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Abstract This paper explores the optimal treatment of an infectious disease in a
Susceptible-Infected-Susceptible model, where there are two strains of the disease
and one strain is more infectious than the other. The strains are perfectly distinguish-
able, instantly diagnosed and equally costly in terms of social welfare. Treatment is
equally costly and effective for both strains. Eradication is not possible, and there is no
superinfection. In this model, we characterise two types of fixed points: coexistence
equilibria, where both strains prevail, and boundary equilibria, where one strain is
asymptotically eradicated and the other prevails at a positive level. We derive regimes
of feasibility that determine which equilibria are feasible for which parameter combi-
nations. Numerically, we show that optimal policy exhibits switch points over time,
and that the paths to coexistence equilibria exhibit spirals, suggesting that coexistence
equilibria are never the end points of optimal paths.
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1 Introduction

Several infectious diseases that pose a pressing problem indeveloping countries exist in
multiple strains, including tuberculosis, HIV, Lyme disease, Human Papillomavirus,
Helicobacter pylori and influenza (Balmer and Tanner 2011). Where resources are
limited, a uniform treatment policy at the national level may be the most efficient
way to tackle these diseases. This paper addresses the following question: what is the
optimal treatment policy for an infectious disease that has two strains, which differ
in their infectiousness? We take a standard model in epidemiology, the Susceptible-
Infected-Susceptible (SIS) model, and extend it to include two strains of infection
with different transmission probabilities. In the standard SIS model, individuals move
between two states, susceptible and infected, based on exogenous probabilities. The
probability of an individual catching a disease when he encounters an infected person
depends on an infectivity or transmission parameter. This parameter is usually assumed
to be homogeneous, which does not allow for policy differentiation if the disease exists
in several strains.

The SIS model is often used to describe sexually transmitted diseases such as
chlamydia. Chlamydia trachomatis is an organism that has three human strains: one
strain causes trachoma, which is an infection of the eyes; a second strain causes sex-
ually transmitted urethritis, often referred to simply as chlamydia, while a third strain
causes the sexually transmitted lymphogranuloma venereum (LGV) (Byrne 2010).
Chlamydia, caused by serovars D-K, is also the most common sexually transmitted
disease in the United States and the United Kingdom, with over 1.2 million infections
detected in the former and over 200 thousand in the latter.1 It can result in serious
complications, such as pelvic inflammatory disease, which can lead to infertility if
left untreated (Shaw et al. 2011). There are currently no vaccines for chlamydia, and
treatment with antibiotics, usually with azithromycin or doxycycline, is necessary
(Shaw et al. 2011). LGV is also treated with doxycycline (McLean et al. 2007), while
trachoma is treated with azithromycin (Tabbara et al. 1996). Therefore, the optimal
treatment mix for the various strains of chlamydia trachomatis is an important public
health concern. It has been established in the literature that LGV strains are more
infectious than trachoma strains, and that there may even be variation in virulence
among trachoma strains (Pearce and Prain 1986; Kari et al. 2008). Reinfection with
chlamydia is possible and superinfection does not appear to occur in practise (Heijne
et al. 2011; Heiligenberg et al. 2014). Therefore, chlamydia trachomatis satisfies the
assumptions of the model analysed in this paper, and as such, the results can provide
guidance on the optimal treatment of the diseases that it causes.

We analyse the optimal treatment policy of a two-strain SIS disease, both analyt-
ically and numerically. We assume that the two strains differ in their infectivities,
and neither superinfection nor eradication of the disease is possible. The policymaker
can perfectly observe and target both strains with two separate treatment instruments.
First, we provide theoretical results on the possible equilibria of this model. There are
two sets of equilibria: non-boundary equilibria, where the two strains co-exist, and

1 Centers for Disease Control and Prevention Morbidity and Mortality Weekly Report (April 1 2011) and
Public Health England, Infection Report, Volume 9 Number 22.
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boundary equilibria, where one of the strains is endemic while the other is eliminated
asymptotically. The feasibility of these equilibria depends on parameter conditions.
Broadly speaking, when the infectivities of the two strains are very different, only the
boundary equilibria can be achieved, and in particular those where the more infec-
tive strain prevails and the less infective strain is asymptotically eradicated. When the
strains are quite similar, all equilibria are feasible. We demonstrate that in the coex-
istence equilibria, the more infective strain must receive more treatment than the less
infective strain. These results lie in contrast to the equilibrium with no intervention,
when the less infectious strain dies out.

We provide numerical examples where we simulate the model and look for optimal
treatment policy along the path to the fixed points. We find that policy exhibits switch
points along the path, implying that policy flexibility is beneficial, and that a static
model would be too restrictive. We are unable to find a path towards a coexistence
equilibrium that is optimal, in the sense of not being a spiral. We tentatively conclude
that the coexistence equilibria can never be the end points of optimal paths, and that
the boundary equilibria are always the optimal ones.

The ideas in this paper relate closely to the theory of competitive exclusion in
ecology, which postulates that the coexistence of two or more species limited by
one resource (in our case, two strains limited by one host population) is not possible
(Armstrong and McGehee 1980). For example, Iggidr et al. (2006) demonstrate in the
context of multiple-strain malaria that an equilibrium is either disease-free or has at
most one surviving strain.

However, this is not always the case, provided some assumptions are relaxed, such
as allowing for cycles in the persistence of species (Armstrong and McGehee 1980).
In a model of renewable natural resources, coexistence of species is possible, with
the stocks of the two resources higher in a mutualistic than a competitive equilibrium
(Ströbele and Wacker 1991). In the case of an SIS model, coexistence of two strains
is possible if one allows for superinfection and age structure (Li et al. 2010). Elbasha
and Galvani (2005), in a model of two-strain Human Papillomavirus vaccines, show
that when individuals are vaccinated for only one of the two strains, the equilibrium
depends on whether the strains are synergistic (in which case vaccination also reduces
the prevalence of the non-targeted strain) or antagonistic (where vaccination increases
the prevalence of the other strain). Castillo-Chavez et al. (1999) demonstrate in a two-
strain two-sex SIS model of a sexually transmitted disease that a unique coexistence
equilibrium can occur under certain conditions. We show that in our two-strain SIS
model, it is sometimes feasible for both strains to coexist, especially if they are not too
different in their infectiousness. If one strain is much more infectious than the other,
then it is only feasible to strive for the eradication of the less infectious strain, while
allowing the more infectious strain to be endemic.

This paper builds on the economic epidemiology literature, which examines opti-
mal intervention in tackling infectious diseases. Rowthorn et al. (2009) examine the
optimal way to treat a disease with spatial dynamics, while Rowthorn (2006) considers
the optimal treatment of a disease when policymakers have limited funds. There are
important tradeoffs between treatment and vaccination as two instruments available
to a policymaker (Rowthorn and Toxvaerd 2015). In general, a lack of intervention
yields to inefficiently low uptake of vaccination (Chen and Toxvaerd 2014). While
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there is a rich literature that describes disease dynamics in the absence of intervention,
the study of optimal intervention is still in its early stages, and this paper contributes
to that literature.

The biology literature has shown the pervasiveness of diseases that exist in multiple
strains, forwhich treatment and vaccinationmay have to vary. Lyme disease has at least
14 known strains.2 Seinost et al. (1999) present strong evidence that strains of Lyme
disease have different infectivities. Other multiple-strain infections include Human
Papillomavirus, which includes high-risk strains that are a leading cause of cervical
cancer and low-risk strains that do not cause cancer, aswell as tuberculosis,where some
strains are particularly drug resistant (Castillo-Chavez and Feng 1997).3 Influenza is a
multiple-strain disease:Truscott et al. (2012) argue that accuratemodellingof influenza
should not neglect the presence of several strains. HIV also exists in two forms: HIV-1
and HIV-2. Studies show that the less common HIV-2 strain is also less infectious
than its counterpart for most of its infectious period.4 Accurate measurement of the
transmission rate is the key to realistic simulations of HIV/AIDS prevalence rates
for the USA and Africa (Oster 2005), which highlights both the importance of the
transmission rate in describing an infection and the particular relevance of this paper
to developing countries.

The paper proceeds as follows. Section 2 provides an overview of some theoretical
concepts while Sect. 3 outlines the SIS model with two strains. Section 4 discusses
the equilibria of the model and Sect. 5 provides examples of simulations. Section 6
concludes.

2 Relevant concepts

It is useful to review some relevant concepts before the central analysis of the paper.
The SIS model belongs to the category of transmission systemmodels, which are built
on differential equations that describe the evolution of disease prevalence over time as
a function of parameters. It has become standard to assume random mixing in models
of this type: agents are equally likely to encounter any other agent in the population.5

There are two possible states: individuals are either susceptible or infected. They can
move between the two states an unlimited number of times. Agents are homogeneous
and the population is closed. If a susceptible agent encounters an infected agent, the
susceptible agent becomes infected with a certain probability, termed the transmission
probability. Typically, these models assume a homogeneous transmission parameter
for all agents. The standard SIS model is in continuous time. At every time incre-
ment, a proportion of infected individuals is treated with a certain success rate of

2 Lyme Disease Association of Australia (http://lymedisease.org.au).
3 Centers for Disease Control and Prevention, http://www.cdc.gov.
4 More information on this can be found at the Centers for Disease Control and Prevention (http://www.
cdc.gov/hiv/topics/basic) as well as the charity AVERT (http://www.avert.org/hiv-types.htm).
5 See Keeling and Eames (2005) and Bansal et al. (2007) for a discussion of how mixing networks can be
applied to the study of epidemiology.
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treatment (which can be interpreted as a rate of recovery). There is also the possibility
of spontaneous or natural recovery.

