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Abstract We introduce three modified SIS models on scale-free networks that take
into account variable population size, nonlinear infectivity, adaptive weights, behavior
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models, including the basic reproduction number, and the global asymptotic stability of
the disease-free and endemic equilibria. We show the disease-free equilibrium cannot
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diseases and various immunization schemes on epidemic dynamics. We also perform
some stochastic network simulations which yield quantitative agreement with the
deterministic mean-field approach.
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1 Introduction

Since Barabási and Albert (1999) proposed a scale-free network model, in which the
degree distribution follows a power-law distribution, scientists have found that a mul-
titude of real networks (e.g., the Internet, biological and social networks, etc.) exhibit
scale-free properties (Albert and Barabási 2002). Particularly, the epidemic spreading
systems can be modeled on networks, in which nodes stand for individuals and links
(edges) connecting two nodes indicate the interactions between them. Researchers
have gradually focused on the spread of epidemics on complex networks and obtained
a lot of useful and insightful results (Pastor-Satorras and Vespignani 2001a, b).

The dynamical behavior of epidemics has been studied for a long time, and coupled
systems of nonlinear differential equations on networks have been used to model the
spread of epidemics in heterogeneous populations (Brauer and Castillo-Chavez 2001;
Thieme 2003). Previous studies suggest that both the properties of diseases and the
network topology determine the dynamical behavior of the spread of epidemics, such
as the absence of an epidemic threshold on scale-free networks (Pastor-Satorras and
Vespignani 2001b; Moreno et al. 2002), and the hierarchical spreading patterns of
epidemic outbreaks (Barthélemy et al. 2005).

Two fundamental epidemic models (SIS and SIR) have been widely studied (Ball
et al. 1997; Kuperman and Abramson 2001; May and Lloyd 2001; Newman 2002;
Eguiluz and Klemm 2002). But there are some inappropriate assumptions in some
existing SIS models to simulate the real spread of epidemics, as listed and discussed
in the following:

(i) Constant population size. If the births are not balanced by the deaths, or if there
are large amount of disease-related deaths, this assumptionmay be unreasonable.
So it is better to take the factors of birth and death rates into account. For example,
in Sanz et al. (2010), an epidemic model with constant birth and death rates was
investigated to discuss the dynamics of Tuberculosis-like infection.

(ii) Constant birth rate of empty nodes with different degrees. In Liu et al. (2004), it
was suggested that empty nodes with different degrees give birth to individuals
with a certain rate, which may be not reasonable in the real situations.

(iii) Fixed transmission rate. In real systems, the transmission rate λmay be different
among individuals. Furthermore, this rate λ on a given link is usually treated as a
function of the degrees of two connecting nodes in Joo and Lebowitz (2004) and
Olinky andStone (2004),whichmeans that the transmission rates of two opposite
directions on the same link are equivalent. In order to make the transmission rate
accord better with realistic cases, here, we take the effects of the weights of
links and the strength of nodes into account, which are extremely important on
weighted networks (Barrat et al. 2004a, b, c; Wu et al. 2006). Particularly, for
epidemic systems, the weight can indicate the extent of the contact between
individuals. The larger the weight of the link connecting two nodes is, the more
intensively the two nodes communicate.

(iv) The same values of infectivity and node degree. In classical SIS model, it is
assumed that each infected individual can contact all of its acquaintances (neigh-
bors) at every moment of time, i.e., the infectivity of each infected node equals

123



Epidemic spreading on adaptively weighted scale-free networks 1265

to its degree. But in reality, an individual cannot contact all his acquaintances
at every moment of time, especially when he/she is ill. Existing studies have
proposed different formulas to estimate the infectivity ϕ(k) of nodes with degree
k, such as ϕ(k) = k in Moreno et al. (2002) and Pastor-Satorras and Vespignani
(2002), ϕ(k) = A (a constant) in Yang et al. (2007), ϕ(k) = min(αk, A) in Fu
et al. (2008), ϕ(k) = akα/(1+ bkα), 0 ≤ α ≤ 1, a > 0, b ≥ 0 in Zhang and Fu
(2009).

(v) Time delay of infection on homogeneous networks. Time delay plays an impor-
tant role in propagation process of epidemics, and temporal delay in epidemic
models makes them more realistic by allowing to describe the effects of dis-
ease latency period or immunity period (Beretta and Kuang 2001; Beretta and
Takeuchi 1995). In 1973, Cooke presented an SIS model with time delay on
homogeneous networks (Ma and Li 2009; Cooke and Yorke 1973). However,
very little attention has been paid to time delay on heterogeneous networks (Xia
et al. 2013; Xu et al. 2006).

(vi) Constant weights. Weight distribution largely impacts the epidemic spreading
taking place on networks. Recently, epidemic spreading on weighted networks
has also been discussed in Britton et al. (2011), Rattana et al. (2013), Deijfen
(2011) and Yang and Zhou (2012). Britton et al. (2011) introduced a random
graph model with prescribed degree distribution and degree dependent edge
weights and studied limiting properties of such a network as well as properties
of an epidemic spreading on the network. Rattana et al. (2013) studied SIS and
SIR epidemic models on undirected, weighted networks by deriving pairwise-
type approximate models coupled with individual-based network simulation and
considered two different types of theoretical/synthetic weighted network mod-
els. Deijfen (2011) studied a model for epidemic spread on weighted graphs
with prescribed degree distribution and analyzed a version of the acquaintance
vaccination strategy where vertices are chosen randomly and neighbors of these
vertices with large edge weights are vaccinated. Yang and Zhou (2012) proposed
an edge-based mean-field method to study a susceptible-infected-susceptible
model on regular random networks with different kinds of weight distributions
and showed that the more homogeneous weight distribution leads to higher epi-
demic prevalence.

In this paper, we modify the above unreasonable hypotheses and investigate an SIS
epidemic model with variable population size, nonlinear infectivity and time delay on
undirected, adaptively weighted scale-free networks. In order to better characterize
the actual spread of epidemic diseases, we propose the concept of adaptive weights.
Then, we investigate the epidemic threshold and propagation dynamics of models, and
analyze the influence of weights, the effects of local information of diseases, as well
as various immunization schemes on epidemic dynamics.

The rest of this paper is organized as follows: In Sect. 2 we describe stochastic evo-
lution mechanism of an adaptive model and formulate three different models based
on mean field theory. In Sect. 3 we calculate the epidemic thresholds of these mod-
els, and make a comparison among them. By constructing corresponding Lyapunov
functions, we analyze the global stability of the disease-free and endemic equilibria of
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an adaptively weighed model. In Sect. 4 we analyze the impacts of local information
of diseases on epidemic dynamics. Different immunization and treatment strategies
are considered in Sect. 5. In Sect. 6, some numerical simulations are carried out to
illustrate and complement the analytical results. Finally, a brief discussion is given in
Sect. 7 to conclude the paper.

2 Description and formation of epidemic models

2.1 Stochastic model

Let us consider a population of N individuals whose connections to each other form
a network. Each node of the network is empty or occupied by at most one individual.
The nodes are enumerated with index i = 1, 2, . . . , N . The degree ki of a node i is a
number of links between node i and other nodes.

We divide all nodes into three categories: susceptible (S), infected (I ) and empty
(E), that is, each node may have one of the three states: empty state, healthy individual
occupation and infected individual occupation.

Birth E → S/I : Each empty node i randomly selects a neighbor at each time step.
If the neighbor is susceptible, then the empty node i will give birth to a new susceptible
node with the birth rate b; if the neighbor is infected, then the empty node i will give
birth to a new infected node with the same rate. Due to the physiological limitation,
it is assumed that each non-empty node generates the same birth contacts A at each
time step.

Death S/I → E : All susceptible and infected nodes die with the death rate d at
each time step. If a non-empty node dies, there is an empty node left.

Infection S → I : Initially, all nodes are in susceptible state, to start the spreading
process, a few nodes are chosen as the infected nodes. Each infected node i contacts
each of its susceptible neighbors with the probability ϕ(ki )

ki
at each time step, where

ϕ(ki ) is the infectivity of the infected node i . If an infected node i has contact with
one of its susceptible neighbors, then this susceptible neighbor j will be infected by
the infected node i with the probability λi j , where λi j represents the transmission rate
from the infected node i to susceptible node j . The specific form of λi j is discussed
below.

Recovery I → S: All infected nodes can be cured and become susceptible with the
rate γ at each time step.

In the above expressions, the parameters b, d, A, λi j and γ are all non-negative.

2.2 Mean-field models

Based on the above assumptions, we consider an SIS model on a scale-free network
with the degree distribution P(k) = ck−r . Suppose that Sk(t) and Ik(t) are the densities
of the healthy and infected nodes with given degree k at time t , respectively. Then we
have the following mean-field equations:
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⎧
⎪⎨

⎪⎩

dSk(t)
dt = bk[1−Sk(t)− Ik(t)]∑

i

A
i P(i |k)Si (t)−dSk(t) − kSk(t)�k(t) + γ Ik(t),

d Ik (t)
dt = bk[1 − Sk(t) − Ik(t)]∑

i

A
i P(i |k)Ii (t) + kSk(t)�k(t) − (d + γ )Ik(t),

(2.1)
where�k(t) stands for the probability that the infection transmits through a linkwhich
emanates from a node with degree k and points to an infected node, namely,

�k(t) =
∑

i

P(i |k)ϕ(i)

i
λik Ii (t), (2.2)

where P(i |k) is the probability that a node with degree k points to a node with degree
i , ϕ(i) is the infectivity of infected nodes with degree i , and λik is the transmission
rate from infected nodes with degree i to susceptible nodes with degree k. Without
loss of generality, we set A = 1 in system (2.1).

In uncorrelated networks, it is shown that P(i |k) = i P(i)/〈k〉, which implies that
the probability that a node with degree k points to a node with degree i is proportional
to degree i and the degree distribution P(i). Here, 〈k〉 is the normalization factor.

Note that ϕ(k) = akα/(1 + bkα)(0 ≤ α ≤ 1, a > 0, b ≥ 0), Zhang and Fu
(2009) may be more suitable than ϕ(k) = k, Moreno et al. (2002) and Pastor-
Satorras and Vespignani (2002), ϕ(k) = A (a constant), Yang et al. (2007), or
ϕ(k) = min(αk, A), Fu et al. (2008), since an infected individual cannot contact all his
acquaintances at every moment of time, Moreno et al. (2002) and Pastor-Satorras and
Vespignani (2002), and the heterogeneous infectivity of nodes with different degrees
is not considered adequately, Yang et al. (2007) and Fu et al. (2008). For system (2.1),
we define

ϕ(k) = kα, 0 < α ≤ 1,

which means that every infected individual can establish contact with its kα neighbors
at every moment of time. It is obvious that the infectivity of nodes with degree k grows
nonlinearly as k increases. The exponent α dominates the infectivity of infected nodes
with different degrees. The value of α can be adjusted to make the contacts fit practical
situations better.

