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Abstract In this paper, based on an SIS model, we construct an epidemic model with
infection age to investigate the disease transmission on complex networks. By ana-
lyzing the characteristic equations associated with the equilibria, we obtain the basic
reproduction number R0. It is shown that if R0 < 1 then the disease-free equilibrium is
globally asymptotically stable while if R0 > 1 then there is a unique endemic equilib-
rium, which is asymptotically stable. Our investigation indicates that if the maximal
degree of the network is large enough then the endemic equilibrium always exists.
Sensitivity analysis on the basic reproduction number R0 in terms of the parameters
is carried out to illustrate their effects on the disease transmission and to develop
appropriate control strategies.
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1 Introduction

As indicated by the epidemic history, infectious diseases have taken the lives of mil-
lions of people and hence have been a major threat to the health of human being. It
is crucial to understand the transmission of these diseases and to develop appropriate
control strategies. Mathematical modeling, as an effective approach to capture the key
points of disease spreading, has beenwidely used to study the control of infectious dis-
eases. The earliest recorded such models are dated back to 200years ago (Bernoulli
1766). Recent epidemic study has been primarily aimed to discover the dynamical
mechanisms of the disease transmission and to predict current and future epidemic
prevalence. Based upon these investigations, proper prevention measures for the dis-
ease can be developed and be provided to Centers for Disease Control (CDC) or health
agencies.

The often-used epidemic models are compartmental ones. The first was proposed
by Kermack and McKendrick (1927, 1932, 1933) to study the transmission of Black
Death. Based on this model, a prediction of the outbreak behaviours of the disease
was presented. Since then, compartmental epidemic modeling and threshold theory
have been widely used in the study of disease transmission and have become the main
methods. One fundamental assumption underlying the compartmental modeling is
that all individuals are uniformly mixed and hence have homogenous contacts. This
assumption is reasonable in modeling communicable diseases such as influenza and
middle east respiratory syndrome and is also suitable for some social environments.
However, with the evolution of the society, behaviours of the human being and dis-
ease transmissions become heterogeneous. Therefore, using compartmental epidemic
modeling alone is not sufficient to describe the characteristics of disease spreading.

In order to capture the heterogeneities in the mechanism of disease transmission,
the idea of complex network is introduced to the compartmental epidemic modeling.
That is to say, all nodes (or vertices) in a complex network are classified according
to their epidemic status. Since contacts of individuals in a society can be precisely
described with complex networks and such contacts have significant influences on the
transmission of infectious diseases, incorporating complex networks into the epidemic
modeling can yield biologically feasible epidemic models. Most epidemic models
on complex networks are based on the common SIR, SIS, and SIRS compartmental
models. Results obtained from suchmodels provide not only precise description of the
current epidemic situation but also useful predictions on the future epidemic outbreaks.
Epidemic models with network structure first appeared in the 1980s and have been
attracting the interest of many researchers since then (to name a few, see Fu et al.
2013; Pastor-Satorras and Vespignani 2001a, b; Wang and Dai 2008, 2009; Wang
et al. 2012a, 2013; Wang and Jin 2013; Zhang and Fu 2009; Zhang et al. 2013).
SIS and SIR epidemic models on scale-free networks were investigated in Fu et al.
(2013), Wang et al. (2012a, 2013), Wang and Jin (2013), Zhang and Fu (2009), Zhang
et al. (2013). Pastor-Satorras and Vespignani (2001a, b) studied disease transmission
by an SIS epidemic model on heterogeneous networks. Their conclusions were later
rigorously proved by Wang and Dai (2008, 2009) using mathematical analysis. Wang
and Jin (2013) proposed an SIS epidemic model with multiple transmission routes on
a scale-free network. They established a threshold result and suggested a promising
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way for the control of infectious diseases with multiple routes. Wang et al. (2012a)
modified an SIS epidemic by incorporating an infective vector on complex networks.
They studied the stability of the equilibria and the effects of various immunization
schemes. Moreover, Zhang et al. (2013) constructed a model to investigate the spread
of sexually transmitted diseases. By using matrix theory and nonlinear analysis, they
derived the global dynamics of the model and discussed the control and spread of such
diseases.