Ourmodel differs from the standard SISmodel in two keyways: the disease has two
strainswith distinct transmission rates and the policymaker has two policy instruments.
We make three further assumptions about the nature of the disease: transmission
is through human-to-human contact rather than vector-borne, superinfection is not
possible and agents can recover fully from the disease. SIS models are often used to
describe sexually transmitted diseases (Keeling and Eames 2005), and chlamydia is
an appropriate example of an SIS disease with multiple strains (Byrne 2010).

Optimal policy determines what proportion of individuals to treat at each point in
time subject to the cost of treatment, the value of susceptible and infected individuals
to social welfare, as well as the transmission dynamics. Studies focus on deriving
equilibria and looking for policy switches over time. Policy generally takes the form
of a Most Rapid Approach Path (MRAP)—the policy that takes the system the fastest
way to the desired equilibrium. Another point of interest is Skiba points or curves,
which delineate points where the policymaker is indifferent between policies.6

An analysis of optimal treatment in the one-strain SIS model can be found in
Rowthorn (2006) and Goldman and Lightwood (2002). We summarise their results
here as a brief indication of what one might expect from a two-strain model. Two
types of equilibria of the model exist: the policy instrument is either at a boundary,
where no one or everyone is treated, or policy is interior, with partial treatment of the
population. It is never optimal to treat partially; it can be shown that optimal policy
will always take on one of the two boundary values. Whether it is optimal to treat
everyone or no one depends on the parameters at hand.

3 The SIS model with two strains

The model has the following characteristics. The two variants of the infection are
High (H , high infectivity) and Low (L , low infectivity). The more infectious variant
H has transmission rate βH while the less infectious variant L is characterised by
transmission rate βL .7 The two policy instruments are fH , fL ∈ [0, 1], whichmeasure
the proportion of the infectees in each strain that are treated. The success rate of
treatment is α ∈ (0, 1]. We assume that the policymaker has perfect information about
the prevalence of each strain in the population and can therefore target treatment of
each strain perfectly.8

Individuals can catch either strain at the outset. When infected, they transmit the
strain that they themselves are infected with. There is a possibility of exogenous
recovery at rate τ ∈ (0, 1]. If individuals recover, they are again susceptible to either
infection strain. The proportion of the total population infected with the High strain

6 For more detail on these concepts, the reader is referred to Skiba (1978) and Spence and Starrett (1975).
7 An index of notation and acronyms used in the paper can be found in Appendix A.
8 Other assumptions are possible; for example, a policymaker may know an individual is ill but not which
strain of the disease he has. In this case, the policymaker would effectively have only one policy instrument
at hand. Manski (2013) discusses treatment under uncertainty.
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is IH . The proportion infected with the Low strain is IL . To ease calculations, the
total population is normalised to size 1: IH + IL + S = 1, where S denotes the
population of healthy individuals (susceptibles). All parameters are strictly positive.
The policymaker places value p on healthy individuals, value 0 on infected individuals
and discounts the future at rate δ. She also faces a constantmarginal cost c of treatment.

In order to choose the optimal policymix of fH and fL , the policymaker maximises
the social welfare function

V (I 0H , I 0L) =
∫ ∞

0
e−δt (p ∗ (1− IH (t)− IL(t))− c ∗ ( fH (t)IH (t)+ fL(t)IL(t)))dt,

(1)
subject to the equations of motion for the two infection types:

İH = IH (t) [βH (1 − IH (t) − IL(t)) − τ − α fH (t)] , (2)

İL = IL(t) [βL(1 − IH (t) − IL(t)) − τ − α fL(t)] . (3)

Thus, the population of individuals infected with H increases at rate β IH S, which
is a direct consequence of the assumption of random mixing, and decreases at rate
IH (τ + α fH ). The population of agents infected with L changes in a symmetric way.
We further assume that

IH (0) = I 0H > 0 given,

IL(0) = I 0L > 0 given,

βH > βL > τ + α. (4)

Thus, we assume that the population begins with a positive level of prevalence
of each strain. Assumption (4) states that the infection probability in an encounter
between a healthy individual and a sick individual is higher than the probability of a
treated sick individual recovering. This ensures that neither variant of the disease can
be eliminated, even asymptotically, by treating all infected people (see Sect. 4.4 for a
proof of this). Thus, IH (t), IL(t) > 0 for all t .

In order to provide a benchmark for the optimal policy analysis, we discuss two
simplifications of the model. First, we consider what happens when the two strains
are independent, so that agents can be infected with both strains i.e. superinfection is
possible, and infection with one strain has no impact on infection with the other strain.
In this case, the disease dynamics are governed by the following equations:

İH = βH IH (t)(1 − IH (t)) − IH (t)τ − IH (t)α fH (t),

İL = βL IL(t)(1 − IL(t)) − IL(t)τ − IL(t)α fL(t).

The equilibrium prevalence of the two strains is

I ∗
H = 1 − α fH + τ

βH
,

I ∗
L = 1 − α fL + τ

βL
.
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Thus, prevalence depends only on the infectiousness of that strain and the extent
to which it is treated. For the same level of treatment, the total number of infections
(where a person infected with both strains counts as two infections) is higher than in
the case when superinfection is not possible.

Second, we consider what happens to the infectionwhen no intervention is possible;
that is, fH = fL = 0 at all points in time (but the infections are no longer independent).
In this case, the two Eqs. (2) and (3) become

İH = βH IH (t)(1 − IH (t) − IL(t)) − IH (t)τ,

İL = βL IL(t)(1 − IH (t) − IL(t)) − IL(t)τ.

For each strain to be in equilibrium, we require İH = İL = 0. As long as βH �= βL ,
this can never hold with strictly positive IH and IL when there is no intervention. This
implies that the two strains can never co-exist. Instead, there are two possibilities.
Either the Low strain will die out and the High strain will prevail, or both strains will
die out. The Low strain dies out because the probability of infection in each encounter
of a healthy individualwith one infectedwith the Low strain is lower than in the healthy
individual’s encounter with one infected with the High strain. As a result, the High
strain spreads more quickly and eventually causes the Low strain to disappear. The
High strain will prevail if βH > τ and die out if βH < τ . Assumption (4) ensures that
βH > τ and so the High strain will prevail in equilibrium when there is no treatment,
with I ∗

H = 1 − τ
βH

.
To determine the optimal treatment policy in the general model with treatment, the

policymaker solves the current value Hamiltonian:

Q = p(1 − IH − IL) − c( fH IH + fL IL)

+ λH (βH IH (1 − IH − IL) − IH (τ + fHα)

+ λL(βL IL(1 − IH − IL) − IL(τ + fLα).

As the control variables fH and fL enter the Hamiltonian in a linear fashion, there
is a bang-bang solution. The first-order conditions describing the optimal choice of
treatment at a given point in time are

fH

⎧⎪⎪⎨
⎪⎪⎩

= 0

∈ [0, 1]
= 1

⎫⎪⎪⎬
⎪⎪⎭

if λH

⎧⎪⎪⎨
⎪⎪⎩

<

=
>

⎫⎪⎪⎬
⎪⎪⎭

− c

α
, (5)

fL

⎧⎪⎪⎨
⎪⎪⎩

= 0

∈ [0, 1]
= 1

⎫⎪⎪⎬
⎪⎪⎭

if λL

⎧⎨
⎩

<

=
>

⎫⎬
⎭ − c

α
, (6)

where we drop time subscripts in these and many subsequent expressions for ease
of notation. These conditions imply that if λH < − c

α
for example, then it is opti-

mal to treat no one infected with the High strain. On the other hand, if λL = − c
α
,
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then the policymaker is indifferent between any level of treatment of the Low strain.
These conditions can also be interpreted intuitively. Optimal treatment levels depend
on the shadow price (λ) of having an additional infected individual in the population.
This shadow price will differ for the two strains. Considering the H type as an exam-
ple, the optimal value of fH will depend on how

∣∣λ∗
H

∣∣ compares to c
α
.9 The latter is

the price of treating an individual divided by the probability that the treatment will
be successful: it is the effective cost of treating the individual. It is constant for all
infectees in the population. If the shadow price exceeds the effective cost of treat-
ment, then all individuals are treated because the price of having them infected is
greater than the price of treating them. On the other hand, if the shadow price is less
than the effective cost, the price of treating an individual is greater than the price to
social welfare of allowing this individual to remain infected and no one is treated.
Finally, where the shadow price and effective cost are equal, the policymaker is indif-
ferent between treating and not treating the individual and any level of treatment is
optimal.

To complete the solution, the equations of motion for the two co-state variables are
given below:

λ̇H = δλH − ∂Q

∂ IH
= −p + c fH − λH [−δ + βH (1 − IH − IL) − τ − α fH ]

+ (λHβH IH + λLβL IL) (7)

λ̇L = δλL − ∂Q

∂ IL
= −p + c fL − λL [−δ + βL(1 − IH − IL) − τ − α fL ]

+ (λHβH IH + λLβL IL) (8)

These demonstrate how the shadow prices change with prevalence levels. The
reproduction ratio describes the number of new infections arising from one infection
(Anderson and May 1991). If it is greater than one, the infection persists; other-
wise, it dies out. In this model, the reproduction ratios of the High and Low strains
are

RH = βH

τ + α fH
,

RL = βL

τ + α fL
.

