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Abstract We study population persistence in branching tree networks emulating sys-
tems such as river basins, cave systems, organisms on vegetation surfaces, and vascular
networks. Population dynamics are modeled using a reaction–diffusion–advection
equation on a metric graph which provides a continuous, spatially explicit model of
network habitat. A metric graph, in contrast to a standard graph, allows for popula-
tion dynamics to occur within edges rather than just at graph vertices, subsequently
adding a significant level of realism. Within this framework, we stochastically gen-
erate branching tree networks with a variety of geometric features and explore the
effects of network geometry on the persistence of a population which advects toward
a lethal outflow boundary. We identify a metric (CM), the distance from the lethal
outflow point at which half of the habitable volume of the network lies upstream
of, as a promising indicator of population persistence. This metric outperforms other
metrics such as the maximum and minimum distances from the lethal outflow to an
upstream boundary and the total habitable volume of the network. The strength of
CM as a predictor of persistence suggests that it is a proper “system length” for the
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branching networks we examine here that generalizes the concept of habitat length in
the classical linear space models.

Keywords Population dynamics · Branching networks · Reaction–diffusion–
advection · Partial differential equations · (Metric) graph theory · Principal eigenvalue
analysis

Mathematics Subject Classification 05C12 (distance in graphs) · 35K57 (reaction–
diffusion) · 58C40 (spectral theory; eigenvalue problems) · 35K20 (initial-boundary
value problems for second-order parabolic equations) · 35J25 (boundary value
problems for second-order elliptic equations) · 92D40 (ecology)

1 Introduction

Many natural phenomena are studied using graph theory. A major area of inquiry
is how graph structure influences dynamics on the graph. Researchers have identi-
fied numerous geometric indicators which appear to partially explain dynamics on
graphs (e.g., Strogatz 2001; Albert and Barabasi 2002; Barrat et al. 2008). However,
the overwhelming majority of studies have focused on the structure and dynamics
associated to standard graphs, which, in their simplest form, consist of collections
of vertices (“objects,” “nodes,” “patches,”) and edges (“branches,” “links,” “connec-
tions,”) which link some pairs of vertices. While many applications exploit these edge
relations for additional structure, for example, using edge weights and directions, the
edges themselves are rarely considered part of a spatial domain where dynamics occur.

In contrast, many biological systems such as river basins, cave systems, organ-
isms on vegetation surfaces, and vascular networks have a spatial structure which
may be more appropriately modeled by metric graphs, which allow for dynamics to
occur within edges (e.g., Ramirez 2012; Sarhad et al. 2014; Sarhad and Anderson
2015). Unlike standard graphs, metric graphs encode spatially continuous networks
where edges represent actual habitat rather than merely connections among discrete
nodes. Dynamic equations are defined edgewise with edgewise dynamics then “glued”
together by junction conditions. This mathematical formalism is often referred to as
quantum graphs (Berkolaiko and Kuchment 2012; also see citations in Sarhad et al.
2014).

Quantum graph theory has great potential for informing how branching network
structure influences the dynamics of biological systems, a topic that has attracted
extensive theoretical and empirical attention (Altermatt 2013; Brown et al. 2011;
Fausch et al. 2002;Grant et al. 2007;Reynolds andCuddington2012).Recent advances
inmethodology and statistics have improved our ability to represent and analyze data in
the context of branching networks such as rivers (e.g. Peterson andHoef 2010; Peterson
et al. 2013). However, a unified body of theory that can explain and predict emerging
patterns is lacking. Most previous studies have either considered dynamics on a line,
representing individual reaches or branches (e.g., Anderson et al. 2005; Lutscher et al.
2005; Speirs and Gurney 2001) or artificially discretizing an essentially continuous
system to a set of interconnected patches (e.g., Auerbach and Poff 2011; Fagan 2002;
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Goldberg et al. 2010; Muneepeerakul et al. 2007). These previous studies have shown
that dispersal constrained to limited reaches of habitat and/or by network configuration
can influence persistence of populations inhabiting the network domain. Yet, while
these approaches have been fruitful in isolating certain aspects of network geometry
and their effects on ecological outcomes, they possess limitations. The linear approach
limits the scope of results to small spatial scales while the potential shortcomings of
discrete patch representations of continuous space call for alternative methods which
present continuous space networks in a more natural way (Brown et al. 2011; Grant
et al. 2007).

1.1 Aims and outline

While the application of the quantum graph framework to biological problems is in its
beginning stages, it holds great promise for representing realistic continuous spatial
variability in habitat size and quality, dispersal characteristics, and other environmental
and demographic parameters that cannot be represented using discrete patch models.
Previous studies (Sarhad et al. 2014; Sarhad and Anderson 2015) have identified
geometric indicators of population persistence in highly symmetric networks which
can be described using relatively few parameters. However, actual networks such as
rivers or vegetation branches are decidedly not symmetric and can differ greatly in
size and shape. It is unclear how limited insights from previous studies transfer to
contexts with more complex geometries, as geometric indicators relating dynamics to
geometry inmetric graphs are generally lacking. The foremost aimof the current article
is to isolate the effects of geometry on population persistence by identifying metrics
encoding global geometry that are capable of predicting persistence outcomes. Due to
the mathematical complexity and number of geometric parameters incorporated in a
quantum graph model, including novel effects brought about by behavior at junctions
(Sarhad et al. 2014), it is still prudent to introduce a number of simplifications. We
therefore ignorewithin-edge variability aswell as assume that dispersal and population
growth parameters are uniform over the entire network. It is our aim to acquire a
strong basic understanding of the effect of network geometry on persistence that can
be applied to more complex and system-specific models.

Under the simplifications described above, we challenge the ability of metrics to
describe population persistence in stochastically generated networks that vary in topol-
ogy and the distribution of habitable area. Section 3 presents results from two case
studies that impose alternative conditions on relative habitat sizes around a junction.
We define Case 1 in a manner that is consistent with the interpretation of hydrologic
conservation of discharge at junctions in river networks, should a species’ advection
speed coincide with river flow and its habitat comprise the full volume of the network.
Case 2 is more general, allowing for the same flexibility in a species’ advection charac-
teristics, while also allowing for a broad range of species-dependent habitable spaces
within the network. While Case 1 allows for—but is not limited to—a strictly hydro-
logical interpretation, we consider advection speed decoupled from flow and habitable
space decoupled from actual physical space such as vessel size or wetted perimeter
in both Cases 1 and 2. The motivation for this, in the context of advection, is that it
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affords the freedom to represent a bias in direction of a population as the net result
of any environmental forces and species-dependent behavioral characteristics which
may affect the directed component of dispersal. Similarly, a more realistic measure of
habitat is assumed, as most species’ habitable space is strictly less than that afforded
by branch or channel size and can be affected by a species’ characteristics as well as
environmental conditions. While our modeling efforts are initially motivated by river
networks, the assumptions made above aim for generality such that our results can be
applied to a wide range of biological systems.

