further, (10.30) implies that limt→∞ e−r t

P(T1 > t, T2 > t) = 0, and it
follows from the two inequalities in (10.28) that, limt→∞ e−r t qk(t) = kc, for k ≥ 0,
proving (7.5).

We consider now the case when r < −γ . For t ≥ 0 and k = 0, 1, . . ., write

qk(t) = e−γ t + q̃k(t) and ũk(t) = eγ t q̃k(t), (10.31)

so q̃k(t) is the probability that the branching process has survived to time t but the
initial individual has not, and ũ0(t) = 0 for all t ≥ 0. It follows using (10.25) that

dũ1
dt

= τ

[
−ũ1 + (1 − e−γ t )

(
1 +

∞∑
l=1

p̃l+1ũl

)]
. (10.32)

The Bonferroni inequalities yield that, for k ≥ 1,

kq̃1(t) − k2P(R < t, T1 > t, T2 > t) ≤ q̃k(t) ≤ kq̃1(t), (10.33)

so

0 ≤ ũk(t) ≤ kũ1(t), (10.34)
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and (10.32) implies that

dũ1
dt

≤ τ
(
1 + μD̃−2ũ1

)
,

whence, for all t ≥ 0, recalling that μD̃−2 < 0,

0 ≤ ũ1(t) ≤ − 1

μD̃−2

(
1 − eτμD̃−2t

) ≤ − 1

μD̃−2
. (10.35)

Conditioning on the lifetime of the initial individual in the branching process,

P(R ≤ t, T1 > t, T2 > t) =
∫ t

u=0
γ e−γ u

[∫ u

v=0
τe−τvq1(t − v)dv

]2
du

≤
∫ t

u=0
γ e−γ u

[∫ u

v=0
τe−τv

(
−μD̃−1

μD̃−2

)
e−γ (t−v)dv

]2
du,

since (10.31) and (10.35) imply that q1(t) ≤ −μD̃−1
μD̃−2

e−γ t . Elementary integration then

shows that there exists c′ = c′(μ, τ, μD̃) < ∞ such that, for all t ≥ 0,

eγ t
P(R ≤ t, T1 > t, T2 > t) ≤

{
c′e−min{γ,2τ }t if γ 	= 2τ,

c′te−γ t if γ = 2τ.
(10.36)

The differential equation (10.32) may be written in the form

dũ1
dt

= τ(1 + ũ1) − τ e−γ t

(
1 +

∞∑
l=1

p̃l+1ũl

)

︸ ︷︷ ︸
h3(t)

−τ

∞∑
l=2

p̃l+1(lũ1 − ũl)

︸ ︷︷ ︸
h4(t)

,

whence

ũ1(t) = − 1

μD̃−2

(
1 − eτμD̃−2t

)− τeτμD̃−2t
∫ t

0
e−τμD̃−2u (h3(u) + h4(u)) du.

(10.37)

Now (10.34) and (10.35) imply that 0 ≤ h3(t) ≤ − 1
μD̃−2

e−γ t , whence

lim
t→∞ eτμD̃−2t

∫ t

0
e−τμD̃−2uh3(u)du = 0. (10.38)

Further, it follows using (10.33) and (10.36) that 0 ≤ h4(t) ≤ μ
(D̃−1)2c

′e−min{γ,2τ }t ,
where e−min{γ,2τ }t is replaced by te−γ t if γ = 2τ , whence (10.38) also holds when
h3(u) is replaced by h4(u). Letting t → ∞ in (10.37) yields (7.6).

123



618 F. Ball, T. House

References

Athreya KB, Ney PE (1972) Branching processes. Springer, Berlin
Bailey NTJ (1957) The mathematical theory of epidemics. Griffin, London
Ball F, Donnelly P (1995) Strong approximations for epidemic models. Stoch Process Appl 55(1):1–21
Ball F, Neal P (2008) Network epidemic models with two levels of mixing. Math Biosci 212(1):69–87
Barbour A, Reinert G (2013) Approximating the epidemic curve. Electron J Probab 18(54):1–30
BlackAJ,House T,KeelingMJ, Ross JV (2014) The effect of clumped population structure on the variability

of spreading dynamics. J Theor Biol 359:45–53
Bohman T, Picollelli M (2012) SIR epidemics on random graphs with a fixed degree sequence. Random

Struct Algorithms 41(2):179–214
Constable GWA,McKane AJ (2014) Fast-mode elimination in stochastic metapopulation models. Phys Rev

E 89(3):032141
Daley DJ, Vere-Jones D (1988) An introduction to the theory of point processes. Probability and its appli-

cations. Springer, New York
Danon L, Ford AP, House T, Jewell CP, Keeling MJ, Roberts GO, Ross JV, Vernon MC (2011) Networks

and the epidemiology of infectious disease. Interdiscip Perspect Infect Dis 2011:1–28
Decreusefond L, Dhersin JS, Moyal P, Tran VC (2012) Large graph limit for an SIR process in random

network with heterogeneous connectivity. Annal Appl Probab 22(2):541–575
Dorman K, Sinsheimer J, Lange K (2004) In the garden of branching processes. SIAM Rev 46(2):202–229
Durrett R (2007) Random graph dynamics. Cambridge University Press, Cambridge
Eames KTD, Keeling MJ (2002) Modeling dynamic and network heterogeneities in the spread of sexually

transmitted diseases. PNAS 99(20):13330–13335
Ethier SN,KurtzTG (1986)Markov processes: characterization and convergence.Wiley series in probability

and mathematical statistics. Wiley, Hoboken
Graham M, House T (2014) Dynamics of stochastic epidemics on heterogeneous networks. J Math Biol

