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Abstract Chemotaxis, the microorganisms autonomous motility along or against the
concentration gradients of a chemical species, is an important, yet often neglected
factor controlling the transport of bacteria through saturated porous media. For exam-
ple, chemotactic bacteria could enhance bioremediation by directing their ownmotion
to residual contaminants trapped in low hydraulic conductive zones of contaminated
aquifers. The aim of the present work is to develop an accurate numerical scheme
to model chemotaxis in saturated porous media and other advective dominating
flow systems. We propose to model chemotaxis by using a new class of meshless
Lagrangian particle methods we recently developed for applications in fluid mechan-
ics. The method is based on the Smooth Particle Hydrodynamics (SPH) formulation
of (BenMoussa et al., Int Ser Numer Math, 13(1):29–62, 2006), combined with a new
Weighted Essentially Non-Oscillatory (WENO) reconstruction technique on moving
point clouds in multiple space dimensions. The purpose of this new numerical scheme
is to fully exploit the advantages of SPH among traditional mesh-based and mesh-free
schemes and to overcome drawbacks related to the use of standard SPH for modeling
chemotaxis in porous media. First, we test the new scheme against analytical refer-
ence solutions. Then, under the assumption of complete mixing at the Darcy scale,
we perform two-dimensional conservative solute transport simulations under steady-
state flow conditions, to show the capability of the proposed new scheme to model
chemotaxis.

B Diego Avesani
diego.avesani@unitn.it

1 Department of Civil, Environmental and Mechanical Engineering, University of Trento,
via Mesiano 77, 38123 Trento, Italy

2 Chair of Hydrology and River Basin Management, Technical University of Munich, Arcisstr. 21,
80333 München, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-016-1049-6&domain=pdf
http://orcid.org/0000-0002-0136-5672


1038 D. Avesani et al.

Keywords Smooth particle hydrodynamics (SPH) · Chemotaxis · Meshfree WENO ·
Lagrangian particle methods

Mathematics Subject Classification 76-xx Fluid mechanics · 76M25 Other
numerical methods · 76Zxx Biological fluid mechanics · 76Z99 None of the above,
but in this section · 92C17 Cell movement (chemotaxis, etc.)

1 Introduction

Chemotaxis is the ability of biological cells and organisms to move along or against
chemical concentration gradients [see for example Alt 1980; Erban and Othmer 2004;
Hilpert 2005; Hillen and Painter 2009; Long and Ford 2009; Pedit et al. 2002], and it
can be observed in a wide range of biological processes occurring at a multiplicity of
spatial scales. A comprehensive review about chemotactic processes can be found in
the book by Eisenbach and Lengeler (2004).

Only recently, bacterial chemotaxis in porous media has received attention. Olson
(2004) observed for the first time the chemotactic behavior of bacteria in a packed
column after applying magnetic resonance imaging. Afterwards, enhancement in bac-
teria migration due to chemotaxis has been observed in column experiments (Long
and Ford 2009; Wang and Ford 2009). For example, Wang and Ford (2009) inves-
tigated bacteria migration toward contaminants in porous media under steady flow
conditions, while Wang and Ford (2010) quantified transverse (with respect to the
mean flow direction) bacteria migration. In another experimental work, Long and
Ford (2009) observed, and quantified, the enhancement of transverse dispersion due
to the chemotactic behavior of bacteria with respect to a non reactive case. These
experimental studies show that bacteria can reach low hydraulic permeability areas,
where the contaminants are trapped, thereby including this mechanism is important in
modeling studies of bioremediation and natural attenuation of contaminated aquifers.

From the modeling point of view, Phillips et al. (1994) developed a random walk
scheme to analyze swimming of bacteria as chemotactic response to local concen-
tration gradients and Kirk and Ginn (2001) studied chemotaxis at the pore scale
combining Monte Carlo simulations with cellular dynamics and colloid filtration the-
ories. In successive works, Hilpert (2005) and Long and Hilpert (2008) simulated
bacteria chemotaxis in bulk liquids by means of Lattice-Bolzmann to explore contam-
inant degradation by chemotactic bacteria and the formation ofmoving bacterial bands,
while Valdés-Parada et al. (2009) derived an effective theoretical model to describe
chemotaxis coupled to advection and diffusion in porous media at the Darcy’s scale.
Finally, Porter et al. (2011) developed a multiscale model of chemotaxis in porous
media where transport of bacteria is expressed in terms of effective medium parame-
ters. Both experimental and theoretical works suggest that chemotaxis is an important
controlling factor of microbial dynamics in porous media. However, flow fields in
porous media display a complex topology and are highly variable in terms of magni-
tude and direction, leading to the occurrence of nonlinear effects on bacteria motility.
This complexity limited so far our understanding and modeling capability of chemo-
taxis in porous media. In order to properly model transport of microorganisms and
their response to the attractants, numerical schemes should accurately reproduce low
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An alternative smooth particle hydrodynamics… 1039

concentrations and concentration gradients. In particular, the correct computation of
concentration gradients which drive chemotaxis represents a challenge for numerical
schemes.