As a result of Assumption (4), these reproduction ratios are greater than one even if
everyone infected with either strain is treated, so that neither strain can be eradicated
(except in the case with no treatment, when the High strain will eradicate the Low
strain).

9 Note that λH and λL are always negative, as an additional infected person in the population lowers social
welfare. I write the condition here in absolute values to ease interpretation.
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4 Fixed points

In the analysis of dynamic models, of primary interest are the equilibria or fixed points
of the model. In this section, we discuss the fixed points of the system and under which
conditions they are attainable.

4.1 Analysis of non-boundary fixed points

We propose that there are two types of equilibria: non-boundary fixed points and
asymptotic fixed points. They are defined as follows.

Definition 1 A non-boundary fixed point (FP) is a solution ( f ∗
H , f ∗

L , I ∗
H , I ∗

L , λ∗
H , λ∗

L)

satisfying Eqs. (2), (3), (5), (6), (7) and (8), as well as İH = İL = λ̇H = λ̇L = ḟH =
ḟL = 0.

Definition 2 An asymptotic fixed point (AFP) is a fixed point of the degenerate sys-
tem in which one of (IH , IL) equals zero and towards which there are paths with
IH > 0, IL > 0 that converge asymptotically to this fixed point. We look for the
treatment values ( f ∗

H , f ∗
L ) in the vicinity of this fixed point that ensure this asymptotic

convergence. On the boundary where one of the strains reaches zero prevalence (e.g.
IH ), the co-state variable for that strain (e.g. λH ) will be infinite, while the co-state
variable of the other strain (e.g. λL ) will be finite. In this sense, it is not a fixed point
of the four variable system (IH , IL , λH , λL).

The key difference between AFPs and FPs is that some variables at an AFP are not
constant: they move towards a constant but only reach it in the limit. The following
Lemma reduces the set of feasible non-boundary fixed points to three:

Lemma 1 At any fixed point, the proportion of IH treated must be greater than the
proportion of IL treated: f ∗

H > f ∗
L .

10 Therefore, only the following combinations of
treatment at the fixed point are feasible: ( f ∗

H = 1, f ∗
L = 0); ( f ∗

H = 1, f ∗
L ∈ (0, 1));

( f ∗
H ∈ (0, 1), f ∗

L = 0). This implies that there are three potential non-boundary fixed
points.

Proof At a non-boundary fixed point, it must be the case that

I ∗
H > 0,

I ∗
L > 0,

İH = İL = 0.

10 This result depends on the assumption that the success rate of treatment α and the natural rate of recovery
τ are the same between the two strains. If α or τ were substantially higher for the High strain than the Low
strain, this result could be reversed, with more treatment mandated for the Low strain. See Sect. 4.5.
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This implies

0 = İH
I ∗
H

= βH (1 − I ∗
H − I ∗

L) − τ − α f ∗
H ,

0 = İL
I ∗
L

= βL(1 − I ∗
H − I ∗

L) − τ − α f ∗
L .

Eliminating (1 − I ∗
H − I ∗

L) yields

βL
(
τ + α f ∗

H

) = βH
(
τ + α f ∗

L

)
,

and hence

1 ≥ f ∗
H = βH

βL
f ∗
L + τ

α

(
βH − βL

βL

)
> f ∗

L ≥ 0. (9)

��
Since f ∗

H > 0 it follows that λ∗
H ≤ − c

α
. Alternatively,

f ∗
L = βL

βH

[
f ∗
H −

(
βH − βL

βL

)
τ

α

]
. (10)

At a non-boundary fixed point İH = 0 and IH > 0. From (2) it follows that the total
prevalence of the disease is given by

I ∗
L + I ∗

H = 1 − τ + α f ∗
H

βH
. (11)

Since λ̇H = 0 it follows from (7) that

0 = −p + c f ∗
H +δλ∗

H + λ∗
H

[
βH (1 − I ∗

H − I ∗
L) − τ − α f ∗

H

] + λ∗
HβH I ∗

H + λ∗
LβL I

∗
L .

Eliminating I ∗
L yields

0 = −p + c f ∗
H + δλ∗

H + λ∗
HβH I ∗

H + λ∗
LβL

(
1 − τ + α f ∗

H

βH
− I ∗

H

)
,

which can be written as

0 = −p + c f ∗
H + δλ∗

H + λ∗
LβL

(
1 − τ + α f ∗

H

βH

)
− (

λ∗
HβH − λ∗

LβL
)
I ∗
H . (12)

The above equation determines I ∗
H uniquely as a function of f ∗

H , λ
∗
H and λ∗

L :

I ∗
H =

p + c f ∗
H + δλ∗

H + λ∗
LβL

(
1 − τ+α f ∗

H
βH

)
(
λ∗
LβL − λ∗

HβH
) . (13)
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At a non-boundary fixed point λ̇H = λ̇L = 0. Subtracting (8) from (7), using the fact
that İH = İL = 0, and rearranging yields

f ∗
H − f ∗

L = −δ

c

(
λ∗
H − λ∗

L

)
. (14)

Lemma 1 shows that f ∗
H − f ∗

L > 0 at any non-boundary fixed point, so the above
equation implies that λ∗

H < λ∗
L .

Following Wagener (2003), the parameter space can be split into different regimes
that mandate which fixed points are feasible for which parameter constellations. We
define the constant K , which will be used to create three regimes:

K = βH − βL

βL

τ

α
.

The value of this constant is increasing in βH and τ but decreasing in βL and
α. Intuitively, this implies that K will be high when the difference between the two
infectivities is high and when the success rate of treatment is low but the natural
rate of recovery is high. We will show that there are three regimes of feasibility:
K < 1, K = 1 and K > 1. We distinguish between two cases of fixed points,
f ∗
H ∈ (0, 1) and f ∗

H = 1.

4.1.1 Case 1: f ∗
H ∈ (0, 1)

We shall show that this case requires that K =
(

βH−βL
βL

)
τ
α

< 1 and K < δ
α
. In this

case λ∗
H = − c

α
because f ∗

H takes an interior value. Hence from (14), λ∗
L > − c

α
and

f ∗
L = 0. From (9) and (14) it follows that this fixed point is characterised by the

following values of the control variables and co-state variables:

f ∗
H = βH

βL
f ∗
L + τ

α

(
βH − βL

βL

)
= K ,

f ∗
L = 0,

λ∗
H = − c

α
,

λ∗
L = c

δ

(
f ∗
H − f ∗

L

) + λ∗
H = c

δ

[
K − δ

α

]
.

I ∗
H =

p + cK − c
α
δ + c

δ

[
K − δ

α

]
βL

(
1 − τ+αK

βH

)
( c

δ

[
K − δ

α

]
βL + c

α
βH

) > 0

Thus, f ∗
H is decreasing in α but increasing in τ . It is also increasing in βH because

a more infectious strain requires more treatment but decreasing in βL , as this implies
a lower overall spread of the disease. Since f ∗

H < 1 the parameters must satisfy the
following condition:
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K < 1.

Economic logic requires that λ∗
L < 0, which yields the additional condition:

K <
δ

α
.

Logic also requires that I ∗
H < 1 − τ

βL
, which yields the condition

p + cK − c
α
δ + c

δ

[
K − δ

α

]
βL

(
1 − τ+αK

βH

)
( c

δ

[
K − δ

α

]
βL + c

α
βH

) < 1 − τ

βL
.

In practice, this places constraints on c and p, which are otherwise free parameters.
The value of I ∗

L can be determined from the equation for total prevalence:

I ∗
H + I ∗

L = 1 − τ

βL
.

Total prevalence depends positively on βL and negatively on τ ; there is no depen-
dence on βH as this enters through the choice of f ∗

H . The success rate of treatment, α,
does not affect total prevalence because no one infected with the Low strain is treated;
the dependence of the High strain on α enters, again, through the choice of f ∗

H .

4.1.2 Case 2: f ∗
H = 1

Using (10), we find that in this case,

f ∗
L = βL

βH

[
f ∗
H −

(
βH − βL

βL

)
τ

α

]
= βL

βH
[1 − K ] (15)

For this solution to be feasible, we must have f ∗
L ≥ 0 and hence

K =
(

βH − βL

βL

)
τ

α
≤ 1.

Therefore, two subcases of this fixed point can be distinguished, depending on
whether K = 1 or K < 1.

Case 2a f ∗
H = 1, K < 1. Since K < 1, this implies that f ∗

L = βL
βH

[1 − K ] > 0.
In particular, f ∗

L is increasing in βL but decreasing in βH . There is interdependence
between the two strains: the more infectious is the High strain, the less the Low strain
is treated. However, the more infectious is the Low strain, the more it is treated.
The optimal choice of f ∗

L also depends intuitively on α and τ : the faster the rate of
recovery, whether through treatment or naturally, the lower is the optimal treatment
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level. Since f ∗
L ∈ (0, 1), it follows that λ∗

L = − c
α
and the value of λ∗

H is determined as
follows:

λ∗
H = λ∗

L − c

δ

(
f ∗
H − f ∗

L

)

= − c

α
− c

δ

(
1 − βL

βH
[1 − K ]

)

< − c

α
.