Our results numerically compare the performance of variousmetrics. One suchmet-
ric, CM, emerges as the strongest predictor of persistence by our numerical analysis.
Further analysis demonstrates that this metric is a proper generalization of the concept
of “system length” in population persistence studies to the branching networks we
consider here. As our primary focus is to isolate the effects of habitat geometry on
persistence, our initial studies use a single fixed combination of dispersal parameters.
However, to verify the robustness of our initial results, we include additional Case 1
and Case 2 studies that feature a broad range of dispersal values; CM continues to
outperform the other metrics in these cases. While measures such as CM have a long
history in hydrology and geomorphology (Rodriguez-Iturbe and Rinaldo 2001), to
our knowledge they have not been previously identified as an indicator of population
persistence in branching networks.

Since the mathematics used here are fairly technical, we refer readers to previous
work and the Appendix for many of the more technical aspects in order to reach a
wide audience. The Appendix (Sect. 5) features a brief description of the mathematics
involved (Sect. 5.1) that includes a concrete example and computation (Sect. 5.3). The
Appendix also features two stochastic studies which provide additional evidence of
robustness of the CM metric as well as offering further intuition into the nature of the
persistence problem in quantum graphs (Sect. 5.2).

2 Model and methods

2.1 Population model

The fundamental component of our on-network population model is a single-species
reaction–diffusion–advection (RDA) equation

∂ue
∂t

= De
∂2ue
∂x2e

− Ve
∂ue
∂xe

+ Fe(ue) (2.1)

which describes the spatial population dynamics in a network segment e (Speirs and
Gurney 2001; Cantrell and Cosner 2003). For the current article we consider e as a
finite interval. The state variable ue(t, xe) is population density (volume) at time t and
position xe in the segment e such as a river reach or a tree branch. Population dispersal
is a combination of diffusion and a directional bias in transport (advection). The
diffusion coefficient De > 0 approximates the scale of random (Brownian) movement
in the segment e, intended to model a composite of redistribution due to turbulence,
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swimming, crawling or other forms of undirected movement. The advection speed in
the segment e, Ve ≥ 0, adds a directed component to population dispersal such as drift
which, in river systems, can differ from current speed due to organism behavior. The
population reaction term, Fe, encodes birth and death processes.

2.2 Persistence criteria

Population persistence is characterized by population growth in the linearized model

∂ue
∂t

= De
∂2ue
∂x2e

− Ve
∂ue
∂xe

+ reue, re = ∂Fe
∂ue

(0)
︸ ︷︷ ︸

linearization of Fe around 0

(2.2)

Persistence occurs if (and only if) a small population ue, with intrinsic growth rate
re > 0, can grow asymptotically in time.

In the current article, we consider only finite habitats and impose boundary con-
ditions at habitat boundaries. Specifically, we adhere to commonly used boundary
conditions: the zero flux condition (organisms do not enter or leave the habitat) at
an upstream boundary b and the lethal condition (organisms die or washout of the
habitat of interest) at a downstream boundary a (Speirs and Gurney 2001; Lutscher
et al. 2005):

ue(t, a) = 0
︸ ︷︷ ︸

lethal

D
∂ue
∂xe

(t, b) = Vue(t, b)
︸ ︷︷ ︸

zero flux

(2.3)

Via a typical separation of time and space variables, the linearized RDA (2.2),
augmented with boundary conditions on a segment e, leads to the following spatial
eigenvalue equation:

D
∂2Ue

∂x2e
− V

∂Ue

∂xe
+ reUe = λUe (2.4)

whereUe = Ue(xe) (see Appendix, Sect. 5.1, for details) and the boundary conditions
are unchanged except for the omission of the time variable t . A substitutionΛ = re−λ

is useful in studying persistence analysis, in which case Λ is the eigenvalue for the
diffusion-advection operator

− D
∂2Ue

∂x2e
+ V

∂Ue

∂xe
= ΛUe (2.5)

This eigenvalue problem features a principal (smallest) eigenvalue Λ1 (of an infinite
number of Λk for k = 1, 2, 3 . . .) which depends on the dispersal parameters (V and
D), segment length L , and the boundary conditions, while the term λ = re − Λ1
determines whether the population governed by (2.2) grows or shrinks to zero as
t → ∞ (see, e.g., Cantrell and Cosner 2003; Lutscher et al. 2005; Sarhad et al. 2014;
Speirs and Gurney 2001). Indeed, since Λ1 is smallest of the Λk and hence λ is the
largest (dominant) of the re − Λk , the persistence criteria then becomes
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λ = re − Λ1 > 0 ←→ Population Persistence in a Segment (2.6)

For this reason, we refer to Λ1 as the obstruction the intrinsic growth rate re must
overcome in order to assure persistence. The quantity λ which determines asymptotic
growth or decay in (2.2) is analogous to the dominant eigenvalue commonly featured in
other population persistence analyses (e.g., integro-differentialmodels,matrixmodels,
etc). Since Λ1 is independent of re and therefore better isolates the effects of habitat
geometry on persistence, Λ1 is the focus of our investigation. Given homogenous
coefficients, the computation of Λ1 is routine for a bounded segment by finding the
smallest positive root of the determinant of a 2 × 2 matrix.

2.3 Extension to networks

The network models introduced in Sarhad et al. (2014), Sarhad and Anderson (2015)
and used here extend the case of the finite segment with boundary conditions to con-
tinuous tree networks. The extended model features boundary conditions as well as
junction conditions (Fig. 1b–d) which we address in further detail below.We naturally
consider tree-shaped networks here which branch upward from a root vertex toward
upstream boundaries (Fig. 1c). Extending the RDA to a continuous tree requires the
identification of the tree with a metric tree graph where each segment (or edge) e is

Fig. 1 Schematic for quantum tree graphs: a illustrates distance in a metric tree graph and a function x
which provides a coordinate for any point in a tree. b Illustrates the habitable sectional areas A assigned
to each edge and the zero flux condition at a junction. c Example of a continuous function on the tree at a
junction. b and c Together provide an example of the zero flux and continuity condition (C) we impose at
junctions in all of our models. d Provides the area conditions that are assumed for each of our two cases
studies. Case 1 is consistent with, although not limited to, the interpretation of hydrologic conservation of
discharge at junctions in river networks; Case 2 is more general. In both cases we assume habitable space
is decoupled from actual physical space
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identified with a real line interval [a, b]. The lengths of these intervals may differ from
edge to edge. This identification produces a natural metric or distance function d on
the graph (Fig. 1a) in the obvious way: one considers all of the (continuous) paths
from a point p to a point q in the tree, and their corresponding distances are given by
the lengths of the intervals (and sub-intervals) associated with the (partial) edges the
paths traverse. The minimum of these is defined as the distance.

In the current article, we consider rooted binary tree graphswith root vertex denoted
wd . The function x(p) = −d(p, wd) increases toward zero at the root vertex (Fig. 1a).
The function x induces local edge-wise coordinates. Subsequently, the RDA is defined
explicitly on each segment of the tree.Agiven edge is assigned an edgewise coordinate,
denoted xe, which is the address of a point p in edge e at a given distance from the
root.