A number of numerical models for chemotaxis in porous media are based on Finite
Elements (FE) and Finite Volume (FV) schemes, [see for example Blackburn et al.
1997; Bosma et al. 1988; Dillon and Fauci 2000; Nakaguchi and Yagi 2001; Tyson
et al. 2000; Zhu and Murray 1995; Ward et al. 2011; Widman et al. 1997]. These well
established numerical schemes suffer of artificial numerical diffusion, leading to sig-
nificant errors in the reproduction of solute gradients, thereby hampering their ability
to correctly reproduce the movement of chemotactic bacteria. Innovative numerical
schemes, such as Smooth Particle Hydrodynamics (SPH) which minimizes numerical
diffusion also for advection dominating flow systems (Boso et al. 2013), are therefore
beneficial for studying chemotaxis in porous media at all relevant scales.

SPH is ameshless numerical schemewhere the continuum is discretizedwith a set of
particles carrying solute concentrations (Herrera et al. 2010).Contrary to particle track-
ing, which is based on the assumption that a particle carries a given mass, SPH does
not have a minimum detectable concentration, thereby resulting in a better represen-
tation of low concentrations (Boso et al. 2013; Herrera et al. 2009, 2010). In addition,
diffusion and reactions are computed through mass exchange among neighbouring
particles in a fully meshless setup. These features are very appealing for the study
of chemotaxis in porous media. However, extending the standard SPH to chemotaxis
is not straightforward because bacteria are affected by two velocity fields, advection
and chemotaxis velocity, while the chemo-attractant is affected only by advection.
Furthermore, SPH does not reproduce correctly concentration gradients, particularly
when particles, representing elements of the carrier fluid, are non-uniformly distrib-
uted, as it occurs in heterogeneous velocity fields (Boso et al. 2013; Avesani et al.
2014, 2015). Furthermore, an interpolation scheme should be introduced to compute
the concentration of the chemoattractant at bacteria positions, which is an additional
source of numerical error.

Motivated by these considerations, the primary goal of this paper is to extend a new
class of Smooth Particle Hydrodynamics schemes, hereafter referred as MWSPH,
developed by Avesani et al. (2014, 2015), to model chemotaxis. MWSPH, in fact,
enjoys the following advantages with respect to Eulerian schemes: (i) like traditional
streamlines methods, it minimizes artificial numerical diffusion and therefore it is well
suited to simulate solute transport in porous media; (ii) it provides a robust mechanism
to incorporate chemotaxis within the SPH scheme; (iii) it accurately computes con-
centration gradients, regardless of the spatial distribution of the particles. The main
contribution of this paper is in deriving a new formulation of MWSPH for model-
ing chemotaxis and demonstrating how it can be used to obtain accurate solutions of
the transport equation for chemotactic agents. The numerical scheme is not limited
to transport in porous media and can be applied to all cases in which transport of
the chemotactic agent is controlled by the advection diffusion equation generalized
to include chemotactic behavior. We call this numerical method MWSPH because it
combines Moving-Least-Squares (MLS) method of reconstructing continuous func-
tions from known points values with WENO (Weighted Essentially Non-Oscillatory)
and SPH schemes (Avesani et al. 2014; Shu 1998).
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1040 D. Avesani et al.

The paper is organized as follows: Sect. 2 briefly presents themathematicalmodel of
chemotaxis in porous media. Section 3, presents the standard SPH describing its limits
inmodeling transport with chemotaxis. Section 4 describes howMWSPH incorporates
chemotaxis within the SPH framework. Section 5 shows the performance of our new
SPH scheme against two analytical solutions and presents a numerical experiment to
illustrate its capability to accurately model chemotaxis. Finally, a general discussion
and some concluding remarks close the paper in Sect. 6.

2 Mathematical modeling

The governing equations of transport in porous media of a passive, i.e. non-reactive,
attractant and a chemotactic agent are (Valdés-Parada et al. 2009):

∂ca
∂t

+ ∇ · (
v f ca

) = ∇ · (Da∇ca) , (1)

for the attractant and

∂cb
∂t

+ ∇ · (
v f cb

) + ∇ · (vccb) = ∇ · (Db∇cb) , (2)

for the chemotactic agent. In Eqs. (1)–(2) v f is the fluid velocity, vc is the chemotactic
velocity, Da is the diffusion coefficient of the attractant and Db is the diffusion coef-
ficient sum of the passive and active, i.e. chemotactic, diffusions. The concentrations
of the attractant and the chemotactic agent are indicated with ca and cb, respectively.
Among the available formulations of vc, which represents the motility of the bacteria
triggered by the stimulus of the chemo-attractant (e.g. Keller and Segel 1971a, b; Odell
and Keller 1976; Chen et al. 1998; Ford and Harvey 2007), we selected the following
expression suggested by Chen et al. (1998) and Rivero et al. (1989):

vc = 2

3
vs tanh

(
χ0

2vs

kd‖∇ca‖
(kd + ca)2

) ∇ca
‖∇ca‖; (3)

where vs is the mean bacteria swimming speed, χ0 is the chemotactic sensitivity
coefficient and kd is the dissociation constant, representing the ability of the bacteria
to sense gradients of the attractant in the surrounding (Segel et al. 1977). In order to
apply the SPH formalism Eqs. (1)–(2) are recast in the following Lagrangian form:

dca
dt

= ∇ · (Da∇ca) ; (4a)

dr
dt

= v f ; (4b)
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for the attractant, and

dcb
dt

= ∇ · (Db∇cb) ; (5a)

dr
dt

= v f + vc; (5b)

for the bacteria. Here
d

dt
denotes the total time derivative and r is the position of the

infinitesimal control volume. Equations (4a)–(4b) and (5a)–(5b) represent transport at
the pore scale, and should be upscaled to the Darcy’s scale to obtain amodel applicable
to field-scale simulations. The following Darcy scale equations have been obtained
by Valdés-Parada et al. (2009), by applying the volume averaging method to Eqs.
(4a)–(4b) and (5a)–(5b):

dCa

dt
= ∇ · (Da · ∇Ca) ; (6a)

dr
dt

= V f ; (6b)

for the attractant, and

dCb

dt
= ∇ · (Db · ∇Cb) ; (7a)

dr
dt

= V f + Vc; (7b)

for the bacteria, respectively. In Eqs. (6a), (6b), (7a) and (7b) V f is fluid velocity at
the Darcy’s scale, while Ca and Cb are the Darcy scale concentrations of attractant
and bacteria, respectively. All the other parameters are the upscaled versions, at the
Darcy’s scale, of the corresponding quantities defined at the pore scale. Vc denotes
the chemotactic velocity at Darcy’ scale, while Da and Db are the dispersion tensors
for the attractant and the bacteria, both assuming the following form (Bear 1979):

Ds = (αTs |Vs | + Dm,s)I + (αL ,s − αT,s)
Vs · V′

s

|Vs | ; (8)

with s = a and b for the attractant and the bacteria, respectively. In Eq. (8) αL ,s and
αT,s indicate the longitudinal and transverse dispersivity, respectively. Dm,a = Da

is the attractant molecular diffusion and Dm,b = Db is the random bacteria mobility
coefficient. In addition,Vs = V f for attractant andVs = V f +Vc for bacteria, andV′

s
denotes the transpose of the vectorVs . Chemoattractant and bacteria are characterized
by different dispersivity tensors and move at a different velocity, as an effect of the
autonomous motility of the bacteria.

In most applications, the pore-scale chemotactic velocity (3) is not upscaled at the
Darcy’s scale and the scale effect is introduced indirectly by adjusting the parameters
through a fitting procedure. For example, Long and Ford (2009) increased arbitrary by
two orders of magnitude the sensitive coefficient χ0 in Eq. (3) in order to reproduce
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the transverse migration of bacteria observed in their Darcy’s scale experiments. Only
recently, Valdés-Parada et al. (2009) and Porter et al. (2011) derived the following
effective chemotaxis velocity Vc at Darcy’s scale by means of volume averaging of
the constitutive equations (Whitaker 1998):

Vc = 2

3
vs tanh

(
χ0

2vs

kd‖∇Ca‖
(kd + Ca)

2

) ∇Ca

‖∇Ca‖ · Da

Da
. (9)

The upscaling procedure did not change the nature of the constitutive equations,
which are parabolic at both scales, (see the Advection Diffusion Equations (4)–(5)
and (6)–(7) written at the pore and Darcy’s scales, respectively) (Evans 2010). Notice
that at the Darcy’s scale the effect of small scale velocity fluctuations is represented
by an enhanced diffusion tensor resulting from the closure of the pore-scale transport
equations (see e.g. Dagan 1989), which is indicated as hydrodynamic dispersion in
order to distinguish it from molecular diffusion.

3 SPH formulation

The standard SPH formulation of the Advection-Diffusion-Equation (ADE) of the
attractant at Darcy’s scale, written in the Lagrangian form of Eqs. (6a) and (6b), is the
following (Herrera et al. 2009; Español and Revenga 2003):

dCa,i

dt
= 1

2

N∑

j

m j

ρi j
(Ca,i − Ca, j )Ds(ri , r j ) · ∇iWi j ; (10)

dri
dt

= V f,i ; (11)

with

Da(ri , r j ) =
υ∑

l=1

υ∑

k=1

(
Di
a,lk + D j

a,lk

) [
4
(r j − ri )l(r j − ri )k

|r j − ri |2
]

− δlk, (12)

where Ca,i and Ca, j are the attractant concentrations of the particles i and j located
at ri and r j , respectively, mi is the mass of the i−th particle, ρi is its density, υ is
the space dimensionality, in this case υ = 2, V f,i is the fluid velocity of the i − th
particle and ρi j = (ρi + ρ j )/2. In addition, Da,lk indicates the component l, k of the
dispersion tensorDa and δi j is the Kronecker’s delta (Avesani et al. 2015). The density
ρi evolves in time depending on the relative positions of the particles:

ρi =
N∑

j=1

m jWi j . (13)

The term Wi j is the interpolating kernel function centered in ri with respect to the
location r j . As suggested by Ferrari et al. (2009), we use the cubic B-spline, which is
defined as follows:

123



An alternative smooth particle hydrodynamics… 1043

Wi j = C
hυ
i j

⎧
⎪⎨

⎪⎩

1/3 − q2i j + q3i j/2 if 0 ≤ qi j < 1;
(2 − qi j )2 + q3i j if 1 ≤ qi j ≤ 2;
0 if qi j > 2;

(14)

where qi j = |r j − ri |/hi j and C is the normalization constant so that
∫
Wi j = 1. The

term hi j is the smoothing length, which is locally variable:

hi j = 1

2

(
hi + h j

)
, with hi = σ υ

√
m j

ρ j
. (15)

Similarly, in the SPH formalism, the Eqs. (7a) and (7b) for bacteria including
chemotaxis read as follows:

dCb,i

dt
= 1

2

N∑

j

m j

ρi j
(Cb,i − Cb, j )Db(ri , r j ) · ∇iWi j , (16)

and
dri
dt

= V f,i + Vc,i , (17)

where

Db(ri , r j ) =
υ∑

l=1

υ∑

k=1

(
Di
b,lk + D j

b,lk

) [
4
(r j − ri )l(r j − ri )k

|r j − ri |2
]

− δlk . (18)

In this case, Db,lk are the component l, k of the bacterial dispersion tensorDb andVc,i

is chemotactic velocity of the i − th particle.
In the standard SPH formulation, the particles represent volumes of fluid with con-

centration that varies in time as the particles move according to the flow field. While
the attractant is influenced by the fluid velocity field, the bacteria feel the superposition
of the fluid and chemotactic velocities, the latter is controlled by the attractant concen-
tration gradient. To address transport of both bacteria and attractant with the classical
SPH scheme, two sets of particles should be used, which occupy different positions
within the computational domain because tracked with different velocity fields. As
a consequence, an interpolation scheme should be devised in order to transfer the
information on attractant concentration from the attractant particles to the positions
occupied by the bacteria particles. This operation inevitably introduces smoothing
in the attractant concentration distribution, thereby introducing unwanted errors in
concentration gradient, and consequently in the computed chemotactic velocity. In
addition, the bacteria particles tend to cluster where the concentration of the attractant
is larger (moving towards the attractant concentration gradient), leading to an uneven
distribution of the bacteria, which has been shown to be a source of large errors when
transport is modeled by using the standard SPH (Boso et al. 2013; Avesani et al. 2015;
Herrera et al. 2009). Furthermore, clustering of bacteria particles generates zones in
the domain with a low particle density; when the distance between the particles is of
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the same order, or larger, than the smoothing length, concentration is poorly estimated,
such as its gradient (Herrera et al. 2009).

Consequently, extension of standard SPH to model both attractant and bacterial
concentrations is not straightforward and error prone. Furthermore, a set of particles
should be used for each bacteria species that is modeled.

4 The new SPH scheme

In this section, we extend the MWSPH scheme, developed by Avesani et al. (2014,
2015), to include chemotaxis.MWSPH,which is an evolution of themethod developed
by Vila (1999) and Ben Moussa et al. (2006), uses a high order Riemann solver to
evaluate numerical fluxes between interacting particles (Avesani et al. 2014). We take
advantage of the fact that in SPH the particle represents a small volume of fluid to
envision a new meshless scheme. The key idea is to develop a meshless method in
which a single set of particles carry the information of both attractant and bacterial
concentrations.

Figure 1 shows a sketch explaining this new scheme: particles move according to
the flow field carrying both bacterial and attractant concentrations while exchanging
mass due to diffusion and chemotaxis. These fluxes are estimated by using a high-order
polynomial reconstruction of concentrations in a full meshfree scheme. The diffusive
and chemotactic fluxes are evaluated at the midpoint between two interacting particles
using a Riemann solver. Notice that, once the concentration of the attractant and its
gradient have been estimated at the mid point of the segment connecting the two
particles, the chemotactic velocity can be computed at the same position by means of
Eq. (9). The high order reconstruction polynomials together with the Riemann solver
allow to capture the sharp bacterial concentration front caused by chemotactic velocity.

According to this new scheme, the general advection-diffusion equation at Darcy’s
scale, including chemotaxis, can be rewritten as follows:

d

dt
r = V f , (19)

and
d

dt
Q = ∇ (F(Q,∇Q)) , (20)

where Q = (Ca,Cb) is the vector of the attractant and bacterial concentrations and
F(Q,∇Q) is the nonlinear flux vector, which is given by:

F(Q,∇Q) =
[ −Da · ∇Ca

−Db · ∇Cb + VcCb

]
. (21)

The newMWSPHscheme, including chemotaxis, assumes then the following form:

d (VQ)i

dt
= −

N∑

j=1

ViVj2Gi j · ∇Wi j , (22)
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i
jrij

i jrij

Qi(ξ, η)
Qj(ξ, η)

Q−
ij

∇Q−
ij

v+−
c,ij

Q+
ij

∇Q+
ij

(a)

(b) (c)

