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Abstract A new stage-structured model for the population dynamics of the mos-
quito (a major vector for numerous vector-borne diseases), which takes the form of a
deterministic system of non-autonomous nonlinear differential equations, is designed
and used to study the effect of variability in temperature and rainfall on mosquito
abundance in a community. Two functional forms of eggs oviposition rate, namely
the Verhulst-Pearl logistic and Maynard-Smith-Slatkin functions, are used. Rigor-
ous analysis of the autonomous version of the model shows that, for any of the
oviposition functions considered, the trivial equilibrium of the model is locally- and
globally-asymptotically stable if a certain vectorial threshold quantity is less than
unity. Conditions for the existence and global asymptotic stability of the non-trivial
equilibrium solutions of the model are also derived. The model is shown to undergo a
Hopf bifurcation under certain conditions (and that increased density-dependent com-
petition in larval mortality reduces the likelihood of such bifurcation). The analyses
reveal that the Maynard-Smith-Slatkin oviposition function sustains more oscillations
than the Verhulst-Pearl logistic function (hence, it is more suited, from ecological
viewpoint, for modeling the egg oviposition process). The non-autonomous model
is shown to have a globally-asymptotically stable trivial periodic solution, for each
of the oviposition functions, when the associated reproduction threshold is less than
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unity. Furthermore, this model, in the absence of density-dependent mortality rate for
larvae, has a unique and globally-asymptotically stable periodic solution under cer-
tain conditions. Numerical simulations of the non-autonomous model, using mosquito
surveillance and weather data from the Peel region of Ontario, Canada, show a peak
mosquito abundance for temperature and rainfall values in the range [20−25] ◦C and
[15–35] mm, respectively. These ranges are recorded in the Peel region between July
and August (hence, this study suggests that anti-mosquito control effects should be
intensified during this period).

Keywords Mosquitoes · Climate change · Hopf bifurcation · Autonomous and
non-autonomous model · Culex

Mathematics Subject Classification 92D25 · 92D30

1 Introduction

Mosquito is the major vector for numerous vector-borne diseases, such as malaria,
dengue and West Nile virus (WNv) (Cailly et al. 2012; Chitnis 2005; Esteva and Var-
gas 2000; Juliano 2007; Lewis et al. 2006; Mordecai et al. 2012; Wan and Zhu 2010;
Wu et al. 2009). There are approximately 3500mosquito species in theworld, of which
200 species cause diseases in humans (WHO 2014). These (mosquito-borne) diseases
cause significant public health burden in endemic areas. For instance, more than 55%
(50%) of theworld’s population live in areas at risk of dengue (malaria), which is trans-
mitted by female Aedes aegypti (Anopheles) mosquitoes, with over 50 (300) million
people infected and 20,000 (800,000) deaths annually (WHO 2014). Aedes aegypti
causes numerous diseases, including Chikungunya, dengue and Zika virus (Yakob
and Walker 2016). Currently, Chikungunya has been identified in over 60 countries in
Asia, Africa, Europe and the Americas (WHO 2014) (outbreaks of Zika virus are also
currently ongoing in some parts of the Americas (Yakob andWalker 2016). Moreover,
culex mosquito, which is the primary vector for WNv in North America transmits
pathogens responsible for important zoonotic diseases (Abdelrazec et al. 2014).

Owing to the significant burden inflicted by mosquitoes on human and animal
health, mosquitoes have become the target of medical, veterinary and conservation
research since the nineteenth century (Shaman and Day 2007). Hence, understanding
the population dynamics of mosquitoes, and the relationship between mosquitoes and
the environment, is fundamental to the study of the epidemiology of mosquito-borne
diseases (Shaman andDay 2007).Mosquito abundance is a key determining factor that
affects the persistence or resurgence of mosquito-borne diseases in populations (Wang
et al. 2011) (it also affects the risk index of mosquito-borne diseases in a given region
WHO 2014). Hence, it is crucial to study the dynamics of mosquitoes, and devise
effective and realistic methods for controlling mosquito population in communities.

Climate variables, such as temperature, humidity, rainfall and wind, significantly
affect the life-cycle and, consequently, the abundance of mosquitoes in populations
(Agusto et al. 2015; Cailly et al. 2012; Mordecai et al. 2012; Shaman and Day 2007;
Wu et al. 2009). Numerous mathematical models have been designed and used to
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assess the impact of climate change and seasonality on the transmission dynamics
of mosquito-borne diseases, such as malaria (Agusto et al. 2015; Ebi et al. 2005;
Jaenisch and Patz 2002; Mordecai et al. 2012; Paaijmans et al. 2009), dengue (Chen
et al. 2010; Hales et al. 2002; Pham et al. 2011; Wu et al. 2009; Yang et al. 2011),
chikungunya (Fischer et al. 2013; Meason and Paterson 2014) and WNv (Abdelrazec
et al. 2015; Wang et al. 2011). For instance, such models allow for the determination
of parameters, or variables, that influences the life-cycle of the mosquitoes (Ahumada
et al. 2004; Cailly et al. 2012; Tran et al. 2013). The spatio-temporal dynamics of
mosquito populations (in urban areas) have been studied in Cummins et al. (2012)
and Oluwagbemi et al. (2013). Furthermore, several models have been developed to
predict the temporal dynamics of mosquito abundance, in the presence of climate
change, using either statistical (Wang et al. 2011), stochastic (Otero et al. 2006) or
deterministic formulations (Lutambi et al. 2013).However,most of the existingmodels
of mosquito population dynamics were built for a specific mosquito species, within
a specific geographic context (e.g., Anopheles gambiae in the Sahel (Yamana and
Eltahir 2013); Anopheles arabiensis in Zambia (Oluwagbemi et al. 2013) and culex in
Canada (Wang et al. 2011)) and may not be applied to other mosquito species or areas.
A model for the dynamics of general species of mosquitoes is developed in Cailly
et al. (2012).

The purpose of the current study is to qualitatively assess the impact of temperature
and rainfall on the population dynamics of female mosquitoes in a certain region. To
achieve this objective, a new compartmental mathematical model, which incorporates
variability in temperature and rainfall, will be designed and used to study the dynamics
of the aquatic and adult stages of female mosquitoes in the given region (the resulting
model, which takes the form of a non-autonomous deterministic system of nonlinear
differential equations, can be applied to several mosquito species and different areas).
Mosquito surveillance and weather data from the Peel region of Ontario, Canada
will be used to parametrize the model. The model is formulated in Sect. 2, and its
autonomous equivalent is rigorously analysed in Sect. 3. The full non-autonomous
model is analysed in Sect. 4. Numerical simulations are reported in Sect. 5.

2 Model formulation

The completemetamorphosis of themosquito entails going through four distinct stages
of development, namely egg, larva, pupa, and adult mosquito stages (Chitnis et al.
2008). Mosquito-borne diseases are spread to humans following an effective bite from
an infected female mosquito (in quest of blood meal, needed for egg development)
(Hilker and Westerhoff 2007). Hatching of eggs (into larvae) may occur either within
a few days or may be delayed for several months, depending on the species and the
period of the year when the eggs are laid (Clements 1999). Larvae molt four times as
they grow. After the fourth molt, they become pupae, from which adult mosquitoes
emerge on the surface of the water (Hilker and Westerhoff 2007).

Themodel to be designed,which splits the total (immature and adult)mosquito pop-
ulation at time t into mutually exclusive compartments of eggs (E(t)), larvae (L(t)),
pupae (P(t)) and female adult mosquitoes (M(t)), is given by the following deter-
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Table 1 Description of variables and parameters of the model (2.1)

Variables Description

E(t) Total number of eggs at time t

L(t) Total number of larvae at time t

P(t) Total number of pupae at time t

M(t) Total number of adult female mosquitoes at time t

Parameters

b(T, R) Eggs oviposition rate

μE (T, R) Natural mortality rate of eggs

μL (T, R) Natural mortality rate of larvae

μE (T, R) Natural mortality rate of pupae

μM (T ) Natural mortality rate of adult female mosquitoes

δL Density-dependent mortality rate of larvae

K Environment carrying capacity of female adult mosquitoes

FE (T, R) Hatching rate of eggs

FL (T, R) Developmrnt rate of larvae into pupae

FP (T, R) Development rate of pupae into adult mosquitoes

σ Proportion of new adult mosquitoes that are females

ministic, non-autonomous system of nonlinear differential equations (the parameters
of the model are defined in Table 1):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dE

dt
= MB(M) − [FE (T, R) + μE (T, R)] E,

dL

dt
= FE (T, R)E − [FL(T, R) + μL(T, R) + δL L] L ,

dP

dt
= FL(T, R)L − [FP (T, R) + μP (T, R)] P,

dM

dt
= σ FP (T, R)P − μM (T )M,

(2.1)

where T = T (t) and R = R(t) represent temperature and rainfall, respectively. It is
assumed that T and R are non-negative, continuous and bounded periodic functions.
Furthermore, the parameters FE (T, R), FL(T, R), FP (T, R), μE (T, R), μL (T, R),

μP (T, R) and μM (T ) are non-negative, bounded, periodic and continuous functions
defined on [0,∞). The term δL L ,which captures the density-dependent mortality rate
of larvae, is non-negative. It is also assumed that ambience and water temperature are
approximately equal (near the surface of the water) (Kothandaraman 1972). In (2.1),
B(M) is the general form of the eggs oviposition function. It is assumed that B(M) is
a strictly non-negative and continuously-differentiable function (Cooke et al. 1999),
with

B(M) : [0,∞) → [0,∞).
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The following two functional forms of B(M) are considered in this study (Ngwa et al.
2010):

BL : B(M) = b(T, R)

(

1 − M

K

)

, M ∈ [0, K );

BS : B(M) = b(T, R)

1 + (M
K

)n , n > 0,
(2.2)

where b(T, R) is the rate atwhich eggs are laid by adult femalemosquitoes per oviposi-
tion (which is assumed to be non-negative, bounded, periodic and continuous functions
defined on [0,∞)] and K > 0 is the environmental carrying capacity of female adult
mosquitoes (which is related to the availability of host to take blood meals from). The
forms MBL and MBS are the Verhulst-Pearl logistic (Abdelrazec et al. 2014; Ngwa
2005) and Maynard-Smith-Slatkin (Brannstrom and Sumpter 2005) oviposition func-
tions, respectively. It should bementioned that, in the form BL , the non-negativity con-
dition on B(M) will only hold if M < K (hence, K is assumed to be greater than M).

One of the main objectives of this study is to use the model (2.1) to provide realistic
estimate of mosquito abundance, subject to variability in temperature and rainfall.
In order to achieve this objective, realistic functional forms of the temperature- and
rainfall-dependent parameters of the model will be derived. The model (2.1) is an
extension of the autonomousmosquito population biologymodel inNgwa et al. (2010),
by adding: (i) the effect of temperature and rainfall, (ii) the aquatic stages of the
mosquito and (iii) density-dependent larval mortality rate. It also extends the non-
autonomous mosquito dynamics model in Cailly et al. (2012) by giving a novel and
realistic formulation of the temperature- and rainfall-dependent parameters of the
model, as described below.

2.1 Temperature-and rainfall-dependent parameters

The main climate drivers that affect the dynamics of mosquitoes are temperature
and rainfall (see, for instance, Mordecai et al. 2012). It is, first of all, assumed (for
mathematical convenience) that temperature and rainfall act independently. The effect
of temperature depends upon the stage of development of the mosquito. Statistical
study by Hilker and Westerhoff (2007) showed that hatching of the culex mosquito
eggs varies during the year; being low in the winter (whenever the temperature is
less than 10 ◦C) and high in the summer (whenever the temperature is in the range
(22−30) ◦C). Rainfall can induce positive (where rainfall increases the availability of
breeding sites for female culex mosquitoes to lay their eggs) or negative (excessive
rainfall increases the mortality of immature mosquitoes) effect on culex dynamics
(Turell and Dohm 2005).