Thus, this fixed point is characterised by the following values of the control and
co-state variables:

f ∗
H = 1,

f ∗
L = βL

βH
[1 − K ] ∈ (0, 1),

λ∗
L = − c

α
,

λ∗
H = − c

α
− c

δ

(
1 − βL

βH
[1 − K ]

)
< − c

α
.

Inserting the above values of f ∗
H , λ∗

H and λ∗
L into (12) determines I ∗

H uniquely:

I ∗
H =

p − δc
α

+ cβL
βH

(1 − K ) − cβL
α

(
1 − τ+α

βH

)

c
α
(βH − βH ) + c

δ
βH

(
1 − βL

βH
(1 − K )

) > 0.

The value of I ∗
L can then be determined from (11):

I ∗
L = 1 − τ + α

βH
− I ∗

H ,

which is increasing in βH but decreasing in τ and α. This is intuitive: the more
infectious is the H type, the higher the prevalence of the disease in equilibrium; on the
other hand, the more successful the treatment or the higher the rate of natural recovery,
the lower the total prevalence in equilibrium. A point of interest is that βL does not
affect total prevalence; this is because the level of f ∗

L is fixed and chosen based on
the value of βL . The dependence of f ∗

L on βL ensures that βL does not affect total
prevalence. Note that we require I ∗

H and I ∗
L to be bounded by zero and one, so that an

additional condition for the feasibility of this fixed point is

p − δc
α

+ cβL
βH

(1 − K ) − cβL
α

(
1 − τ+α

βH

)

c
α
(βH − βH ) + c

δ
βH

(
1 − βL

βH
(1 − K )

) < 1 − τ + α

βH
,

which will place constraints on p and c.
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Case 2b f ∗
H = 1, K = 1. Equation (15) implies that in this case f ∗

L = 0. Hence
λ∗
H ≤ − c

α
≤ λ∗

L and

λ∗
L = λ∗

H + c

δ

(
f ∗
H − f ∗

L

)

= λ∗
H + c

δ
.

To ensure that λ∗
H < − c

α
and λ∗

L < 0 we require that

−
( c

α
+ c

δ

)
≤ λ∗

H < −max
( c

α
,
c

δ

)
.

Thus, this fixed point is described as follows:

f ∗
H = 1,

f ∗
L = 0,

λ∗
H : −

( c

α
+ c

δ

)
≤ λ∗

H < −max
( c

α
,
c

δ

)
,

λ∗
L = λ∗

H + c

δ
.

There is one degree of freedom. The shadow price λ∗
H is indeterminate within the

range shown. Eliminating f ∗
H and λ∗

L from (12) determines I ∗
H as a function of λ∗

H .
The value of I ∗

L can then be determined from (11). There is a continuum of feasible
fixed points with total prevalence

I ∗
H + I ∗

L = 1 − τ + α

βH
.

4.2 Summary of non-boundary fixed points

This summary uses multiple asterisks (*), (**), and (***) to denote distinct types of
fixed point. Note that feasibility requires that İH = İL = 0 and λ̇H = λ̇L = 0.

(a) If K < 1 and K ≥ δ
α
there is a unique non-boundary feasible fixed point (I ∗

H , I ∗
L).

The control variables are f ∗
H = 1 and f ∗

L = βL
βH

[1 − K ] .

(b) If K < 1 and K < δ
α
there are two feasible non-boundary fixed points: (I ∗

H , I ∗
L)

with the control variables f ∗
H = 1 and f ∗

L = βL
βH

[1 − K ]; and (I ∗∗
H , I ∗∗

L ) with
control variables f ∗∗

H = K and f ∗∗
L = 0.

(c) If K = 1 the control variables satisfy f ∗∗∗
H = 1, f ∗∗∗

L = 0. In this case, there is a
continuum of feasible fixed points (I ∗∗∗

H , I ∗∗∗
L )which lie on the line I ∗∗∗

H + I ∗∗∗
L =

1 − τ+α
βH

= 1 − τ
βL

.

The above are the only feasible non-boundaryfixedpoints.Note there are no feasible
non-boundary fixed points if K > 1. These findings suggest the possibility of a Skiba
case when K < 1 and K < δ

α
. Inserting control variables in (11) shows that fixed
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point (**) always has higher total infection than fixed point (*). This is intuitive as in
the former, both treatment levels are lower. For ease of notation, we label fixed point
(*) as Flow (low total prevalence), fixed point (**) as Fhigh (high total prevalence)
and fixed point (***) as Fint (intermediate total prevalence).

4.3 Analysis of asymptotic fixed points

The asymptotic fixed points are defined such that one strain approaches eradication
asymptotically, while the other prevails at a positive level. As a result, the behaviour
of the system in the neighbourhood of the fixed point can be approximated by the
behaviour of a one-infection system. This is because the behaviour of the system with
small IL is very similar to the behaviour when IL = 0. Naturally, this holds for IH
close to zero as well.

The behaviour of a one-infection system has been studied by Rowthorn (2006) and
discussed in Sect. 2. Only boundary values for policy are optimal. This is because the
co-state variable is a function of prevalence only in this type of problem. This implies
that there must be a one-to-one mapping between prevalence and the co-state variable.
However, the co-state variable changes with time. Therefore, a path cannot go back on
itself in order to achieve two different values of the co-state variable for one level of
prevalence. Interior values of policy require a path that goes back on itself (Rowthorn
2006). Therefore, interior values of policy cannot be optimal because they violate the
assumption of the co-state variable being a function of prevalence.

To analyse asymptotic fixed points, we analyse a one-infection system and perturb
it around this equilibrium point slightly. There are two possible categories of fixed
points: those were IH tends asymptotically towards zero, and those where IL tends
asymptotically towards zero.

4.3.1 IH = 0 boundary

First, suppose that IH = 0. The system then reduces to the following maximisation
problem:

max V (I 0L) =
∫ ∞

0
e−δt [p(1 − IL(t)) − c fL(t)IL(t))] dt

subject to

İL = IL(t) [βL(1 − IL(t)) − τ − α fL(t)] ,

fL(t) ∈ [0, 1],
IL(t) ∈ [0, 1],
IL(0) = I 0L > 0,

βL > τ + α. (16)
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Optimal treatment is governed by the following bang-bang condition:

fL

⎧⎨
⎩

= 0
∈ [0, 1]

= 1

⎫⎬
⎭ if λL

⎧⎨
⎩

<

=
>

⎫⎬
⎭ − c

α
. (17)

Finally, the co-state variable evolves according to the following function:

λ̇L = δλL − ∂Q

∂ IL
= δλL + p + c fL − λL [βL(1 − IL) − τ − α fL ]

+ λLβL IL . (18)

At a Hamiltonian fixed point, λ̇L = 0 and İL = 0:

0 = (δ + βL IL) λL + p + c fL
0 = βL(1 − IL) − τ − α fL

If the fixed point is interior then λL = − c
α
and we can solve the resulting equations

to yield a unique interior fixed point I intL . There are also fixed points with fL = 0

and fL = 1. Let I highL , I lowL be the corresponding levels of infection. It has been
shown in the literature (Rowthorn 2006) that it is never optimal to go to I intL . Thus, the

possible candidates for anoptimumare I highL and I lowL . Let Ahigh
L = (0, I highL ), Alow

L =
(0, I lowL ).

First, note that the point Alow
L cannot be reached even asymptotically from the

interior. Consider any point (x, I lowL + y), where x > 0:

İH = IH (t) [βH (1 − IH (t) − IL(t)) − τ − α fH (t)]

= x
[
βH (1 − x − I lowL − y) − τ − α fH (t)

]

= x
[
−βH (x + y) + βH (1 − I lowL ) − τ − α fH (t)

]
(19)

Recall that İL = 0 implies that βL(1 − I lowL ) − τ − α = 0. Hence,

İH = x

[
−βH (x + y) +

(
βH

βL
− 1

)
(τ + α) + α(1 − fH (t))

]
. (20)

For sufficiently small values of x and y, and for any value fH (t) ∈ [0, 1], the
right hand side of this equation is positive. Hence, the prevalence of the High strain is
increasing away from zero rather than decreasing towards zero, and Alow

L cannot be
reached even asymptotically from the interior.
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What about the point Ahigh
L ? Consider any point (x, I highL + y) where x > 0:

İH = IH (t) [βH (1 − IH (t) − IL(t)) − τ − α fH (t)]

= x
[
βLH (1 − x − I highL − y) − τ − α fH (t)

]

= x
[
−βH (x + y) + βH (1 − I highL ) − τ − α fH (t)

]
(21)

As before, βL(1 − I highL ) − τ = 0, so that

İH = x

[
−βH (x + y) +

(
βH

βL
− 1

)
τ − α fH (t)

]
. (22)

For sufficiently small values of x and y, the right hand side is positive. In particular,
for small x and y the right hand side is positive for all fH (t) ∈ [0, 1] if

K =
(

βH − βL

βL

)
α

τ
> 1.

If this condition is satisfied, there is no path that converges to Ahigh
L from the interior.