Fig. 1 Meshless MWSPH scheme extended to chemotaxis. Particles move along streamlines of the flow
field carrying both bacterial and attractant concentrations. Each particle exchanges mass with other particles
contained into its kernel support to model both for dispersion and chemotaxis (advective) fluxes. c A one-
dimensional section through the reconstruction polynomials along the line connecting particles Pi and P j

as well states Q−
i j ,∇Q−

i j and Q+
i j ,∇Q+

i j extrapolated to the midpoint and chemotactic velocity computed
form the extrapolated states

dVi
dt

=
N∑

j=1

(
V̄i j − V f,i

) · ∇Wi j , (23)

dri
dt

= V f,i , (24)
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whereGi j is the numerical flux tensor, Vi is the particle volume, and v̄i j is the velocity
at the interface between the two interacting particles Pi and P j . Equation (23) takes
into account the deformation of the fluid element caused by the spatially non-uniform
velocity field (Ferrari et al. 2009). Following Avesani et al. (2014), the numerical flux
Gi j is approximated by the Rusanov-type flux (Dumbser et al. 2008; Dumbser 2010)
as

Gi j = 1

2

(
Hi

(
Q−

i j ,∇Q−
i j , V̄ f,i j

)
+ H j

(
Q+

i j ,∇Q+
i j , V̄ f,i j

))
−Θ

(
Q+

i j − Q−
i j

)
⊗ni j ,

(25)
with

V̄ f,i j = 1

2

(
V−
i + V+

j

)
; (26)

where ni j the unitary vector of the distance between particles Pi and P j and H the
flux tensor in the reference frame moving with velocity V f :

H
(
Q,∇Q, v f

) = F (Q,∇Q) − Q ⊗ V f ; (27)

where the chemotactic velocity is computed from the extrapolated left and right states,
indicated with the superscript “−” and “+”, respectively. In Eq. (25) the term Θ

represents the dissipation matrix (Hidalgo and Dumbser 2011):

Θ =
(

λi j − 1

‖r‖λvs ,i j

)
I (28)

where λi j is themaximum absolute eigenvalue of the Jacobianmatrix of the convective
flux evaluated with respect to Q, while λvs ,i j is the maximum absolute eigenvalue of
the Jacobian matrix of the diffusive flux evaluated with respect to ∇Q. λi j and λvs ,i j

are evaluated along ni j in a moving frame. In the first case λi j reads as:

λi j = max(|Λ−
i |, |Λ+

j |), (29)

with Λ being the diagonal matrix of eigenvalues of An(Q, v) = ∂H/∂Q · ni j . In the
second λvs ,i j is defined as:

λvs ,i j = max(|Λ−
vs ,i

|, |Λ+
vs , j

|), (30)

with Λvs being the diagonal matrix of eigenvalues of Bn(∇Q, v) = ∂H/∂(∇Q) · ni j .
Furthermore,Q−

i j andQ
+
i j are the left and right states at the midpoint of the two inter-

acting particles obtained by the high order MLS-WENO reconstruction polynomials
Qi (r) for particle Pi and Q j (r) for particle P j , both of order M . Additional details
on the MLS-WENO reconstruction scheme are reported in the work by Avesani et al.
(2014).

For sake of clarity, in the present work we have limited ourself to one attractant and
one bacteria species. However, the effort to include more bacteria species is limited
because all the information is contained in the same set of particles. This is an important
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advantage with respect to the standard SPH, which, as explained before, requires a set
of particles for each bacterial species.

5 Test cases

In this section, we evaluate the accuracy of the proposed new numerical scheme by
using a few test cases. In all test cases time step has been computed as follows:

dt = CFL
hmin
i j

|λmax
i j | + 2|λmax

vs ,i j
|/hmin

i j

, (31)

whereCFL is theCourant number according to theCourant-Friedrichs-Lewy condition
(Courant et al. 1928). Following Ferrari et al. (2009) and Avesani et al. (2014), Eqs.
(22) and (23) are solved by using an explicit third order Runge-Kutta scheme in time,
which ensures linear stability of the numerical solution, while Eq. (24) is solved by
using a standard particle tracking scheme.

5.1 One dimensional test case

Let us consider transport at the pore scale of a chemoattractant and the associated
bacteria population in a one-dimensional domain and in the absence of fluid advection,
as described by the following set of equations:

∂ca
∂t

= Da
∂2ca
∂x2

+ rs; (32)

for the chemoattractant, and

∂cb
∂t

+ ∂

∂x
(vccb) = Db

∂2cb
∂x2

− Yrs; (33)

for the bacteria. In the Eq. (33), Y is the bacterial growth factor and rs the reaction rate
regulating the consumption of the chemical attractant, which is given by the following
Monod type expression (Monod 1949):

rs = −q
ca

ca + ks
cb, (34)

where ks is the half saturation constant and q is the maximum reaction rate between
the bacteria and the attractant. The chemotactic velocity is related linearly to the
concentration gradient of the attractant through the following expression:

vc = χ0kd
3(kd + ca)2

∂ca
∂x

. (35)
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We selected this equation to parametrize chemotactic velocity because it allows
to solve analytically the Eqs. (32) and (33) and exerts a similar effect of Eq. (3) on
bacteria motility. An in depth discussion of this model is given by Alt (1980), Erban
and Othmer (2004) and Ford and Harvey (2007).