Anyvertexwith exactly one incident edge is referred to as a boundary point (Fig. 1c).
In the tree network, an interior vertex has three incident edges and is referred to as a
junction (Fig. 1). The RDA process on the tree is the result of the individual processes
on eachof the edgeswhose interactions aremediated by junction conditions andbound-
ary conditions. A useful convention for labeling the three edges (and corresponding
edge-related data, including function values) incident on an arbitrary junction uses the
subscripts i = 0, 1, 2, where 0 denotes the edge closest to the root vertex (Fig. 1b).
This “local” notation around a junction is useful in describing junction conditions
and understanding their affects on persistence, however, the mathematics requires a
global addressing system e = 1, 2, . . . ,m, for a tree withm edges. There is no unique
addressing system, so any discussion of a global addressing system is omitted from
the remainder of the article.

As mentioned in the introduction, it is assumed that V , D, and r are uniform over
the network so that the subscript e can be dropped from these parameters; that is,
organisms diffuse, advect, and reproduce at the same rate everywhere in the tree. We
chose this simplified dispersal mechanism with only two dispersal parameters (V and
D) since it aids in isolating how the geometric features of a tree-like habitat affect
persistence. Our networks feature varying lengths Le and habitable sectional areas
Ae which are assigned to each tree segment e (Fig. 1b). The habitable space avail-
able within each segment is idealized by an insulated cylindrical pipe (with cross
sectional area A) that runs along the segment (Fig. 1d). Since the areas approximate
habitable space, they are decoupled from the actual physical cross section of the net-
work segment. As advection is also decoupled from hydrologic flow speed or other
physical processes, our model is not restricted to a conservation of hydrologic dis-
charge at junctions (A0V = A1V + A2V ) though this can be considered as a special
case.

2.4 Persistence criteria in networks

The eigenvalue problem (2.5) takes the exact same form in our tree networks as on
each segment of the tree, with the principal eigenvalue Λ1 being edge-independent.
The Eq. (2.5) is defined on each segment of the tree and then “glued” together by
a “zero flux plus continuity” junction conditions (C) (Fig. 1b). Upstream boundary
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conditions maintain zero flux (ZF) and the lethal condition holds at the root of the tree.
The zero flux part of condition C at junctions is precisely the condition that organisms
cannot enter or leave the habitat (the tree network) at a junction (the flux into (J1+ J2)
a junction w must equal the flux out of (J0) a junction w; see Fig. 1b). The continuity
part of condition C maintains the population (volume) densities on each of the three
incident edges to a junction are equal at the junction. Condition C, at an arbitrary
junction w, is given by

A0

(

VU − D
∂U0

∂x0

)

(w) = A1

(

VU − D
∂U1

∂x1

)

(w) + A2

(

VU − D
∂U2

∂x2

)

(w)

︸ ︷︷ ︸

zero flux: J0(w)=J1(w)+J2(w)

(2.7)

U (w):=U0(w) = U1(w) = U2(w)
︸ ︷︷ ︸

continuity

(2.8)

The persistence criteria for the tree network has exactly the same form as (2.6),

λ = r − Λ1 > 0 ←→ Population Persistence in a Network (2.9)

however, Λ1 is now dependent on many geometric parameters (every segment length
Le and cross sectional area Ae of the network) in contrast to a single segment length.
An additional departure from the single segment model which is featured in networks
is that Λ1 is influenced by the interaction of geometric parameters and dispersal
parameters at a junction (see (2.7); see also Sarhad et al. 2014; Sarhad and Anderson
2015). The computation of Λ1 in bounded networks is less trivial than in the single
segment case but, analogously, Λ1 is numerically calculated as smallest positive root
of the determinant of a 2n × 2n matrix, for a network with n edges. We refer to the
Appendix (see Sects. 5.1 and 5.3) for further details on computing Λ1 in networks.
Note that from (2.7), it is immediately apparent that Λ1 does not depend on a uniform
rescaling of all habitable areas of the network but does depend on the ratios A1/A0 and
A2/A0 at each junction as these ratios affect junction behavior. This is a significant
departure from the single segment model, whereΛ1 is independent of habitable cross-
sectional area.

We note that there are mathematical requirements that ensure that principal eigen-
value of analysis of the linearized Eq. (2.2) are meaningful in the context of population
persistence; these are discussed in more detail in the Appendix, Sect. 5.1.

2.5 Network-related metrics as indicators of persistence

Isolating a relatively simple metric that is able to predict the behavior of the principal
eigenvalue over awide range of river networkswouldminimize the effort of computing
persistence outcomes and at the same time provide conceptual insight on how habitat
geometry affects persistence. The primary focus of the current article is to develop
and test the robustness of global geometric features of river networks as indicators of
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Fig. 2 Persistence metrics used in this study. Each of the four geometric features of branching networks
featured in our studies are pictured above. The left side features an example computation of the total volume
of the network. The middle figure is an example of the median of the volumetric width function CM which
is a gauge of how the network volume is distributed relative to the network root. The right side provides
examples of the distances Rmax and Rmin which are the distances to the root, respectively, from the farthest
and closest upstream boundaries

persistence (Fig. 2). Here, a “global metric” assigns a real number to a network that
is meant to quantify aspects of the network’s geometry, preferably those aspects most
crucial to persistence. Some of these, like the total volume of the network Vol, Rmin

(distance from downstream root to nearest upstream boundary) and Rmax (distance
from downstream root to farthest upstream boundary), have appeared in the context
of the persistence problem in Sarhad et al. (2014) as bounds for principal eigenvalues
and in numerical studies of radial trees.

While Vol depends on all of the areas and lengths assigned to the network, it is blind
to the location of the network boundaries, and in particular, the lethal root. In contrast,
Rmin and Rmax encode distance to the lethal root but nothing about habitat volume,
ignoring cross sectional areas completely. In the limited numerical studies of radial
trees in Sarhad et al. (2014), these three metrics are shown to be relevant to varying
degrees, depending on the study. Yet, it is the distribution of volume that emerges as
a consistently important factor in determining persistence across all studies in Sarhad
et al. (2014). The volume distribution concept is the inspiration for our final metric
we refer to as the Center Metric, or CM, which is the radius from the root (i.e. lethal
outflow) that encapsulates half of the network volume. This metric is the median of
the volumetric width function often used to characterize geometry in hydrological and
geomorphological studies (Rodriguez-Iturbe and Rinaldo 2001).

The volume of a network Γ is simply the sum of the volumes of all of the edges of
Γ . An edge e has volume AeLe (see the picture in Fig. 1d) so that the volume of Γ ,
Vol(Γ ), is given by

Vol(Γ ) =
∑

e∈Γ

AeLe (2.10)

SeeFig. 2 (left) for an example.CM, in general, is not easilywritten in analytic formbut
is readily obtained numerically. The same is true of Rmin and Rmax , examples of which
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are shown in Fig. 2 (right). Although CM is designed to encode habitat distribution
with respect to the lethal boundary, it is also influenced by the ratios A1/A0 and
A2/A0, and subsequently encodes some information about junction behavior in the
system.