The parameter b(T, R), for the rate of eggs laid per oviposition, is defined as

b(T, R) = αbub(T )vb(R), (2.3)
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where ub(T ) and vb(R) account for the effect of temperature and rainfall on the daily
survival probability of eggs laid. The parameter αb represents the maximum rate of
eggs laid per oviposition. Similarly, the transition rates Fj (T, R) are defined as

Fj (T, R) = α j g j (T )h j (R); j = {E, L , P}, (2.4)

where g j (T ) and h j (R) account for the effect of temperature and rainfall, respectively,
on the transition rates Fj (T, R). Furthermore, α j represents the maximum rate of
transition between the aquatic stages. The mortality rate for the three aquatic stages
of the mosquito are defined as

μ j (T, R) = p j (T )q j (R); j = {E, L , P, },

where p j (T ) and q j (R) account for the effect of temperature and rainfall, respectively,
on the mortality rate for each aquatic stage. The temperature-dependent functions
ub(T ), μM (T ), g j (T ) and p j (T ) are defined, respectively, as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ub(T ) = e−ab(T−Tb)2 ,

μM (T ) = cM (T − T ∗
M )2 + dM ,

g j (T ) = e−a j (T−Tj )
2
,

p j (T ) = c j (T − T ∗
j )

2 + d j ,

(2.5)

where the parameters ab, cM , a j and c j specify the amplitude of the functions
ub(T ), μM (T ), g j (T ) and p j (T ), respectively (these parameters can be determined
usingmosquito surveillance andweather data).Moreover, dM and d j ( j = {E, L , P})
are theminimumvalues of the functionsμM (T ) and p j (T ), respectively. Furthermore,
Tb and Tj (T ∗

M and T ∗
j ) are the temperature values that correspond to the maximum

(minimum) value of ub(T ) and g j (T ), respectively (μM (T ) and p j (T ), respectively).
To capture the effects of rainfall as described above, the following functional forms

for vb(R), h j (R) and q j (R) are derived:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

vb(R) = (1 + sb)e−rb(R−Rb)
2

e−rb(R−Rb)
2 + sb

,

h j (R) = (1 + s j )e−r j (R−R j )
2

e−r j (R−R j )
2 + s j

,

q j (R) = 1 + e j R

1 + R
,

(2.6)

where cb, sb r j , s j and e j are parameters that specify the amplitude of the functions
vb(R), h j (R) and q j (R), respectively. Furthermore, R j is the rainfall value that cor-
responds to the maximum value of h j (R). The parameters described in this section
are tabulated in Table 2. Furthermore, the functions given by Eqs. (2.5) and (2.6) are
depicted in Fig. 1.
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Table 2 Description of the temperature- and rainfall-dependent functions and parameters given in Eqs.
(2.5) and (2.6)

Functions Description

ub(T ) (vb(R)) Effect of temperature (rainfall) on the rate of eggs laid per
oviposition

gE (T ) (hE (R)) Effect of temperature (rainfall) on the transition rate FE
gL (T ) (hL (R)) Effect of temperature (rainfall) on the transition rate FL
gP (T ) (hP (R)) Effect of temperature (rainfall) on the transition rate FP
pE (T ) (qE (R)) Effect of temperature (rainfall) on mortality rate of eggs

pL (T ) (qL (R)) Effect of temperature (rainfall) on mortality rate of larvae

pP (T ) (qP (R)) Effect of temperature (rainfall) on mortality rate of pupae

Parameters

αb Maximum rate of eggs laid per oviposition

αE Maximum value of the rate of hatching of eggs into larvae

αF Maximum value of the rate at which larvae mature into pupae

αP Maximum value of the rate at which pupae mature into adult
mosquitoes

ab, aE , aL , aP The amplitude of the functions ub, gE , gL and gP , respectively

cE , cL , cP , cM The amplitude of the functions pE , pL , pP and μM , respectively

dE , dL , dP , dM The minimum value of the functions pE , pL , pP and μM ,

respectively

Tb, TE , TL , TP Temperature such that the functions ub, gE , gL and gP are
maximum, respectively

T ∗
E , T ∗

L , T ∗
P , T ∗

M Temperature such that the functions pE , pL , pP and μM are
minimum, respectively

rb, rE , rL , rP The amplitude of the functions vb, hE , hL and hP , respectively

eE , eL , eP The amplitude of the functions qE , qL and qP , respectively

Rb, RE , RL , RP Rainfall value such that the functions vb, hE , hL and hP are
maximum, respectively

2.2 Basic properties

It is convenient to define, for each parameter Q(t), the quantities:

Q∗ = sup
t≥0

Q(t), Q∗ = inf
t≥0

h(t), Q = 1

w

∫ w

0
Q(t)dt. (2.7)

Lemma 2.1 Consider the non-autonomous linear initial-value problem (IVP)

dz

dt
= a(t) − b(t)z; z(0) = z0, a(t) > 0, b(t) > 0, ∀ t ≥ 0. (2.8)

Then,

(1) All solutions z(t) with initial conditions z0 ≥ 0 are non-negative for all t ≥ 0.
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Fig. 1 Plot of some temperature- and rainfall-dependent functions of the model (2.1)

(2) Each fixed solution z(t) (with z0 ≥ 0 and a(t), b(t) bounded and continuous
functions) is bounded.

(3) There exist m1,m2 such that m1 < limt 	−→∞ inf z(t) < limt 	−→∞ sup z(t) < m2.

(4) There exists d ≥ 0 such that if z(t) is a solution of (2.8) and Z(t) is a solution of
dZ

dt
= a(t) − b(t)Z + f (t) with f bounded and Z(0) = z0, then

sup |Z(t) − z(t)| ≤ d sup | f (t)|.

The proof of Lemma 2.1 is given in Appendix A. Lemma 2.1 will be used to prove
the boundedness of the model (2.1).

The basic properties of the non-autonomous model (2.1) will now be studied. Since
the system (2.1) monitors populations in each stage of mosquito development (and
recalling that all parameters of the model (Table 1) are positive), the analysis of the
model will be carried out in the following invariant region

γ =
{
(E, L , P, M) ∈ R4 : E(t), L(t), P(t), M(t) ≥ 0

}
,

where the model is mathematically and ecologically well-posed. That is, all solutions
of the system (2.1) with non-negative initial data will remain non-negative in the
feasible region γ for all time t ≥ 0. It is convenient to define N (t) = E(t) + L(t) +
P(t) + M(t). It follows, by adding the right-hand sides of the equations in (2.1), that
(in γ )
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dN (t)

dt
≤ MB(M) − μmN (t),

where μm = min(μM , μE , μL , μP ). Thus, dN
dt ≤ Kb(t) − μmN (t) for each of the

functional forms B(M) = BL or BS . The result below can be proved (using, for
instance, a comparison theorem (Smith and Waltman 1995) and Lemma 2.1; and is
not given here).

Theorem 2.2 The system (2.1), with B(M) = BL or BS, has a unique and bounded
solution with initial values in the region γ. Furthernore, the compact set

� =
{

(E, L , P, M) ∈ γ : N (t) ≤
[(∫ t

0
Kb(s)eμmsds

)

+ N0

]

e−μmt = m

}

,

is positively-invariant and attracts all positive orbits in γ .

Before analysing the qualitative dynamics of the non-autonomous model (2.1), it
is instructive to analyse its autonomous equivalent (where all parameters of the model
(2.1) are independent of temperature and rainfall), with the aim of determiningwhether
or not the non-autonomous model and the autonomous equivalent have differing qual-
itative dynamics (with respect to the existence and asymptotic stability of associated
steady-state solutions).

3 Analysis of autonomous model

Consider the autonomous version of the model (2.1), obtained by setting b(T, R) = b,
μE (T, R) = μE , FE (T, R) = FE , μL(T, R) = μL , FL(T, R) = FL , μP (T, R) =
μP , FP (T, R) = FP and μM (T ) = μM , given by (denoted as the “autonomous
model”) ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dE

dt
= MB(M) − (FE + μE ) E,

dL

dt
= FE E − (FL + μL + δL L) L ,

dP

dt
= FL L − (FP + μP ) P,

dM

dt
= σ FP P − μMM.

(3.1)

Since the state variables of the autonomous model (3.1) are non-negative for all time
t (and all its parameters are positive), the model (3.1) can be studied in the invariant
region:

D =
{
(E, L , P, M) ∈ R4 : E, L , P, M ≥ 0

}
,

where the model is mathematically and ecologically well-posed.
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3.1 Existence and stability of equilibria

3.1.1 Trivial equilibrium point

The model (3.1) has a mosquito-free equilibrium (trivial equilibrium), denoted by

P0 = (E∗, L∗, P∗, M∗) = (0, 0, 0, 0).

It is convenient to define

R0 = bσ FE FL FP

μ1μ2μ3μM
, (3.2)

where μ1 = μE + FE , μ2 = μL + FL and μ3 = μP + FP . The threshold quantity,
R0, is the vectorial reproduction number. It measures the average expected number of
new adult female offsprings produced by a single female mosquito during its life time.
It can be ecologically interpreted as the product of the fraction of eggs that survived

and hatched into larvae
(
bFE
μ1

)
, the fraction of larvae that survived and progressed into

pupae
(
FL
μ2

)
, the fraction of pupae that survived to become adult female mosquitoes

(
σ FP
μ3

)
and the average lifespan of female adult mosquitoes

(
1

μM

)
.

Theorem 3.1 Consider the model (3.1), subject to the two forms of B(M) given in
(2.2). Themosquito-free equilibrium, P0, is locally-asymptotically stable (LAS), when-
ever R0 < 1, and unstable if R0 > 1.

Proof Evaluating the Jacobian of the system (3.1) at P0 gives, for each of the two
forms of B(M),

J (P0) =

⎛

⎜
⎜
⎝

−μ1 0 0 b
FE −μ2 0 0
0 FL −μ3 0
0 0 FPσ −μM

⎞

⎟
⎟
⎠ ,

with eigenvalues satisfying the following characteristic Equation:

λ4 + a3λ
3 + a2λ

2 + a1λ + a0 = 0, (3.3)

where, ⎧
⎪⎪⎨

⎪⎪⎩

a3 = μ1 + μ2 + μ3 + μM ,

a2 = μ1μ2 + μ1μ3 + μ1μM + μ2μ3 + μ2μM + μ3μM ,

a1 = μ1μ2μ3 + μ1μ2μM + μ1μ3μM + μ2μ3μM ,

a0 = μ1μ2μ3μM (1 − R0).

(3.4)
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The local stability of P0 is investigated by applying the Routh-Hurwitz criterion on
(3.3). The relevant Routh-Hurwitz determinants (for a quartic) are:

⎧
⎪⎪⎨

⎪⎪⎩

�1 = a3 > 0,
�2 = a3a2 − a1 > 0,
�3 = a1�2 − a23a0 > 0,
�4 = a0�3 > 0.

(3.5)

Let,

α = (μ1 + μ2)(μ1 + μ3)(μ2 + μ3)(μM + μ1)(μM + μ2)(μM + μ3) > 0,

and,

β = μ1μ2μ3μM > 0.

Since all the parameters of the model (3.1) are positive, it follows that �1 > 0.
Furthermore, it can be seen that �2 > 0. Hence, a1�2 = α + a23β > 0. To show that
�3 > 0, it is convenient to re-write a0 (in (3.4)) and �3 > 0 (in (3.5)) as

a0 = β (1 − R0) and �3 = α + a23βR0 > 0,

respectively. The following conclusions can be drawn:

• If R0 < 1, then a0 > 0. Moreover, �3 > 0. Hence, all roots of the characteristic
Eq. (3.3) are negative. Thus, P0 is LAS.

• If R0 > 1, then a0 < 0. Hence, there exists at least one positive root for the
characteristic Eq. (3.3). Thus, P0 is unstable. ��

The ecological implication of Theorem 3.1 is that if the initial sub-populations
of the model (3.1) are in the basin of attraction of the trivial equilibrium P0, then
the mosquito population can be effectively controlled if R0 < 1. To ensure that the
effective control of the mosquito population is independent of the initial size of the
mosquito populations, a global asymptotic stability result must be established for the
trivial equilibrium. This is done below.