Long and Hilpert (2007) showed that the model described by the Eqs. (32) and (33),
with the following boundary conditions:

∂ca
∂x

=
{
0 for x = −∞;
0 for x = +∞; (36a)

ca =
{
0 for x = −∞;
ca0 for x = +∞; (36b)

∂cb
∂x

=
{
0 for x = −∞;
0 for x = +∞; (37a)

cb =
{
cb0 for x = −∞;
0 for x = +∞.

(37b)

Under the additional assumptions that the bacteria population remains stable (i.e.
Y = 0), while the attractant is consumed at the rate rs , given by Eq. (34) by bacteria
moving with the chemotactic velocity (35), Eqs. (32) and (33) admit the following
traveling wave analytical solutions for the concentration of the bacteria

cb
cb0

=
(
ca
ca0

)Υ

exp

(
− c

Db
(x − ct)

)
; (38)

and the attractant

F
(
ca
ca0

)
− F (1) = cb0qDb

c2ca0
exp

(
− c

Db
(x − ct)

)
; (39)

where c is the celerity of propagation of the traveling waves (see below), Υ = Λ/Db

is a constant of integration where Λ is a constant with dimensions [L2/T ]. In this one
dimensional test case we set Υ = 6, according to Long and Hilpert (2007). Finally,
F(χ) is a function defined as follows

F(χ) = χ1−Υ

Υ − 1
+ ks

ca0

χ−Υ

Υ
. (40)

The Eqs. (38) and (39) describe two concentration bands traveling at a constant
speed c, given by:

c =
√
cb0qDb

Υ
(41)
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Table 1 The parameters used in one dimensional Long and Hilpert test case

Parameter Symbol Value Unit

Initial bacterial concentration cb0 4.9e + 9 cfu/l

Initial attractant concentration ca0 2.83e − 6 g/l

Attractant diffusion coefficient Da 7.5e − 10 m2/s

Bacteria diffusion coefficient Db 3.2e − 11 m2/s

Maximum rate of attractant consumption q 7.9ee − 16 g/cfu/s

Yield coefficient Y 0 g/cfu/s

Dissociation constant kd 2.1e − 3 g/l

Half saturation constant ks 1.3e − 4 g/l

Chemotactic sensitivity coefficient χ0 1.8e − 9 m2/s

Bacteria mean swimming velocity vs 48e − 6 m/s
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Fig. 2 Numerical solution for one dimensional Long andHilpert test case at a few time step forCLF = 0.8
σ = 2 and M = 2. a T = 0. b T = 2.88 · 10−5. c T = 6.72 · 10−5. d T = 9.60 · 10−5

The terms ca0 and cb0 are the maximum initial concentrations for attractant and
bacteria, respectively. The parameters used in the numerical experiment are reported
in the Table 1 and are reproduced form Pedit et al. (2002). The reactive term rs is
solved with an implicit Newton-Raphson scheme (Press et al. 1992).
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According toLong andHilpert (2007), Eqs. (38)–(39) represent bacterial and attrac-
tant concentration waves that travel without deformation with a constant speed.

Figure 2a–d show both bacterial and attractant concentrations at four times since
the injection of bacteria, computed using 400 particles. The numerical solutions
obtained with MWSPH reproduce accurately the analytical solutions (38) and (39)
for both bacterial and attractant concentrations, at all the explored times. Notice how
MWSPH is able to accurately reproduce the sharp front of bacterial concentration.
At the dimensionless time T = 9.60 · 10−5, the errors of the numerical solutions

E =
√∑N

j=1 e
2
j/N , where e j is the difference between the numerical and the analyti-

cal solutions at the j−th particle location, are 6.92 · 10−6 for bacteria and 4.64 · 10−5

for attractant. The dimensionless time T is defined as T = t vs/ l0,where l0 is a suitable
characteristic length. Our numerical solutions preserve the initial shape of the travel-
ing waves of both attractant and bacterial concentrations at all the explored times, as
required by the analytical solutions and reproduce accurately the maximum concen-
trations. In particular, the difference between the maximum bacterial concentration
computed with MWSPH and obtained from the analytical solution varies between
0.22 and 0.02% at the four times shown in Fig. 2a–d.

5.2 Interplay between chemotaxis and diffusion

In this test case we consider an instantaneous release of bacteria and attractant in a
homogeneous flow field at Darcy’s scale with velocity v0 tilted of 30o with respect to
the x-axis, where the initial attractant and bacterial concentrations are given by:

Ci (x, y) = mi

2π w2 exp

(−(x − xi,0)2 − (y − yi,0)2

2w2

)
; (42)

where mi is the released mass per unit of thickness of attractant (i = a) and bac-
teria (i = b). The initial maximum concentration of attractant and bacteria occur at
different positions (x, y) = (xi,0, yi,0), i = a, b and assume the following values:
Ca,0 = ma/(2πw2) and Cb,0 = mb/(2πw2) for attractant and bacteria, respec-
tively. The evolution in time of the concentration of both attractant and bacteria are
obtained by applying MWSPH to the constitutive Eqs. (4a)–(4b) and (5a)–(5b), as
discussed in Sect. 4, and with the parameters reported in Table 2. The dispersion ten-
sors for attractant and bacteria are obtained by substituting the dispersivities shown
in Table 2 into the expression (8). Transverse dispersivity αs,T is set to 0.004 cm for
attractant (i.e., s = a) and 0.0008 cm for bacteria (i.e., s = b), according to Long
and Ford (2009)’s experiment, and flow velocity, v0, is of the same order of magni-
tude of that used in laboratory experiments [see for examples Wang and Ford 2009,
2010].