2.6 Network structure and simulations

In order to test the robustness of metrics described above as indicators of persis-
tence, we stochastically generate metric graph networks and subsequently analyze the
resulting distribution of principal eigenvalues with respect to each of indicator. The
networks are all rooted binary trees, meaning that all internal vertices have three inci-
dent edges. The root edge possesses one branching vertex and one terminal vertex;
terminal vertices are those with no further branching. Therefore, with the exception of
this root vertex (and therefore the root edge), the topologies of the graphs are those of
full (but not perfect) rooted binary trees, being connected to either zero or two other
vertices (with the “root” of such a tree being the neighbor of our actual root vertex).
Our simulations here only consider trees with 14 vertices (i.e., 13 edges), yet, because
we are employing metric graphs, each network possesses additional geometric struc-
ture beyond the traditional topology of a standard graph. This includes edge lengths
and areas whose values are also determined stochastically, which is discussed in more
detail below. Example trees are presented in (Fig. 3).

Networks are generated using the following algorithm. First, two vertices are con-
nected to the branching vertex of the root edge. Connections among vertices are then

Fig. 3 Example networks used in this study. Each network is a metric tree graph generated using the
algorithmdescribed in the text.Dots (•) represent vertices that are associatedwith either junctionor boundary
conditions while lines (—) represent edges. The thickness of the lines in the figure are proportional to the
cross-sectional area A associated with the edge. Networks shown above are generated using Case 1 area
conditions (2.11) although Case 2 networks exhibit similar topologies
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recursively constructed where, at each step, a vertex is randomly chosen as available
to bifurcate until the number of vertices reaches the desired number (here 14). Next,
edge lengths are generated, starting with the root edge length L1 that is chosen from
a uniform distribution [a, b]. Subsequent edge lengths are chosen from a uniform dis-
tribution [an, bn] at each level of the tree n increasing from the root edge at n = 1.
The length of [an, bn] is half of the length of the previous distribution [an−1, bn−1]
such that

Ln ≈ 1

2
Ln−1 = · · · =

(

1

2

)n−1

L1

Therefore, second level lengths are chosen from [a/2, b/2], third level lengths are
chosen from [a/4, b/4], and so on. Our choice of exponential scaling recapitulates
basic natural patterns such as those found in river drainages (Rodriguez-Iturbe and
Rinaldo 2001) and plant vessel networks (Bentley et al. 2013), with a value of 1/2
used for simplicity and generality. For river drainages, our selection implies that all
branching levels are of a given Horton order (Rodriguez-Iturbe and Rinaldo 2001),
although this does not account for side tributaries of smaller order common in real
rivers. Our scaling value also falls within the range observed for tree vessel branching
networks (Bentley et al. 2013).

The distributions used to assign habitable areas are partitioned into two cases.
These cases include different cross sectional area conditions assumed around junctions
(Fig. 1d). Case 1 is consistent with the interpretation that advection speed is the flow
speed of a river or fluid in a vessel network and the cross sectional areas represent the
actual river channel or vessel sizes. This condition holds the sum of the cross sections
in each level of the tree as constant. This can be represented as follows

A0 = A1 + A2 (2.11)

where, in accordance with our local addressing system at an arbitrary junction, A0
represents the cross section of the edge directly downstream of the junction, while
A1 and A2 represent the cross sections of the edges directly upstream of a junction.
Condition (2.11) is consistent with hydrologic conservation of discharge (A0V =
A1V + A2V ). However, we note that this is not a necessary interpretation, since the
habitable areas around a junction may all be smaller than their corresponding channel
sizes, yet still satisfy A0 = A1 + A2. In addition, the advection speed V may differ
from flow and yet it still holds that A0V = A1V + A2V . Case 1 is used in Sect. 3.1.

TheCase 2 condition (Fig. 1d) ismore general, decoupling advection speed from the
flow speed (interpreting advection as a directional bias inmovement in the downstream
direction) and habitable areas from channel or vessel size, allowing for a departure
from hydrological conservation of discharge. In particular, we are interested in an ε

neighborhood of the equality condition in (2.11), which is represented as follows

A0 = (1 + ε)(A1 + A2), ε ∈ [−α, α] (2.12)
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While we studied a range of different α values, for simplicity we hold α = 0.5 for
Case 2 studies in Sects. 3.2 and 3.4.

To differentiate from the “local” subscripts on areas, we denote the root edge area
by Ar , which like L1, is chosen from a uniform distribution [a, b]. For Case 1, an
adjacent upstream edge area is chosen from the uniform distribution (0, Ar ) while
the other adjacent edge area is obligated to satisfy (2.11), a pattern which continues
up the tree. Similarly, for Case 2, an adjacent upstream edge area is chosen from
(0, Ar/(1 + ε)), while the other adjacent edge area is obligated to satisfy (2.12), and
so on.

For both the Case 1 and Case 2 studies in Sect. 3, L1 is chosen from [0.5, 1.5] and
Ar is chosen from [0.5, 2]. However, Sect. 5.2 of the Appendix features studies on
both larger and smaller root edge length and area distributions. Section 5.2 studies
illustrate robustness of the metric CM to changes in the root edge length and area
distributions.

Since our focus in the current article is on branching network geometry, we begin
with a simplified case where V = D = 1 is held constant. With this parameter set,
we generate 1000 trees each for Cases 1 and 2. To test that our initial results stand
up to variation in dispersal, we include studies where persistence metrics are tested
across a range of V and D value for 100 generated trees. For all studies, we maintain
zero-flux (ZF) upstream boundary conditions and a lethal condition at the downstream
root boundary, with continuity (C) at all junction conditions (Fig. 1d).

It is important to note that accurate and exhaustive simulation of any particular
ecological or biological network is not the goal of this project, as the specifics of these
are themselves a subject of wide-ranging inquiry (Rodriguez-Iturbe and Rinaldo 2001;
Bentley et al. 2013; Zanardo et al. 2013). Our networks, with 13 edges, already has
26 geometric parameters (13 edge lengths and 13 sectional areas), with the relative
positions (volume distribution) of these geometric parameters in the network also of
crucial importance (see Sarhad et al. 2014). Thus, the trees used in this article exhibit
a wide range of geometries and edge characteristics for testing the robustness of
persistence indicators. By selecting a simple and yet geometrically broad framework
for studying these effects, we aim to provide a step towards understanding the interplay
between persistence and network geometry in more system-specific contexts.

In order to quantify the strength of relationship between principal eigenvalues and
each metric, we fit quadratic regressions and compute the resulting R2 values. If
a ΔAIC value suggests a quadratic function overfits the relationship relative to a
linear one, the simpler linear function and its corresponding R2 value is used. We use
ΔAIC < 2 as a cutoff for a quadratic versus linear fit.

3 Investigation and results

3.1 Case 1

Figure 4 shows a monotonic decreasing relationship as well as overall variation of
the principal eigenvalue Λ1 with each of the four metrics. The negative dependence
confirms intuition and previous results that increasing the length or volume of a domain
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decreases the principal eigenvalue and hence enhances persistence. The relationship
between total volume (Vol) and the principal eigenvalue Λ1 is weak relative to the
other metrics, suggesting Vol is a poor persistence indicator. This agrees with more
focused analytic andnumerical results inSarhad et al. (2014) and empirical results from
Anderson et al. (2006) that habitat size alone cannot adequately characterize population
persistence in a system. While Rmin and Rmax seem promising in characterizing the
behavior of Λ1, it is CM that best predicts both qualitatively and quantitatively the
principal eigenvalue.