Theorem 3.2 Consider the system (3.1), subject to the two forms of B(M) in (2.2).
The trivial equilibrium, P0, is globally-asymptotically stable (GAS) in D whenever
R0 < 1.

Proof Consider the Lyapunov function

V = σ FL FP [FE E(t) + μ1L(t)] + μ1μ2[σ FP P(t) + μ3M(t)],
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with Lyapunov derivative,

dV

dt
= σ FL FP

(

FE
dE

dt
+ μ1

dL

dt

)

+ μ1μ2

(

σ FP
dP

dt
+ μ3

dM

dt

)

,

= σ FL FP [FE (MB(M) − μ1E) + μ1(FE E − μ2L − δL L
2)]

+μ1μ2[σ FP (FL L − μ3P) + μ3(σ FP P − μMM)],
= σ FL FP [FEMB(M) − μ1μ2L − μ1δL L

2] + μ1μ2[σ FP FL L − μ3μMM],
= −

(
M[μMμ1μ2μ3 − σ FL FE FP B(M)] + σμ1δL FL FP L

2
)

,

≤ −M[μMμ1μ2μ3 − σ FL FE FP B(M)],

which, using (3.2), can be re-written as

dV

dt
≤ −μMμ1μ2μ3M(t)

[

1 − R0

b
B(M)

]

.

Since maxM B(M) ≤ b for each of the cases of B(M) given in (2.2), it follows,
for R0 < 1, that the quantity R0

b B(M) < 1 (for all M(t) ∈ D ). Hence, dV
dt ≤ 0.

The Lyapunov-LaSalle theorem (Kolmanovskii and Shaikhet 2002) implies that the
solutions approach (asymptomatically) M = 0, the largest compact invariant subset
of the set dV

dt = 0. Furthermore, all solutions on the plane M = 0 approach the
equilibrium, P0, asymptotically. Thus, for the two forms of B(M) given in (2.2), the
trivial equilibrium, P0, is GAS in D whenever R0 < 1. ��

The above result shows that, for the autonomous model (3.1), a vector control
strategy that brings (andmaintains) the threshold quantity,R0, to a value less than unity
will lead to the effective control (or elimination) of mosquitoes from the community.
In other words, the requirement R0 < 1 is necessary and sufficient for the effective
control (or elimination) of mosquitoes in the community.

3.1.2 Non-trivial equilibrium point

The system (3.1) has a non-trivial equilibrium, denoted by P1 = (E∗, L∗, P∗, M∗),
where ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E∗ = μ2 + δL L∗

FE
L∗,

P∗ = FL

μ3
L∗,

M∗ = FL FPσ

μ3μM
L∗,

(3.6)

with L∗ satisfying the equation

FE FL FPσ

μ3μM
B
(
M∗)− μ1(μ2 + δL L

∗) = 0. (3.7)
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Consider, using (2.2), (3.6) and (3.7), the following cases for the existence of the
non-trivial equilibrium of the autonomous model (3.1).

• Case 1: B(M) = BL . Here, L∗ can be determined by re-writing (3.7) as

L∗ = 1

Q

(

1 − 1

R0

)

, with Q = μ1μ3μMδL

FE FL FPσ
+ FL FPσ

μ3μMK
, (3.8)

from which it follows that P1 exists only if R0 > 1.
• Case 2: B(M) = BS . In this case, L∗ can be obtained by finding the roots of

(n + 1)-degree polynomial

νδL
(
L∗)(n+1) + νμ2

(
L∗)n + δL L

∗ + μ2 (1 − R0) = 0, (3.9)

where ν =
(

FL FPσ
μ3μMK

)n
. It follows, using Descartes’ Rule of Signs, that the poly-

nomial (3.9) has a unique positive non-trivial root (P1) whenever R0 > 1, and
no positive root whenever R0 ≤ 1. It should be noted that, for the special case
where δL = 0, the quantity L∗ can easily be computed from (3.9) (and is given
by L∗ = μ3μMK

FL FPσ
(R0 − 1)−n).

It is convenient to define δ∗
L = FE F2

L F
2
P

Kμ1μ
2
3μ

2
M

and δ∗∗
L = νμ2

1−ν
(and recall that a =

δL
ν(δL+μ2)

).

Theorem 3.3 Consider the autonomous system (3.1).

1. If B(M) = BL , then P1 exists only if R0 > 1. Furthermore,
(a) if δL ≥ δ∗

L , then P1 is LAS whenever R0 > 1,

(b) if δL < δ∗
L and 1 < R0 < 2 + 1−C

2C−1 + χ, with χ = α(1+2δ2L )

a23β(1+δL )
> 0 and

1
2 ≤ C = FE F2

L F
2
P

Kμ1μ
2
3μ

2
M δL+FE F2

L F
2
P

< 1, then P1 is LAS and unstable otherwise.

2. If B(M) = BS, then P1 exists only if R0 > 1, and if n = 1, then P1 is LAS
whenever R0 > 1. Furthermore,
(a) if δL ≥ δ∗∗

L , with n > 1 then P1 is LAS for all R0 > 1,
(b) if δL < δ∗∗

L , then P1 is LAS if and only if

1 < R0 < 1 + βa23 (1 + a)

(1 + a) βa23 [n (1 − a) − 1] − α
, with

n > 1 + a

1 − a
+ α

βa23
(
1 − a2

) ,

and unstable otherwise.
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Proof Consider themodel (3.1) with the two forms of B(M) given in (2.2). Evaluating
the Jacobian of the system (3.1) at P1 gives

J (P1) =

⎛

⎜
⎜
⎝

−μ1 0 0 B(M∗) + M∗ dB(M∗)
dM

FE −μ2 − 2δL L∗ 0 0
0 FL −μ3 0
0 0 σ FP −μM

⎞

⎟
⎟
⎠ ,

where M∗ is obtained from (3.6), and L∗ is obtained from (3.7). The eigenvalues of
J (P1) satisfy the polynomial

λ4 + A3λ
3 + A2λ

2 + A1λ + A0 = 0, (3.10)

with,
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

A3 = μ1 + (μ2 + 2δL L∗) + μ3 + μM ,

A2 = μ1 (μ2 + 2δL L∗) + μ1μ3 + μ1μM + (μ2 + 2δL L∗) μ3
+ (μ2 + 2δL L∗) μM + μ3μM ,

A1 = μ1 (μ2 + 2δL L∗) μ3 + μ1 (μ2 + 2δL L∗) μM + μ1μ3μM

+ (μ2 + 2δL L∗) μ3μM ,

A0 = μ1 (μ2 + 2δL L∗) μ3μM − FE FL FPσ
[
B(M∗) + M∗ dB(M∗)

dM

]
.

(3.11)

Here, too, the local stability of P1 can be established using theRouth-Hurwitz criterion.
Let,

α∗ = (μ1 + μ2 + 2δL L
∗)(μ1 + μ3)(μ2 + 2δL L

∗ + μ3)(μM + μ1)(μM + μ2 + 2δL L
∗)(μM + μ3),

and,

β∗ = μ1
(
μ2 + 2δL L

∗)μ3μM .

Since all parameters of the model (3.1) are positive, it follows that α∗ > 0, β∗ > 0,
�1 > 0 and�2 > 0 wheneverR0 > 1. Furthermore, using (3.5),�3 can be re-written
as

�3 = α∗ + A2
3β

R0

b

[

B(M∗) + M∗ dB(M∗)
dM

]

. (3.12)

It is convenient to use the following notation:�L
3 = �3 for B(M) = BL and�S

3 = �3
for B(M) = BS . Consider the following two cases:
1. If B(M) = BL , then

A0 = μ1μ2μ3μM − σbFE FL FP

[

1 − 2M∗
K

]

+ 2δL L
∗μ1μ3μM

= β

(
σ FL FP

μ3μMKQ

)

(R0 − 1) + 2δL L
∗μ1μ3μM .

Since P1 exists only when R0 > 1, then A0 > 0. Furthermore,

�L
3 = α − a23β [(2C − 1)R0 − 2C] , (3.13)
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where C = FE F2
L F

2
P

Kμ1μ
2
3μ

2
M δL+FE F2

L F
2
P

< 1. Hence, we have two cases:

(a) If δL ≥ δ∗
L , then 2C − 1 ≤ 0 (noting that δ∗

L = FE F2
L F

2
P

Kμ1μ
2
3μ

2
M
). In this case,

�L
3 > 0. Thus, P1 is LAS for all R0 > 1.

(b) If δL < δ∗
L , then 2C − 1 > 0. In this case, �L

3 > 0 if and only if

1 < R0 < 2 + 1 − C

2C − 1
+ χ, (3.14)

where χ = α(1+2δ2L )

a23β(1+δL )
> 0.

It should be noted that for the special case of the model with δL = 0, the quantity
C reduces to C = 1. Hence, in this case, �L

3 = α − a23β (R0 − 2) . Thus, for the
special case of the autonomous model with δL = 0, the non-trivial equilibrium P1
is LAS whenever 1 < R0 < 2 + α

a23β
, and unstable if R0 > 2 + α

a23β
.

2. If B(M) = BS, then

A0 = β

⎛

⎜
⎝1 − R0

⎡

⎢
⎣

1 + (1 − n)
(
M∗
K

)n

(
1 +

(
M∗
K

)n)2

⎤

⎥
⎦

⎞

⎟
⎠+ 2δL L

∗μ1μ3μM ,

= β

[

1 + 2δL
μ2

L∗ − 1

R0

(

1 + δL

μ2
L∗
)(

(1 − n)R0 + n

(

1 + δL

μ2
L∗
))]

,

= βn

[

1 + n + 1

n
R0

δL

μ2
L∗ − 1

R0

(

1 + δL

μ2
L∗
)2
]

,

= βn

[

1 − 1

R0
+ δL

μ2
L∗
(
n − 1

n
R0 + δL (L∗)n + ν(L∗)(n+1)

)]

.

Since P1 exists only when R0 > 1 (and n > 1), then A0 > 0. Furthermore,

�S
3 = α∗ + A23βR0

⎛

⎜
⎝

(1 − n)
(
M∗
K

)n + 1
[(

M∗
K

)n + 1
]2

⎞

⎟
⎠ ,

= α − a23βn

(

1 + δL

ν(δL + μ2)

)(
n − 1

n
− δL

ν(δL + μ2)
− 1

R0

[

1 − δL

ν(δL + μ2)

])

.

Since P1 exists only when R0 > 1, it can be shown, in this case, that if n = 1 then
�S

3 > 0 for all R0 > 1. In this case, P1 is LAS whenever R0 > 1. For all n > 1,
we have the following two cases:

(a) If δL ≥ δ∗∗
L , with δ∗∗

L = νμ2
1−ν

and ν =
(

σ FL FP
μ3μMK

)n
< 1, then �L

3 > 0. Thus,

P1 is LAS whenever R0 > 1.
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(b) If δL < δ∗∗
L , then �L

3 > 0 if and only if

1 < R0 < 1 + βa23 (1 + a)

(1 + a) βa23 [n (1 − a) − 1] − α
;

n > 1 + a

1 − a
+ α

βa23
(
1 − a2

) , (3.15)

and unstable otherwise, where a = δL
ν(δL+μ2)

.

For the special case of the model with δL = 0, then a = 0. Hence, in this case, it
follows that

�S
3 = α − a23βn

(
n − 1

n
− 1

R0

)

.

Thus, �S
3 > 0 if and only if

R0 < 1 + α + a23β

(n − 1)a23β − α
with n > 1 + α

a23β
.

��
The global asymptotic property of the non-trivial equilibrium (P1) will now be

explored. Consider the following region (for t ≥ 0):

D∗ = {
(E, L , P, M) ∈ D : 0 < E(t) ≤ E∗, 0 < L(t) ≤ L∗, 0 < P(t) ≤ P∗, 0 < M(t) ≤ M∗} .