2.2.1 SIS model on networks with fixed weights

Different from the previous studies, here, we mainly consider an SIS model on
weighted networks. Among varieties of weighted patterns on complex networks,
making full use of nodes’ degrees to express the weights of links is very impor-
tant. The weight between two nodes with degree i and j can be represented by
a function of their degrees (Barrat et al. 2004a, b, c; Macdonald et al. 2005), such
as wi j = w0(i j)β = w0iβ jβ , where the basic parameter w0 and the exponent β

depend on the particular complex networks [e.g., in the scientist collaboration net-
works β = 0 (Barrat et al. 2004a), in the Escherichia coli matabolic network β = 0.5,
in the US airport network β = 0.8 (Macdonald et al. 2005)]. Accordingly, a node with
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degree i also can be measured by weights, i.e., the strength (weight) of a node with
degree i , which can be obtained by summing the weights of the links that connect it.
If the strength (weight) of a node is large, then the node is powerful and important in
networks.

Let �k denote the strength (weight) of a node with degree k, then we have

�k = k
∑

i

P(i |k)wik .

In this paper, we focus on uncorrelated networks, in which the conditional proba-
bility P(i |k) satisfies P(i |k) = i P(i)/〈k〉. For simplicity, we set w0 = 1 and use a
general weight function as wi j = g(i)g( j) where g(i) = iβ . Thus, we obtain

�k = kg(k)
〈kg(k)〉

〈k〉 .

Here, for each node with degree i , we fix a total transmission rate given by λi . The
transmission rate on links from nodes with degree i to nodes with degree k will be
redistributed by the proportion of the weight of the link over the strength of the nodes
with degree i , i.e., the transmission rate λik can be defined as follows (Chu et al. 2011):

λik = λi
wik

�i
= λg(k)〈k〉

〈kg(k)〉 . (2.3)

Substituting (2.3) into (2.2), we obtain

�k(t) = λg(k)

〈kg(k)〉
∑

i

ϕ(i)P(i)Ii (t), (2.4)

which corresponds to the SIS model on networks with fixed weights.

2.2.2 SIS model with behavior inertia on adaptively weighted networks

Taking the reactions of individuals to the spread of diseases into account, the weights
of links and the strength of nodes will change as epidemics spread. But Zhu et al.
(2013) found that the adaptation of weights cannot change the basic reproduction
number. According to reality, the adaptive behavior of individuals should weaken or
put off the outbreak of diseases and reduce the basic reproduction number to a certain
extent. So, we modify the evolutive way of the weights of links to conform better to
the actual situations based on the following assumptions:

1. If we consider individual’s reactions in terms of a disease, the weight function
g̃(k, t) will become less and less as the disease prevalence I (t) increases, which
implies that there is a negative correlation between the weight function g̃(k, t)
and disease information I (t).
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2. Particularly, if an individual has more friends/neighbors, he/she will be more
cautious, therefore his/her weight will decay more significantly, which implies
that the extent of individual’s response to the disease information I (t) is related
to the degrees of individuals. And, we use h(k) to express the response extent of
the individuals with degree k to the disease information I (t).

3. Individualswill not immediately stop their adaptive behaviorwhen a disease is just
disappearing (behavior inertia). For example, individuals will not immediately
take off their masks or communicate with their friends/neighbors like before
when they realize the fact that the disease has petered out. This implies that when
a disease disappears, the weight between individuals will not return to the same
weight as before. Furthermore, individualswhohavemore friends/neighbours lose
more weight than individuals who have fewer friends/neighbours if we assume
that every individual loses the sameweight by each edge.We usem(k) to represent
behavior inertia of individuals.

At the beginning of an emerging epidemic, massive news coverage and fast infor-
mation flow can generate profound psychological impacts on the public, and hence
greatly alter individual’s behavior and influence the implementation of public inter-
vention and control policies. For example, according to theChinese SouthernWeekend
newspaper, the text message “There is a fatal flu in Guangzhou” was sent 126 million
times in Guangzhou alone during the 2003 severe acute respiratory syndrome (SARS)
outbreak (Tai and Sun 2007), causing people to stay home or wear face masks when
going outside. This figure stands in stark contrast to the comparatively low number
of 5327 cases recorded in the whole of China (World Health Organization 2005).
Furthermore, there were some influential media reports during 2009 novel influenza
A (H1N1) (Jones and Salathe 2009; SteelFisher et al. 2010), 2013 H7N9 (Chun-Hai
Fung and Wong 2013; Goodwin and Sun 2013) and 2015 Ebola (Fung et al. 2014;
Househ 2016).

Recently, several mathematical models have been proposed to investigate media
impacts. Existing approaches to modeling the impact of media coverage have focused
on how this coverage depends on the number of infected individuals (Cui et al. 2008;
Liu et al. 2007; Sun et al. 2011;Xiao et al. 2015), where prototype decreasing functions
such as e−mI , e−α1E−α2 I−α3H (with hospitalized individuals H , infected individuals
I , exposed individuals E and nonnegative constants m, αi , i = 1, 2, 3), c1 − c2 f (I )
(with constants c1, c2) and e−M(I,d I/dt) have been embedded into the incidence rate.

Thus, according to the above assumptions and statements, we canmodify theweight
function as follows:

g̃(k, t) = g(k) exp (−h(k)I (t) − m(k)) .

Here, we regard the average density of infected individuals I (t) as a kind of
information measuring the evolution of epidemics, and individuals usually gain this
information from some public channels (such as the newspapers, the Internet and
televisions) to update their connection weights.

Response-degree function h(k) is an increasing functions of k, which implies that
the reaction of every individual to disease information I (t) is related to its degree. If
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an individual has more friends/neighbors, he/she may gain more information about
disease through multiple edges, and may make more adaptive behavior to protect
himself/herself to reduce his/her weight significantly.

Behavior-inertia function m(k) is also an increasing functions of k, which implies
that individuals with more friends/neighbours lose more weight after they experience
a disease.

The corresponding λik becomes

λ̃ik = λ〈k〉g(k) exp (−h(k)I (t) − m(k))

〈kg(k) exp (−h(k)I (t) − m(k))〉 . (2.5)

Substituting (2.5) into (2.2), we have

�̃k(t) = λg(k) exp (−h(k)I (t) − m(k))

〈kg(k) exp(−h(k)I (t) − m(k))〉
∑

i

ϕ(i)P(i)Ii (t), (2.6)

which corresponds to the SIS model with behavior inertia on adaptively weighted
networks.

2.2.3 SIS model with behavior inertia and time delay on adaptively weighted
networks

The information that individuals obtain is a kind of delayed information due to the
following two reasons:

1. The responses of individuals to the information are delayed;
2. The information is not timely released, that is, the release of the information is

delayed.

Suppose that the time delay is denoted by a positive constant τ , the corresponding
λik becomes

λ̄ik = λ〈k〉g(k) exp (−h(k)I (t − τ) − m(k))

〈kg(k) exp (−h(k)I (t − τ) − m(k))〉 . (2.7)

Substituting (2.7) into (2.2), we can obtain �̄k(t):

�̄k(t) = λg(k) exp (−h(k)I (t − τ) − m(k))

〈kg(k) exp (−h(k)I (t − τ) − m(k))〉
∑

i

ϕ(i)P(i)Ii (t), (2.8)

which corresponds to the SISmodel with behavior inertia and time delay on adaptively
weighted networks.
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3 Analysis of epidemic models

3.1 Preliminaries

Let A = (akj ), B = (bkj ) ∈ Rn×n be nonnegativematrices, namely, all of their entries
are nonnegative. We say A ≥ B if akj ≥ bkj for all k and j , and A > B if A ≥ B and
A �= B.

Definition 1 For n > 1, a matrix A ∈ Rn×n is reducible if there exists a permutation
matrix Q, we have

QAQT =
(
A1 0
A2 A3

)

,

where A1 and A3 are square matrices. Otherwise, A is irreducible.

The following properties of nonnegative matrices are verified in Berman and Plem-
mons (1979), which will be used to study the dynamic behavior of our models.

R1. If A is nonnegative, then the spectral radius ρ(A) of A is one of its eigenvalues,
and A has a nonnegative eigenvector corresponding to ρ(A);

R2. If A is nonnegative and irreducible, then ρ(A) is a simple eigenvalue, and A
has a positive eigenvector ω corresponding to ρ(A);

R3. If 0 ≤ A ≤ B, then ρ(A) ≤ ρ(B). Moreover, if 0 ≤ A < B and A + B is
irreducible, then ρ(A) < ρ(B).

Let Nk(t) = Sk(t) + Ik(t), which is the density of nonempty nodes with degree k
at time t . Then, by system (2.1), the evolution of Nk(t) are governed by the following
differential equations:

dNk(t)

dt
= bk[1 − Nk(t)]�k(t) − dNk(t), (3.1)

where �k(t) = ∑
i Ni (t)P(i)/〈k〉.

Zhu et al. (2013) drew the following conclusions:

1. When b < d, limt→∞ Nk(t) = 0, then the equilibrium N 0
k (0, 0, . . . , 0) of system

(3.1) is globally stable. In this case, the population becomes extinct, and there is
no other dynamic behaviors any more;

2. When b > d, limt→∞ Nk(t) = N∗
k where N∗

k satisfies:

N∗
k = bk�∗

d + bk�∗ , �∗ =
n∑

i=1

P(i)

〈k〉 N∗
i .

The analysis of the stability of model (2.4) has been given in Zhu et al. (2013),
here, we mainly investigate the stability of models (2.6) and (2.8). Based on the
above results, we consider only the case of b > d. Since the original system and the
limiting system have the same asymptotic dynamical behaviors, to study the stability
of models (2.6) and (2.8), we only need to consider their limiting systems under which
N∗
k = Sk(t) + Ik(t).