On the other hand, for fH (t) = 1, the asymptotic fixed point Ahigh
L is attainable if

K < 1. Thus, there is a feasible asymptotic fixed point with

f ∗
H = 1,

f ∗
L = 0,

IH → 0,

I ∗
L = 1 − τ

βL
.

4.3.2 IL = 0 boundary

Suppose next that IL = 0. By symmetry, there are two potential categories of fixed
points, with f ∗

H = 0 or = 1. Let I highH , I lowH be the corresponding levels of infection.
When are these feasible?

Let Ahigh
H = (0, I highH ), and Alow

H = (0, I lowH ).Note that the point Alow
L can always

be reached asymptotically from the interior. Consider any point (IH (t), IL(t)) =
(I lowH + x, y) where y > 0. Suppose that f ∗

H = 1 and I lowH = 1 − τ+α
βH

. In this case,
the evolution of IL follows

İL = y

[
−βL(x + y) +

(
βL

βH
− 1

)
τ + α

βL

βH
− α fL(t)

]
. (23)

The right-hand side of this equation is negative for small x and y when fL >
βL
βH

>

0. Since an interior value of fL is suboptimal, this implies there is one final asymptotic
fixed point, which is feasible for all K :
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f ∗
L = 1,

f ∗
H = 1,

IL → 0,

I ∗
H = 1 − τ + α

βH
.

What about Ahigh
H with f ∗

H = 0?Consider any point (IH (t), IL(t)) = (I highH +x, y)
where y > 0. The evolution of IL is governed by the following equation:

İL = y

[
−βL(x + y) +

(
βL

βH
− 1

)
τ − α fL(t)

]
. (24)

The right-hand side is negative for all values of fL(t) ∈ [0, 1]. Since interior values
of fL can be ruled out by Rowthorn (2006), this asymptotic fixed points can be reached
for all values of K by setting fL = 0 or fL = 1:

f ∗
L ∈ {0, 1},
f ∗
H = 0,

IL → 0,

I ∗
H = 1 − τ

βH
.

Thus, when K > 1, the only feasible candidates for asymptotic equilibria are those
with IL → 0.

4.4 Summary of asymptotic fixed points

If K < 1, there are three asymptotic fixed points:

(a) Ahigh
L , with f ∗

H = 1, f ∗
L = 0 and IH → 0,

(b) Ahigh
H with f ∗

L ∈ {0, 1}, f ∗
H = 0 and IL → 0,

(c) Alow
H with f ∗

L = 1, f ∗
H = 1 and IL → 0.

If K > 1 there are no interior points that satisfy the Hamiltonian conditions.
Moreover, the boundary points with IH = 0 cannot be reached. In this case, the only
feasible candidates for an optimum are boundary points with IL = 0. In particular,
there are three possible cases with the following control variables:

(a) Ahigh
H with f ∗

L ∈ {0, 1}, f ∗
H = 0 and IL → 0,

(b) Alow
H with f ∗

L = 1, f ∗
H = 1 and IL → 0,

(c) Skiba case. The optimum path goes to either Alow
H or Ahigh

H depending on the
starting point.

The central conclusion when K > 1 is that optimal policy involves asymptotic
elimination of the low infectivity strain. The possibility of the Skiba case indicates
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that it is not enough simply to compare fixed points—the initial prevalence of the
disease will affect which fixed point is optimal.

However, the following Proposition shows that asymptotic eradication of both
strains of the disease is never possible:

Proposition 1 Both variants of the disease cannot be simultaneously eradicated even
asymptotically in equilibrium if

τ + α

βH
< 1,

τ + α

βL
< 1,

which hold as a consequence of Assumption (4).

Proof In Appendix B. ��
This proposition shows that even if both AFPs are feasible, asymptotic eradication

of the disease is not possible and at least one strain always prevails.

4.5 Extensions to the model

In reality, strains do vary in factors such as drug resistance and the cost of treatment.
In the present model, this could be modelled by varying the parameters α, τ and c by
strain.

Suppose that the natural recovery rate of strain H is τH and that of strain L is
τL . Similarly, the success rate of treatment of the High strain is αH and of the Low
strain is αL . We can make some tentative claims about what would happen to the
equilibria of the model. First, it should be noticed that coexistence of the two strains
without intervention is now possible. The two strains evolve according to the following
differential equations:

İH
IH

= (1 − IH − IL)βH − τH − αH fH ,

İL
IL

= (1 − IH − IL)βL − τL − αL fL .

When there is no intervention, the strains can co-exist if

τH

βH
= τL

βL
.

Intuitively, this condition requires that the rate of infection and rate of recovery
of the two strains are proportional. Thus, the High strain spreads its infection more
quickly but also returns healthy individuals back into the population more quickly,
so that the Low strain can survive. Next, we can analyse what would happen to the
non-boundary fixed points. Lemma 1 states that only those fixed points where the High
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strain is treated more are feasible. In fact, if αH is higher than αL , and τH is higher
than τL , this result could be reversed. A non-boundary fixed point requires

τH + αH fH
βH

= τL + αL fL
βL

,

so that the relationship between the two treatment levels is

fL = αHβL

αLβH
fH + βLτH − βH τL

αLβH
.

Thus, depending on the values of αH , αL , τH and τL , fL could be higher than
fH . This makes intuitive sense, as higher values of αH and τH make the High strain
comparatively easier to contain, so that this may outweigh the fact that a higher trans-
mission probability makes the High strain more difficult to contain. Finally, we can
consider the implications for the asymptotic fixed points. Here, also, the main result
may be reversed: namely that the only feasible equilibrium is one where the Low
strain is asymptotically eradicated. This is easy to see by rewriting Eqs. (19) and (21)
allowing for differences in α and τ by strain, and performing a similar exercise for
asymptotic eradication of the Low strain. When αH is much higher than αL , and sim-
ilarly τH is much higher than τL , then it may be that the only feasible equilibrium
is asymptotic eradication of the High strain. This is because the low success rate of
treatment of the Low strain, and its low natural rate of recovery, make it impossible to
eradicate, even asymptotically.

Varying cost by strain would not affect prevalence or the fixed points that can be
attained by the policymaker, but would affect the choice of equilibrium to converge
to. This is ultimately a numerical question. It seems intuitive to assume that cH > cL :
it is more expensive to treat those infected with the High strain. The effect on the
optimal equilibrium would depend how these values compare to the homogeneous
cost parameter c. It could be that the overall cost goes down for a given level of
treatment (such as if cH is slightly higher than c, but cL is much lower than c), in
which case the policymaker would be more likely to pick an equilibrium where more
people are treated, such as Flow.

4.6 Feasibility

4.6.1 Summary of regimes of feasible equilibria

In this section we plot the feasible equilibria for each regime of K . Recall that if
K < 1, the set of feasible equilibria is ZK<1 = {Flow, Fhigh, Ahigh

L , Ahigh
H , Alow

H }.
If K = 1, the set of feasible equilibria is ZK=1 = {Fint , Ahigh

H , Alow
H }. If K > 1, the

set of feasible equilibria is ZK>1 = {Ahigh
H , Alow

H }. As K increases, the set of feasible
equilibria falls: there are fewer ways in which the disease can be contained. This is
because a higher K occurs when treatment is ineffective or when the strains differ
substantially in their infectivities, making it difficult to control both of them.

123



The optimal treatment of an infectious disease with two strains 1773

IH

0
IL

1− τ+α

βH

1− τ

βH

Fig. 1 The set of feasible equilibria when K > 1. The full circles denote the two equilibria AhighH and

AlowH

As K increases, the minimum attainable equilibrium prevalence of IH rises. This
makes intuitive sense, as K is increasing in βH and in the difference between βH and
βL . Where this difference is very large, K > 1 and the only feasible equilibrium is the
AFP where IL tends asymptotically towards zero and IH prevails at a positive level.
In contrast, when βH is low, K < 1 and one can attain equilibria such as Flow, where
the equilibrium prevalence of IH can be close to zero.

The set of feasible equilibria can be depicted graphically. Figure 1 shows the set
of feasible equilibria when K > 1. The feasible set when K = 1 is shown in Fig. 2.
Figure 3 shows the set of feasible equilibria when K < 1.11 The graphs clearly
illustrate the rising number of feasible equilibria as K falls.

4.6.2 An intuitive explanation and some examples

It is useful to introduce some parameter values in order to better understand the policy
implications of these results. There are, in total, five individual fixed points: three
non-boundary fixed points (one of which is in fact a continuum of feasible fixed points
with the same total prevalence across the two strains) and two asymptotic fixed points.

11 These figures are illustrated for the following parameter values: βL = 0.4, τ = 0.15 and α = 0.2, with
βH = 0.95 for K > 1, βH = 0.93̇ for K = 1, and βH = 0.8 for K < 1.
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IH

0
IL

1− τ

βL

1− τ+α

βH

1− τ

βH

Fig. 2 The set of feasible equilibria when K = 1. The full circles show the equilibria AhighH and AlowH .

The dashed line denotes the continuum of equilibria of type Fint

Feasibility depends on the value of K =
(

βH−βL
βL

)
τ
α
. In order for the interior fixed

points to exist, we require K ≤ 1. If K < 1 and K < δ
α
, then two non-boundary fixed

points exist, which suggest the existence of a Skiba line. A further consideration is
whether the assumption βH > βL > τ +α is satisfied, which ensures that the disease
cannot be eradicated, even asymptotically.