We note that the association between all metrics andΛ1 is weakest when the metric
value is relatively small. Heuristically, a small metric value corresponds to a “small”
network (measured in terms of any of the four metrics) in which case stochastic
perturbations to geometry have disproportionate effects on persistence, increasing
variance in outcomes.

3.2 Case 2

With the relaxation of the Case 1 junction conditions, the relationship between three
of the four metrics and Λ1 weakens (Fig. 5). However, the relative ranking of each
of the metrics from Case 1 is maintained, with CM far outperforming Vol, Rmax , and
Rmin . Both Rmax and Rmin weaken greatly as indicators of persistence in comparison
with CM; the latter performs nearly the same as in Case 1 (Fig. 4). A particular point
of interest the behavior of the total volume Vol. In contrast with the other metrics, Vol
improves slightly from Case 1 to Case 2 despite still being the weakest indicator. This
result is likely due to the ability of Vol to capture what we interpret as “congestion”
at junctions that can occur when Case 1 area relations do not hold. This congestion
appears to occur when the downstream sectional area is smaller than the sum of the
two upstream sectional areas, leading to a strong population differential at the junction
in the direct of advection (see Sarhad et al. 2014 for an in-depth exploration of this
phenomenon). As with Case 1, the Case 2 results show that all metrics suffer the most
when their values are relatively small.

3.3 Variation in advection and diffusion

For Case 1, the four metrics are essentially unaffected by the variation in V and D and
CM maintains its superiority over the other three metrics as a persistence predictor
(Fig. 6). This pattern generally holds under the more general Case 2 area conditions,
yet here all metrics suffer drastically under the large values of V/D (Fig. 7). CM
performs as well in Case 2 as in Case 1 for all but the most extreme values of V/D and
again consistently outperforms the other metrics. On the other hand, Rmax and Rmin
suffer significantly as V/D becomes larger. The metric Vol, which is still the worst
predictor over most combinations of V and D, does perform better in Case 2 than in
Case 1. Furthermore, Vol outperforms Rmax and Rmin for the largest values of V/D in
Case 2. These features of Vol are likely the result of Vol encoding aspects of junction
behavior—particularly what we interpret as congestion at junctions—not captured by
the other metrics (Sarhad et al. 2014).
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The analyses presented thus far show that CM is the best predictor of Λ1, and
hence persistence, than the other metrics for the types of networks we consider here.
Moreover, these results reinforce the intuition gained in Sarhad et al. (2014) regarding
the importanceof habitat distribution in the context of advection towards a lethal habitat
boundary. Heuristically, a larger CM implies that more habitat, and hence more of the
population, is distributed farther away from the lethal boundary, enhancing persistence.
However, CM can suffer under Case 2 conditions when V is relatively large (Fig. 7).
In Sects. 3.4 and 4, we examine CM further, both for its strength and weakness (i.e.,
the persistence-related information it can and cannot encode), proposing a reason for
the weakness and an idea for shoring up the shortcoming.

3.4 Another look at CM

In this section we make the case that CM is a proper generalization of length in the
finite segment model to the types of branching networks we consider here in the
context of advection towards the lethal root. At the same time, we investigate the
complications that Case 2 area conditions—combined with high advection—creates
for CM as a persistence predictor. Also discussed is the possibility of augmenting CM
with another metric to create a stronger proxy for Λ1.

Our approach involves the eigenvalue-determining formula for the interval problem
with zero flux (ZF) upstream and lethal downstream conditions (Speirs and Gurney
2001):

√

4DΛ − V 2

4D2 = − V

2D
tan

⎡

⎣L

√

4DΛ − V 2

4D2

⎤

⎦ (3.1)

To demonstrate the equivalence between CM and length in a single segment model,
we simply substitute 2CM for length L in (3.1) and solve for the smallest positive root
Λ1. This value is then compared against values forΛ1 from networks with Case 1 and
2 area conditions across a range of CM values (Fig. 8).

CM performs consistently well under Case 1 conditions. In Case 2, however, CM
does somewhat underestimate persistence for networks at high V and large CMvalues.
Interestingly, underestimation also occurs when V is small and CM is also small. The
results in Fig. 8 provide compelling evidence that CM is a proper “system length”
of networks examined here with advection towards a lethal root (see also Fig. 9).
Yet, there is clearly a missing component of persistence which we speculate is due
to junction behavior that is persistence enhancing when the sum of upstream areas
is larger than the downstream branch and advection is high. This junction behavior
would not be observed in an simple interval model and thus would be missing from
typical “system length” or CM-type metrics.

4 Discussion

The many geometric parameters that define branching biological networks make
it difficult to predict population persistence outcomes based on network geometry.
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Fig. 8 CM as a system length. We substitute 2CM for L in (3.1) and solve for Λ1, plotting a continuous
curve (bold) against CM, which is then compared to the 1000-point CM versus Λ1 point clouds (gray
circles). Although (3.1) is “blind” to any network structure, CM serves as a strong proxy for length in (3.1)
in Case 1. Some breakdown occurs in Case 2, particularly an underestimation of persistence when V and
CM are both small and both large

This is especially the case for metric graphs that model spatially-continuous habi-
tat on graph edges. Metric graphs that we employ here contain potential variation
in edge lengths and area relations at junctions, making intuition illusive even for
relatively small metric graph networks (e.g. Sarhad et al. 2014). Here, we sought
to advance the application of metric graphs in biology by investigating how global
geometric features of branching networks modeled as metric graphs characterize
population persistence. The particular case study was of a population dispersing by
diffusion and advection toward a lethal downstream boundary, which has received
extensive previous attention (Speirs and Gurney 2001; Lutscher et al. 2005, 2007;
Ramirez 2012; Sarhad et al. 2014; Sarhad and Anderson 2015). Towards this end,
we examined various metrics related to network geometry and tested their robust-
ness as indicators of population persistence in stochastically generated branching
networks. Branching networks possessed stochastic variation in edge lengths and
area conditions. Rules governing area conditions were broken into two cases, the
second being more general, allowing our results to serve as a springboard for future
work modeling a wide variety of different organisms and types of biological net-
works.
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The metrics we examined encoded different aspects of network length and/or vol-
ume. One of these, the Center Metric (CM), far outperformed other metrics that
focused solely on the total habitat volume of the network (Vol), the distance from
the lethal boundary to the nearest upstream boundary (Rmin), and the distance from
the lethal boundary to the farthest upstream boundary (Rmax). Inspired by previ-
ous work in river hydrology (e.g. Rodriguez-Iturbe and Rinaldo 2001) and metric
graphs (e.g, Sarhad et al. 2014), CM in our context captures the distribution of habitat
within in the network in a way that respects distance to the single lethal bound-
ary at the network root. Moreover, our results provide evidence that CM performs
well as an indicator of population persistence because it is an appropriate “system
length” for branching networks, possessing a similar relationship with the domi-
nant eigenvalue as segment length does in the single-segment population models (e.g.
Speirs and Gurney 2001).