123



1272 M. Sun et al.

3.2 Epidemic threshold of the model with adaptive weights

The limiting systems of system (2.1) corresponding to models (2.4) and (2.6) are
written as follows:

⎧
⎪⎨

⎪⎩

dSk (t)
dt = bk[1 − N∗

k ]∑
i

P(i)
〈k〉 Si (t) − dSk(t) − Sk(t)

λkg(k)
〈kg(k)〉φ(t) + γ [N∗

k − Sk(t)],
d Ik (t)
dt = bk[1 − N∗

k ]∑
i

P(i)
〈k〉 Ii (t) + [N∗

k − Ik(t)] λkg(k)
〈kg(k)〉φ(t) − (d + γ )Ik(t),

(3.2)
and

⎧
⎪⎨

⎪⎩

dSk (t)
dt = bk[1−N∗

k ]∑
i

P(i)
〈k〉 Si (t) − dSk (t) − Sk (t)

λkg(k) exp(−h(k)I (t)−m(k))
〈kg(k) exp(−h(k)I (t)−m(k))〉φ(t) + γ [N∗

k −Sk (t)],
d Ik (t)
dt = bk[1 − N∗

k ]∑
i

P(i)
〈k〉 Ii (t) + [N∗

k − Ik (t)] λkg(k) exp(−h(k)I (t)−m(k))
〈kg(k) exp(−h(k)I (t)−m(k))〉φ(t) − (d + γ )Ik (t),

(3.3)
where φ(t) = ∑

i ϕ(i)P(i)Ii (t).
Systems (3.2) and (3.3) always have the disease-free equilibrium

E0 = (S01 , 0, S
0
2 , 0, . . . , S

0
n , 0),

where S0k = N∗
k , k = 1, 2, . . . , n.

In the neighborhood of the disease-free equilibrium E0 of systems (3.2) and (3.3),
the rates of transfer of individuals out of compartments are V = (d + γ )E where E
is the identity matrix, and the rates of appearance of new infections of systems (3.2)
and (3.3) are F and F̃ , respectively, then we have

F =

⎛

⎜
⎜
⎜
⎝

X1P(1) + Y1ϕ(1)P(1) X1P(2) + Y1ϕ(2)P(2) · · · X1P(n) + Y1ϕ(n)P(n)

X2P(1) + Y2ϕ(1)P(1) X2P(2) + Y2ϕ(2)P(2) · · · X2P(n) + Y2ϕ(n)P(n)

...
...

. . .
...

Xn P(1) + Ynϕ(1)P(1) Xn P(2) + Ynϕ(2)P(2) · · · Xn P(n) + Ynϕ(n)P(n)

⎞

⎟
⎟
⎟
⎠

,

and

F̃ =

⎛

⎜
⎜
⎜
⎝

X1P(1) + Ỹ1ϕ(1)P(1) X1P(2) + Ỹ1ϕ(2)P(2) · · · X1P(n) + Ỹ1ϕ(n)P(n)

X2P(1) + Ỹ2ϕ(1)P(1) X2P(2) + Ỹ2ϕ(2)P(2) · · · X2P(n) + Ỹ2ϕ(n)P(n)

...
...

. . .
...

Xn P(1) + Ỹnϕ(1)P(1) Xn P(2) + Ỹnϕ(2)P(2) · · · Xn P(n) + Ỹnϕ(n)P(n)

⎞

⎟
⎟
⎟
⎠

,

where Xk = bk(1 − N∗
k )/〈k〉, Yk = λkg(k)N∗

k /〈kg(k)〉 and Ỹk = λkg(k)N∗
k

exp(−m(k))/〈kg(k) exp(−m(k))〉.
Obviously, V is a nonsingular M-matrix, and F, F̃ are nonnegative matrices.

According to the concepts of next generation matrix and the basic reproduction num-
ber given in Van denDriessche andWatmough (2002), the basic reproduction numbers
of systems (3.2) and (3.3) equal to
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R0 = ρ(FV−1) = 1

d + γ
ρ(F), (3.4)

and

R̃0 = ρ(F̃V−1) = 1

d + γ
ρ(F̃), (3.5)

where ρ(A) denotes the spectral radius of a matrix A.
Assume that ρi and ρ̃i (i = 1, 2, . . . , n) are eigenvalues of the characteristic equa-

tion of F and F̃ , respectively, then (3.4) and (3.5) can be rewritten as

R0 = 1

d + γ
max{|ρi |, i = 1, 2, . . . , n}, (3.6)

and

R̃0 = 1

d + γ
max{|ρ̃i |, i = 1, 2, . . . , n}, (3.7)

where | · | represents the modulus.
Afterwards, we will give a detailed derivation of R̃0 in (3.7). The associated char-

acteristic equation of F̃ is |ρ̃E − F̃ | = 0, and its specific form is as follows:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ρ̃ − [X1P(1) + Ỹ1ϕ(1)P(1)] −[X1P(2) + Ỹ1ϕ(2)P(2)] · · · −[X1P(n) + Ỹ1ϕ(n)P(n)]
−[X2P(1) + Ỹ2ϕ(1)P(1)] ρ̃ − [X2P(2) + Ỹ2ϕ(2)P(2)] · · · −[X2P(n) + Ỹ2ϕ(n)P(n)]

.

.

.
.
.
.

. . .
.
.
.

−[Xn P(1) + Ỹnϕ(1)P(1)] −[Xn P(2) + Ỹnϕ(2)P(2)] · · · ρ̃ − [Xn P(n) + Ỹnϕ(n)P(n)]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0.

By the properties of determinants, we can simplify the above characteristic equation
as follows:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

k
Xk P(k) − ρ̃

∑

k
Ỹk P(k) 0 · · · 0

∑

k
Xk P(k)(ϕ(1) − ϕ(k)) − ρ̃ϕ(1)

∑

k
Ỹk P(k)(ϕ(1) − ϕ(k)) + ρ̃ 0 · · · 0

0 0 ρ̃ · · · 0
...

...
...

. . .
...

0 0 0 · · · ρ̃

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0.

Thus, the characteristic equation of F̃ equals to

ρ̃n−2
{

ρ̃2 −
[
∑

k

Xk P(k) +
∑

k

Ỹkϕ(k)P(k)

]

ρ̃ +
∑

k

Xk P(k)
∑

k

Ỹkϕ(k)P(k)

−
∑

k

Xkϕ(k)P(k)
∑

k

Ỹk P(k)

}

= 0.
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It can be further simplified into the following form:

ρ̃n−2
{
ρ̃2 −

[
〈Xk〉 + 〈Ỹkϕ(k)〉

]
ρ̃ + 〈Xk〉〈Ỹkϕ(k)〉 − 〈Xkϕ(k)〉〈Ỹk〉

}
= 0.

Hence, ρ̃ = 0 is the trivial root and other nontrivial roots satisfy the following
equation:

ρ̃2 −
[
〈Xk〉 + 〈Ỹkϕ(k)〉

]
ρ̃ + 〈Xk〉〈Ỹkϕ(k)〉 − 〈Xkϕ(k)〉〈Ỹk〉 = 0. (3.8)

Therefore, the solutions of (3.8) are

ρ̃1,2 = 〈Xk〉 + 〈Ỹkϕ(k)〉 ±
√

(〈Xk〉 − 〈Ỹkϕ(k)〉)2 + 4〈Xkϕ(k)〉〈Ỹk〉
2

.

According to the definition of R̃0 in (3.7), we obtain

R̃0 = 1

d + γ
max{|ρ̃i |, i = 1, 2, . . . , n} = ρ̃2

d + γ
, (3.9)

where ρ̃2 = 〈Xk 〉+〈Ỹkϕ(k)〉+
√

(〈Xk 〉−〈Ỹkϕ(k)〉)2+4〈Xkϕ(k)〉〈Ỹk 〉
2 .

Similar to the derivation of R̃0, we have the expression of R0 in (3.6)

R0 = 1

d + γ
max{|ρi |, i = 1, 2, . . . , n} = ρ2

d + γ
, (3.10)

where ρ2 = 〈Xk 〉+〈Ykϕ(k)〉+
√

(〈Xk 〉−〈Ykϕ(k)〉)2+4〈Xkϕ(k)〉〈Yk 〉
2 .

Next, we compare the basic reproduction numbers of models (2.4) and (2.6). For
arbitrary elements fk j , f̃k j , k, j = 1, 2, . . . , n in F and F̃ , we have

fk j − f̃k j = [Xk P( j) + Ykϕ( j)P( j)] − [Xk P( j) + Ỹkϕ( j)P( j)]
= [Yk − Ỹk]ϕ( j)P( j)

= [
λkg(k)N∗

k /〈kg(k)〉 − λkg(k)N∗
k exp(−m(k))/〈kg(k) exp(−m(k))〉]

ϕ( j)P( j)

= λkg(k)N∗
k

[
1

〈kg(k)〉 − exp(−m(k))

〈kg(k) exp(−m(k))〉
]

ϕ( j)P( j).

Note that

1

〈kg(k)〉 − exp(−m(k)

〈kg(k) exp(−m(k))〉 ≥ 0.

Hence, fk j − f̃k j ≥ 0, k, j = 1, 2, . . . , n, which means F̃ ≤ F . Moreover,
F, F̃ are nonnegative matrices and F̃ �= F , so 0 ≤ F̃ < F . For arbitrary element
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fk j + f̃k j , k, j = 1, 2, . . . , n in F+ F̃ , fk j + f̃k j > 0, i.e., there is no zero elements in
F + F̃ , so F + F̃ is irreducible. Then, we can obtain ρ(F̃) < ρ(F) by R3 of Sect. 3.1.
Furthermore, we obtain R̃0 < R0, which implies that the adaptation of weights can
lower the basic reproduction number.

Remark 1 If the disease cannot be transmitted by contact but just by congenital infec-
tion, i.e., λ = 0, then the basic reproduction numbers R0 and R̃0 become

R01 = R̃01 = b
(〈k〉 − 〈kN∗

k 〉)
(d + γ )〈k〉 ,

which only depend on the birth and death rates, the recovery rate, and the degree
distribution of the network.

Remark 2 If the effects of birth and death are ignored, i.e., b = d = 0, Nk = 1, then
the basic reproduction numbers R0 and R̃0 are simplified to

R02 = λ〈kg(k)ϕ(k)〉
γ 〈kg(k)〉 , R̃02 = λ〈kg(k) exp(−m(k))ϕ(k)〉

γ 〈kg(k) exp(−m(k))〉 .

It can be observed that the infectivity function ϕ(k) has a stronger effect than the
weight function g(k) and behavior-inertia function m(k) on R02 and R̃02. Further, we
list the following two cases:

(H1) If the infectivity function ϕ(k) is the same for each degree, i.e., ϕ(k) = w,
implying that each node establishes contact with its w neighbors per unit time,
then the basic reproduction numbers become λw/γ , which is exactly the epi-
demic threshold for regular networks. In this case, the epidemic threshold has
nothing to do with the weight function and the network structure;

(H2) If the weights are not considered, i.e., g(k), g̃(k, t) is a constant, then the basic
reproduction numbers become λ〈kϕ(k)〉/γ 〈k〉; further, if ϕ(k) = k, then the
reproduction number becomes λ〈k2〉/γ 〈k〉, which is the same as the classical
results in Pastor-Satorras and Vespignani (2001b), Moreno et al. (2002) and
Barthélemy et al. (2005).