Since D∗ ⊂ D, it follows that D∗ is positively-invariant with respect to the model
(3.1).

Theorem 3.4 Consider the autonomous model (3.1).

(a) If B(M) = BL and 1 < R0 ≤ 2, then the non-trivial equilibrium, P1, is GAS in
D∗.

(b) If B(M) = BS and 1 < R0 ≤ 1 + 1
n−1 (for all n > 1), then P1 is GAS in D∗.

Proof Consider the model (3.1) for the case R0 > 1. Furthermore, consider the
following Lyapunov function

V1 = 1

2
(S − S∗)2,

where,

S = σ FL FP

μ1μ2μ3
[FE E(t) + μ1L(t)] + 1

μ3
[σ FP P(t) + μ3M(t)],

and,

S∗ =
(

μM

μ1
+ μM

μ2
+ μM

μ3
+ 1

)

M∗.
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Thus,

dS

dt
= σ FL FP

μ1μ2μ3

(

FE
dE

dt
+ μ1

dL

dt

)

+ 1

μ3

(

σ FP
dP

dt
+ μ3

dM

dt

)

,

= σ FL FP

μ1μ2μ3
[FEMB(M) − μ1μ2L − μ1δL L

2] + 1

μ3
[σ FP FL L(t) − μ3μMM],

≤ μMM(t)

[
σ FE FL FP

μ1μ2μ3μM
B(M) − 1

]

.

The Lyapunov derivative is

dV1
dt

= (S − S∗)dS
dt

. (3.16)

Consider, next, the following two cases.

(a) B(M) = BL . In this case, dS
dt can be re-written as

dS

dt
≤ μMM(t)

[

R0

(

1 − M

K

)

− 1

]

= μMM(t)R0

(

1 − 1

R0
− M

K

)

,

so that,

dS

dt
≤ μMM(t)R0

K
[M∗ − M(t)]. (3.17)

Similarly, (S − S∗) can be re-written as

S − S∗ = μM

μ1

[
σ FE FL FP

μ2μ3μM
E(t) − M∗

]

+ μM

μ2

[
σ FL FP

μ3μM
L(t) − M∗

]

+μM

μ3

[
σ FP

μM
P(t) − M∗

]

+ M(t) − M∗.

Since E ≤ b
μ1

M(1 − M
K ), L ≤ FE

μ2
E ≤ bFE

μ1μ2
M(1 − M

K ) and P ≤ FL
μ3

L ≤
bFE FL
μ1μ2μ3

M(1 − M
K ) in D∗, it follows that

S − S∗ ≤
(

μM

μ1
+ μM

μ2
+ μM

μ3

)[

R0M(t)(1 − M(t)

K
) − M∗

]

+ M(t) − M∗,

≤
(

μM

μ1
+ μM

μ2
+ μM

μ3

)[

R0M(t)(1 − M(t)

K
) − M(t) + (M(t) − M∗)

]

+M(t) − M∗,

≤ [
M∗ − M(t)

]
[(

μM

μ1
+ μM

μ2
+ μM

μ3

)

R0
M∗

K
−
(

μM

μ1
+ μM

μ2
+ μM

μ3
+ 1

)]

.

Hence,

S − S∗ ≤ μM [M∗ − M(t)] (R0 − 2) . (3.18)
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Thus, using (3.17) and (3.18), it follows from (3.16) that the Lyapunov derivative
dV1
dt can be re-written as

dV1
dt

≤ −Kμ2
MM(t)R0

[
M∗

K
− M(t)

K

]2

(2 − R0) .

Hence, dV1
dt < 0 if and only if 1 < R0 ≤ 2. The proof is concluded as in the proof

of Theorem 3.2.

(b) B(M) = BS . For this case, dS
dt and (S − S∗) can be, respectively, re-written as

dS

dt
≤ μMM(t)

[
R0

1 + (M
K

)n − 1

]

= μMM(t)

1 + (M
K

)n

[(
M∗

K

)n

−
(
M(t)

K

)n]

,

(3.19)

and,

S − S∗ = μM

μ1

[
σ FE FL FP

μ2μ3μM
E(t) − M∗

]

+ μM

μ2

[
σ FL FP

μ3μM
L(t) − M∗

]

+ μM

μ3

[
σ FP

μM
P(t) − M∗

]

+ M(t) − M∗,

≤
(

μM

μ1
+ μM

μ2
+ μM

μ3

)[
R0M(t)

1 + (M
K

)n − M∗
]

+ M(t) − M∗,

≤
(

μM

μ1
+ μM

μ2
+ μM

μ3

)[
R0M(t)

1 + (M
K

)n − M(t)+M(t) − M∗
]

+ M(t) − M∗,

≤ K

[
M∗
K − M(t)

K

]

1 + (M
K

)n

[(
μM

μ1
+ μM

μ2
+ μM

μ3

)

(n − 1)R0
M∗

K

−n

(
μM

μ1
+ μM

μ2
+ μM

μ3
+ 1

)]

.

Thus,

S − S∗ ≤ KμM

[
M∗
K − M(t)

K

]

1 + (M
K

)n [(n − 1)R0 − n] . (3.20)

Hence, using (3.19) and (3.20), it follows from (3.16) that the Lyapunov derivative
dV1
dt can be written as

dV1
dt

≤ −(n − 1)2Kμ2
MM(t)R0

(
M∗
K − M(t)

K

)2

[
1 + (M

K

)n
]2

(
n

n − 1
− R0

)

,
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Fig. 2 Simulations of the autonomous model (3.1), showing the time series of the state variables of the
model for two forms of B(M). Parameter values used are: μM = 0.05;μE = 0.36;μL = 0.34;μP =
0.17; FL = 0.14; FE = 0.4; FP = 0.3 and K = 106. a B(M) = BL , with b = 10.7 (so that, R0 = 7.01)
and in case δL = 0.01 > δ∗

L = 0.000157. b B(M) = BS , with b = 10.7 and n = 10 (so that, R0 = 7.01)
and δL = 0.01 > δ∗∗

L = 0.000012

so that, dV1dt < 0 if and only if 1 < R0 ≤ 1+ 1
n−1 (with n > 1). Thus, for B(M) = BS,

the non-trivial equilibrium, P1, is GAS inD∗ whenever 1 < R0 ≤ 1+ 1
n−1 (for n > 1).

��

The ecological implication of Theorem 3.3 is that, for each of the two eggs laying
functions (BL and BS), mosquitoes will persist in the community whenever the asso-
ciated conditions for the global asymptotic stability of P1 (given in Theorem 3.3) are
satisfied. The results of Theorem 3.3 are illustrated numerically, by simulating the
autonomous model (3.1) using appropriate parameter values, for both the Verhulst-
Pearl logistic (Fig. 2a) and the Maynard-Smith–Slatkin oviposition function (Fig. 2b).
These simulation results show convergence of the solutions to P1 for each of the
oviposition functions BL or BS (in line with Theorem 3.3).

3.2 Hopf bifurcation analysis

Hopf bifurcation can occur, when the Jacobian of the system, evaluated at P1, has a
pair of pure imaginary eigenvalues. The possability of Hopf bifurcation from the non-
trivial equilibrium P1 is investgated for the case of the model (3.1) with B(M) = BL

and BS .Generally, it has been shown that oscillations about the non-trivial equilibrium
(P1) can occur when the sign of �3 changes (it should be noted, from Routh Hurwitz
criteria, that if �3 = 0, then the polynomial (3.10) has complex conjugate roots). To
prove the existence of Hopf bifurcation, it suffices to verify the transversality condition
(Chow et al. 1994). This is done below.

Theorem 3.5 Consider the autonomous system (3.1), with B(M) = BL or BS . A
Hopf bifurcation occurs
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(i) for B(M) = BL , if δL < δ∗
L and

b = b∗ = 2Cβa23 + α

FE FL FPσa23(2C − 1)
. (3.21)

(ii) for B(M) = BS, if δL < δ∗∗
L and

b = b∗∗ = na23β
2
(
1 − a2

)

σ FE FL FP
[
(n − 1)a23β(1 − a2) − α

] , (3.22)

with n > 1 + a
1−a + α

βa23(1−a2)
,

Proof Part (i): Consider the model (3.1) with B(M) = BL . Using (3.2), the term �L
3

[in Eq. (3.13)] can be re-written as

�L
3 = α − a23 [bσ FE FL FP (2C − 1) − 2βC] .

Let b = b∗ be a bifurcation parameter (and all other parameters of the model (3.1)
are fixed). Hence, �L

3 (b) = 0 if and only if b = b∗. Furthermore, if δL < δ∗
L then

2C − 1 > 0. Thus,

d�L
3 (b)

db

∣
∣
∣
b=b∗ = −a23σ FE FL FP (2C − 1) < 0.

Similarly, let μM be a bifurcation parameter (and all other parameters of the model
(3.1) are fixed). Then,

d�L
3 (μM )

dμM

∣
∣
∣
μM=μ∗

M

= dα(μM )

dμM

∣
∣
∣
μM=μ∗

M

+ 2C

a3(μ∗
M )

[(μ1μ2μ3)a
3
3(μ

∗
M ) − α(μ∗

M )],

for all �L
3 (μ∗

M ) = 0. It can be verified that
d�L

3 (μM )

dμM

∣
∣
∣
μM=μ∗

M

> 0.

Part (ii): In the case B(M) = BS, it can be shown, using (3.2), that

�S
3 = α − a23βn (1 + a)

[
(n − 1)

n
− a − β

bσ FE FL FP

]

.

Let b = b∗∗ be a bifurcation parameter, and all other parameters of the model (3.1)

are fixed. Then, �S
3 (b) = 0 if and only if b = b∗∗. Furthermore,

d�S
3 (b)
db

∣
∣
∣
b=b∗∗ < 0.

Similarly, it can be shown that
d�S

3 (μM )

dμM

∣
∣
∣
μM=μ∗

M

> 0, for n > 1 + a
1−a + α

βa23(1−a2)
.

��
Theorem 3.5 shows that sustained oscillations are possible using any of the two ovipo-
sition functions (BL or BS). The results of Theorem 3.5 are illustrated in Fig. 3, from
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Fig. 3 Simulations of the autonomous model (3.1), showing the total number of female adult mosquitoes
(M(t)) as a function of time using two forms of B(M). Parameter values used are: μM = 0.05;μE =
0.36;μL = 0.34;μP = 0.17; FL = 0.14; FE = 0.4; FP = 0.3 and K = 106. a B(M) = BL , with
b = b∗ = 34.2 (so that, R0 = 13.05) and δL = 0.00001 < δ∗

L . b B(M) = BS , with b = b∗∗ = 39.2 and
n = 25 (so that, R0 = 14.01) and δL = 0.00001 < δ∗∗

L

which it follows that the plot for the case with B(M) = BS has higher amplitude than
that for the case of B(M) = BL (in other words, the functional form B(M) = BS

leads to higher sustained oscillations in the total adult female mosquito population,
in comparison to the case when B(M) = BL is used). This result is consistent with
the study by Ngwa et al. (2010) (which establishes the existence of a Hopf bifur-
cation for an autonomous model for the population dynamics of mosquitoes subject
to Verhulst-Pearl logistic and Maynard-Smith-Slatkin birth functions of adult mos-
quitoes). Furthermore, Theorem 3.5 shows that increased competition in the larval
stages (i.e., δL large in comparison to δ∗

L or δ∗∗
L ) reduces the likelihood of Hopf bifur-

cation (sustained oscillations) in the population biology of the mosquitoes.
It is worth mentioning that, in the proof of Theorem 3.5, two bifurcation parameters

(b and μM ) are considered. The reason is that the transversality condition may fail at
some points if only one parameter is used (Chow et al. 1994; Yu 2005). The nature
of the Hopf bifurcation property of the model (3.1) is investigated numerically. The
results obtained, depicted in Fig. 4, show convergence of the solutions to a stable limit
cycle (arising via a supercritical Hopf bifurcation) (Ngwa et al. 2010).