While our results suggest that CM is a promising indicator of persistence for the
types of networks we examine in this article, it can underestimate persistence out-
comes for some networks. This is particularly true in networks that feature Case 2
junction conditions and high advection speeds (Figs. 7, 8), as CM does not encode
some important junction behavior. Junction conditions can strongly influence the
principal eigenvalue and hence population persistence in metric graphs (see also
Kostrykin and Schrader 2006; Berkolaiko and Kuchment 2012; Sarhad et al. 2014;
Sarhad and Anderson 2015), yet it is unknown how to best characterize such effects.
A single “system length”, CM, is not enough to encode persistence behavior for
indefinitely broad parameter ranges in the Case 2 setting. Instead, another metric
that encodes junction behavior (as well as possibly an “average location” of this
overall junction behavior) of the network is necessary to build a stronger predic-
tor of persistence. We conjecture that such a metric—together with CM—could
be used in a formula similar to (3.1) to become an excellent, yet simple, predic-
tor of population persistence. A combined metric could also potentially yield tight
upper and lower (statistical) bounds for persistence outcomes for some analytic
bounds on principal eigenvalues for (2.2) (see Sarhad et al. 2014). Interestingly
enough, just as CM does not completely ignore junction behavior, the desired junc-
tion behavior metric would not necessarily be blind to location and distance in
the network.

The graphs we examine here are purposefully selected to be relatively simple in
order to balance generality and tractability in the interpretation of results. While our
algorithm is capable of generating a wide range of topologies and geometries, our gen-
erated networks still all belonged to a class of 14 vertex rooted trees that were binary
save for the root vertex. In contrast, there is a large body of literature that examines a
wide array of branching network structures and the variety of processes that can gen-
erate them (Rodriguez-Iturbe and Rinaldo 2001; Bentley et al. 2013; Zanardo et al.
2013). One focus of this literature is how area and volume distributions in the net-
work change with underlying rules of construction (e.g. Rodriguez-Iturbe and Rinaldo
2001; Lashermes and Foufoula-Georgiou 2007). Ecological studies that have exam-
ined population persistence and dynamics in branching networks have tended to use
simplified representations of network topology as we have done here, although the
specific choices vary across studies, including radial (Fagan 2002; Goldberg et al.
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2010; Sarhad et al. 2014; Sarhad and Anderson 2015) and non-radial binary trees
(Carrara et al. 2012), non-binary trees (Yeakel et al. 2014), and topologies of actual
river networks (Muneepeerakul et al. 2007). An important area of future research is to
merge persistence studies with more system-specific topological and geometric stud-
ies. Understanding whether persistence outcomes change predictably given changes in
algorithms used to generate the networks is an important step in applying our results to
more realistic contexts. Additionally, such work is necessary to determine the general-
ity of CM or related metrics as persistence predictors. However, given the wide range
of available topologies and geometries, it is worth exploring standardized strategies for
moving forward.One potentialmethodwould be to quantify deviations from radial net-
works (networks for which all geometric properties depend only on the distance from
the root) and the subsequent deviations in persistence outcomes, as persistence calcula-
tions in radial networks are analyticallymore tractable and possess aminimumnumber
of parameters for ease of interpretation (e.g., Sarhad et al. 2014; Sarhad and Anderson
2015). Studies could characterize how far the non-radial network principal eigenvalue
is from a fixed radial network’s eigenvalue, given the non-radial network’s similarity
(or “distance”) from the radial network, and whether metrics like CM capture these
deviations.

Beyond topology and geometry, the quantum graph framework employed here is
flexible enough to be extended to include features known to be important in real biolog-
ical and ecological networks. These could include additional spatial heterogeneity in
vital and movement rates as well as the inclusion of species interactions (e.g., compe-
tition or predation). Previous single-segment models have found both within-segment
spatial variation (Lutscher et al. 2006, 2007; Jin and Lewis 2011; Lam et al. 2016)
and species interactions (Lutscher et al. 2007; Hilker and Lewis 2010) can dramati-
cally alter persistence outcomes. These issues have not been explored as extensively
in the framework of branching networks (but see Goldberg et al. 2010; Auerbach and
Poff 2011). For metric graphs, Ramirez (2012) found that combinations of move-
ment rates that guarantee persistence in sub-graphs extend persistence to the entire
network, nullifying the effects of any global geometric structure. This latter result is
particularly important in the context of this article, as it implies that variation in V
and D may require consideration of a broader class of metrics. As the CM metric
appears to work well in the absence of within-segment heterogeneity, it could also
serve as a bound on persistence when V and D are variable and less predictable.
Regardless, what is clear from our work and that of others is that exploration of per-
sistence outcomes in these more complex situations in metric graphs does not lend
itself to analytic solutions. For this reason, it is important to gain as much insight as
possible for the simplest working models before venturing into more complex ones.
That said, the ultimate goal for this line of research is to expand quantum graph
theory to include realistic spatial and temporal heterogeneity so that system-specific
models can be developed and tested against empirical data from actual biological
systems.
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two anonymous reviewers whose comments improved the manuscript.
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5 Appendix

5.1 The eigenvalue problem and persistence criteria

Some manipulations of (2.5) simplify analysis so that the study of persistence can be
reduced to studying the principal eigenfunction and eigenvalue of an associated second
order differential equation without a first derivative term. The change of variables
Ue(xe) = exp[V xe/(2D)]ge(xe) eliminates the first derivative term. This change of
variables combined with the substitution

Dφ = Λ − V 2

4D
(5.1)

yields the very simple (self-adjoint) Laplacian eigenvalue problem

∂2ge
∂x2e

+ φge = 0 (5.2)

defined edgewise on the network with boundary and junction conditions inherited
from the RDA (2.2) (Sarhad et al. 2014). The advection V now only appears in the
boundary and junction conditions and in the persistence criteria. If φ1 denotes the
principal eigenvalue of (5.2), then by (5.1), Λ1 = Dφ1 + V 2/(4D) and solving for
Λ1 is reduced to solving for φ1. In terms of the boundary and junction conditions, the
lethal condition and the downstream boundary is unchanged for (5.2), while for the
upstreamboundary condition in (2.3) and junction condition in (2.7),V/2 is substituted
for V .

In a single segment model, there are no junctions and simply the two boundary
conditions. A general solution to the eigenvalue problem g′′

e +φge = 0 can be written
in the form ge(xe) = c1exp[i pxe] + c2[−i pxe] where p = √

φ. Applying the two
boundary conditions yields two equations and for the unknowns c1 and c2 which can
subsequently be written in a matrix form Zĉ = 0 where ĉ = (c1, c2), and Z = Z(φ)

is a 2× 2 matrix with elements dependent on φ. A nontrivial solution for ĉ is desired,
which occurs if and only if det Z(φ) = 0. Now the discrete φk , and therefore Λk

can be solved for (see (3.1)) (as can the countable eigenfunctions gke ). Given an initial
population distribution, the time dependent solution of the original linearized RDAEq.
(2.2) can be written in terms of an infinite linear combination of these eigenfunctions,
whereλ = r−Λ1 determineswhether or not the solution grows, indicating persistence,
or shrinks to zero, indicating extinction. This is routine analysis for a segment; for an
example of the time dependent solution and persistence criteria in a segment or tree,
see equation 2.21 and Theorem 1 in Sarhad et al. (2014).