Remark 3 If the infectivity function ϕ(k) is the same for each degree, i.e., ϕ(k) = w, it
follows from (3.9) and (3.10) that the basic reproduction numbers R0 and R̃0 become

R03 = b(〈k〉 − 〈kN∗
k 〉)

(d + γ )〈k〉 + λw〈kg(k)N∗
k 〉

(d + γ )〈kg(k)〉 ,

R̃03 = b(〈k〉 − 〈kN∗
k 〉)

(d + γ )〈k〉 + λw〈kg(k) exp(−m(k))N∗
k 〉

(d + γ )〈kg(k) exp(−m(k))〉 .

The first and second terms in the expressions of R03 and R̃03 are contributed by
congenital infection (from parents) and contact infection (from linking neighbors),
respectively.
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3.3 Epidemic threshold of the model with adaptive weights and time delay

We obtain the following limiting system of system (2.1) in the case of �k(t) = �̄k(t)
corresponding to model (2.8) when t > τ :

⎧
⎪⎨

⎪⎩

dSk (t)
dt = bk[1 − N∗

k ]∑
i

P(i)
〈k〉 Si (t) − dSk(t) − Sk(t)

λkg(k) exp(−h(k)I (t−τ)−m(k))
〈kg(k) exp(−h(k)I (t−τ)−m(k))〉 φ(t) + γ [N∗

k − Sk(t)],
d Ik (t)
dt = bk[1 − N∗

k ]∑
i

P(i)
〈k〉 Ii (t) + [N∗

k − Ik(t)] λkg(k) exp(−h(k)I (t−τ)−m(k))
〈kg(k) exp(−h(k)I (t−τ)−m(k))〉 φ(t) − (d + γ )Ik(t),

(3.11)
where φ(t) = ∑

i ϕ(i)P(i)Ii (t).
Initial conditions of model (2.8) satisfy the following SIS differential equation

model on fixedly weighted networks without time delay and adaptation:

⎧
⎪⎨

⎪⎩

dSk (t)
dt = bk[1−Sk(t)− Ik(t)]∑

i

P(i)
〈k〉 Si (t) − dSk(t) − Sk(t)

λkg(k)
〈kg(k)〉φ(t) + γ Ik(t),

d Ik (t)
dt = bk[1 − Sk(t) − Ik(t)]∑

i

P(i)
〈k〉 Ii (t) + Sk(t)

λkg(k)
〈kg(k)〉φ(t) − (d + γ )Ik(t).

(3.12)
This is a suitable assumption since there is no information about diseases although
infections occur during the time 0 ≤ t ≤ τ . Furthermore, individuals will not make
adaptive reactions to disease information.

Denote Hk(I ) = exp(−h(k)I (t)−m(k))
〈kg(k) exp(−h(k)I (t)−m(k))〉 , by imposing steady state İk(t) = 0

in (3.11), we get the stationary solution

Ik = Xk I + λkg(k)N∗
k Hk(I )φ

d + γ + λkg(k)Hk(I )φ
. (3.13)

Substituting (3.13) into φ(t) = ∑
i ϕ(i)P(i)Ii (t), we obtain a self-consistency

equation of φ:

φ =
n∑

i=1

ϕ(i)P(i)
Xi I + λig(i)N∗

i Hi (I )φ

d + γ + λig(i)Hi (I )φ
= L(φ). (3.14)

Obviously, φ = 0 is a solution of Eq. (3.14). If there is another positive solution
(φ ∈ (0, 1]), the following inequality must be satisfied:

dL(φ)

dφ

∣
∣
∣
φ=0

> 1. (3.15)

Substituting (3.13) into I (t) = ∑
i P(i)Ii (t), we have

I =
n∑

i=1

P(i)
Xi I + λig(i)N∗

i Hi (I )φ

d + γ + λig(i)Hi (I )φ
. (3.16)
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According to Eq. (3.16), we get

d I

dφ

∣
∣
∣
φ=0

= 〈Yk〉
d + γ − 〈Xk〉 . (3.17)

Therefore, inequality (3.15) can be further expanded

dL(φ)

dφ

∣
∣
∣
φ=0

=
n∑

i=1

ϕ(i)P(i)

⎧
⎨

⎩

[
Xi

d I
dφ

+ λig(i)N∗
i

(
dHi (I )
d I

d I
dφ

φ + Hi (I )
)]

(d + γ + λig(i)Hi (I )φ)

(d + γ + λig(i)Hi (I )φ)2

−
(Xi I + λig(i)N∗

i Hi (I )φ)λig(i)
(
dHi (I )
d I

d I
dφ

φ + Hi (I )
)

(d + γ + λig(i)Hi (I )φ)2

⎫
⎬

⎭

∣
∣
∣
∣
φ=0

=
n∑

i=1

ϕ(i)P(i)

[
Xi

d I
dφ

+ λig(i)N∗
i

(
dHi (I )
d I

d I
dφ

φ + Hi (I )
)]

(d + γ + λig(i)Hi (I )φ)

(d + γ + λig(i)Hi (I )φ)2

∣
∣
∣
∣
φ=0

=
n∑

i=1

ϕ(i)P(i)

(
Xi

d I
dφ

+ λig(i)N∗
i Hi (I )

) ∣
∣
φ=0

d + γ

=
n∑

i=1

ϕ(i)P(i)
Xi

〈Yk 〉
d+γ−〈Xk 〉 + Yi

d + γ

=〈Xkϕ(k)〉〈Yk〉 + (d + γ − 〈Xk〉) 〈Ykϕ(k)〉
(d + γ ) (d + γ − 〈Xk〉)

>1.

The above inequality can be further simplified as

(d + γ )2 −
[
〈Xk〉 + 〈Ỹkϕ(k)〉

]
(d + γ ) + 〈Xk〉〈Ỹkϕ(k)〉 − 〈Xkϕ(k)〉〈Ỹk〉 < 0.

(3.18)
Based on inequality (3.18), we have

d + γ <
〈Xk〉 + 〈Ỹkϕ(k)〉 +

√

(〈Xk〉 − 〈Ỹkϕ(k)〉)2 + 4〈Xkϕ(k)〉〈Ỹk〉
2

= ρ̃2.

(3.19)
From inequality (3.19), we get the basic reproduction number of model (2.8):

R̄0 = ρ̃2

d + γ
= R̃0.

This implies that time delay will not change the basic reproduction number of
model (2.6). Since R̃0 < R0, we can obtain R̄0 = R̃0 < R0.

Based on the above analysis, we have the following theorem:

Theorem 3.1 Model (2.8) has a disease-free equilibrium E0 = (S01 , 0, S
0
2 , 0, . . . ,

S0n , 0), where S0k = N∗
k , k = 1, 2, . . . , n. If R̄0 > 1, model (2.8) has a positive

equilibrium E∗ = (S∗
1 , I

∗
1 , S∗

2 , I
∗
2 , . . . , S∗

n , I
∗
n ), which satisfies
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I ∗
k = Xk I ∗ + λkg(k)N∗

k Hk(I ∗)φ∗

d + γ + λkg(k)Hk(I ∗)φ∗ , S∗
k = N∗

k − I ∗
k ,

φ∗ =
n∑

i=1

ϕ(i)P(i)I ∗
i , k = 1, 2, . . . , n.

3.4 Stability analysis for the adaptively weighted model

The basic reproduction number is a critical value to determine whether epidemics
prevail or not. The biological significance of the basic reproduction number is that if
R̃0 < 1, the disease dies out; while if R̃0 > 1, the disease may become endemic (Van
den Driessche and Watmough 2002; Diekmann et al. 1990). According to the Theo-
rem 2 in Van den Driessche and Watmough (2002), we obtain the following stability
results.

Theorem 3.2 (1) If R̃0 < 1, the disease-free equilibrium E0 of system (3.3) is locally
asymptotically stable,

(2) If R̃0 > 1, the disease-free equilibrium E0 is unstable,where R̃0 is definedby (3.5).

Denote �k = bk[1 − N∗
k ]∑i N

∗
i P(i)/〈k〉 + γ N∗

k , αk j = bk[1 − N∗
k ]P( j)/〈k〉,

βk j = λkg(k)ϕ( j)P( j), f j (I j ) = I j , fk j (Sk, I j , I ) = exp(−h(k)I (t)−m(k))
〈kg(k) exp(−h(k)I (t)−m(k))〉 Sk I j ,

then system (3.3) can be rewritten as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk (t)
dt = �k − (d + γ )Sk(t) − ∑

j
αk j f j (I j ) − ∑

j βk j fk j (Sk, I j , I )

= �k − (d + γ )Sk(t) − ∑

j
βk j

(
αk j
βk j

f j (I j ) + fk j (Sk, I j , I )
)

,

d Ik (t)
dt = ∑

j
αk j f j (I j ) + ∑

j
βk j fk j (Sk, I j , I ) − (d + γ )Ik(t)

= ∑

j
βk j

(
αk j
βk j

f j (I j ) + fk j (Sk, I j , I )
)

− (d + γ )Ik(t).

(3.20)

Therefore, omega limit sets of system (3.20) are contained in the following bounded
region

� =
{

(S1, I1, . . . , Sn, In) ∈ R2n+
∣
∣
∣Sk ≤ �k

d + γ
, Sk + Ik = N∗

k , k = 1, 2, . . . , n

}

.

(3.21)
It can be verified that� in (3.21) is positively invariantwith respect to system (3.20).

Let �◦ denote the interior of �, and the disease-free equilibrium E0 of system (3.20)
is on the boundary of �.

Proposition 3.3 Assume that the matrices A = (αk j ) and B = (βk j ) are irreducible.
Then the following results hold:

1. If R̃0 ≤ 1, then E0 is the unique equilibrium of system (3.3) and it is globally
stable in �;

2. If R̃0 > 1, then E0 is unstable and system (3.3) is uniformly persistent.
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Proof Let I = (I1, I2, . . . , In) ∈ Rn and I0 = (0, 0, . . . , 0). The second equation of
system (3.3) can be rewritten as a vector equation as follows:

İ (t) = M(I )I − (d + γ )I.

where mkj = Xk P( j) + Zkϕ( j)P( j),

Zk = λkg(k)[N∗
k − Ik(t)] exp(−h(k)I (t)−m(k))

〈kg(k) exp(−h(k)I (t)−m(k))〉 .
Then M0 = M(I0) = F̃ . By (3.5), we can obtain R̃0 = 1

d+γ
ρ(F̃) = 1

d+γ
ρ(M0).

For 1 ≤ k ≤ n, we have 0 ≤ M(I ) ≤ M(I0) = M0, and if I �= I0, then
M(I ) < M(I0). Since A, B are irreducible, we know M(I ) and M0 are irreducible.
Furthermore, M(I ) + M0 is irreducible, thus we obtain ρ(M(I )) < ρ(M0) if I �= I0
by R3 of Sect. 3.1.