68(7):1583–1605
Grimmett GR, Stirzaker DR (2001) Probability and random processes, 3rd edn. Oxford University Press,

Oxford
Heesterbeek H, Anderson RM, Andreasen V, Bansal S, De Angelis D, Dye C, Eames KTD, Edmunds

WJ, Frost SDW, Funk S, Hollingsworth TD, House T, Isham V, Klepac P, Lessler J, Lloyd-Smith
JO, Metcalf CJE, Mollison D, Pellis L, Pulliam JRC, Roberts MG, Viboud C, Isaac Newton Institute
IID collaboration (2015) Modelling infectious disease dynamics in the complex landscape of global
health. Science 347(6227):aaa4339

Heinzmann D (2009) Extinction times in multitypeMarkov branching processes. J Appl Probab 46(1):296–
307

Holme P (2013) Extinction times of epidemic outbreaks in networks. PLoS ONE 8(12):e84429
House T, Keeling MJ (2010) Insights from unifying modern approximations to infections on networks. J R

Soc Interface 8(54):67–73
Janson S, Luczak M, Windridge P (2014) Law of large numbers for the SIR epidemic on a random graph

with given degrees. Random Struct Algorithms 45(4):726–763
KlepacP,MetcalfCJE,McLeanAR,HampsonK (2013)Towards the endgameandbeyond: complexities and

challenges for the elimination of infectious diseases. Philos Trans R Soc Lond B Biol Sci 368(1623):
20120137

Lindquist J, Ma J, Driessche P, Willeboordse FH (2010) Effective degree network disease models. J Math
Biol 62(2):143–164

Miller JC (2011) A note on a paper by Erik Volz: SIR dynamics in random networks. JMath Biol 62(3):349–
358

Miller JC (2014) Epidemics on networks with large initial conditions or changing structure. PLoS ONE
9(7):e101421

Miller JC, Kiss IZ (2014) Epidemic spread in networks: existing methods and current challenges. Math
Model Nat Phenom 9(2):4–42

Miller JC, Slim AC, Volz EM (2012) Edge-based compartmental modelling for infectious disease spread.
J R Soc Interface 9(70):890–906

Molloy M, Reed B (1995) A critical point for random graphs with a given degree sequence. Random Struct
Algorithms 6:161–179

Murray JD (1984) Asymptotic analysis, applied mathematical sciences, vol 48. Springer, New York

123



Heterogeneous network epidemics… 619

Murray JD (2002) Mathematical biology I, 3rd edn. Springer, Berlin
Murray JD (2003) Mathematical biology II, 3rd edn. Springer, Berlin
Newman MEJ (2002) Assortative mixing in networks. Phys Rev Lett 89(20):208701
Newman MEJ (2002) Spread of epidemic disease on networks. Phys Rev E 66(1):016128
O’Neill PD, Roberts GO (1999) Bayesian inference for partially observed stochastic epidemics. J R Stat

Soc A 162:121–129
Parsons TL,Rogers T (2015)Dimension reduction via timescale separation in stochastic dynamical systems.

[arXiv:1510.07031]
Ross JV, Taimre T, Pollett PK (2006) On parameter estimation in population models. Theor Popul Biol

70(4):498–510
VolzEM(2008) SIRdynamics in randomnetworkswith heterogeneous connectivity. JMathBiol 56(3):293–

310
Waugh WAO (1958) Conditioned Markov processes. Biometrika 45(1–2):241–249
Windridge P (2015) The extinction time of a subcritical branching process related to the SIR epidemic on

a random graph. J Appl Probab 52(4):1195–1201

123

http://arxiv.org/abs/1510.07031

	Heterogeneous network epidemics: real-time growth, variance and extinction of infection
	Abstract
	1 Introduction
	1.1 Background
	1.2 Outline of the paper

	2 Model and approximating branching process
	2.1 Model
	2.2 The effective degree model
	2.3 Approximating multitype branching process
	2.4 Explicit form for the multitype branching process

	3 Behaviour of means
	4 Variance
	5 Covariance function
	6 Unbounded degree distributions
	7 Probability of extinction
	7.1 Late behaviour of the subcritical case
	7.2 Late behaviour of the supercritical case
	7.3 Early behaviour and matched asymptotics

	8 Fluctuations in the emerging phase of a major outbreak
	9 Numerical examples
	9.1 Forward simulations
	9.2 Statistical inference

	10 Concluding comments
	10.1 Summary of results
	10.2 Future directions

	Acknowledgements
	Appendix 1: Convergence of moments
	Appendix 2: Eigenvalues of  Ω 
	Appendix 3: Derivation of variance
	Appendix 4: Derivation of covariance function
	Appendix 5: Late behaviour of subcritical survival probabilities
	References