Generally, the existence of a non-boundary fixed point with positive equilibrium
prevalence of the disease requires the following conditions, where (a) to (c) ensure the
existence of the non-boundary fixed points and (d) ensures that at this non-boundary
fixed point, the disease is not eradicated.

(a) The relative difference between the infectivities, βH−βL
βL

, is not too high.
(b) The natural recovery rate is not too high relative to the success rate of treatment:

τ
α
is not too high.

(c) The future is not discounted too highly: δ is high enough.
(d) The infectivity probabilities, βH and βL , are high relative to the recovery proba-

bilities, τ and α

We can interpret these conditions in an intuitive way. In order for both strains of
the disease to co-exist in equilibrium, we require that their infectivities are not too
different. This is because if the High strain is much more infectious, then individuals
will bemuchmore susceptible to it relative to the Low strain, so that the Low strainwill
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IH

0
IL

1− τ+α

βH

1− τ

βL

1− τ+α

βH

1− τ

βL

1− τ

βH

Fig. 3 The set of feasible equilibria when K < 1. The full circles denote the equilibria AhighL (on the

x-axis) , AhighH and AlowH (on the y-axis). The empty circles denote the feasible equilibria Flow and Fhigh

for this set of parameters, with the latter having higher total prevalence

eventually die out (asymptotically). On the other hand, if the infection probabilities
are similar but low, relative to the recovery probabilities, then both strains will die out,
because the rate of reinfection is not high enough to ensure the survival of the disease.
The magnitude of the natural recovery rate relative to the success rate of treatment is
important because a high natural recovery ratewill likely lead to the elimination of both
strains of the disease, while a low value of α will imply that treatment is ineffective
(and a particular level of treatment is required to ensure that the disease survives
at a positive, constant level in equilibrium). Finally, the condition on the discount
rate arises because economic logic requires λ∗

L < 0 in the non-boundary fixed point
Fhigh ; otherwise, the marginal social value of an additional infected person would be
positive. Intuitively, not discounting the future too highly ensures that the impact of
an additional infected person is felt for a longer period of time, hence ensuring that
the marginal social impact of this infected person is negative at the fixed point.

Let us consider two examples that illustrate these points. First, suppose that βH =
0.9, βL = 0.1: the High strain is very infectious, relative to the Low strain. In order
for K < 1, we require τ < α

8 : the treatment needs to be very effective, relative to
the natural rate of recovery. In addition, we require τ + α < 0.1, in order for the
disease to not be eradicated. One possible set of values for (τ, α) is (0.004, 0.04).
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Thus, in the example of a disease where the High strain is very infectious, the only
way that both strains can co-exist in a non-boundary fixed point is when both the
natural rate of recovery and the success rate of treatment are extremely low. Note
that this example also requires a value of δ > 0.8, which is reasonable, given that
the economics literature usually assumes a discount rate of 0.95 or 0.99 (the latter
is implied by an annual interest rate of 4%). If natural recovery is somewhat higher,
e.g. if τ = α = 0.04, then we will end up in the situation where the Low strain
is asymptotically eradicated, and the High strain prevails in equilibrium. If either
the natural recovery rate or the treatment success are high, e.g. if α = 0.2, even if
τ = 0.004, then both strains will be (asymptotically) eradicated.

Second, suppose that we have a very effective form of treatment with α = 0.9, but
individuals naturally recover from the disease only rarely, so that τ = 0.1. In this case,
the disease will be eradicated, because the condition βH > βL > τ + α can never be
satisfied. Suppose that instead we have a disease where α = 0.8 and τ = 0.1. Here,
we require βH > βL > 0.9, so that infection is almost guaranteed when a susceptible
individual meets an infected individual of either strain. One combination of values of
(βH , βL) that ensures coexistence of both strains in equilibrium is (0.99, 0.95). This
set of parameters requires δ > 0.004, which is easily satisfied.

The general lesson from these examples is that where treatment is very successful,
the disease needs to be highly infectious in order to prevail. An interesting finding is
that the rate of natural recovery relative to the success of treatment is also important:
coexistence of both strains ismore likelywhennatural recovery is low, but the treatment
is very successful. Finally, coexistence of both strains is more likely when they are
similar in their infectivities. This makes sense intuitively, as the bigger the difference,
the more likely that the infectivity of the High strain will cause the Low strain to die
out.

4.6.3 Feasible policies along the path to the fixed points

Another area where restrictions on feasibility may apply is the choice of treatment
policy along the path to the non-boundary fixed points. Policies along the path towards
the fixed points will always be boundary policies (i.e. 0 or 1), as these are Most
Rapid Approach Paths. We take each of the boundary policies in turn and examine the
feasibility conditions required for IH and IL to converge to their equilibrium values
if this is the chosen policy. Different feasibility constraints will exist depending on
whether the system begins below or above each equilibrium; below means beginning
at an initial level I 0H + I 0L < I ∗

H + I ∗
L , which requires IH and IL to increase to their

equilibrium values, while beginning above implies an initial prevalence I 0H + I 0L >

I ∗
H + I ∗

L , which requires IH and IL to decrease to their equilibrium values. Letting
Pab denote the policy fH = a, fL = b, the feasibility restrictions are summarised in
Table 1. Derivations can be found in Appendix C.

The table is interpreted as follows. If the system begins below I ∗
H + I ∗

L , IH and
IL need to increase. Not all policies can achieve this at all times: the range where the
policy fH = 0, fL = 0 will allow IH and IL to increase is given by the top left entry
in the table. There is an upper bound on IH + IL ; if this condition is not satisfied, then
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Table 1 Feasible policies along
the path

İH , İL > 0 İH , İL < 0

P00 1 − τ
βL

> IH + IL 1 − τ
βH

< IH + IL

P10 1 − τ
βL

> IH + IL 1 − τ+α
βH

< IH + IL

P11 1 − τ+α
βL

> IH + IL 1 − τ+α
βH

< IH + IL

P01 1 − τ+α
βL

> IH + IL 1 − τ
βH

< IH + IL

IH

0
IL

1− τ+α

βL
1− τ+α

βH

1− τ

βL
1− τ

βH

1− τ+α

βH

1− τ

βL

1− τ

βH

1− τ+α

βL

(0, 1), (0, 0)

(1, 0), (1, 1)

(1, 0), (0, 0)

*

Fig. 4 Feasible policies depicted for the case when K < 1, where the arrows denote the range where the
policy ( fH , fL ) is feasible. At ∗, the policies are (0, 1) and (1, 1). The empty circles denote the feasible
equilibria Fhigh and Flow for this set of parameters

setting fH = 0, fL = 0 will cause the system to move away from an equilibrium. The
conditions in the table are more clearly shown in graphical form in Fig. 4.

The message of this figure is that when one starts below an equilibrium, feasible
policies to reach the equilibrium usually involve treating no one or just one strain.
This allows total prevalence to increase. On the other hand, when one starts above an
equilibrium, feasible policies that ensure the equilibrium is reached treat at least one
group, in order to ensure that prevalence falls. Thus, Fhigh and Flow can be reached
from above with the policies ( fH , fL) = (1, 0) and (1, 1), while they can be reached
from below with the policies (1, 0) and (0, 0).
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Table 2 Summary of analytical results

Equilibrium f ∗
H f ∗

L Feasible

Fhigh (βH−βL )
βL

τ
α 0 K < 1, K < δ

α

Flow 1 1 − (βH−βL )
βH

τ+α
α K < 1

Fint 1 0 K = 1

AhighL 1 0 K < 1

AhighH 0 ∈ {0, 1} All K

AlowH 1 1 All K

4.7 Summary of analytical results

Table 2 summarises the analytical results—the feasible fixed points, their associated
optimal policies and for which values of K they are attainable.

5 Simulations

In this section, we provide examples of optimal policy under various parameter com-
binations. When K > 1, the candidate equilibria are Ahigh

H and Alow
H . Simulations

can tell us, under particular parameter values, which equilibrium it is optimal to go
to, and what is the best way to get there. We explore the case when K > 1 in the
first part of this section. Next, we consider the situation when K < 1. In this case,
there is a wide set of feasible equilibria, and it is not possible to simulate an optimal
choice of equilibrium because the derivations of optimal policy are only correct in the
neighbourhood of each equilibrium. Instead, we suppose that it is optimal to go to the
non-boundary fixed point Flow, and simulate optimal policy towards this point. We
find that, in all the simulations that we estimate, optimal policy involves a spiral. We
argue that this suggests that the interior fixed points are unlikely to ever be an optimal
target for the policymaker.12

5.1 Optimal policy when K > 1

The values used for the parameters in the simulations are given in Table 3.
Some relevant concepts ought to be explained at this stage. First, we examine both

optimal fixed and optimal variable policy. Optimal fixed policy compares the social
welfare from choosing various policies at the beginning and not changing them until
equilibrium. Optimal variable policy uses the Hamiltonian optimality conditions (5)
and (6) to evaluate optimal policy at each time increment, using a fourth-order Runge-

12 In our simulations, we also explored the properties of “singular solutions”. A singular solution is a path
along which one of the control variables takes an interior value (i.e. strictly less than one and greater than
zero). Such paths were not optimal in the cases we examined.
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Table 3 Parameter values for
K > 1

Parameter Value

βH 0.95

βL 0.4

τ 0.15

α 0.2

p 1

δ 0.111

Kutta procedure. Pathswith optimal variable policy are described asHamiltonian paths
because they satisfy these Hamiltonian optimality conditions. In the case of variable
policy, we examine both forward and backward paths. This means that, starting from
an initial prevalence, we simulate the system both towards and away from the fixed
point. This is carried out by setting time increments equal to +1 and −1 respectively.
As a result, it is possible to describe a longer optimal path than if we were to only
simulate the system towards equilibrium.