If R̃0 = 1
d+γ

ρ(M0) ≤ 1 and I �= I0, then 1
d+γ

ρ(M(I )) < 1, andM(I )I−(d+γ )I
has only the trivial solution I = I0. Thus E0 is the only equilibrium of system (3.3)
in � if R̃0 ≤ 1.

Let ω = (ω1, ω2, . . . , ωn) be a left eigenvector of M0 corresponding to ρ(M0),
i.e.,

ωρ(M0) = ωM0.

Since F̃ is irreducible, which implies that M0 is irreducible, we know ωi > 0 for
i = 1, 2, . . . , n, by R2 of Sect. 3.1.

Considering the following Lyapunov function:

L(t) =
n∑

k=1

ωk Ik .

Calculating the derivative of L(t) along the solution of system (3.3), we have

dL(t)

dt
=

n∑

k=1

ωk İk = ω[M(I )I − (d + γ )I ]

≤ ω[M0 I − (d + γ )I ] = ωM0 I − (d + γ )ωI

= ρ(M0)ωI − (d + γ )ωI = (d + γ )R̃0ωI − (d + γ )ωI

= (d + γ )(R̃0 − 1)ωI.

If R̃0 < 1, then dL(t)
dt < 0, which means I = I0. If R̃0 = 1, then dL(t)

dt = 0,
which implies ωM(I )I = (d + γ )ωI . If I �= I0, then ωM(I ) < ωM0 = ωρ(M0) =
(d+γ )ω. Thus ωM(I )I = (d+γ )ωI has only the trivial solution I = I0. Therefore,
dL(t)
dt = 0 ⇔ I = I0 if R̃0 ≤ 1. It can be verified that the only compact invariant

subset of the set where dL(t)
dt = 0 is the singleton {E0}. By LaSalle’s Invariance

Principle (LaSalle 1976), E0 is globally asymptotically stable in � if R̃0 ≤ 1.
If R̃0 > 1 and I �= I0, we know that ωM0 − ω = (d + γ )(R̃0 − 1)ω > 0, and thus

dL(t)
dt = ω[M(I )I −(d+γ )I ] > 0 in a neighborhood of E0 in�◦ , by continuity. This
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implies that E0 is unstable. Using a uniform persistence result from Freedman et al.
(1994) and a similar argument as in the proof of Proposition 3.3 in Li et al. (1999),
we can show that, when R̃0 > 1, the instability of E0 implies the uniform persistence
of system (3.3). This completes the proof of Proposition 3.3. ��
Corollary 3.4 Assume that the matrices A = (αk j ) and B = (βk j ) are irreducible. If
R̃0 > 1, then system (3.3) has at least one endemic equilibrium.

Denote by

E∗ = (S∗
1 , I

∗
1 , S∗

2 , I
∗
2 , . . . , S∗

n , I
∗
n )

the endemic equilibrium,where S∗
k , I ∗

k > 0 for k = 1, 2, . . . , n.We have the following
main results on the uniqueness and global stability of E∗ when R̃0 > 1.Our resultswill
be stated for system (3.20), and can be translated straightforwardly to system (3.3).

Theorem 3.5 Assume that the matrices A = (αk j ) and B = (βk j ) are irreducible,
and f j (I j ) and fk j (Sk, I j , I ) satisfy the following conditions:

0 < lim
I j→0+

f j (I j ) + fk j (Sk, I j , I )

I j
≤ +∞, 0 < Sk ≤ S0k , and

⎧
⎪⎪⎨

⎪⎪⎩

(
f j (I j )S∗

k − f j (I ∗
j )Sk

)(
f j (I j )S∗

k
I j

− f j (I ∗
j )Sk
I ∗
j

)

≤ 0,
(
fk j (S∗

k , I j , I ) − fk j (S∗
k , I

∗
j , I

∗)
)(

fk j (S∗
k ,I j ,I )
I j

− fk j (S∗
k ,I ∗

j ,I
∗)

I ∗
j

)

≤ 0.
(3.22)

If R̃0 > 1, and Sk, I j > 0, then there exists a unique endemic equilibrium E∗ for
system (3.20), and E∗ is globally asymptotically stable in �◦.

Proof FromCorollary 3.4, we know that the endemic equilibrium E∗ exists if R̃0 > 1.
We prove that E∗ is globally asymptotically stable in �◦. In this case, the endemic
equilibrium is unique.

We consider a Lyapunov function for a single-group model in Korobeinikov (2007)
as follows:

Vk = Sk − S∗
k ln Sk + Ik − I ∗

k ln Ik .

Next, we verify that Vk satisfies the assumptions of Theorem 3.1 in Li and Shuai
(2010).

Using the equilibrium equations

�k = (d + γ )S∗
k (t) +

∑

j

αk j f j (I
∗
j ) +

∑

j

βk j fk j (S
∗
k , I

∗
j , I

∗),

and

(d + γ )I ∗
k =

∑

j

αk j f j (I
∗
j ) +

∑

j

βk j fk j (S
∗
k , I

∗
j , I

∗),
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we obtain

dVk
dt

= dSk
dt

− S∗
k

Sk

dSk
dt

+ d Ik
dt

− I ∗
k

Ik

d Ik
dt

= �k − (d + γ )Sk(t) −
∑

j

αk j f j (I j ) −
∑

j

βk j fk j (Sk, I j , I )

− �k
S∗
k

Sk
+ (d + γ )S∗

k + S∗
k

Sk

∑

j

αk j f j (I j ) + S∗
k

Sk

∑

j

βk j fk j (Sk, I j , I )

+
∑

j

αk j f j (I j ) +
∑

j

βk j fk j (Sk, I j , I )

− Ik
I ∗
k

⎡

⎣
∑

j

αk j f j (I
∗
j ) +

∑

j

βk j fk j (S
∗
k , I

∗
j , I

∗)

⎤

⎦

− I ∗
k

Ik

∑

j

αk j f j (I j ) − I ∗
k

Ik

∑

j

βk j fk j (Sk, I j , I ) + (d + γ )I ∗
k (t)

= −(d + γ )S∗
k

(
S∗
k

Sk
+ Sk

S∗
k

− 2

)

+
∑

j

αk j f j (I
∗
j )

(

2 − S∗
k

Sk
+ f j (I j )S∗

k

f j (I ∗
j )Sk

− f j (I j )I ∗
k

f j (I ∗
j )Ik

− Ik
I ∗
k

)

+
∑

j

βk j fk j (S
∗
k , I

∗
j , I

∗)

×
(

2 − S∗
k

Sk
+ fk j (S∗

k , I j , I )

fk j (S∗
k , I

∗
j , I

∗)
− fk j (Sk, I j , I )I ∗

k

fk j (S∗
k , I

∗
j , I

∗)Ik
− Ik

I ∗
k

)

= −(d + γ )S∗
k

(
S∗
k

Sk
+ Sk

S∗
k

− 2

)

+
∑

j

βk j fk j (S
∗
k , I

∗
j , I

∗)

×
[

αk j f j (I ∗
j )

βk j fk j (S∗
k , I

∗
j , I

∗)

(

2 − S∗
k

Sk
+ f j (I j )S∗

k

f j (I ∗
j )Sk

− f j (I j )I ∗
k

f j (I ∗
j )Ik

− Ik
I ∗
k

)

+
(

2 − S∗
k

Sk
+ fk j (S∗

k , I j , I )

fk j (S∗
k , I

∗
j , I

∗)
− fk j (Sk, I j , I )I ∗

k

fk j (S∗
k , I

∗
j , I

∗)Ik
− Ik

I ∗
k

)]

.

Since

S∗
k

Sk
+ Sk

S∗
k

− 2 ≥ 0,
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we have

− (d + γ )S∗
k

(
S∗
k

Sk
+ Sk

S∗
k

− 2

)

≤ 0, (3.23)

and the equality holds if and only if Sk = S∗
k .

Let akj = βk j fk j (S∗
k , I

∗
j , I

∗),Gk(Ik) = − Ik
I ∗
k

+ ln Ik
I ∗
k
, F̂k j (Sk, I j ) = 2 − S∗

k
Sk

+
f j (I j )S∗

k
f j (I ∗

j )Sk
− f j (I j )I ∗

k
f j (I ∗

j )Ik
− Ik

I ∗
k
, F̌k j (Sk, I j , I ) = 2− S∗

k
Sk

+ fk j (S∗
k ,I j ,I )

fk j (S∗
k ,I ∗

j ,I
∗) − fk j (Sk ,I j ,I )I ∗

k
fk j (S∗

k ,I ∗
j ,I

∗)Ik − Ik
I ∗
k
,

and we have

Fkj (Sk, I j , I ) = αk j f j (I ∗
j )

βk j fk j (S∗
k , I

∗
j , I

∗)
F̂k j (Sk, I j ) + F̌k j (Sk, I j , I ).

Then, by (3.23), we have

dVk
dt

≤
n∑

j=1

akj Fk j (Sk, I j , I ).

Let �(a) = 1 − a + ln a. Then �(a) ≤ 0 for a > 0 and equality holds only at
a = 1. Furthermore,

F̂k j (Sk, I j ) = Gk(Ik) − G j (I j ) + �

(
S∗
k

Sk

)

+ �

(
I j f j (I ∗

j )Sk

I ∗
j f j (I j )S

∗
k

)

+ �

(
f j (I j )I ∗

k

f j (I ∗
j )Ik

)

+
(

f j (I j )S∗
k

f j (I ∗
j )Sk

− 1

)(

1 − I j f j (I ∗
j )Sk

I ∗
j f j (I j )S

∗
k

)

≤ Gk(Ik) − G j (I j ) +
(

f j (I j )S∗
k

f j (I ∗
j )Sk

− 1

)(

1 − I j f j (I ∗
j )Sk

I ∗
j f j (I j )S

∗
k

)

,

and

F̌k j (Sk, I j , I ) = Gk(Ik) − G j (I j ) + �

(
S∗
k

Sk

)

+ �

(
I j fk j (S∗

k , I
∗
j , I

∗)
I ∗
j fk j (S

∗
k , I j , I )

)

+ �

(
fk j (S∗

k , I j , I )I
∗
k

fk j (S∗
k , I

∗
j , I

∗)Ik

)

+
(

fk j (S∗
k , I j , I )

fk j (S∗
k , I

∗
j , I

∗)
− 1

)(

1 − I j fk j (S∗
k , I

∗
j , I

∗)
I ∗
j fk j (S

∗
k , I j , I )

)

≤ Gk(Ik) − G j (I j ) +
(

fk j (S∗
k , I j , I )

fk j (S∗
k , I

∗
j , I

∗)
− 1

)

×
(

1 − I j fk j (S∗
k , I

∗
j , I

∗)
I ∗
j fk j (S

∗
k , I j , I )

)

.
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Thus

Fkj (Sk, I j , I ) ≤
(

αk j f j (I ∗
j )

βk j fk j (S∗
k , I

∗
j , I

∗)
+ 1

)
(
Gk(Ik) − G j (I j )

)

+ αk j f j (I ∗
j )

βk j fk j (S∗
k , I

∗
j , I

∗)

(
f j (I j )S∗

k

f j (I ∗
j )Sk

− 1

)(

1 − I j f j (I ∗
j )Sk

I ∗
j f j (I j )S

∗
k

)

+
(

fk j (S∗
k , I j , I )

fk j (S∗
k , I

∗
j , I

∗)
− 1

)(

1 − I j fk j (S∗
k , I

∗
j , I

∗)
I ∗
j fk j (S

∗
k , I j , I )

)

.