3.2.1 Bifurcation diagram

In this section, a bifurcation diagram of themodel (3.1) will be generated in theμM −b
plane as follows.

(i) Solving for b from R0 = 1 gives the following line (denoted by l, depicted in
Fig. 5):

l : b = bl = μ1μ2μ3

σ FE FL FP
μM .
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Fig. 4 Phase portraits of the autonomous model (3.1), using two forms of B(M). a B(M) = BL . b
B(M) = BS . Parameter values used are as given in the simulations for Fig. 3
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Fig. 5 Bifurcation curves in μM − b plane for the autonomous model (3.1)

(ii) Solving for b from �3 = 0, with δL < δ∗
L and δL < δ∗∗

L (fixing all parameters of
the model (using their values as in Fig. 3), except the bifurcation parameters, μM

and b) gives the following curves (denoted by HL , in the case of B(M) = BL ,

and HS, in the case of B(M) = BS; the latter curve drawn for n = 10):

HL : b = b∗ = 2C(μM )β(μM )a23(μM ) + α(μM )

(2C(μM ) − 1)σ FE FL FPa23(μM )
,

HS : b = b∗∗ = 10a23(μM )β2(μM )(1 − a2(μM ))

σ FE FL FP [9a23(μM )β(μM )(1 − a2(μM )) − α(μM )] .

The curves l, HL and HS, depicted in Fig. 5, divide theμM −b plane into four distinct
regions, namely D1,D2,D3 and D4, given by:
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D1 = {(μM , b) |0 < b < bl; μM > 0},
D2 = {(μM , b) |bl < b < b∗∗; μM > 0},
D3 = {(μM , b) |b∗∗ < b < b∗; μM > 0},
D4 = {(μM , b) |b > b∗; μM > 0}.

The regions can be described (using Theorems 3.2 and 3.3) as follows:

(i) Region D1. In this region, R0 < 1. Hence, the model (3.1) has a GAS trivial
equilibrium (P0) for each of the two forms of B(M).

(ii) Region D2.Here, 1 < R0 < 1+ βa23 (1+a)

(1+a)βa23 [n(1−a)−1]−α
.For the cases B(M) = BL

or BS, the model has two equilibria, namely the unstable trivial equilibrium (P0)
and the LAS non-trivial equilibrium (P1). In this region, and for B(M) = BS,

the model undergoes a Hopf bifurcation at all points on the line b = b∗∗.
(iii) Region D3. In this region, 1 + βa23 (1+a)

(1+a)βa23 [n(1−a)−1]−α
< R0 < 2 + 1−C

2C−1 + χ.

For the case with B(M) = BL , the model has two equilibria, the unstable trivial
equilibrium (P0) and the LAS non-trivial equilibrium (P1). Furthermore, in this
case, the model undergoes a Hopf bifurcation at all points on the line b = b∗.
Similarly, for the case B(M) = BS, the model has two equilibria, the unstable
trivial equilibrium (P0) and the unstable non-trivial equilibrium (P1).

(iv) Region D4. Here, R0 > 2 + 1−C
2C−1 + χ. In the case of B(M) = BL or BS,

the model has two equilibria, namely the unstable trivial equilibrium (P0) and
unstable non-trivial equilibrium (P1).

The region of stability of the non-trivial solution (P1) will now be compared for
the cases where the Verhulst-Pearl logistic (B(M) = BL ) or Maynard-Smith-Slatkin
oviposition function (B(M) = BS) is used. Consider, now, the model (3.1) with
B(M) = BS and δL < δ∗∗

L . Solving for n from the right-hand side of (3.15) gives n =
[

1 + a
1−a + α

a23β(1−a2)

]

. Substituting n = m

[

1 + a
1−a + α

a23β(1−a2)

]

, with m > 1, in

the inequality (3.15) gives (the stability condition for the non-trivial equilibrium (P1)
of the autonomous model with B(M) = BS):

1 < R0 < 1 + 1

m − 1
< 2 < 2 + 1 − C

2C − 1
+ χ, m > 1. (3.23)

By comparing the inequalities (3.14) and (3.23), it can be concluded that, for large
values of n, the size of the stability interval for P1 is larger for the case when the
Verhulst-Pearl logistic oviposition function (BL ) is used than for the case when the
Maynard-Smith-Slatkin function (B(M) = BS) is used. Thus, owing to its smaller
stability region (hence, higher region of instability, which corresponds to higher likeli-
hood of Hopf bifurcation), the Maynard-Smith-Slatkin functional form (B(M) = BS)
induces more sustained oscillations than the Verhulst-Pearl logistic oviposition func-
tion (B(M) = BL .) In other words, this study shows that the Maynard-Smith-Slatkin
function ismore suitable (from ecological point of view) formodelingmosquito ovipo-
sition than the Verhulst-Pearl logistic function (since, ecologically-speaking, higher
sustained oscillations ensures the preservation of the mosquito population). These
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Table 3 The stability properties of the solutions of the autonomous model (3.1) “DNE” denotes “does not
exist”

B(M) Threshold condition P0 P1 Stable limit cycle

BL
δL ≥ 0 R0 < 1 GAS DNE No

δL ≥ 0 R0 = 1 Unstable DNE No

δL ≥ δ∗
L R0 > 1, Unstable LAS No

δL < δ∗
L 1 < R0 < 2 + 1−C

2C−1 + χ, Unstable LAS No

δL < δ∗
L R0 > 2 + 2 + 1−C

2C−1 + χ Unstable Unstable Yes

BS
∀n and δL ≥ 0 R0 < 1 GAS DNE No

∀n and δL ≥ 0 R0 = 1 Unstable DNE No

δL ≥ 0 and n = 1 R0 > 1, Unstable LAS No

δL ≥ δ∗∗
L R0 > 1, Unstable LAS No

δL < δ∗∗
L 1 < R0 < 1 + α+a23β

(n−1)a23β−α
Unstable LAS No

δL < δ∗∗
L R0 > 1 + α+a23β

(n−1)a23β−α
Unstable Unstable Yes

results are summarized in Table 3 (in terms of R0). Furthermore, the results are illus-
trated numerically in Fig. 5, from which it is evident that the region (D2) for the
asymptotic stability of the non-trivial equilibrium (P1) is smaller in the case where
the functional form B(M) = BS is used, in comparison to the corresponding region
(D2 ∪ D3) when the form B(M) = BL is used (this result supports the finding in
Ngwa et al. (2010) that the Maynard-Smith-Slatkin function is more suitable to model
the birth rate of adult mosquitoes, in comparison to the Verhulst-Pearl logistic birth
function).

3.3 Sensitivity analysis of R0

Sensitivity analysis determines the effects of parameters onmodel outcomes (Cariboni
et al. 2007).Ahighly sensitive parameter shouldbe carefully estimated, because a small
variation in that parameter will lead to large quantitative changes. A parameter that
is not sensitive, on the other hand, does not require as much effort to estimate (since
a small variation in that parameter will not produce large changes to the quantity
of interest). To study the local sensitivity analysis, we find the partial derivative of
the output variables with respect to the input parameters to compute the sensitivity
index (Cariboni et al. 2007). In this study the threshold quantity (R0) is taken as the
model outcome. The normalized sensitivity index of R0 with respect to a parameter
x , denoted by �

R0
x , is given by (Cariboni et al. 2007):

�R0
x = ∂R0

∂x

x

R0
. (3.24)
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Table 4 Sensitivity indices of the parameters of the model (3.1)

Parameter Sensitivity index Parameter Sensitivity index Parameter Sensitivity index

b +1 μE
−μE

μE+FE
FE

+μE
μE+FE

σ +1 μL
−μL

μL+FL
FL

+μL
μL+FL

μM −1 μE
−μP

μP+FP
FP

+μP
μP+FP

Given the expression (3.2) for the vectorial reproduction number (R0) of the
autonomousmodel (3.1), an analytical expression for the sensitivity ofR0,with respect
to each parameter in the expression for R0, are given in Table 4. It should be noted
that the sensitivity index may be a constant or a parameter (Cariboni et al. 2007) (as in
Table 4). It follows fromTable 4 that the three parameters thatmost affect the dynamics
of the autonomous model (3.1), with respect to the response function (R0), are the rate
of eggs laid per oviposition (b), the mosquito sex ratio (σ ) and the natural death rate of
adult mosquitoes (μM ). Since the parameters b and σ are positvely-correlated, and the
parameter μM is negatively-correlated (with respect to R0), this study suggests that a
control strategy that reduces b and σ , while increasingμM , can significantly minimize
mosquito abundance in the community. In other words, the use of adulticiding (reduces
b and increasesμM ) and any other mechanism (perhaps biological) which reduces the
production of new female offsprings (reduce σ ) can lead to effective reduction of the
adult mosquito population in the community.

4 Analysis of non-autonomous model

In this section, the dynamical properties of the non-autonomous model (2.1) will be
explored. It is convenient to define [recall the definitions for Q∗ and Q∗ in (2.7)]:

R
∗
0 = σb∗F∗

E F
∗
L F

∗
P

μ1∗μ2∗μ3∗μ∗
and R0∗ = σb∗FE∗FL∗FP∗

μ∗
1μ

∗
2μ

∗
3μ

∗ .

4.1 Trivial solution

The non-autonomous model (2.1) also has a unique trivial solution, P0, for each
of the forms of the oviposition functions given in (2.2). The vectorial reproduction
ratio of the non-autonomous model (2.1), denoted by R

t
0, can be computed using

the technique in Bacaer (2009, 2007), Bacaer and Guernaoui (2006), Bacaer and
Abdurahman (2008), Bacaer et al. (2011) and Wang and Zhao (2008). Using the
notation in Bacaer and Guernaoui (2006), Bacaer and Ouifki (2007) and Wang and
Zhao (2008), let z(t) = (E(t), L(t), P(t), M(t))tr . The model (2.1) is linearized at
P0 to obtain

dz

dt
= [F(T, R) − V (T, R)]z(t),
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where,

F(T, R) =

⎛

⎜
⎜
⎝

0 0 0 B(M)

0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

and,

V (T, R) =

⎛

⎜
⎜
⎝

μ1(T, R) 0 0 0
−FE (T, R) μ2(T, R) + δL L 0 0

0 −FL(T, R) μ3(T, R) 0
0 0 −σ FP (T, R) μM (T )

⎞

⎟
⎟
⎠ .

LetY (t, s), t ≥ s be the evolution operator of the linear periodic system
dy

dt
= −V y(t)

Wang and Zhao (2008). For each s ∈ R, the matrix Y (t, s) satisfies Wang and Zhao
(2008)

dY (t, s)

dt
= −VY (t, s), Y (s, s) = I, t ≥ s,

where I is the identity matrix of order 4. Let Cω be the Banach space of all ω-
periodic functions equippedwith themaximum norm (Wang and Zhao 2008). Suppose
F(s)�(s) ∈ Cω is the rate of generation (hatching) of neweggs in the breeding habitats
at time s in a compartment individuals in this periodic environment at time s. Thus,

�(t) =
∫ t

−∞
Y (t, s)F(s)�(s)ds =

∫ ∞

0
Y (t, t − a)F(t − a)�(t − a)da,

is the distribution of new eggs at time t, hatched by all female adult mosquitoes �(s)
introduced at the previous time (Wang and Zhao 2008). Define the linear operator
L : Cω −→ Cω by Wang and Zhao (2008)

(L�)(t) =
∫ ∞

0
Y (t, t − a)F(t − a)�(t − a)da ∀t ∈ R, � ∈ Cω.

Following Wang and Zhao (2008), let R
t
0 = ρ(L) (the spectral radius of L). Further-

more, let W (t, λ) be the monodromy matrix of the linear ω-periodic system:

du

dt
= [−V + 1

λ
F(t)]u,

with parameter λ ∈ (0,∞). It can be verified that the system (2.1) satisfies Assump-
tions (A1)-(A7) inWang andZhao (2008). Thus, it follows fromBacaer andGuernaoui
(2006) and Wang and Zhao (2008) that:

• R
t
0 = 1 if and only if ρ(�F−V (ω)) = 1.
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• R
t
0 < 1 if and only if ρ(�F−V (ω)) < 1.