5.1.1 Fixed policy

In this first set of simulations, we assume that policy is fixed along the entire path to
equilibrium. This is a special case that can guide intuition, as policy may not always
have the benefit of full flexibility. We assume that the policymaker chooses f ∗

L = 1,
and compare social welfare V when f ∗

H = 1 or f ∗
H = 0. When the system begins,

the policymaker chooses whether to treat everyone or no one infected with the High
strain. The optimal policy is the choice of f ∗

H that gives the highest value of social
welfare.13 The simulations set t = 90. Each time increment can be interpreted as one
day, which implies that the results simulate an infection evolving over 90 days. The
initial prevalence of the Low strain is set to 0.1.

Results are shown in Table 4. Optimal policy depends on costs.Where costs are low,
it is optimal to treat everyone infected with the High strain. As costs rise, it becomes
optimal to treat no one with the High strain. There is a unique optimal policy in regions
I and I I I ; in region I I , optimal policy depends on the initial prevalence of the High
strain. If the High strain is very prevalent, it is optimal to treat no one. If it is not, it
is optimal to treat everyone. This strongly suggests that there exists a value of I 0H that
is a Skiba point in Region I I . By varying I 0H by small increments in region I I and
evaluating social welfare at each initial value for the two candidate policies, we find
that a Skiba point exists when I 0H = 0.7125. At this point, the social welfare from
selecting f ∗

H = 1 or f ∗
H = 0 is equal.14

13 Note that when f ∗
H = 1, I∗H = 1 − τ+α

βH
= 0.6316. When f ∗

H = 0, I∗H = 1 − τ
βH

= 0.8421.
14 All of these simulations show the same qualitative results when the initial prevalence of the Low strain
is set to a smaller value: I 0L = 0.01, I 0L = 0.001 and I 0L = 0.0001.
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Table 4 Optimal fixed policy as cost varies

Region c f ∗
H f ∗

L

I (low costs) c < 0.2875 1 1

I I (intermediate costs) 0.2875 ≤ c ≤ 0.3006 0 or 1, depending on I 0H 1

I I I (high costs) c > 0.3006 0 1

5.1.2 Variable policy

In this set of simulations we allow policy to vary optimally over time. We look for
strictly Hamiltonian paths; that is, we look for paths that are optimal because they
satisfy the first-order conditions onλH andλL . For example, the policy ( fH = 1, fL =
1) is Hamiltonian at a particular point in time t̄ if |λH | , |λL | > c

α
at (IH (t̄), IL(t̄)).

In order to evaluate the Hamiltonian conditions, the co-state variables are needed at
each point in time. These can be calculated using the facts that

λH (t) = ∂V (IH (t), IL(t))

∂ IH (t)
,

λL(t) = ∂V (IH (t), IL(t))

∂ IL(t)
.

These partial derivatives can be approximated by perturbing the infection levels
slightly. Thus, for initial infection levels I 0H and I 0L , the initial values of the co-state
variables are

λ0H ≈ V (I 0H + �, I 0L) − V (I 0H , I 0L)

�
, (25)

λ0L ≈ V (I 0H , I 0L + �) − V (I 0H , I 0L)

�
, (26)

for small �. In these simulations we set � = 0.001. For a given initial infection
level, we find the initial values of the co-state variables λ0H and λ0L using (25) and
(26), and find the corresponding optimal initial policy. We then allow the system to
evolve, checking for optimal policy at each increment of time by re-evaluating λH (t)
and λL(t) using the equations for λ̇H and λ̇L that were derived in Sect. 3. We also
simulate the paths backwards, starting at the initial point (I 0H , I 0L) but moving away
from equilibrium.15 Together, the forward and backward paths give a fairly complete
picture of optimal policy over a period of length 2t , with (I 0H , I 0L) in the middle. In
this set of simulations we set t = 30, so that overall we examine the behaviour of
the infection over 60 days. We assume costs are c = 0.4 and set initial prevalence at
(I 0H , I 0L) = (0.6316, 2 ∗ 10−10).

15 The backward paths are necessarily Hamiltonian paths as long as the Hamiltonian conditions for the
forward paths are satisfied. This is because the backward paths are merely a continuation, albeit in the
opposite direction, of the Hamiltonian paths.
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−30 −20 −10 0 10 20 30

0.25

0.5

0.75

1

Time

I H

1 · 10−10

2 · 10−10

3 · 10−10

I L

IH (left axis)
IL (right axis)

Fig. 5 Evolution of prevalence along the path towards equilibrium AhighL , with I 0H = 0.6316, I 0L =
2 ∗ 10−10 and c = 0.4. Time >0 is the forward path, while time <0 is the backward path

We find that the system tends towards the equilibrium where f ∗
H = 0, so that

I ∗
H = 0.8421 = 1− τ

βH
and I ∗

L → 0. This is consistent with the findings in Table 4, as
c = 0.4 falls into Region I I I of costs. The evolution of the two strains is depicted in
Fig. 5. This figure shows both the forward and backward paths.We find that prevalence
of IH rises from a low initial point at first exponentially, and then roughly logarith-
mically until reaching the fixed point. Attainment of equilibrium takes approximately
15 days. The evolution of IL takes a slightly different path. Prevalence first increases,
and then decreases towards zero. This is because as IH increases, there are fewer
susceptibles that can become infected with the Low strain, so that the Low strain can
be asymptotically eradicated.

When examining the sequence of optimal policy,wefind that optimal policy exhibits
switch points. This is depicted in Fig. 6. The treatment of the High strain switches
from one to zero just before the start of the forward path, while the treatment of the
Low strain switches from one to zero earlier.

Thus, optimal policy in this particular example has three phases:

f ∗
H = 1, f ∗

L = 1,

f ∗
H = 1, f ∗

L = 0,

f ∗
H = 0, f ∗

L = 0.

Thus, when policy is variable, it is always optimal to set f ∗
H = 0 in equilibrium

when c = 0.4. However, policy does not begin at this level: it switches from one to
zero when the marginal cost of an additional infected individual in the population is
low, relative to the cost of treating him. In addition, the asymptotic eradication of the
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−30 −20 −10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

Time

f H
,f

L

fH
fL

Fig. 6 Optimal policy along the path towards AhighL , with I 0H = 0.6316, I 0L = 2 ∗ 10−10 and c = 0.4.
Time > 0 is the forward path, while time < 0 is the backward path

Table 5 Parameter values for
K>1

Parameter Value

βH 0.8

βL 0.4

τ 0.15

α 0.2

p 1

δ 0.222

Low strain is possible in the closing part of the path even when no one in the Low
strain is treated. Since this is feasible, it is also optimal, as it is cheaper than treating
unnecessarily.

5.2 Optimal policy when K < 1

In this section we address the case when K < 1. In this regime, it is possible to have
equilibria where both strains of the disease prevail. The parameter values are given in
Table 5.

We simulate optimal policy in the region of one of the non-boundary fixed points.
In particular, we assume that it is optimal to go to the fixed point Flow, and simulate
optimal policy backwards, starting from that fixed point. The evolution of prevalence
is shown in Fig. 7.
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Fig. 7 Evolution of prevalence
along the path towards
equilibrium Flow , with
I 0H = 0.0755, I 0L = 0.4870 and
c = 0.4. This path is simulated
only backwards

0.075515 0.075518 0.075521

0.486

0.4865

0.487

0.4875

0.488

IH

I L

−12 −10 −8 −6 −4 −2 0
0

0.2

0.4

0.6

0.8

1

Time

f H
,f

L

fH
fL

Fig. 8 Evolution of optimal policy along the path towards equilibrium Flow , with I 0H = 0.0755, I 0L =
0.4870 and c = 0.4. This path is simulated only backwards

This figure clearly shows a spiral. These simulations suggest that non-boundary
fixed points are never the end points of optimal paths. In every case examined, per-
turbing the fixed point solution and running the path backwards generates a high
frequency cycle. Reversing the path from its end point generates an integral which
is exceedingly large. Figure 8 shows the evolution of optimal policy along this same
path. The treatment of the Low strain switches between zero and one many times.
Therefore, we conclude that even in the case when K < 1, it is optimal to move to
one of the boundary fixed points. It appears that coexistence of the two strains is never
optimal.

5.3 Chlamydia trachomatis

We began this paper with the example of chlamydia trachomatis, which is a disease
with three strains that satisfies the behaviour of an SIS infection.As accuratemodelling
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Table 6 Parameters
characterising chlamydia
trachomatis

Parameter Value Source

βH (LGV) 0.60 N/A

βL (Chlamydia) 0.55 Althaus et al. (2012)

τ 0.18 Geisler et al. (2008)

α 0.97 Lau and Qureshi (2002)

K 0.02

Eradicate High strain? Yes

Eradicate Low strain? Yes

of the evolution of chlamydia trachomatis has been done in detail in the literature (e.g.
Heijne et al. 2011; Sharomi and Gumel 2009; De Vries et al. 2006), we focus here on
the distinction between the various strains, and the calculation of the cut-off parameter
K , which is the novel contribution of this paper. In Table 6, we present the parameters
that characterise chlamydia (serovars D-K) and LGV (serovars L1–L3) in the context
of our SIS model with two strains.