The purpose of this numerical test is twofold: on one hand we test the numerical
scheme in a two-dimensional setup with an anisotropic dispersion tensor, on the other,
we study the effects of chemotaxis on bacterial dispersion. From the numerical point of
view, an anisotropic dispersion tensor [see Eq. (8)], may lead to spurious oscillations.
This is a known problem affecting the standard SPH when applied to the Advection-
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Table 2 The parameters used in the two-dimensional test case

Symbol Value Unit

Attractant parameters

Attractant maximum initial concentration Ca0 0.3e-4 mg/l

Control of the mass release w 0.04 cm

Attractant initial plume maximum position [xa,0, ya,0] [0.05, 0] cm

Attractant longitudinal dispersivity αL ,a 0.04 cm

Attractant transversal dispersivity αT,a 0.004 cm

Bacteria parameters

Bacteria maximum initial concentration Cb/Cb0 1

Control of the mass release w 0.04 cm

Bacteria initial plume maximum position [xb,0, yb,0] [−0.05, 0] cm

Bacteria longitudinal dispersivity αL ,b 0.008 cm

Bacteria transversal dispersivity αT,b 0.0008 cm

Flow field parameters

Flow field velocity v0 1e-3 cm/s

Flow field orientation β 30◦

Diffusion-Equation for a non reactive solute (Herrera and Beckie 2012), which is
significantly alleviated by the MWSPH scheme (Avesani et al. 2015). In this test case
we investigate whether MWSPH is able to reproduce accurately the distribution of
bacterial concentration, which is sensitive to the accuracy with which the attractant
concentration gradient is computed. Spurious, though of small amplitude, oscillations
of the attractant concentration may lead to large oscillations of the chemotactic veloc-
ity with a negative feedback on the distribution of bacterial concentration. Figure 3
illustrates the results of the simulations at the dimensionless time T = tv0/w = 3.76.
The numerical solution is free of spurious oscillations, as Fig. 3a, c, d clearly show.
Furthermore, the chemotactic velocity field (Fig. 3b) is congruent with the distribu-
tion of the attractant shown in Fig. 3a. Figure 3c shows the bacterial concentration
at the final simulation time in case the chemotaxis is not taken into account (i.e., for
Vc = 0), while the contribution of the chemotaxis to bacterial transport is shown in
Fig. 3c, d. Including chemotaxis leads to a maximum bacterial concentration which is
16% higher than in the absence of chemotaxis. Furthermore, the numerical solution
captures well the translation of the center of mass of the bacteria towards the center
of mass of the attractant, which does not occur in case of non-chemotactic bacteria.
Indeed, bacteria moves with a different chemotatic speed according to the attractant
gradient and attractant concentration, which values change in space, as shown Fig. 3b,
a. Non-uniformity of the chemotactic velocity leads to bacteria plume deformation and
a different trajectory of the bacteria center of mass with respect to attractant center of
mass.

These characteristics of the bacteria plume are better illustrated in Fig. 4, which
shows bacterial concentration along a line parallel to the x axis and passing through
the center of the plume at several time-steps. The difference in the bacterial concen-
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Fig. 3 Numeral results of the diffusion test case at dimensionless time T = 3.76 and for CFL = 0.9,
σ = 3, σmls = 4. a The attractant concentration, b the chemotactic velocity field, c, d the bacterial con-
centration with and without chemotaxis, respectively. a Attractant. b Chemotaxis velocity field. c Bacteria
with chemotaxis. d Bacteria without chemotaxis
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Fig. 4 Bacteria concentration and snapshots at different time steps at section sec− x both with and without
chemotaxis for the two-dimensional diffusion test case. In all cases CFL = 0.9, σ = 3 and σmls = 4
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tration peak when chemotaxis is turned on is evident and it increases with time as the
chemotactic effect strengths (Fig. 4).

5.3 Effect of chemotaxis in heterogeneous porous media

This numerical experiment is intended to illustrate the interaction between the chemo-
tactic flow field and the advection flow field at Darcy’s scale when they are solved
simultaneously with MWSPH. To simplify the analysis, consumption of the attrac-
tant by bacteria is not considered in this example. Table 3 shows the numerical setup
adopted in the numerical simulations, which complies with the experimental configu-
ration adopted by Wang and Ford (2009). The set up is composed by a circular “rod”
surrounded by amatrix with different hydraulic conductivity. Owing to the radial sym-
metry of the column, we consider a rectangular domain 20 cm long and 5 cm wide
composed by three layers; the hydraulic conductivity of the inner layer is 4.3 times
lower than the hydraulic conductivity of the other two layers. Differently from Wang
and Ford (2009) we assigned to the inner rod a smaller hydraulic conductivity with
respect to the surrounding matrix, such as to mimic the situation typically encountered
locally in contaminated aquifers where the attractant is entrapped in low conductivity
zones. Consequently, the solutions of our exercise cannot be directly compared with
the experimental results of Wang and Ford (2009). A uniform head gradient is applied