• R
t
0 > 1 if and only if ρ(�F−V (ω)) > 1.

These results are summarized below.

Theorem 4.1 Consider the non-autonomous model (2.1), subject to the two functions
of B(M) given in (2.2). The mosquito-free equilibrium, P0, is LAS whenever R

t
0 < 1,

and unstable if R
t
0 > 1.

We claim the following result.

Theorem 4.2 Consider the non-autonomous model (2.1), subject to the two functions
of B(M) given in (2.2). The trivial equilibrium, P0 is GAS in � whenever R

t
0 < 1.

Proof Consider the non-autonomous model (2.1) withR
∗
0 < 1. Furthermore, consider

the Lyapunov function,

V2 = F∗
L F

∗
Pσ(F∗

E E + μ1∗L) + μ1∗μ2∗(F∗
Pσ P + μ3∗M),

with Lyapunov derivative,

dV2
dt

= −{E[F∗
L F

∗
P F

∗
Eμ1(T, R) − F∗

L F
∗
P FE (T, R)μ1∗]

+L[F∗
L F

∗
Pμ1∗μ2(T, R) − F∗

L FP (T, R)μ1∗μ2∗]
+P[F∗

Pμ1∗μ2∗μ3(T, R) − FP (T, R)μ1∗μ2∗μ3∗]
+M[μM (T )μ1∗μ2∗μ3 − F∗

L F
∗
P F

∗
E B(M)]}

−F∗
L F

∗
Pσμ1∗δL L2.

Since for any parameter h, h∗ > h(t) and h∗ < h(t), then dV2
dt can be re-written

as

dV2
dt

≤ −μ1∗μ2∗μ3∗μM (T )M(t)[1 − R
∗
0

b∗ B(M)].

Furthermore, since maxM B(M) ≤ b∗ for all cases of B(M) in (2.2), it follows, for

all R
∗
0 < 1, that

R
∗
0

b∗ B(M) < 1 in �. Hence, dV2
dt ≤ 0. The proof is concluded as in

the proof of Theorem 3.2. Thus, P0 is GAS in �, for all cases of B(M) given in (2.2),
whenever R

t
0 < R

∗
0 < 1. ��

The results in Theorems 3.2 and 4.2 show that the non-autonomous and autonomous
models, (2.1) and (3.1), have the same qualitative dynamics with respect to the local
and global asymptotic stability of the trivial equilibrium (P0). In other words, relaxing
the temperature and rainfall dependence of the parameters of the non-autonomous
model (2.1) does not alter its asymptotic stability property with respect to the trivial
equilibrium (P0).
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4.2 Non-trivial periodic solutions: special case

Consider the special case of the autonomous model (2.1) in the absence of density-
dependent mortality rate for larvae (i.e., δL = 0). This assumption is needed for
mathematical tractability.

4.2.1 Existence

The proof for the existence of non-trivial periodic solution of the model (2.1) is based
on using the following result (from Gaines and Mawhin (1977)).

Lemma 4.3 [Gaines and Mawhin (1977)] Let Y and Z be Banach spaces and N1 :
Dom(N1) ⊂ Y → Z be a linear mapping and N2 : Y → Z is continuous. We say the
mapping N1 is Fredholm of index zero if dim(Ker(N1)) = codim(Im(N1)) < ∞ and
the image of N1 is closed. If the mapping N1 is Fredholm of index zero and if there exist
continuous projectors Q1 : S → S and Q2 : T → T such that Im(Q1) = Ker(L)

and Ker(Q2) = Im(L) = Im(I − Q2), then the mapping L : (I − Q1)S → Im(L)

will be invertible and we denote the inverse by K p. Let � � Y be a open bounded set
and let N1 be a Fredholm mapping of index zero and the mapping N2 is N1-compact.
Assume that

1. for each λ ∈ (0, 1), x /∈ ∂�, N1x = λN2x,
2. for each x ∈ ∂� ∩ Ker(N1), Q2N2x �= 0,
3. deg(J Q2N2, Q2 ∩ Ker(N1), 0) �= 0

then the equation N1x = N2x has at least one periodic solution.

We claim the following.

Theorem 4.4 The non-autonomous model (2.1), with δL = 0 and the oviposition
function B(M) = BL , has at least one positive periodic solution, whenevr R0∗ ≥ 1.

Proof The proof, based on using the approach in Gaines and Mawhin (1977), is given
in Appendix B. ��

Similarly, the following result can be proved for the oviposition form B(M) = BS .

Theorem 4.5 The non-autonomous model (2.1), subject to the oviposition function
B(M) = BS and δL = 0, has at least one positive w−periodic solution, whenevr
R0∗ ≥ 1, for n ≥ 1.

4.2.2 Uniqueness

The uniqueness property of a periodic solution of the non-autonomous model (2.1)
will now be explored.

Theorem 4.6 Consider the non-autonomous model (2.1), with δL = 0.

(a) If B(M) = BL and R0∗ > 2, then the positive w-periodic solution of the model
(2.1) is unique.
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(b) If B(M) = BS and R0∗ > 1+ 1
n−1 (n > 1), then the positive w-periodic solution

of the model (2.1) is unique.

Proof The proof is based on using the approach in Gaines andMawhin (1977). Define
the invariant region below (the stable manifold of P0):

γ0 = {(E, L , P, M) ∈ γ : E = L = P = M = 0} .

Pick any two arbitrary positive periodic solutions x1 = (E1, L1, P1, M1) and x2 =
(E2, L2, P2, M2) in γ \γ0. Consider the following function

V3 = |E1(t) − E2(t)| + |L1(t) − L2(t)| + |P1(t) − P2(t)| + |M1(t) − M2(t)|.

(a) The upper right derivative of V3, denoted by D+V3(t) (in case of B(M) = BL ), is
given by

D+V3(t) ≤ −μE (T, R)|E1(t) − E2(t)| − μL (T, R)|L1(t) − L2(t)| − μP (T, R)|P1(t) − P2(t)|
−b(T, R)

(
M1(t) + M2(t)

K
− 1

)

|M1(t) − M2(t)| − μM (T )|M1(t) − M2(t)|,
≤ −μE (T, R)|E1(t) − E2(t)| − μL (T, R)|L1(t) − L2(t)| − μP (T, R)|P1(t) − P2(t)|

−b(T, R)

(
M1(s4) + M2(s4)

K
− 1

)

|M1(t) − M2(t)| − μM (T )|M1(t) − M2(t)|,
≤ −μE (T, R)|E1(t) − E2(t)| − μL (T, R)|L1(t) − L2(t)| − μP (T, R)|P1(t) − P2(t)|

−b(T, R)

(

2(1 − 1

R0∗
) − 1

)

|M1(t) − M2(t)| − μM (T )|M1(t) − M2(t)|,
≤ −μE∗|E1(t) − E2(t)| − μL∗|L1(t) − L2(t)| − μP∗|P1(t) − P2(t)|

−b∗
(

1 − 2

R0∗

)

|M1(t) − M2(t)| − μM∗|M1(t) − M2(t)|.

It follows that D+V3(t) < 0 if and only if R0∗ > 2. Thus, V3(t) → 0 as t → +∞.
Furthermore, integrating the last inequality above, from 0 to t, gives

V3(t) + μE∗
∫ t

0
|E1(s) − E2(s)|ds + μL∗

∫ t

0
|L1(s) − L2(s)|ds − μP∗

∫ t

0
|P1(s)

−P2(s)|ds +
[

b∗
(

1 − 2

R0∗

)

+ μM∗
] ∫ t

0
|M1(s) − M2(s)|ds < V3(0) < ∞.

Thus, limt→+∞ |x1(t) − x2(t)| = 0 if and only if R0∗ > 2.
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(b) Similarly, the upper right derivative of V3 (in case of B(M) = BS) is given by

D+V3(t) ≤ −μE (T, R)|E1(t) − E2(t)| − μL (T, R)|L1(t) − L2(t)| − μP (T, R)|P1(t) − P2(t)|

−b(T, R)

[
Mn−1

1 (t)M2(t) + Mn−2
1 (t)M2

2 (t) + · · · + M1(t)M
n−1
2 (t)

Kn
− 1

]

|M1(t) − M2(t)|

−μM (T )|M1(t) − M2(t)|,
≤ −μE (T, R)|E1(t) − E2(t)| − μL (T, R)|L1(t) − L2(t)| − μP (T, R)|P1(t) − P2(t)|

−b(T, R)

[
Mn−1

1 (s4)M2(s4) + Mn−2
1 (s4)M2

2 (s4) + · · · + M1(s4)M
n−1
2 (s4)

Kn
− 1

]

× |M1(t) − M2(t)| − μM (T )|M1(t) − M2(t)|,
≤ −μE∗|E1(t) − E2(t)| − μL∗|L1(t) − L2(t)| − μP∗|P1(t) − P2(t)|

−b∗ [(n − 1)(R0∗ − 1) − 1] |M1(t) − M2(t)| − μM∗|M1(t) − M2(t)|.

It follows that D+V3(t) < 0 if and only if R0∗ > 1 + 1
n−1 , for all n > 1. Thus,

V3(t) → 0 as t → +∞. Furthermore, integrating the last inequality from 0 to t, gives

V3(t) + μE∗
∫ t

0
|E1(s) − E2(s)|ds

+μL∗
∫ t

0
|L1(s) − L2(s)|ds − μP∗

∫ t

0
|P1(s) − P2(s)|ds

+ (b∗((n − 1)(R0∗ − 1) − 1) + μM∗)
∫ t

0
|M1(s) − M2(s)|ds < V3(0) < ∞.

Hence, limt→+∞ |x1(t) − x2(t)| = 0 if and only if R0∗ > 1 + 1
n−1 . ��

4.2.3 Stability

It is instructive to determine whether or not the unique periodic solution of the model
(2.1), guaranteed by Theorem 4.4 is asymptotically stable. This is explored below. Let
Pw = (Ew(t), Lw(t), Pw(t), Mw(t)) represents the unique w−periodic solution of
the model (2.1). Define the invariant region (γ1 ⊂ �).

γ1 = {(E, L , P, M) ∈ γ : 0 < E(t) ≤ Ew(t), 0 < L(t)

≤ Lw(t), 0 < P(t) ≤ Pw(t), 0 < M(t) ≤ Mw(t)} .

Theorem 4.7 Consider the non-autonomous model (2.1), with δL = 0.

(a) If B(M) = BL and R0∗ > 2, then the unique positive w-periodic solution of the
model (2.1) is GAS in γ1.

(b) If B(M) = BS and R0∗ > 1+ 1
n−1 (n > 1), then the unique positive w-periodic

solution of the model (2.1) is GAS in γ1.
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Proof Let R0∗ > 2 (so that Pw exists, by Theroem 4.6). Consider the following
Lyapunov function

V4 = 1

2
[Sw(t)]2,

such that,

Sw(t) = [E(t) − Ew(t)] + [L(t) − Lw(t)] + [P(t) − Pw(t)] + [M(t) − Mw(t)].

The Lyapunov derivative is

dV4
dt

= Sw

dSw

dt
,

where,

dSw

dt
=
[
dE

dt
+ dL

dt
+ dP

dt
+ dM

dt

]

−
[
dEw

dt
+ dLw

dt
+ dPw

dt
+ dMw

dt

]

.

(a) B(M) = BL . For this case, the derivative of Sw is given by

dSw

dt
= −μE (T, R)|E(t) − Ew(t)| − μL (T, R)|L(t) − Lw(t)| − μP (T, R)|P(t) − Pw(t)|

−b(T, R)

(
M(t) + Mw(t)

K
− 1

)

|M(t) − Mw(t)| − μM (T )|M(t) − Mw(t)|.