Most of the existing epidemic models on complex networks are described by ordi-
nary differential equations. In these models, the effective contact rate or the effective
transmission rate is constant. However, this may not be true for diseases like HIV,
TB, Chicken Pox, and Diphtheria. In the spreading of these diseases, the effective
transmission depends greatly on the infection age (the time passed since an individual
was infected) or on physiological age. For instance, in TB and HIV, there exists a
long latent period. Furthermore, the latently infected individuals and infectious indi-
viduals have different transmission rates. Therefore, it is natural and essential to study
the demographical effects. Recently, infection age has been integrated into epidemic
models to study this phenomenon (see, for example, Chen et al. 2014; Iannelli 1995;
Magal andMcCluskey 2013; Magal et al. 2010; Wang et al. 2014; Webb 1985). To the
best of our knowledge, not much has been done for epidemic models with infection
age on complex networks (Wang et al. 2013).

Based on the above discussion, in this paper, we shall build and analyze an SIS epi-
demic model on complex networks by incorporating both infection age and behavior
epidemiology. The rest of this paper is organized as follows. First, the model is for-
mulated in Sect. 2. Sections 3 and 4 are devoted to the stability analysis of equilibria.
We shall obtain the basic reproduction number and establish a threshold dynamics. In
Sect. 5, we carry out the sensitivity analysis of the basic reproduction number with
respect to the model parameters and provide numerical simulations to demonstrate
our theoretic results. The paper concludes with a short discussion.

2 The model formulation

In classic compartmental SIS models, the population is divided into two classes: the
susceptibles (S) and the infected (I ). A simple SIS model without death is described
by the following system of ordinary differential equations,

⎧
⎨

⎩

dS
dt = −kσβS I

S+I + γ I,

d I
dt = kσβS I

S+I − γ I.
(2.1)

Here k is the average contacts per time unit, σ is the effective exposure rate of a
susceptible to the infected individuals (which varies according to behavior change,
prevention strategies, and so on), β is the transmission rate, and γ is the recovery rate
of the infected ones. In Eq. 2.1, the standard incidence rate is used.

With the structure of a complex network and infection age, we further subdivide
the population as follows. Let n be the maximal degree of the complex network. For
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k ∈ Nn � {1, 2, . . . , n}, let Sk(t) be the number of susceptible vertices of degree k at
time t , and Ik(t, a) stand for the density of infected vertices of degree k at time t and
with infection age a. Then we can modify Eq. 2.1 to obtain the following SIS model
with infection age on complex networks,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dSk(t)

dt
= −kσ Sk(t)�(I (t, ·)) +

∫ ∞

0
γ (a)Ik(t, a)da,

∂ Ik(t, a)

∂t
+ ∂ Ik(t, a)

∂a
= −γ (a)Ik(t, a),

Ik(t, 0) = kσ Sk(t)�(I (t, ·)),
k ∈ Nn, (2.2)

where γ (a) is the recovery rate at infection age a from infected class to susceptible
class, �(I (t, ·)) = (

∑n
k=1 k

∫ ∞
0 β(a)Ik(t, a)da)/(

∑n
k=1 kNk(t)) denotes the infec-

tion force with Nk(t) = Sk(t)+
∫ ∞
0 Ik(t, a)da being the total number of vertices with

degree k at time t and I (t, ·) = (I1(t, ·), I2(t, ·), . . . , In(t, ·)), and β(a) is the trans-
mission rate at infection age a. LetR+ = [0,∞).We assume that γ ,β ∈ L∞(R+)such
that β is nondecreasing and

lim
t→∞

∥
∥
∥
∥
π(t + ·)

π(·)
∥
∥
∥
∥∞

= 0, (2.3)

where

π(a) = e− ∫ a
0 γ (s)ds for a ∈ R+

is the probability of the infected individual still staying in the infected compartment.
Condition Eq. 2.3 automatically holds if there exist a0 ≥ 0 and γ0 > 0 such that
γ (a) ≥ γ0 for a ≥ a0.

The initial condition of Eq. 2.2 is

(S0, I0) = (S10, S20, . . . , Sn0, I10, I20, . . . , In0) ∈ (R+)n × (L1+(R+))n,

where

L1+(R+) = {ϕ ∈ L1(R+)|ϕ(a) ∈ R+ for a ∈ R+}.