Under condition (3.22), we can show that Vk, Fkj ,Gk, akj satisfy the assumptions
of Theorem 3.1 and Corollary 3.3 in Li and Shuai (2010). Therefore, the function
V = ∑n

k=1 ckVk as defined in Theorem 3.1 in Li and Shuai (2010) is a Lyapunov
function for system (3.20), namely, dV

dt ≤ 0 for (S1, I1, . . . , Sn, In) ∈ �◦. It can
be verified similarly as in Section 4 of Li and Shuai (2010) that the only compact
invariant set where dV

dt = 0 is the singleton {E∗}. By the LaSalle’s Invariance Prin-
ciple (LaSalle 1976), E∗ is globally asymptotically stable in �◦. This completes the
proof of Theorem 3.5. ��

4 The effects of local information of diseases on epidemic dynamics

In general, with the progress of epidemics, infected individuals are not evenly distrib-
uted, then individuals may be more concerned about quite a few seriously infected
areas, and take corresponding actions to protect themselves based on the information
of diseases in these areas (local information). Below we discuss the effects of local
information of diseases, namely, the average densities of infected individuals in a local
area, on epidemic dynamics.

When a disease occurs in a human population, if the disease spreads locally, then
the vast majority of infected individuals with degree k are distributed in a serious
disaster area, we use l(k) to describe the nonuniform of the distribution of the infected
individuals with degree k, which is associatedwith the degree k of infected individuals.
The larger degree k of infected individuals, the larger value of l(k), which implies that
the nonuniform of the distribution of infected individuals with large degree is more
obvious than the nonuniform of the distribution of infected individuals with small
degree. If l(k) > 1, then the local area is a high incidence area; if l(k) < 1, then the
local area is a low incidence area; if l(k) = 1, then the local area is a uniform incidence
area. Similarly, we can also use l = ∑

k l(k)P(k) to characterize the incidence degree
of a local area.

Denote byU,U∗, Dk and Ĭk the set consisting of all individuals in the investigated
area (universal set), the set consisting of all individuals in a heavily infected area (sub-
set), the set consisting of individuals with degree k in the investigated area, and the set
consisting of infected individuals with degree k in the investigated area, respectively.
P(U ) represents the probability of x ∈ U for a randomly chosen individual x ; P(Dk)

represents the probability of x ∈ Dk for a randomly chosen individual x ; P( Ĭk) rep-
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resents the probability of x ∈ Ĭk for a randomly chosen individual x ; Ik represents the
densities of infected individuals with degree k, namely, the probability of x ∈ Ĭk for
a randomly chosen individual x . P(U∗|Dk) represents the probability of x ∈ U∗ for
a randomly chosen individual x in Dk , similarly, P(U∗| Ĭk) represents the probability
of x ∈ U∗ for a randomly chosen individual x in Ĭk . P(Dk |U∗) represents the proba-
bility of x ∈ Dk for a randomly chosen individual x in U∗; P( Ĭk |U∗) represents the
probability of x ∈ Ĭk for a randomly chosen individual x in U∗.

According to the above formulas and symbols, we have P(Dk) = P(k), P( Ĭk) =
Ik, P(U ) = 1.

For an uncorrelated network, we assume that individuals with degree k are evenly
distributed in U and the vast majority of infected individuals with degree k are dis-
tributed in U∗. Thus we have

P(U∗|Dk) = P(U∗)
P(U )

= P(U∗),

P(U∗| Ĭk) = l(k)
P(U∗)
P(U )

= l(k)P(U∗),

where l(k) ≥ 1.
By using Bayes’ formula, we have

P(Dk |U∗) = P(Dk)P(U∗|Dk)

P(U∗)
= P(k),

P( Ĭk |U∗) = P( Ĭk)P(U∗| Ĭk)
P(U∗)

= l(k)Ik .

Then, the average density of infected individuals in a serious disaster area, i.e., the
local information of diseases is

Ĩ =
∑

k

P(Dk |U∗)P( Ĭk |U∗) =
∑

k

l(k)P(k)Ik .

In addition, the average density of infected individuals in the investigated area, i.e.,
the global information of diseases is

I =
∑

k

P(Dk |U )P( Ĭk |U ) =
∑

k

P(Dk)P( Ĭk) =
∑

k

P(k)Ik .

Since l(k) ≥ 1, we have Ĩ ≥ I . Now, we can replace I with Ĩ in the adaptive
weight function, so we can compute and analyze the basic reproduction numbers of
models (2.6) and (2.8) with respect to the local information of diseases by a similar
discussion as that in Sect. 3.2. Interestingly, we will find that the local information
of diseases cannot change the basic reproduction numbers of models (2.6) and (2.8)
with respect to the global information of diseases. However, the local information of
diseases will influence more significantly the progress of both models (2.6) and (2.8)
than the global information of diseases.
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5 Immunization and treatment strategies

The appropriate immunization and treatment strategies are very important for the
prevention and control of infectious diseases. In this section, we discuss the SIS
model (2.6) on an adaptively weighted scale-free network with various immuniza-
tion schemes (Fu et al. 2008) and treatment of infected individuals through contact
tracing and isolation (Xiao et al. 2015).

5.1 Proportional immunization

Denote the immunization rate by δ, 0 < δ < 1, then system (2.1) becomes
⎧
⎪⎨

⎪⎩

dSk (t)
dt = bk[1 − Sk(t) − Ik(t)]∑

i

P(i)
〈k〉 Si (t) − dSk(t) − (1 − δ)kSk(t)�k(t) + γ Ik(t),

d Ik (t)
dt = bk[1 − Sk(t) − Ik(t)]∑

i

P(i)
〈k〉 Ii (t) + (1 − δ)kSk(t)�k(t) − (d + γ )Ik(t).

(5.1)
By a similar discussion as in Sect. 3.2, the basic reproduction number R̃0 can be shown
that

R̃P
0 = 1

d + γ
max{|ρ̃i p|, i = 1, 2, . . . , n} = ρ̃2p

d + γ
, (5.2)

where ρ̃2p = 〈Xk 〉+(1−δ)〈Ỹkϕ(k)〉+
√

(〈Xk 〉−(1−δ)〈Ỹkϕ(k)〉)2+4(1−δ)〈Xkϕ(k)〉〈Ỹk 〉
2 .

Note that in (5.2), if δ = 0, which means no immunization scheme is implemented,
then R̃P

0 = R̃0; if 0 < δ < 1, then R̃P
0 < R̃0, implying that the immunization scheme

is more effective; while if δ = 1, we obtain R̃0 = b(〈k〉−〈kN∗
k 〉)

(d+γ )〈k〉 . That is to say, in the
case of a full immunization, the spread of epidemic diseases in the network is only
contributed by congenital infection (from parents).

5.2 Targeted immunization

We can devise a targeted immunization scheme (Fu et al. 2008; Pastor-Satorras and
Vespignani 2002). Introduce an upper threshold κ , such that all nodeswith connectivity
k > κ are immunized, i.e., we defined the immunization rate δk by

δk =
⎧
⎨

⎩

1, k ≥ κ,

c, k = κ,

0, k < κ,

(5.3)

where 0 < c ≤ 1, and
∑

k δk P(k) = δ̄, where δ̄ is the average immunization rate.
The system (2.1) can be written as follows:

⎧
⎪⎨

⎪⎩

dSk (t)
dt = bk[1 − Sk(t) − Ik(t)]∑

i

P(i)
〈k〉 Si (t) − dSk(t) − (1 − δk)kSk(t)�k(t) + γ Ik(t),

d Ik (t)
dt = bk[1 − Sk(t) − Ik(t)]∑

i

P(i)
〈k〉 Ii (t) + (1 − δk)kSk(t)�k(t) − (d + γ )Ik(t).

(5.4)
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By a similar discussion as in Sect. 3.2, the basic reproduction number R̃0 can be shown
that

R̃T
0 = 1

d + γ
max{|ρ̃i t |, i = 1, 2, . . . , n} = ρ̃2t

d + γ
, (5.5)

where ρ̃2t = 〈Xk 〉+〈(1−δk )Ỹkϕ(k)〉+
√

(〈Xk 〉−〈(1−δk)Ỹkϕ(k)〉)2+4〈Xkϕ(k)〉〈(1−δk)Ỹk 〉
2 .

It is clear that R̃T
0 < R̃0, for the convenience of comparison, we consider the case

of infectivity function ϕ(k) = w. By (5.5), the basic reproduction number R̃T
0 can be

expressed as

R̃T �
0 = 〈Xk〉

d + γ
+

w
(
〈Ỹk〉 − 〈δk Ỹk〉

)

d + γ
.

Note that 〈δk Ỹk〉 = δ̄〈Ỹk〉 + δ′, where δ′ = 〈(δk − δ̄)(Ỹk − 〈Ỹk〉)〉 is the covariance
of δk and Ỹk .

As discussed in a targeted immunization scheme (Fu et al. 2008), by similar argu-
ment we can obtain

R̃T �
0 − 〈Xk〉

d + γ
<

1 − δ̄

1 − δ

(

R̃P�
0 − 〈Xk〉

d + γ

)

.

If we set δ = δ̄, then

R̃T �
0 < R̃P�

0 ,

which means that the targeted immunization scheme is more efficient than the propor-
tional scheme for the same average immunization rate when ϕ(k) = w.

5.3 Acquaintance immunization

Choose a random fraction p of the N nodes, the probability that a particular node with
k contacts is selected for immunization is kP(k)/(N 〈k〉) (Fu et al. 2008; Dorogovtsev
et al. 2008; Cohen et al. 2000), therefore δk = p

〈k〉kP(k), so the basic reproduction
number for this immunization scheme with ϕ(k) = w is determined by

R̃ Aq�
0 − 〈Xk〉

d + γ
= w

(

〈Ỹk〉 − p

〈k〉 〈kP(k)Ỹk〉
)

= 〈Ỹk〉 − p
〈k〉 〈kP(k)Ỹk〉

(1 − δ̄)〈Ỹk〉 − δ′

(

R̃T �
0 − 〈Xk〉

d + γ

)

.