It should be recalled from Theorem 4.6 that M(s4) and Mw(s4) are the minimum

values of M(t) and Mw(t), respectively. Furthermore, M(s4) ≥ K
(
1 − 1

R0∗

)
and

Mw(s4) ≥ K (1 − 1
R0∗ ). Hence,

dSw

dt
≤ −μE (T, R)|E(t) − Ew(t)| − μL (T, R)|L(t) − Lw(t)| − μP (T, R)|P(t) − Pw(t)|

−b(T, R)

(
M(s4) + Mw(s4)

K
− 1

)

|M(t) − Mw(t)| − μM (T )|M(t) − Mw(t)|,
≤ −μE (T, R)|E(t) − Ew(t)| − μL (T, R)|L(t) − Lw(t)| − μP (T, R)|P(t) − Pw(t)|
−b(T, R)

(

2(1 − 1

R0∗
) − 1

)

|M(t) − Mw(t)| − μM (T )|M(t) − Mw(t)|,
≤ −μE∗|E(t) − Ew(t)| − μL∗|L(t) − Lw(t)| − μP∗|P(t) − Pw(t)|

−b∗
(

1 − 2

R0∗

)

|M(t) − Mw(t)| − μM∗|M(t) − Mw(t)|.

It follows that dV4
dt < 0 in γ1 if and only if R0∗ > 2.
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(b) Similarly, the derivative of Sw (in case of B(M) = BS) is given by

dSw

dt
= −μE (T, R)|E(t) − Ew(t)| − μL (T, R)|L(t) − Lw(t)| − μP (T, R)|P(t) − Pw(t)|

−b(T, R)

[
Mn−1(t)Mw(t) + Mn−2(t)M2

w(t) + · · · + M(t)Mn−1
w (t)

Kn − 1

]

|M(t) − Mw(t)|

−μM (T )|M(t) − Mw(t)|,
≤ −μE (T, R)|E(t) − Ew(t)| − μL (T, R)|L(t) − Lw(t)| − μP (T, R)|P(t) − Pw(t)|

−b(T, R)

[
Mn−1(s4)Mw(s4) + Mn−2(s4)M

2
w(s4) + · · · + M(s4)M

n−1
w (s4)

Kn − 1

]

|M(t) − Mw(t)|

−μM (T )|M(t) − Mw(t)|,
≤ −μE∗|E(t) − Ew(t)| − μL∗|L(t) − Lw(t)| − μP∗|P(t) − Pw(t)|

−b∗ [(n − 1)(R0∗ − 1) − 1] |M(t) − Mw(t)| − μM∗|M(t) − Mw(t)|.

Hence, dV4
dt < 0 in the region γ1 whenever R0∗ > 1 + 1

n−1 . The proof is completed
as in the proof of Theorem 3.2. ��

This result shows that the periodic solution of the non-autonomous model (2.1)
is globally-asymptotically stable, for the cases when B(M) = BL or BS, under
certain conditions (specified in Theorem 4.7). Thus, under these conditions, the non-
autonomous system (2.1) will undergo sustained oscillations.

5 Numerical simulations

The non-autonomous model (2.1), will now be simulated using relevant (mosquito
surveillance and weather) data to assess the impact of temperature and rainfall on the
population dynamics of mosquitoes in the Peel region of Ontario, Canada. The study
area, and associated mosquito species, in the chosen study area, are described below.

5.1 Study area and mosquito species

The Peel region is a municipality in the southern Ontario province of Canada, extend-
ing from latitude 43.35◦N to 43.52◦N and from longitude 79.37◦W to 80.00◦W
(Wang et al. 2011). The total annual rainfall recorded in this region is around 793
mm (DeGaetano 2005). The mean temperatures vary by season ([5 − 10] ◦C in the
spring; [22 − 32] ◦C in the summer; [(−2) − 6] ◦C during the fall and snowy winter
with mean temperature [(−20) − (−5)]) (Wang et al. 2011). Numerous outbreaks of
WNv, a mosquito-borne zoonotic arbovirus caused by female culex mosquito, have
been recorded in the Peel region since 2001 (Abdelrazec et al. 2015; Peel Public Health
2013). The disease remains a major public health problem in North America, since
its inception in 1999 (for instance, in 2012, WNv causes 5,387 human cases and 300
mortality; Abdelrazec et al. (2014)).

Prior studies have established a strong positive correlation between culex abun-
dance and WNv activity in the Peel region (Wang et al. 2011). Hence, the current
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Fig. 6 Map of the Peel region of Ontario, Canada, showing the location of mosquito traps and weather
station Peel Public Health (2013)

study, which focuses on the qualitative and quantitative assessment of the role of tem-
perature and rainfall on the estimate of culex abundance, will implicitly contribute in
predicting the risk of WNv outbreaks in the Peel region. Culex pipiens L.-culex restu-
ans theobald mosquitoes are the two primaryWNv vectors in North America. The two
species, which prefer water habitats with high organic content for their development
cycle (Hilker and Westerhoff 2007; Turell and Dohm 2005), are morphologically the
same (DeGaetano 2005). Owing to such similarity, the mosquito surveillance data for
the Peel region lumps the two species together (it should be recalled that the model
developed in the current study does not also distinguish between the two culex species).
Trap data is collected in the Peel region weekly, during the period between mid-June
to early October (usually Weeks 24-39 of the year), using light traps to attract host-
seeking adult female mosquitoes (the collected mosquitoes are then separated based
on species) (Wang et al. 2011). Figure 6 depicts a map of the Peel region showing the
locations of 30mosquito traps (distributed across the region) and aweather station. The
number ofmosquitoes collected in this region, for the period 2008–2012, is tabulated in
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Fig. 7 Observed daily mean temperature (a) and rainfall (b) for in Peel region for the period 2008 to 2012.
Data recorded by Canada’s National Climate Archive (http://www.climate.weatherofce.gc.ca)

Table S1 of the SupplementaryMaterial. Furthermore, data formean daily temperature
and daily mean rainfall over the same time period is depicted in Fig. 7 (see also Table
S2 of the Supplementary Material).

5.2 Effect of temperature and rainfall in Culex abundance

Themodel (2.1) will now be simulated using the parameter values tabulated in Table 5.
These parameter valueswere obtained (or adapted) from the literature. For instance, the
maximum rate of eggs laid per oviposition is taken to be αb = 300 (recorded at 27 ◦C;
(Clements 1999)). Furthermore, the maximum values for the rates of eggs hatching,
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Fig. 8 Simulations of themodel (2.1), showing the effect of temperature (T) and rainfall (R) on the dynamics
of culex mosquitoes. All parameter values used are as given in Table 5

maturation from larvae to pupae and maturation from pupae to adult mosquitoes are
taken to beαE = 0.5, αL = 0.35 andαP = 0.5, respectivelyClements (1999). Finally,
while the peak survival rates of maturation of mosquitoes are recorded at 20 ◦C (Turell
and Dohm 2005), that of mature (adult) mosquitoes occur at 28 ◦C Turell and Dohm
(2005). Hence, we set T ∗

E = T ∗
L = T ∗

P = 20 ◦C, and T ∗
M = 28 ◦C. Simulations were

started near the trivial equilibrium (January 1, corresponding to t = 1 day) and ran
until the end of the year (see attached Matlab code in Appendix C).
Figure 8 depicts the distribution of the total female adult culexmosquitoes (for the Peel
region) as a function of temperature and rainfall. This figure shows that a peakmosquito
abundance is recorded for temperatures in the range [20–25] ◦C and rainfall in the
range [15–35] mm. In other words, this study shows that culex mosquito abundance
is maximized in the Peel region between July and August. It is worth recalling that
the aforementioned suitable temperature range for culex development ([20–25] ◦C) lie
within the range reported in the statistical study by Hilker and Westerhoff (2007) (but
the temperature range in the current study is narrower). Hence, this study suggests that
the Peel region should intesify anti-WNv control effort during the months of July and
August, when the temperature and rainfall values lie in the aforementioned ranges. It
should be mentioned that only larviciding is implemented in the Peel region, typically
for a period of 3 weeks (Peel Public Health 2013) (hence, this study suggests that
larviciding should be implemented for a 3-week period between July and August,
when the temperature and rainfall are in the ranges described above).
Figure 9 shows the correlation between culex abundance values and human mortality
due to WNv in the Peel region, for the period 2008 to 2012 (the culex abundance data
was generated using the model (2.1), and the WNv human mortality, superimposed
to the culex abundance data, is obtained from Peel region (Peel Public Health 2013)).
This figure shows a strong positive correlation between culex abundance and WNv
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Fig. 9 Simulations of the model (2.1), showing the total number of adult female culex mosquitoes (M)
super-imposed with data for humanmortality due toWNv for the Peel region between 2008 and 2012.WNv
mortality data collected from Peel Public Health (2013)

Table 6 Mean averge temperature and rainfall in the Peel region (during mosquito season) from 2008 to
2012

2008 2009 2010 2011 2012

Mean average temperature [6 − 21]oC [5 − 22]oC [5 − 19]oC [8 − 22]oC [10 − 28]oC
Mean average rainfall [0 − 20]mm [0 − 12]mm [0 − 20]mm [0 − 15]mm [10 − 30]mm

mortality in humans. In particular, this figure shows a peak culex abundance in 2012
[which is consistent with the finding in the annual report on WNv published by the
Peel region (Peel Public Health 2013)]. Table 6 depicts the mean average temperature
and rainfall values recorded in the Peel region for the period 2008–2012, from which
it follows that the values recorded for the year 2012 ([10–28] ◦C and [10–30] mm) lie
within the suitable range for mosquito development (described above).

Conclusions

Anewnon-autonomousmodel is designed and used to assess the impact of temperature
and rainfall on the abundance of adult female mosquitoes. The model, which incorpo-
rates the dynamics of both the immature and female adult mosquitoes, was rigorously
analysed, subject to forms of the egg oviposition function (namely, Verhulst-Pearl
logistic and Maynard-Smith-Slatkin functions) to gain insight into its qualitative fea-
tures. The main results obtained are as follows.

(i) The trivial solution of the autonomous version of the model (with no tempera-
ture or rainfall effects) is locally- and globally-asymptotically stable whenever
a certain threshold quantitative (R0) is less than unity, for each of the two eggs
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oviposition functions used. The autonomous model with the two oviposition
functions (Verhulst-Pearl logistic and Maynard-Smith-Slatkin), has a unique sta-
ble non-trivial solution whenever R0 > 1. Furthermore, the autonomous model
subject to the Verhulst-Pearl logistic and Maynard-Smith-Slatkin oviposition
functions, can have a stable limit cycle (via a Hopf bifurcation) under certain
conditions.

(ii) The autonomous model with Maynard-Smith-Slatkin oviposition function sus-
tains more oscillations than the case with the Verhulst-Pearl logistic oviposition
function (hence, this study suggested that the Maynard-Smith-Slatkin function
is more suitable to model the population biology of mosquitoes).

(iii) Increase competition in the larval stages reduces the likelihood of sustained oscil-
lator (Hopf bifurcation) in the population biology of the mosquitoes.

(iv) For the non-autonomousmodel (with temperature and rainfall effects), it is shown
that its local and global asymptotic dynamics, with respect to the trivial solution,
matches that of the associated autonomous model (with a different, but similar,
threshold condition). Conditions for the existence, uniqueness and global asymp-
totic stability of the nontrivial periodic solution of the model (in the absence
of density-dependent mortality rate for larvae) are derived, for the case of the
model subject to the Verhulst-Pearl logistic and Maynard-Smith-Slatkin ovipo-
sition functions.