Suppose that Eq. 2.2 also satisfies the coupling condition

Ik0(0) = kσ Sk0�(I0), k ∈ Nn .

Then it follows from (Iannelli 1995;Webb 1985) that Eq. 2.2 is well-posed. Moreover,
it is not difficult to show that the solution exists on R+, which is nonnegative and
Ik(t, ·) ∈ L1+(R+) for k ∈ Nn and t ∈ R+. For such solutions, one can easily see that

dNk(t)

dt
= −kσ Sk(t)�(I (t, ·)) +

∫ ∞

0
γ (a)Ik(t, a)da +

∫ ∞

0

∂ Ik(t, a)

∂t
da

123



Effect of infection age on an SIS epidemic model on… 1231

= −kσ Sk(t)�(I (t, ·)) +
∫ ∞

0
γ (a)Ik(t, a)da

−
∫ ∞

0

[
∂ Ik(t, a)

∂a
+ γ (a)Ik(t, a)

]

da

= −kσ Sk(t)�(I (t, ·)) − Ik(t,∞) + Ik(t, 0)

= 0,

which implies that Nk(t) is a constant for k ∈ Nn . Denote N = ∑n
k=1 Nk . Let

p(k) = Nk
N , sk(t) = Sk (t)

Nk
, and ik(t, a) = Ik (t,a)

Nk
for k ∈ Nn . Dividing both sides of Eq.

2.2 by Nk gives us

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dsk(t)

dt
= −kσ sk(t)�(i(t, ·)) +

∫ ∞

0
γ (a)ik(t, a)da,

∂ik(t, a)

∂t
+ ∂ik(t, a)

∂a
= −γ (a)ik(t, a),

ik(t, 0) = kσ sk(t)�(i(t, ·)),
k ∈ Nn, (2.4)

where �(i(t, ·)) = (
∑n

k=1 kp(k)
∫ ∞
0 β(a)ik(t, a)da)/〈k〉 and 〈k〉 = ∑n

k=1 kp(k).
Since sk(t) + ∫ ∞

0 ik(t, a) = 1, Eq. 2.4 is equivalent to

⎧
⎨

⎩

∂ik(t, a)

∂t
+ ∂ik(t, a)

∂a
= −γ (a)ik(t, a),

ik(t, 0) = σk(1 − ∫ ∞
0 ik(t, a)da)�(i(t, ·)),

k ∈ Nn (2.5)

with the initial condition i0 = (i10, i20, . . . , in0) ∈ (L1+(R+))n such that
∫ ∞
0 ik0(a)da

≤ 1 for k ∈ Nn . We mention that Eq. 2.5 is also an extension of the model studied
by Wang and Dai (2008). Again, we always assume that Eq. 2.5 satisfies the coupling
condition

ik0(0) = σk

(

1 −
∫ ∞

0
ik0(a)da

)

�(i0), k ∈ Nn .

Then Eq. 2.5 is well-posed. Moreover, it is not difficult to show the following result.

Proposition 2.1 The set

	 =
{

i = (i1, i2, . . . , in)|ik ∈ L1+(R+) and
∫ ∞

0
ik(a)da ≤ 1 for k ∈ Nn

}

is a positively invariant set of Eq. 2.5.

By the model formulation and Proposition 2.1, we only need to consider Eq. 2.5
with initial conditions in 	.

The following result tells us that if there is initial infection then the infection persists.

Lemma 2.2 If i0 ∈ 	 satisfies �(i0) > 0 then the solution i of Eq. 2.5 satisfies
�(i(t, ·)) > 0 and

∫ ∞
0 ik(t, a)da > 0 for t ∈ R+ and k ∈ Nn.