There are challenges to estimating the right parameter values for diseases such
as chlamydia and LGV. Due to a lack of studies on LGV, we use the recovery rate
and treatment success rate of chlamydia. The transmission parameter depends on
the number of contacts between the infected partner and the non-infected partner,
and we use the per-partnership parameter estimated by Althaus et al. (2012). We
were unable to find an estimate of the transmission parameter for LGV, but we know
that it is higher than that for chlamydia, so we set it marginally higher at 0.6. Next,
the spontaneous recovery parameter is challenging to measure because of the eth-
ical considerations of not treating individuals diagnosed with chlamydia (Geisler
2010). Geisler et al. (2008) screened individuals for chlamydia and then screened
them again when they came for a treatment visit, for which the median was 13 days
later, where they found spontaneous resolution in 18% of patients. Finally, the treat-
ment success probability faces the challenge of non-compliance (Bachmann et al.
1999). We use the measured success rate of treatment with azithromycin in a meta-
analysis of randomised control trials, which is found to be 97% (Lau and Qureshi
2002).

These parameters imply two observations about chlamydia trachomatis in our
model: first, the value of K is less than one, so that the full range of fixed points should
be attainable—those that involve coexistence of chlamydia and LGV, and those that
involve asymptotic eradication of chlamydia and positive prevalence of LGV, although
our simulations suggest that coexistence is not the end of an optimal path. Second, and
more importantly, both diseases should be possible to eradicate, if everyone who is
infected is treated. The question then is why the prevalence of chlamydia, for example,
is around 6% among people younger than 25 in the UK (Macleod et al. 2005). The
likely reason is that chlamydia is often an asymptomatic disease: 75-85% women are
asymptomatic, while over 50% of men are asymptomatic (Risser et al. 2005). Thus,
the treatment parameter is far from equal to one. In fact, a rough back-of-the envelope
calculation, assuming values of I ∗

H = 0.001, I ∗
L = 0.06 and the fact that total preva-
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lence in equilibrium is given by Eq. (3) implies a treatment parameter of fL = 0.35.16

This suggests that only 35% of individuals infected with chlamydia at any given time
are treated.

6 Conclusion

We have derived analytically the fixed points in an SIS model with two strains,
where neither superinfection nor eradication of the strains are possible, and the pol-
icymaker has access to two separate treatment instruments. We have characterised
two types of fixed points: non-boundary fixed points, where the two strains co-exist,
and boundary fixed points, which involve the asymptotic eradication of one strain.
The feasibility of these fixed points depends on parameter values: we have defined
the parameter K , which delineates three regimes of feasibility. For K > 1, the only
attainable equilibria are those where the Low strain is asymptotically eradicated and
the High strain prevails. For K ≤ 1, the coexistence of the two strains is a feasible
equilibrium.

The simulations present two interesting results. First, when K > 1, optimal policy
along the path to equilibrium exhibits switch points. This implies that a fixed policy
is suboptimal. Further, in the neighbourhood of the equilibrium in our example, it is
optimal to treat no one. This still allows the eradication of the Low strain. Second,
when K < 1, we simulate optimal policy in the neighbourhood of one of the non-
boundary fixed points. We find that optimal policy exhibits a spiral. This suggests
that this equilibrium can never be the end point of an optimal path, and hence that
coexistence, although feasible, is unlikely to be optimal. This suggests that for all
values of K , the welfare-maximising policy is one that leads to one of the asymptotic
equilibria.

Further research should consider extending this model to include protection via
vaccination as another instrument available to the policymaker.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendices

A Index of notation and acronyms

Table 7 defines the notation and acronyms used in this paper.

16 This is implied by an equilibrium prevalence of IH + IL = 1− τ+α fL
βL

. The prevalence of LGV is very
low: Ward et al. (2007) estimate that there were only 327 cases in the UK between 2004 and 2006. We
assume a prevalence of 0.001 but setting this number closer to zero would not have a substantive impact on
our estimate of fL .
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Table 7 Index of notation and acronyms

Notation Definition

j = H, L High, Low infectivity strain

I j (t) The prevalence of strain j in the population at time t

I 0j The initial prevalence of strain j

f j The proportion of individuals infected with strain j that are treated

β j The probability that a healthy person encountering a strain j infectee will become
infected

α The success rate of treatment

τ The natural rate of recovery from the infection

c The marginal cost of treatment

p The value of a healthy individual in social welfare

δ The discount rate

λ j The multiplier in the Hamiltonian on the equation of motion for infection j

Fhigh Fixed point where f ∗
H = (βH−βL )

βL
τ
α and f ∗

L = 0

Flow Fixed point where f ∗
H = 1 and f ∗

L = 1 − (βH−βL )
βH

τ+α
α

Fint Continuum of fixed points where f ∗
H = 1 and f ∗

L = 0

AhighL The asymptotic fixed point where H is asymptotically eradicated, f ∗
H = 1 and f ∗

L = 0

AhighH The asymptotic fixed point where L is asymptotically eradicated, f ∗
H = 0 and

f ∗
L =∈ {0, 1}

AlowH The asymptotic fixed point where L is asymptotically eradicated, f ∗
H = 1 and f ∗

L = 1

Z The set of feasible equilibria

K Equal to βH−βL
βL

τ
α , the parameter that characterises regimes of feasibility

Pab The treatment policy fH = a, fL = b

AFP Asymptotic fixed point

FP Fixed point

MRAP Most Rapid Approach Path

B Asymptotic eradication

Proposition 1 Both variants of the disease cannot be simultaneously eradicated even
asymptotically in equilibrium if

τ + α

βH
< 1,

τ + α

βL
< 1,

which hold as a consequence of Assumption (4).

Proof To see this, first consider the case of the interior fixed points. Here, it is trivial.
In the case of Flow, I ∗

H + I ∗
L = 1− α+τ

βH
. It is not possible for I ∗

H + I ∗
L = 0. Similarly
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for Fhigh where I ∗
H + I ∗

L = 1 − τ
βL

, it is not possible to have I ∗
H + I ∗

L = 0. Next,
consider the asymptotic fixed points. In the case of AL , it is known that I ∗

L → 0 so
the question is what happens to I ∗

H . For IL to tend towards zero asymptotically, the

necessary condition is IH > 1 − α fH+τ
βL

. Clearly IH �= 0 is necessary for this to be
satisfied. Similarly, fixed point AH implies that I ∗

H → 0. The necessary condition for

this is IL > 1 − α fL+τ
βH

, which can only be satisfied if IL �= 0. Thus, both variants of
the disease cannot be eradicated in equilibrium, even asymptotically. ��

C Feasible policy along the path to equilibrium

In order to derive which policies are feasible along the path towards equilibrium, it
is necessary to examine each MRAP policy in turn and derive the conditions that are
required for IH and IL to either increase or decrease.

First, consider P00. This policy implies

İH
IH

= βH (1 − IH − IL) − τ,

İL
IL

= βL(1 − IH − IL) − τ.

There are two ways of approaching a fixed point with this policy. First, it is possible
that İH , İL > 0 (i.e. IH and IL are increasing towards I ∗

H and I ∗
L ). The required

conditions for this are

1 − τ

βL
> IH + IL ,

1 − τ

βH
> IH + IL ,

which collapse to

1 − τ

βL
> IH + IL .

Similarly, it is possible that İH , İL < 0 (i.e. IH and IL are decreasing towards I ∗
H

and I ∗
L ). The required conditions for this are

1 − τ

βL
< IH + IL ,

1 − τ

βH
< IH + IL ,

which collapse to

1 − τ

βH
< IH + IL .
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Next, consider P10. For İH , İL > 0, the required conditions are

1 − τ

βL
> IH + IL ,

1 − τ + α

βH
> IH + IL ,

where the overriding condition is

1 − τ

βL
> IH + IL .

For İH , İL < 0, the required conditions are,

1 − τ

βL
< IH + IL ,

1 − τ + α

βH
< IH + IL ,

both of which are satisfied when

1 − τ + α

βH
< IH + IL .

Third, take P11. For İH , İL > 0, it needs to be the case that

1 − τ + α

βH
> IH + IL ,

1 − τ + α

βL
> IH + IL ,

where the overriding condition is

1 − τ + α

βL
> IH + IL .

For İH , İL < 0, it is required that

1 − τ + α

βH
< IH + IL ,

1 − τ + α

βL
< IH + IL ,

both of which are satisfied when

1 − τ + α

βH
< IH + IL .
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Last, consider P01. For İH , İL > 0, it needs to be the case that

1 − τ

βH
> IH + IL ,

1 − τ + α

βL
> IH + IL .

where the overriding condition is

1 − τ + α

βL
> IH + IL .

For İH , İL < 0, it is required that

1 − τ

βH
< IH + IL ,

1 − τ + α

βL
< IH + IL ,

both of which are satisfied when

1 − τ

βH
< IH + IL .
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