(v) Using mosquito surveillance and weather data for the Peel region of Ontario,
Canada, for the period 2008–2012, numerical simulations of the non-autonomous
model (using the Maynard-Smith-Slatkin oviposition functions) show that the
ranges of temperature and rainfall suitable for the growth of adult female culex
mosquitoes are [20–25] ◦C and [15–35] mm. These ranges are recorded, in the
Peel region, during the period between mid-July and August (hence, this study
shows that anti-WNv control strategies should be intensified during these peri-
ods). The model matches the observed data for mosquito abundance during the
period 2008–2012.
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Appendix A: Proof of Lemma 2.1

1. The solution of the IVP (2.8) is given by

z(t) = e− ∫ t0 b(s)ds z0 +
∫ t

0
e− ∫ tn b(s)dsa(n)dn, (5.1)

from which it follows that z(t) ≥ 0 for all t ≥ 0, a(t) ≥ 0 and z0 ≥ 0.
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2. Since a(t) and b(t) are non-negative, bounded and continuous functions, it follows
from (5.1) that z(t) is bounded.
3. Let z1(t) be the solution of the IVP (2.8) with z1(0) = z0. It can then be shown that
|z(t) − z1(t)| 	−→ 0 as t 	−→ ∞. Furthermore, for all t > 0 sufficiently large, there
exists a∗ > 0 such that

z1(t) = e− ∫ tt−w b(s)ds z0 +
∫ t

t−w

e− ∫ tn b(s)dsa(n)dn ≥ a∗e−b∗dw.

Hence, it follows, from the boundedness of z∗(t), that z1(t) ≤ a∗eb∗
b∗ . Thus, m1 <

limt 	−→∞ inf z(t) < lim
t 	−→∞ sup z(t) < m2, for m1 = a∗e−b∗dw and m2 = a∗eb∗

b∗ .

4. Let w(t) = Z(t) − z(t). Then, it follows from (2.8) that
dw

dt
= −b(t)w + f (t),

with w(0) = 0 (this takes the form of the IVP (2.8) with f (t) = a(t)). Hence,

sup |Z(t) − z(t)| ≤ d sup | f (t)| for d = eb
∗

b∗ .

Appendix B: Proof of Theorem 4.4

Consider the model (2.1) with B(M) = BL . Let R0∗ ≥ 1. Furthermore, let E = ex1 ,
L = ex2 , P = ex3 and M = ex4 . Then, the model (2.1) can be re-written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt

= b(T, R)ex4−x1

(

1 − ex4

K

)

− μ1(T, R),

dx2
dt

= FE (T, R)ex1−x2 − μ2(T, R),

dx3
dt

= FL(T, R)ex2−x3 − μ3(T, R),

dx4
dt

= FP (T, R)σex3−x4 − μM (T ),

(5.2)

with the initial values, x1(0) = ln[E(0)], x2(0) = ln[L(0)], x3(0) = ln[P(0)] and
x4(0) = ln[M(0)]. It follows (Theroem 4 in Krasnoselskii 1968) that if the system
(5.2) has onew−periodic solution, then the system (2.1)will also have onew−periodic
solution. Furthermore, following Krasnoselskii (1968), let

Y = {x = (x1, x2, x3, x4)
tr ∈ C1[R,R4] : xi (t + w) = x(t), i = 1, 2, 3, 4, t ∈ R+},

Z = {x = (x1, x2, x3, x4)
tr ∈ C[R+,R+4] : xi (t + w) = x(t), i = 1, 2, 3, 4, t ∈ R+}.

Hence, Y and Z are Banach spaces with the supremum norm Krasnoselskii (1968).
Define (Gaines and Mawhin 1977) N1 : Dom(N1) ⊂ Y → Z such that N1[x(t)] =
dx(t)
dt and N2 : Y → Z such that N2[x(t)] = f (t, x), where f (t, x) as the right-hand

side functions for the system (5.2). Thus, it follows from (5.2) that

N1[x(t)] = N2[x(t)], x ∈ Y.
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Furthermore, Dom(N1) = Y and

Ker(N1) = {x ∈ Y : N1(x) = 0} ⊆ R4,

Im(N1) =
{

z ∈ Z :
∫ w

0
z(t) = 0

}

,

are closed in Z , and,

dim(Ker(N1)) = codim(Im(N1)) = 4.

It follows then that N1 is aFredholmmappingof index zero (Gaines andMawhin1977).
Following Gaines and Mawhin (1977), define, Q1 : Y → Y and Q2 : Z → Z be the
projectors given by Q1(x) = 1

w

∫ w

0 x(t)dt, x ∈ Y and Q2(z) = 1
w

∫ w

0 z(t)dt, z ∈ Z .

Moreover, Q1, and Q2 are continuous operators such that (Gaines andMawhin 1977)

Im(Q1) = Ker(N1) = R4, Ker(Q2) = Im(N1) = Im(I − Q2),

Furthermore, the generalized inverse (to N1) KQ1 : Im(N1)→Ker(Q1)
⋂

Dom(N1)

exists, and is given by Gaines and Mawhin (1977)

KQ1(x) =
∫ t

0
x(s)ds − 1

w

∫ w

0

∫ t

0
x(s)dsdt.

Then, Q2N2 : Y → Z and KQ1(I − Q2)N2 : Y → Y. Furthermore„ Q2N2 and
KQ1(I − Q2)N2 are continuous (by the Lebesgue dominated convergence theorem;
Bartle 1995). SinceY is a finite-dimensionalBanach space, it follows, using theAscoli-
Arzela theorem (Gaines and Mawhin 1977), that for any open bounded set � ⊂ Y,

Q2N2(�) is bounded and KQ1(I − Q2)N2(�) is compact (Gaines andMawhin 1977).
Thus, N2 is N1-compact on �.

The next task is to find an appropriate open and bounded subset � (needed for the
application of the continuation theorem (Bartle 1995). Using to the operator equation
N1x = λN2x, with λ ∈ (0, 1), the model (2.1) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt

= λ

[

b(T, R)ex4−x1

(

1 − ex4

K

)

− μ1(T, R)

]

,

dx2
dt

= λ
[
FE (T, R)ex1−x2 − μ2(T, R)

]
,

dx3
dt

= λ
[
FL(T, R)ex2−x3 − μ3(T, R)

]
,

dx4
dt

= λ
[
FP (T, R)σex3−x4 − μM (T )

]
.

(5.3)

Suppose that x = (x1, x2, x3, x4)tr is a periodic solution of the system (5.3) for some
λ. Then, there exist ti , si ∈ [0, w] such that xi (ti ) = maxt∈[0,w]xi (t) (Bartle 1995).
Using the bounds of the parameters b, FE , FL , FP , μM , μi , (i = 1, 2, 3), and from
the model (5.3), we get
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b∗ex4(t4)−x1(t1)

(

1 − ex4(s4)

K

)

≥ bex4(t1)−x1(t1)

(

1 − ex4(t1)

K

)

= μ1 ≥ μ1∗

and,

b∗ex4(s4)−x1(s1)

(

1 − ex4(t4)

K

)

≤ bex4(s1)−x1(s1)

(

1 − ex4(s1)

K

)

= μ1 ≤ μ∗
1,

with, ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1(t1) ≤ ln b∗
μ1∗ + x4(t4),

x2(t2) ≤ ln
b∗F∗

E
μ1∗μ2∗ + x4(t4),

x3(t3) ≤ ln
b∗F∗

E F
∗
L

μ1∗μ2∗μ3∗ + x4(t4),

for x4(t4) < lnK . Similarly,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x4(s4) ≥ x1(s1) + ln FE∗FL∗FP∗
μ∗
Mμ∗

2μ
∗
3

,

x3(s3) ≥ ln FE∗FL∗
μ∗
2μ

∗
3

+ x1(s1),

x2(s2) ≥ ln FE∗
μ∗
2

+ x1(s1).

Hence, it can be concluded that lnK (1 − 1
R

∗
0
) > x4(s4) > lnK (1 − 1

R0∗ ). Thus,

R0∗ ≥ 1. Furthermore, define � = {(x1, x2, x3, x4)tr ∈ Y : ‖(x1, x2, x3, x4)‖ ≤ m}.
Then, it can be seen that � is an open, bounded set in Y (this satisfies the first two
requirements of Lemma 4.3).

In order to prove the third condition of Lemma 4.3, we construct a homotopy family
(Bartle 1995)

Ψ (x, k) = fk,

for all fk =
(
b̃ex4−x1

(
1 − ex4

K

)
− μ̃1, F̃Eex1−x2 − μ̃2, F̃Lex2−x3 − μ̃3, F̃Pσex3−x4

−μ̃M ))tr , and h̃ = (1 − k)h + kh(t) with k ∈ [0, 1] is a parameter. It can be seen
that for x ∈ ∂� ∩ N1, we have Ψ (x, k) �= 0. Let J be the identity mapping. Thus, it
follows from the property of coincidence degree theory (Bartle 1995) that

deg(J Q2N2x;� ∩ KerN1; (0, 0, 0, 0)tr )

= deg(Ψ (x, 1)tr ;� ∩ KerN1; (0, 0, 0, 0)tr ),

= deg(Ψ (x, 0)tr ;� ∩ KerN1; (0, 0, 0, 0)tr ),

= sign [det A] �= 0,
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where,

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−bex4−x1(1 − ex4
K ) 0 0 b(ex4−x1(1 − ex4

K ) − e2x4−x1

K )

FEex1−x2 −FEex1−x2 0 0

0 FLex2−x3 −FLex2−x3 0

0 0 FPex3−x4 −FPex3−x4

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

In summary, it has been shown that � satisfies all the assumptions in Lemma 4.3.
Hence, the non-autonomous model (2.1), with B(M) = BL , has at least one positive
periodic solution when R0∗ ≥ 1.

Appendix C: Matlab code for generating Figs. 8 and 9

surf(TT,RR,Y);
for j=1:365*5;
T=TT(j); R=RR(j);
t0 =j; tf =j+1;
tx=t0:tf;
initx =[x1(end) x2(end) x3(end) x4(end)];
[Tx,X] = ode45(@(t,x) stateEq(t,x),tx, initx);
x1=X(:,1); x2=X(:,2); x3=X(:,3); x4=X(:,4);
Y(j)=x4(end);
end;
t=1:365;
t=1:365*2;
surf(TT,RR,Y);
function dx = stateEq(t,x)
global T R c1 c2 c3 c4 c5 c6 c7 c8 d1 d2
d3 d b1 FE1 FL1 FP1 a1 a2 a3
a4 T1 T2 T3 T4 T5 T6 T7 T8 b segma
mu muL muE muP FL FE FP mu1 mu2 mu3 K
b=b1*exp(-a1*(T-T1)ˆ2)*(1+s1)*exp(-r1*(R-R1)ˆ2)

/(s1+exp(-r1*(R-R1)ˆ2));
FE=FE1*exp(-a2*(T-T2)ˆ2)*(1+s2)*exp(-r2*(R-R2)ˆ2)

/(s2+exp(-r1*(R-R2)ˆ2));
FL=FL1*exp(-a3*(T-T3)ˆ2)*(1+s3)*exp(-r3*(R-R3)ˆ2)

/(s3+exp(-r3*(R-R3)ˆ2));
FP=FP1*exp(-a4*(T-T4)ˆ2)*(1+s4)*exp(-r4*(R-R4)ˆ2)

/(s1+exp(-r4*(R-R4)ˆ2));
mu=(c1*(T-T5)ˆ2+d1)*(1+c5*R/(1+R));
muE=(c2*(T-T6)ˆ2+d2)*(1+c6*R/(1+R));
muL=(c3*(T-T7)ˆ2+d3)*(1+c7*R/(1+R));
muP=(c4*(T-T8)ˆ2+d3)*(1+c8*R/(1+R));
dx = zeros(4,1);
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dx(1) = b*B-(muE+FE)*x(1);
dx(2) = FE*x(1)-(muL+FL+\delta*x(2))*x(2);
dx(3) =FL*x(2)- (muP+FP)*x(3) ;
dx(4) = FP*segma*x(3) - (mu)*x(4);
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