123



1232 J. Yang et al.

Proof From the definition of �(i(t, ·)), we have

d�(i(t, ·))
dt

= 〈k〉−1

⎛

⎝
n∑

k=1

kp(k)
∫ ∞
0

β(a)
∂ik(t, a)

∂t
da

⎞

⎠

= 〈k〉−1

⎛

⎝
n∑

k=1

kp(k)
∫ ∞
0

β(a)

(

−γ (a)ik(t, a) − ∂ik(t, a)

∂a

)

da

⎞

⎠

≥ −‖γ ‖∞�(i(t, ·)) − 〈k〉−1

⎛

⎝
n∑

k=1

kp(k)
∫ ∞
0

β(a)
∂ik(t, a)

∂a
da

⎞

⎠

= −‖γ ‖∞�(i(t, ·)) − 〈k〉−1

⎛

⎝
n∑

k=1

kp(k)

(

β(a)ik(t, a)|∞a=0 −
∫ ∞
0

ik(t, a)dβ(a)

)
⎞

⎠

≥ −‖γ ‖∞�(i(t, ·)) + 〈k〉−1

⎛

⎝
n∑

k=1

kp(k)β(0)ik(t, 0)

⎞

⎠

≥ −‖γ ‖∞�(i(t, ·))

+σβ(0)〈k〉−1

⎛

⎝
n∑

k=1

k2 p(k)

(

1 −
∫ ∞
0

ik(t, a)da

)
⎞

⎠ �(i(t, ·)).

This, combined with �(i0) > 0, implies that �(i(t, ·)) > �(i0)e−‖γ ‖∞t for t ∈ R+.
Now, for k ∈ Nn , it follows from Eq. 2.5 that

d
∫ ∞
0 ik(t, a)da

dt
=

∫ ∞

0

∂ik(t, a)

∂t
da

= −
∫ ∞

0

(

γ (a)ik(t, a) + ∂ik(t, a)

∂a

)

da

≥ −‖γ ‖∞
∫ ∞

0
ik(t, a)da + ik(t, 0)

= −‖γ ‖∞
∫ ∞

0
ik(t, a)da + σk

(

1 −
∫ ∞

0
ik(t, a)da

)

�(i(t, ·))

= −(‖γ ‖∞ + σk�(i(t, ·)))
∫ ∞

0
ik(t, a)da + σk�(i(t, ·)).

As �(i(t, ·)) > �(i0)e−‖γ ‖∞t for t ∈ R+, it follows that
∫ ∞
0 ik(t, a)da > 0 for

t > 0. This completes the proof. 
�

The following result will be used in establishing the stability of equilibria.
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Lemma 2.3 (Proposition 3.1, Iannelli 1995) Suppose h : R+ → R+ is a bounded
function and k ∈ L1(R+). Then

lim sup
t→∞

∫ t

0
k(θ)h(t − θ)dθ ≤ ‖k‖1

(

lim sup
t→∞

h(t)

)

.

Under the assumptions of Lemma 2.3,one can easily get

lim inf
t→∞

∫ t

0
k(θ)h(t − θ)dθ ≥ ‖k‖1

(
lim inf
t→∞ h(t)

)
.

This will be used in the proof of Eq. 4.5 in Lemma 4.3.

3 Global asymptotic stability of the disease-free equilibrium

Obviously, E0 = (0, 0, . . . , 0) ∈ 	 is an equilibriumof Eq. 2.5, called the disease-free
equilibrium.

Theorem 3.1 The disease-free equilibrium E0 of Eq. 2.5 is locally asymptotically
stable if R0 < 1 and it is unstable if R0 > 1, where

R0 = σK
〈k2〉
〈k〉 (3.1)

with K = ∫ ∞
0 β(a)π(a)da and 〈k2〉 = ∑n

k=1 k
2 p(k).

Proof The linearized system of Eq. 2.5 around the disease-free equilibrium E0 is

{
∂ik(t, a)

∂t
+ ∂ik(t, a)

∂a
= −γ (a)ik(t, a),

ik(t, 0) = σk�(i(t, ·)),
k ∈ Nn . (3.2)

where i(t, ·) � (i1(t, ·), i2(t, ·), . . . , in(t, ·)). Substitute ik(t, a) = ik(a)eλt into Eq.
3.2 to get

⎧
⎨

⎩

dik(a)

da
= −(λ + γ (a))ik(a),

ik(0) � ik0 = σk�(i(·)),
k ∈ Nn .