Note that

(1 − δ̄)〈Ỹk〉 − δ′ = (1 − δ̄)〈Ỹk〉 − 〈(δk − δ̄)(Ỹk − 〈Ỹk〉)〉
> (1 − δ̄)〈Ỹk〉 − 〈(1 − δ̄)(Ỹk − 〈Ỹk〉)〉
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= (1 − δ̄)〈Ỹk〉 − [〈(1 − δ̄)Ỹk〉 − 〈(1 − δ̄)〈Ỹk〉〉]
> (1 − δ̄)〈Ỹk〉 − 〈(1 − δ̄)Ỹk〉
= (1 − δ̄)〈Ỹk〉 − (1 − δ̄)〈Ỹk〉
= 0,

and

〈Ỹk〉 − p

〈k〉 〈kP(k)Ỹk〉 = 〈Ỹk〉 − cp

〈k〉 〈k
1−r Ỹk〉.

If c <
〈k〉
p , then 〈Ỹk〉 − p

〈k〉 〈kP(k)Ỹk〉 > 0. Thus we have R̃ Aq�
0 − 〈Xk 〉

d+γ
=

ϒ
(
R̃T �
0 − 〈Xk 〉

d+γ

)
, where ϒ is a positive constant. This means that the acquaintance

immunization scheme is comparable to the targeted immunization scheme in effec-
tiveness without congenital infection.

5.4 Active immunization

We now discuss a new immunization scheme proposed by Fu et al. (2008): choose
an infected node and immunize its neighbors whose degree k ≥ κ . The system (2.1)
becomes:
⎧
⎪⎨

⎪⎩

dSk (t)
dt = bk[1 − Sk(t) − Ik(t)]∑

i

P(i)
〈k〉 Si (t) − dSk(t) − kSk(t)�k(t) + (γ + δ̄k)Ik(t),

d Ik (t)
dt = bk[1 − Sk(t) − Ik(t)]∑

i

P(i)
〈k〉 Ii (t) + kSk(t)�k(t) − (d + γ + δ̄k)Ik(t),

(5.6)
where δ̄k = ∑

k
kP(k)
〈k〉 δk and δk is defined in (5.3).

Similar to the discussion in Sect. 3.2, the basic reproduction number R̃0 can be
shown that

R̃ At
0 = 1

d + γ + δ̄k
max{|ρ̃i |, i = 1, 2, . . . , n} = ρ̃2

d + γ + δ̄k
, (5.7)

where ρ̃2 = 〈Xk 〉+〈Ỹkϕ(k)〉+
√

(〈Xk 〉−〈Ỹkϕ(k)〉)2+4〈Xkϕ(k)〉〈Ỹk 〉
2 . Therefore, we have

R̃ At
0 = d + γ

d + γ + δ̄k
R̃0 < R̃0.

That is to say, the immunization scheme we propose here is indeed effective. The
lower κ is, the greater δ̄k is, and the more effective the immunization scheme is.

5.5 Treatment of infected individuals through contact tracing and isolation

We reclassify the usual susceptible (Sk) and infected (Ik) compartments of the SIS
model (2.6) on an adaptively weighted scale-free network, to include the quarantined
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susceptible (Sqk ) and isolated infected (I
q
k ) compartments. We assume that the contact

tracing rate is fixed (denoted by the constant cT ). In addition to the existing dynamical
processes of the adaptively weighted model (2.6), with contact tracing, a proportion,
q, of individuals with degree k who have had contact with isolated infected individuals
is quarantined. The quarantined individuals can either move to compartment I qk or Sqk ,
depending on whether they are infected or not. The non-isolated infected individuals
can be detected and then isolated at a rate of δI . The quarantined susceptible indi-
viduals can be released into the wider community at a rate of δS . We denote by γq
the recovery rate of isolated infected individuals. The SIS model (2.6) with contact
tracing and isolation on an adaptively weighted scale-free network can be modified
as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk (t)
dt = bk[1 − Nk(t) − Nq

k (t)]∑
i

A
i P(i |k)Si (t) − kSk(t)�k(t) − qcT kSk(t)�k(t) − dSk(t)

+δS S
q
k (t) + γ Ik(t) + γq I

q
k (t),

d Ik (t)
dt = bk[1 − Nk(t) − Nq

k (t)]∑
i

A
i P(i |k)Ii (t) + kSk(t)�k(t) − qcT k Ik(t)�k(t)

−(d + γ + δI )Ik(t),
dSqk (t)
dt = bk[1 − Nk(t) − Nq

k (t)]∑
i

A
i P(i |k)Sqi (t) + qcT kSk(t)�k(t) − (δS + d)Sqk (t),

d I qk (t)
dt = bk[1 − Nk(t) − Nq

k (t)]∑
i

A
i P(i |k)I qi (t) + qcT k Ik(t)�k(t) + δI Ik(t) − (d + γq )I

q
k (t),

(5.8)
where Nk(t) = Sk(t)+Ik(t), N

q
k (t) = Sqk (t)+I qk (t),�k(t) = ∑

i P(i |k) ϕ(i)
i λik Ii (t),

�k(t) = ∑
i P(i |k)I qi (t).

The contact tracing model (5.8) includes adaptive weight and some interventions
(such as quarantine, isolation and treatment), mainly focussing on the contact tracing
and quarantine of individuals who have had contacts with isolated infected individuals.
In contact tracing model (5.8), contact tracing is driven by the number of infected indi-
viduals in isolation. Further, we not only trace the non-isolated susceptible individuals
that are in contact with isolated infected individuals, but also trace the non-isolated
infected individuals who have contacts with isolated infected individuals. Meanwhile,
the contact tracing function �k(t) is included in the non-isolated susceptible popula-
tion (Sk), non-isolated infected population (Ik), isolated susceptible population (Sqk )
and isolated infected population (I qk ).

Similar to the analysis in Sect. 3.2, we calculate the basic reproduction number R̃C
0

by using the next generation matrix as follows:

R̃C
0 = max

{
ρ̃2c

d + γ + δI
,

〈Xk〉
d + δS

,
〈Xk〉
d + γq

}

, (5.9)

where ρ̃2c = 〈Xk 〉+〈Ỹkϕ(k)〉+
√

(〈Xk 〉−〈Ỹkϕ(k)〉)2+4〈Xkϕ(k)〉〈Ỹk 〉
2 .

Note that the basic reproduction number R̃C
0 of the model (5.8) is the same as R̃0

in the absence of contact tracing, quarantine, isolation and treatment. With contact
tracing, if δI = 0, then we have R̃C

0 ≥ ρ̃2c
d+γ

= R̃0, implying that treatment of infected
individuals through contact tracing and isolation is indeed more effective.
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6 Numerical simulations

We perform some numerical simulations to complement the theoretical results, and to
understand the effects of parameters on the spread of epidemics, so as to find better
control strategies. Here, wemainly usemodels (2.6) and (2.8) to simulate the evolutive
process of epidemics.

We consider a BA (Barabási-Albert) scale-free (preferential attachment) net-
work (Barabási and Albert 1999) with the degree distribution P(k) ∼ k−3 and the
network size N = 500. This network evolves from initial network with size m0 = 3
and we add each new node with m = 3 new edges. The average degree of the gener-
ation network is 〈k〉 = 6 and its maximum degree is n = 40. Initially, each node and
each edge is assigned a weight according to the weight function g(k). As the disease
progresses, the weights of the nodes and edges are updated based on the weight func-
tion g̃(k, t). Let ϕ(k) = kα , g(k) = kβ , h(k) = kμ andm(k) = kσ , where α, β, μ and
σ are all positive constants. It should be noted that β = 0 means no weight, β �= 0,
μ = 0 and σ = 0 mean fixed weights, and β �= 0, μ �= 0 and σ �= 0 mean adaptive
weights.

Firstly, we show the comparison of the mean-field approach and Monte Carlo
stochastic simulations for the prediction of the average fraction of infected individuals
at time t , I (t), in model (2.6), see Fig. 1. This SIS dynamic process on adaptively
weighted networks proceeds with parallel updating. To minimise random fluctuation
caused by the initial conditions, we make average of I (t) over 20 realizations at each
time step for different initial infectious nodes. From Fig. 1, we can observe that the
agreement between the numerical results from the two approaches is very good and
the average accuracy of the mean-field approach is within 3 %, which implies that the
analysis based on the mean-field approach is very effective. Thus, in the figures below,
our numerical results are mainly obtained from the mean-field approach.

Let γ = 0.2 in Figs. 2, 3, 4 and 5 and other parameters α, b, d are set as α = 1, b =
0.2 and d = 0.1 in Figs. 3, 4 and 5. All the following simulations (except Fig. 2a) are
based on the generated BA network with the power exponent r = 3.

Fig. 2(a) illustrates that the basic reproduction number R̃0(R̄0) on the adaptively
weighted network is lower than R0 on the fixedlyweighted network, but R̃0(R̄0) and R0
increase as the weight exponent β increases and decrease as the power-law exponent r
increases. Since r indicates the heterogeneity of the network, the more heterogeneous
the network is, the larger the basic reproduction numbers R̃0(R̄0) and R0 are.

From Fig. 2b, with the increase of the infectivity exponent α and weight exponent
β, the basic reproduction numbers R̃0(R̄0) and R0 also increase, but the infectivity
exponent α contributes much more impacts on them.

From Fig. 3, we can observe that the initial conditions have almost no influ-
ence on the stationary fraction of infected individuals. If R0, R̃0, R̄0 < 1, no matter
how many infected individuals initially exist, the disease eventually dies out quickly,
which implies that the disease-free equilibrium is globally asymptotically stable; If
R0, R̃0, R̄0 > 1, the disease persists on a unique positive state, which implies that
there is a stable endemic equilibrium. Moreover, the fixed weight makes the disease
rapidly reach a peak of outbreak, while the adaptive weight and time delay cause the
disease to rapidly drop and then experience a valley and a low peak, the greater the
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Fig. 1 (Color online) The comparison of Monte Carlo stochastic simulations (blue circle) and the mean-
field approach (red line) for adaptively weighted model (2.6). The parameter values are set as follows:
α = 1, β = 1, μ = 1, σ = 0.06, b = 0.2, d = 0.1, γ = 0.2. a, c The initial fraction of infected nodes is
set 0.05, λ = 0 (R̃0 = 0.33), λ = 0.01 (R̃0 = 0.41); b, d the initial fraction of infected nodes is set 0.10,
λ = 0.10 (R̃0 = 2.57), λ = 0.20 (R̃0 = 5.08). The Monte Carlo stochastic simulations and the mean-field
approach are averaged by 20 realizations

degree of nodes is, the more pronounced this phenomenon becomes. With respect
to the adaptive weight, the adaptive weight with time delay obviously reduces the
outbreak scale of the disease, but will not change the final steady state.