The extension to trees is similar, except that each junction replaces a boundary
condition for 3 incident segments, so that in a 3-edge tree graph for example, there are
3 boundary conditions while the junction condition provides an additional 3 conditions
paired with the three general solutions Ue (xe) = c1e exp [i pxe]+ c2e exp [−i pxe] on
the 3 edges (e = 0, 1, 2). This leads to 6 equations and 6 unknowns cae (a = 1, 2),
and a matrix equation Z(φ)ĉ = 0, where ĉ = (cab). In general, if there are m edges,
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this problem yields a 2m × 2m system and Z is a 2m × 2m matrix. Again, a nontrivial
solution for ĉ is desired which occurs if and only if det Z(φ) = 0. See, for example,
Kostrykin and Schrader (2006), pages 202–208 for a detailed recipe for constructing
the matrix Z . For the readers’ convenience, we provide a sample computation for a 3
edge network in Sect. 5.3.

At this point, it is worth discussing the mathematical requirements that ensure
that our population model and subsequent principal eigenvalue of analysis of the
linearized Eq. (2.2) are meaningful in the context of population persistence. In Sarhad
et al. (2014), the constraint that A0V ≥ A1V + A2V was proved sufficient (but not
necessary) to ensure the validity of the persistence study. This constraint is satisfied
by each vertex of Case 1 networks but may or may not be satisfied at each vertex of
Case 2 networks.

The requirements for a valid analysis include that a population with λ < 0 goes
to zero uniformly as t → ∞, an initial positive population is nonnegative in time
for t > 0, that the eigenspace of the principal eigenvalue Λ1 has dimension one, that
there exists a nonnegative principal eigenfunction that will not be orthogonal to any
initial positive population, and that Λ1 > 0. If this last requirement fails, in particular,
a population could grow for a growth rate r ≤ 0 which would be nonsensical for
the processes modeled by the RDA equation. However, if Λ1 = r − λ > 0, then
necessarily r > λ. Given the persistence criteria which requires λ > 0, persistence
requires r > λ > 0 and hence a population cannot grow if r ≤ 0.

Numerical analysis in Sarhad et al. (2014), Sarhad and Anderson (2015) and in
the current article strongly support the conjecture that Λ1 > 0 also when A0V <

A1V + A2V , and therefore for all networks which arise in Case 2. Moreover, we
conjecture, based on various numerical investigations of solutions, that Λ1 > 0 is
sufficient to ensure the other requirements and thus warrants the inclusion of the
A0V < A1V + A2V condition. Additionally, extending Case 2 to allow for this
condition increases the geometric variability of our networks in amanner that increases
demands on our geometric indicators of persistence, since all of them, including CM,
are blind to at least some aspect of junction behavior. Furthermore, all perform worse
as predictors in Case 2. This last result supports our argument in the discussion that an
appropriate network “size” or length must be augmented by another indicator which
encodes junction behavior more directly.

5.2 Stochasticity in root values vs. CM

In our studies, root edge lengths and areas were chosen from [0.5, 1.5] and [0.5, 2],
respectively. As all lengths and areas are scaled regularly (up to stochasticity) from
their respective root values in our studies, we would not expect this variation to affect
the robustness of geometric indicators. This is particularly true in the case of areas,
whereΛ1 only depends on the ratios A1/A0 and A2/A0, and not on a uniform rescaling
of areas [(2.7), (2.3); see Sarhad et al. 2014 for additional explanation].

However, to see examples of how a larger or smaller range of stochasticity in the
root values affect the robustness of CM,we feature two studies under Case 1 conditions
(parallel studies for Case 2 are not pictured since they offer no additional insight in
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Fig. 9 Varying the root edge length and area distributions. Two additional sets of 1000 Case 1 trees are
stochastically generated using smaller and larger root edge distributions. In all previous studies in the current
article, root edge lengths and areas were chosen, respectively, from [0.5, 1.5] and [0.5, 2]. Here we look
at CM’s correlation with Λ1 for smaller and larger distributions. CM’s correlation with the original set of
1000 Case 1 trees is included for comparison. The dispersal parameters are set at V = D = 1

this context). Stochastic generation is as described in Sect. 2 and a different set of 1000
trees is generated from each of the two additional sets of root edge distributions used in
Fig. 9. Advection and diffusion are held constant at 1 (V = D = 1). Figure 9 (left), for
the largest distribution of root edge lengths, displays the effect of an increasing (and
decreasing) CMon the eigenvalue. As the graph diameter increases and decreases, CM
reflects movement proportional to an inverse square curve similar to what occurs with
length in a single segment model, confirming intuition, and consistent with the case
we have made for CM as a proper system length. As in previous studies in the paper
with all metrics, there is some breakdownwhen the metric value is small. The broadest
distribution used for root edge length, just as it allows for much longer networks (large
CM), also allows for much shorter networks (small CM) and so in the smallest CM
range of Fig. 9 (left), there is the most break down in correlation with Λ1. Figure 9
(right) depicts the effect of changes to the root edge cross section to Λ1, which can be
interpreted as a uniform rescaling of the habitat in our system. Paralleling the interval
model, Fig. 9 (right) shows no statistically significant effect from such habitat scaling,
reflecting what is already known, that the model is sensitive only to local area scaling
and invariant to a global rescaling (without stochasticity in network generation for the
three simulations, the 3 data point clouds would coincide exactly, rather than nearly).

5.3 Principal eigenvalue for a star graph

In the following we provide an example principal eigenvalue computation for a three
edge (“star”) graph Γ . Let Le and Ai (e = 0, 1, 2) denote the lengths and cross-
sectional areas, respectively, of three edges, with the downstream edge indexed by
e = 0 and the two upstream edges indexed by e = 1 and e = 2. Given the discussion
in Sect. 5.1, in order to compute the principal eigenvalue Λ1 corresponding to (2.5) in
Sect. 2, we can first find the eigenvalue φ1 corresponding to the eigenvalue Eq. (5.2)
presented in Sect. 5.1:
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∂2ge
∂x2e

+ φge = 0

Here, ge is the restriction of the eigenfunction to an edge e and the eigenfunction (a
3-vector whose elements are functions) is g = ({ge}e=0,1,2

) = (g0, g1, g2). While
(2.5) is subject to the zero flux and continuity condition C ((2.7) and (2.8)) at the
lone junction of Γ , the lethal condition (2.3) at the root (the downstream most vertex;
the terminal end of e0) and the zero flux condition ZF (2.3) at the upstream most
boundaries (the terminal ends of e1 and e2), the eigenvalue equation above (5.2) is
subject to the exact same conditions except the advection V is replaced by V/2 (due
to the substitution eliminating the first derivative term; see the discussion in Sect. 5.1).