It follows that

ik0 = σ

〈k〉k
n∑

l=1

lp(l)
∫ ∞

0
il0β(a)π(a)e−λada, k ∈ Nn,

or
(

I − σ

〈k〉 (i j p( j)K̂ (λ))n×n

)

(i10, i20, . . . , in0)
T = (0, 0, . . . , 0)T ,
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where K̂ (λ) = ∫ ∞
0 β(a)e−λaπ(a)da. Then the characteristic equation at E0 is

∣
∣
∣
∣I − σ

〈k〉 (i j p( j)K̂ (λ))n×n

∣
∣
∣
∣ = 0.

After some row and column manipulations, we can get the determinant, which is

1 − σ 〈k2〉
〈k〉 K̂ (λ) = 0. (3.3)

We know that E0 is locally asymptotically stable if all the roots of Eq. 3.3 have negative
real parts and it is unstable if Eq. 3.3 has at least one root with positive real part. First,
suppose R0 < 1. We claim that all roots of Eq. 3.3 have negative real parts. By way
of contradiction, suppose that Eq. 3.3 has a root λ0 with Re(λ0) ≥ 0. Then it follows

from 1 − σ 〈k2〉
〈k〉 K̂ (λ0) = 0 that

1 =
∣
∣
∣
∣
σ 〈k2〉
〈k〉 K̂ (λ0)

∣
∣
∣
∣ ≤ σ 〈k2〉

〈k〉 K = R0,

a contradiction. This proves the claim and hence E0 is locally asymptotically stable if
R0 < 1. Now, suppose R0 > 1. In this case, we have

1 − σ 〈k2〉
〈k〉 K̂ (0) = 1 − R0 < 0

and

lim
λ→∞

(

1 − σ 〈k2〉
〈k〉 K̂ (λ)

)

= 1.

By the Intermediate Value Theorem, Eq. 3.3 has at least one positive root. Therefore,
E0 is unstable if R0 > 1. This completes the proof. 
�

In epidemiology, R0 called the basic reproduction number, which is the average
number of newly infected individuals produced by introducing an infectious individual
to a total susceptible population. For our model, β(a)π(a) is the transmission ability
of an infected individual still staying in the infectious compartment at infection age
a and hence K is the total transmission ability of an infected individual during the

infectious period. Then σK is the effective transmission ability. Note that 〈k2〉
〈k〉 is

the total contacts by an infected individual in the network consisting of susceptible
individuals only. Therefore, the definition of R0 in Eq. 3.1 agrees with the biological
interpretation of the basic reproduction number.

In fact, when E0 is locally stable it is also globally stable, which we will prove now.

Theorem 3.2 When R0 < 1, the disease-free equilibrium E0 of Eq. 2.5 is globally
asymptotically stable.
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Fig. 1 Characteristic line. Red
solid line is t > a; black line is
t = a; blue line is t < a (colour
figure online)

t=a 

t>a 

t<a 

a

t 

(0,t) 

(a,0) 

Proof For any solution i with i0 ∈ 	, integrating Eq. 2.5 along the characteristic line
t − a = c (a constant) gives us

ik(a + c, a) = ik(a + ξ, a)e− ∫ a
ξ γ (s)ds

where ξ is determine by the signal of c (see Fig. 1),

ξ =
{
0, if c > 0,
−c, otherwise.

Therefore,

ik(t, a) =
{
Bk(t − a)π(a), t ≥ a,

ik0(a − t) π(a)
π(a−t) , t < a,

k ∈ Nn, (3.4)

where Bk = ik(t, 0). It follows from Proposition 2.1 that Bk is nonnegative and
bounded for k ∈ Nn . Substitute Eq. 3.4 into Eq. 2.5 to obtain

Bk(t) ≤ σk〈k〉−1

[
n∑

l=1

lp(l)

(∫ t

0
β(a)Bl(t − a)π(a)da

+
∫ ∞

t
β(a)il0(a − t)

π(a)

π(a − t)
da

)]

for k ∈ Nn . For simplicity of notation, let B∞ = (lim supt→∞ Bk(t))1×n . Note that

∫ ∞

t
β(a)il0(t − a)

π(a)

π(a − t)
da =

∫ ∞

0
β(a + t)il0(a)

π(a + t)

π(a)
da

≤ ‖β‖∞‖il0‖1
∥
∥
∥
∥
π(t + ·)

π(·)
∥
∥
∥
∥∞

.
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This, together with Eq. 2.3 and Lemma 2.3, produces