Table 3 The parameters for heterogeneous test case

Symbol Value Unit

Attractant parameters

Attractant maximum initial concentration Ca0 0.3e-4 mg/l

Control of attractant mass release lw 0.04 cm

Attractant longitudinal dispersivity αL ,a 0.04 cm

Attractant transversal dispersivity αT,a 0.004 cm

Initial diffusion time for the attractant t i 80 s

Bacteria parameters

Bacteria maximum initial concentration Cb/Cb0 1

Bacteria longitudinal dispersivity αL ,b 0.008 cm

Bacteria transversal dispersivity αT,b 0.0008 cm

Chemotactic response parameter

Bacteria mean swimming velocity vs 4.8e-3 cm/s

Chemotatic receptor constant kd 1.25e-4 mg/l

Chemotatic sensitivity χ0 8.0e-4 cm2/s

Flow field

Internal velocity V1 0.00202 cm/s

External velocity V2 0.0087 cm/s
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Fig. 5 Sketch of the numerical setup for the dual-layer test case, using 30000 particles for CFL = 0.9,
σ = 3 and σmls = 4. a Initial condition attractant and chemotatic velocity field. b Initial condition bacteria

along the layers in the direction x leading to flow velocities of 0.00202 cm/s and
0.0087 cm/s in the inner and outer layers, respectively, in proportion to the imposed
hydraulic conductivity (see Table 3).

The initial attractant concentration is given by:

Ca/Ca0 =
⎧
⎨

⎩

1
2

(
er f c

(
(y−y0)−lw√

4Da t i

)
− er f c

(
(y−y0)+lw√

4Da t i

))
if 1.5 ≤ x < 10;

0 otherwise;
(43)

which represents the distribution of attractant concentration resulting from an instan-
taneous injection at t = 0 of a solute within a strip of width lw with longitudinal axis at
y = y0, evaluated at t = t i and sampled between x = 1.5 and x = 10. Furthermore,
the initial bacterial concentration is set to:

Cb/Cb0 =
{
1 if 2 ≤ x < 3;
0 otherwise.

(44)

The fluid is discretized by using 30,000 particles uniformly distributed within the
domain, each one carrying the information on the concentration of both attractant
and bacteria. The parameters controlling transport of the two species are shown in
Table 3 and Figure 5 shows the initial numerical experiment set-up.

Figure 6a–d show the results of the simulations after 1225 s since the release of
bacteria, corresponding to 150 computational time steps. Figure 6c, d underline the
difference between bacterial transport with or without the contribution of a chemotac-
tic velocity. Chemotaxis leads to the development of two peaks, which cannot develop
in its absence, as shown in Fig. 6c, d. At the final simulation time (1225 s since the
injection of bacteria) the maximum concentration of bacteria is 20 % higher in the
presence of chemotaxis. Correspondingly, the mass of bacteria in the lower perme-
ability layer increases by 12 %. As for the test case presented in Sect. 3, the computed
concentration of both bacteria and attractant are free of spurious oscillations, as can
be seen in Fig. 6a, c, d.
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Fig. 7 Numerical results for the heterogeneous three-layer test case, CFL = 0.9, σ = 3, σmls = 4

In order to better appreciate the movement of bacteria, due to the contribution of
chemotaxis, Fig. 7 shows the concentration of bacteria and attractant, the former both
in the presence and in the absence of chemotaxis, at different times t along the cross
section x = V1 t . The appearance of four peaks in the bacterial concentration is clearly
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seen, as well as the smooth behavior in the absence of chemotaxis. The concentration
values of the twomain peaks increase in time andmove toward center of the inner layer.
These are the so called traveling bacterial bands which have been already observed in
a number of experimental works (Keller and Segel 1971a; Rivero et al. 1989; Wang
and Ford 2009).

6 Conclusion

We presented an alternative formulation of SPH for the numerical solution of transport
of chemotactic bacteria in porous media based on the MWSPH scheme developed by
Avesani et al. (2014, 2015). This new numerical methods overcomes the limitations
of standard SPH, which cannot efficiently (and accurately) handle multiple advective
fields like in the case of chemotaxis. Our new numerical method, uses a single set of
particles and permits to handle any number of bacteria species and attractants. Further-
more, it is accurate in the reproduction of both the concentration and the concentration
gradient of the attractant, thereby leading to an accurate reproduction of bacteriamotil-
ity. The sharp variation of bacterial concentration is adequately reproduced such as the
traveling bands that emerge under particular conditions during chemotactic transport.
Furthermore, our method is stable under Courant-Friedrichs-Lewy conditions and do
not show spurious oscillations in the numerical solutions. In the present study, we lim-
ited ourself to one- and two-dimensional simulations, but themethod is general and can
be applied also to three dimensional problems and to advection-diffusion-chemotaxis
transport with reaction terms.
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