In terms of the junction condition C which, in general, includes the eigenfunction
and its first derivative, it is often convenient to parametrize the functions so that the
junction is located at 0 and the derivatives are computed in the direction outward of the
junction. In light of this, the zero flux condition C which says that “the population flux
into a junction equals the population flux out of a junction” is recast in the equivalent
statement, “the sum of the outward population fluxes at a junction is equal to zero.”
Recalling that a downstream parametrization is described in Sect. 2 and that a change
in the direction of the parametrization of the two upstream incident edges is equivalent
to changing the sign of the derivatives of the upstream edge functions, the change,
symbolically, is as follows:

A0

(

V

2
g − D

∂g0
∂x0

)

(0) = A1

(

V

2
g − D

∂g1
∂x1

)

(0) + A2

(

V

2
g − D

∂g2
∂x2

)

(0)

becomes

A0

(

V

2
g − D

∂g0
∂x0

)

(0) = A1

(

V

2
g + D

∂g1
∂x1

)

(0) + A2

(

V

2
g + D

∂g2
∂x2

)

(0)

It useful to recall that the reason there is no subscript on g(0) is because condition C
imposes continuity at the junction so that g(0) can replace g0(0) = g1(0) = g2(0).
To simplify the notation we will use “prime” notation for the spatial derivatives and
use sigma notation for summing. Rearranging terms, the junction condition for (5.2)
is written compactly as

2
∑

e=0

Aeg
′
e(0) =

[

(A0 − A1 − A2)
V

2D

]

g(0) (5.3)

Maintaining the convention that derivatives are computed in the direction outward of
the junction 0, we can write the boundary conditions for (5.2) as

g0(0) = 0
︸ ︷︷ ︸

lethal root

g′
1 (L1) = − V

2D
g1 (L1) g′

2 (L2) = − V

2D
g2 (L2)

︸ ︷︷ ︸

zero flux at upstream boundaries

(5.4)
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As one can verify by inspection, the junction and boundary conditions imposed on
g and g′, (5.3) and (5.4), are easily expressed in (6 × 6) matrix form (Kostrykin and
Schrader 2006):

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 −1 0 0 0 0

0 1 −1 0 0 0

0 0 F 0 0 0

0 0 0 1 0 0

0 0 0 1 G 0

0 0 0 0 0 G

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

A

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

g0 (0)

g1 (0)

g2 (0)

g0 (L0)

g1 (L1)

g2 (L2)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

g

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0

0 0 0 0 0 0

A0 A1 A2 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

B

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

g′
0(0)

g′
1(0)

g′
2(0)

−g′
0 (L0)

−g′
1 (L1)

−g′
2 (L2)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

g′

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

0

0

0

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸︷︷ ︸

0

where

F = − (A0 − A1 − A2)
V

2D
G = − V

2D

(This is, of course, not the only way to represent the junction and boundary conditions
using matrix arithmetic, and in particular, the matrices A and B can be arranged
differently; this particular formuses a convenient basis for the problem.)The restriction
of g to each edge e = 0, 1, 2 must be of the form

ge (xe) = c1e exp [i pxe] + c2e exp [−i pxe]

where i = √−1 and p = √
φ. Then

g′
e (xe) = i pc1e exp [i pxe] − i pc2e exp [−i pxe]

for each edge e. Computing these derivatives outward of the junction 0, and imposing
the junction and boundary conditions at 0, L0, L1, and L2 on g and g′, g is an eigen-
function of (5.2)with eigenvalueφ if and only if it satisfies the following homogeneous
matrix Equation (Kostrykin and Schrader 2006):

Z

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c10
c11
c12
c20
c21
c22

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 0 (5.5)

where Z is the 6 × 6 matrix given by

Z = AX + i pBY
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and X and Y are the 6 × 6 matrices given by

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

eipL0 0 0 e−i pL0 0 0

0 eipL1 0 0 e−i pL1 0

0 0 eipL2 0 0 e−i pL2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

X

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1

−eipL0 0 0 e−i pL0 0 0

0 −eipL1 0 0 e−i pL1 0

0 0 −eipL2 0 0 e−i pL2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

Y

If the Le and Ae, e = 0, 1, 2, are given, then Z is a function of φ only and the
homogeneous matrix Eq. (5.5) has a nontrivial solution (the cae for a = 1, 2 and
e = 0, 1, 2 must not all be equal to zero) if and only if φ satisfies

det Z(φ) = 0 (5.6)

Since the eigenvalues of (5.2) are real numbers and strictly bounded below by 0
for Case 1 (and some Case 2) area conditions (Sarhad et al. 2014), there is a smallest
positiveφ = φ1 which satisfies (5.6). For the general Case 2 condition, it is conjectured
and supported by numerical evidence, that the eigenvalues of (5.2) are strictly bounded
below by −V 2/4D, so that there is a smallest eigenvalue φ = φ1 > −V 2/4D. In
either case, once the eigenvalue φ1 is computed (e.g., with the aid of a root finder
in programs like MATLAB or Mathematica), the principal eigenvalue Λ1 for (2.5) is
computed using (5.1) from Sect. 5.1, and so

Λ1 = Dφ + V 2

4D

The following is a sample computation for A0 = 1, A1 = 1/2, A2 = 1/2, and Le = 1
for e = 0, 1, 2 (which reduces to a single segment model of length 2; see Sarhad
et al. (2014) which shows a radial tree with the Case 1 condition reduces to the single
segment model with zero flux upstream boundary condition and lethal root boundary
condition). In this case, Z becomes
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⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 −1 0 1 −1 0
i p ip

2
i p
2 −i p − i p

2 − i p
2

0 0 1 0 0 −1
eip 0 0 e−i p 0 0
0 − 1

2e
ip − ieip p 0 0 − 1

2e
ip + ieip p 0

0 0 − 1
2e

ip − ieip p 0 0 − 1
2e

ip + ieip

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

Z

while the determinant of Z is given by

det Z(φ) = 1

2
e−3i p p(i − ie6i p(i − 2p)2 + 4p − 4i p2

− ie2i p(1 + 4p2) − ie4i p(1 + 4p2))

Recalling that p = √
φ and solving det Z(φ) = 0 for the smallest solution (φ1), yields

φ1 ≈ 1.029 so that Λ1 ≈ 1.029+ 0.250 = 1.279. Note that this is the answer you get
from the single segment eigenvalue determining Eq. (3.1).

For an extreme Case 2 example, where A0 � A1 + A2, φ can be very close to
the conjectured lower bound: Let A1 = 1, A2 = 1000, A3 = 500, and Le = 1 for
e = 0, 1, 2. Then computing as above yields φ1 ≈ −0.248 (note that this is very
close to the conjectured lower bound on φ1, −V 2/4D = 0.250), and therefore a
principal eigenvalue Λ1 ≈ .002 (which is positive and maintains that the intrinsic
(linearized) growth rate r must be greater than 0 to ensure persistence, i.e. to ensure
λ = r − Λ1 > 0).

Finally, we note that a star graph is a very simple tree graph and it is easy to find
a nice addressing system for the edges and subsequently a convenient basis for the
matrix problem. For the more general (and larger) tree graphs generated in the current
article, we refer the reader to Kostrykin and Schrader (2006).
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