From Fig. 4a, b, we can see that Ik with larger degree k experience several oscilla-
tions before they reach the steady levels. In the case of the larger adaptivity exponent
μ, Ik with larger degree k does not mean that they can reach higher endemic levels.
The larger the adaptivity exponent μ is, the lower steady levels Ik with larger degree k
reach. Moreover, the larger adaptivity exponent μ effectively suppresses the outbreak
of the disease. From Fig. 4a, c, d, the greater the inertia exponent σ is, the lower the
greatest outbreak scale that Ik with larger degree k reach is. In addition, the greater
inertia exponent σ makes the basic reproduction number R̃0 become smaller and Ik
with larger degree k reach the lower steady levels. From Fig. 4e, f, time delay will
put off the outbreak of the disease, but will not change the steady levels Ik reach. The
greater the time delay τ , the lower the valleys Ik with larger degree k experience.
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Fig. 3 (Color online) The influence of initial conditions on the density of infected individuals in mod-
els (2.4), (2.6) and (2.8), β = 1, μ = 1, σ = 0.06. a, c λ = 0.02, R0 = 0.63, R̃0 = R̄0 = 0.59; b, d
λ = 0.05, R0 = 1.43, R̃0 = R̄0 = 1.32

From Fig. 5a, we notice that the fixed weight triggers the outbreak of the disease,
the larger adaptivity exponent μ and inertia exponent σ make the average density
of infected individuals I reach lower steady levels. That is to say, the adaptivity of
weights and behavior inertia can suppress epidemic diseases globally to a low level,
which is more effective if the adaptivity exponentμ and inertia exponent σ are bigger.
In some cases (β = 1, μ = 1, σ = 0.5), the adaptivity of weights and behavior inertia
can even prevent the disease from growing into an endemic. From Fig. 5b, time delay
will make the average density I of infected individuals experience several oscillations
before they reach the steady levels, which is more obvious if τ is larger, and put off
the time the average density I of infected individuals reach common steady levels.

7 Discussions and conclusions

On social networks, it has been observed thatwhen individuals realize that a contagious
disease is in their proximity, they may take adaptive measures to reduce the contact
weights (i.e., the intimacy or familiarity between neighbors). The adaptivity of weight
signifies that individuals will change their social behavior as the disease develops. As

123



Epidemic spreading on adaptively weighted scale-free networks 1293

0
10

20
30

40
50

60
70

80

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

 t

Ik(t)

(a
)

0
10

20
30

40
50

60
70

80

0.
050.

1

0.
150.

2

0.
250.

3

0.
35

 t

Ik(t)

(b
)

0
10

20
30

40
50

60
70

80

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

 t

Ik(t)

(c
)

0
10

20
30

40
50

60
70

80

0.
050.

1

0.
150.

2

0.
250.

3

0.
350.

4

0.
450.

5

 t

Ik(t)

(d
)

0
10

20
30

40
50

60
70

80

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

 t

Ik(t)

(e
)

0
10

20
30

40
50

60
70

80

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

 t

Ik(t)

(f
)

F
ig
.
4

(C
ol
or

on
lin

e)
T
he

de
ns
iti
es

of
in
fe
ct
ed

in
di
vi
du

al
s
w
ith

di
ff
er
en
t
de
gr
ee
s
in

m
od

el
s
(2
.6
)
an
d
(2
.8
).
T
he

li
ne
s
fr
om

bo
tt
om

to
to
p
ar
e
I 1

(t
),
I 2

(t
),

..
.,

I 4
0
(t

),
re
sp
ec
tiv

el
y,

λ
=

0.
1,

β
=

1.
a

μ
=

1,
σ

=
0.
06

,
R̃
0

=
2.
57

;
b

μ
=

1.
5,

σ
=

0.
06

,
R̃
0

=
2.
57

;
c

μ
=

1,
σ

=
0.
1,

R̃
0

=
2.
40

;
d

μ
=

1,
σ

=
0.
2,

R̃
0

=
1.
91

;
e

μ
=

1,
σ

=
0.
06

,
τ

=
1,

R̄
0

=
2.
57

;f
μ

=
1,

σ
=

0.
06

,
τ

=
5,

R̄
0

=
2.
57

123



1294 M. Sun et al.

0
20

40
60

80
10

0

1234567891011

x 
10

−
3

 t

 I(t)

β=
0,

μ=
0,

σ=
0

β=
1,

μ=
0,

σ=
0

β=
1,

μ=
1,

σ=
0.

06

β=
1,

μ=
1.

5,
σ=

0.
06

β=
1,

μ=
1,

σ=
0.

15

β=
1,

μ=
1,

σ=
0.

2

β=
1,

μ=
1,

σ=
0.

5

(a
)

0
50

10
0

15
0

20
0

25
0

30
0

2468101214
x 

10
−

3

 t

 I(t)

τ=
0

τ=
1

τ=
3

τ=
5

τ=
7

τ=
9

(b
)

F
ig
.5

(C
ol
or

on
lin

e)
T
he

in
flu

en
ce

of
th
e
ad
ap
tiv

e
w
ei
gh

t,
be
ha
vi
or

in
er
tia

an
d
tim

e
de
la
y
on

th
e
av
er
ag
e
de
ns
ity

of
in
fe
ct
ed

in
di
vi
du

al
s,

λ
=

0.
1.

a
T
he

in
flu

en
ce

of
th
e

ad
ap
tiv

e
w
ei
gh

ta
nd

in
er
tia

on
th
e
av
er
ag
e
de
ns
ity

of
in
fe
ct
ed

in
di
vi
du

al
s.
b
T
he

in
flu

en
ce

of
tim

e
de
la
y
on

th
e
av
er
ag
e
de
ns
ity

of
in
fe
ct
ed

in
di
vi
du

al
s:

β
=

1,
μ

=
1.
9,

σ
=

0.
01

,
R̄
0

=
2.
76

123



Epidemic spreading on adaptively weighted scale-free networks 1295

social network structure plays an important role in the process of epidemic spreading,
the adaptivity in human behavior should be taken into account whenmodelling disease
progression.

In this paper, we have developed and investigated the modified SIS models with
variable population size, nonlinear infectivity and time delay on adaptively weighted
scale-free networks. Our models suggest how the presence of a contagious disease
induces a change in individuals behavior on weighted networks, and our results show
how this could feed back to alter the disease dynamics. Through mean-field analysis,
we find that the basic reproduction number is the threshold determining whether the
epidemic spreads, which depends on birth rate b, death rate d (natural death), trans-
mission rate λ, cure rate γ , the infectivity function ϕ(k), the weight function g(k),
behavior-inertia function m(k), and the structure of the network. Furthermore, com-
pared with the weight function g(k) and behavior-inertia functionm(k), the infectivity
function ϕ(k) has a dominant impact on the epidemic threshold, whichmeans that con-
trolling the contacts of individuals is more important than the infection ability of the
disease itself. We compare the basic reproduction numbers of constantly weighted
model, adaptively weighted model and adaptively weighted model with time delay,
and find that the adaptivity of weight can reduce the epidemic threshold, but a time-
delayed adaptivity of weight cannot change the epidemic threshold with respect to a
non-delayed adaptivity of weight.

By constructing suitable Lyapunov functions, we obtain the global stability of the
disease-free and the endemic equilibria for the adaptively weighted model. If R̃0 ≤ 1,
the disease-free equilibrium E0 is globally asymptotically stable, which implies that
the disease will dies out. If R̃0 > 1 and condition (3.22) holds, the endemic equi-
librium E∗ is globally asymptotically stable, therefore the disease persists. From
numerical simulations, we can also obtain the global stability of the disease-free and
the endemic equilibria for the adaptively weighted model with time delay. Compared
with constantly weighted model, we can observe that the adaptivity of weight can
induce the disease to decay quickly; particularly, strong adaptivity can suppress the
epidemic globally to a low level. The time-delayed adaptivity of weight can put off
and weaken the outbreak of the disease to a certain extent, but it cannot change the
steady level of the epidemic. Therefore, in disease propagation, individual’s adaptive
behavior can quickly reduce the incidence, but in order to eliminate the disease, one
should weaken the intensity of interaction, especially decrease the frequency of inter-
action. The adaptive behavior of individuals is beneficial, as it delays outbreak peaks
and thus provides a critical response time needed for vaccine production and facility
preparation.

The adaptivity of human behavior not only lowers the incidence of a disease,
but also in some cases prevents the disease from growing into an endemic. If the
adaptive behavior of individuals is not triggered by global information, but instead
based on local information that is from some severely affected areas, we will find
that the local information of diseases cannot change the basic reproduction num-
bers of models (2.6) and (2.8) with respect to the global information of diseases.
Beyond a critical infection rate, the spread of local information can more sig-
nificantly slow down the spread of a disease and lower the final incidence than
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global information, but it also cannot completely stop it from reaching epidemic
proportions.

Moreover, we have also discussed proportional, targeted, acquaintance, and active
immunization schemes for the adaptively weighted model. By comparing the thresh-
olds for different immunization schemes, we concluded that the targeted immunization
scheme is more efficient than the proportional scheme for the same average immu-
nization rate when ϕ(k) = w; the acquaintance immunization scheme is comparable
to the targeted immunization scheme in effectiveness without congenital infection;
and the effectiveness of the active immunization scheme is also discussed. In Pastor-
Satorras and Vespignani (2002), a probability approach is used to calculate epidemic
thresholds for random, targeted, and acquaintance immunization schemes, which are
critical probability values and can be used to evaluate the fraction of immunized
individuals. Here, we use the method proposed in Fu et al. (2008) to give a direct
characterization of epidemic thresholds for more immunization schemes, including
active immunization, so the thresholds are easier to apply practically. Furthermore,
the most effective method is to decrease the infected rate while increasing the cure
rate. In order to provide a complete picture of intervention strategies, we consider
treatment of infected individuals through contact tracing and isolation, which is a key
control measure in the battle against infectious diseases. By applying this strategy, a
major outbreak can be significantly reduced or even eliminated at a small additional
cost.

Our results are based only on the assumptions that the network structure is fixed and
the weights are built on the connected nodes. Only if the disease is easily recognized
and information spreads rapidly, while at the same time there is a strong tendency
toward protective behavior, adaptive reactions of individuals to a disease can bring
the infection rate of a disease down significantly. We do not analyze a specific disease
in our model. For a specific disease, there is a great need to analyze the disease
through modeling and comparing the epidemic model with real data. We expect that
our analysis and simulations presented heremay provide some insight into the studying
of epidemic dynamics or other related diffusion processes.

It would be interesting to further consider adaptive dynamical behavior on a time-
varying network and the corresponding model with double delays. Some further
research is necessary and interesting in this field, such as the global asymptotic stabil-
ity of the disease-free and endemic equilibria for delayed systems. We hope to tackle
these questions in the future.
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