B∞ ≤ AB∞, (3.5)

where A = (σ 〈k〉−1Ki jp( j))n×n . It is easy to check that ρ(A) = R0 < 1, where
ρ(A) is the spectral radius of the matrix A. Hence B∞ = 0 by Eq. 3.5. Then the result
follows directly from Eq. 3.4. 
�

4 Existence and stability of the endemic equilibrium

By Theorem 3.1, if R0 > 1 then the disease-free equilibrium of Eq. 2.5 is unstable. In
this section, we consider the endemic equilibria. Let E∗ = i∗ = (i∗1 , i∗2 , . . . , i∗n ) ∈ 	

be an endemic equilibrium of Eq. 2.5. Then, for k ∈ Nn , i∗k 
= 0 and

⎧
⎨

⎩

di∗k (a)

da
= −γ (a)i∗k (a),

i∗k (0) � B∗
k = σk(1 − ∫ ∞

0 i∗k (a)da)�(i∗).
(4.1)

Solving Eq. 4.1 yields i∗k (a) = B∗
k π(a). We substitute it into the expression of B∗

k to
get

B∗
k = σk〈k〉−1K B̂∗

1 + σk〈k〉−1K1K B̂∗ , k ∈ Nn, (4.2)

where K1 = ∫ ∞
0 π(a)da and B̂∗ = ∑n

k=1 kp(k)B
∗
k . It follows that

B̂∗ = σK

〈k〉
n∑

k=1

k2 p(k)B̂∗

1 + σk〈k〉−1K1K B̂∗ � f (B̂∗). (4.3)

One can see that f ′(B̂∗) > 0 with f ′(0) = R0 > 1 and f ′′(B̂∗) < 0. It follows
that Eq. 4.3 has a unique positive solution and this solution combined with Eq. 4.2
and Eq. 4.1 gives the existence of a unique endemic equilibrium. In summary, we have
proved the following result.

Theorem 4.1 Suppose R0 > 1. Then Eq. 2.5 has a unique endemic equilibrium
E∗ = (i∗1 , i∗2 , . . . , i∗n ), which is in 	.

To establish the stability of the endemic equilibrium E∗, we need the following
two results. The first result is about the uniform strong ρ-persistence of the disease.
The proof is based on the theory of uniform persistence (Thieme 2000). Though the
arguments are tedious, they are standard (see, for example, Browne andPilyugin 2013).
Thus we omit the detail here.

Lemma 4.2 Suppose R0 > 1. Then the disease is uniformly strongly ρ-persistent,
that is, there is an η > 0 such that if i0 ∈ 	 satisfies �(i0) > 0 then the solution i
of Eq. 2.5 satisfies lim inf t→∞ �(i(t, ·)) ≥ η.
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The next result tells us that, for some quantities related to solutions of Eq. 2.5, one
can get smaller (respectively, bigger) upper bounds (respectively, lower bounds) from
existing bounds.

Lemma 4.3 For k ∈ Nn , suppose that there exists 0 ≤ mk ≤ Mk such
thatlim supt→∞ Bk(t) ≤ Mk and mk ≤ lim inf t→∞ Bk(t). Then

lim sup
t→∞

Bk(t) ≤ σk 〈k〉−1 K
∑n

l=1 lp(l)Ml

1 + σk 〈k〉−1 K1K
∑n

l=1 lp(l)Ml
(4.4)

and

lim inf
t→∞ Bk(t) ≥ σk 〈k〉−1 K

∑n
l=1 lp(l)ml

1 + σk 〈k〉−1 K1K
∑n

l=1 lp(l)ml
(4.5)

for k ∈ Nn.

Proof For k ∈ Nn ,

Bk(t) = σk〈k〉−1
(

1 −
∫ t

0
Bk(t − a)π(a)da −

∫ ∞
t

ik0(a − t)
π(a)

π(a − t)
da

)

×
⎛

⎝
n∑

l=1

lp(l)

(∫ t

0
β(a)Bl (t − a)π(a)da +

∫ ∞
t

β(a)il0(a − t)
π(a)

π(a − t)
da

)
⎞

⎠ .

(4.6)

Note that, for k ∈ Nn , similar arguments as in the proof of Theorem 3.2 produce

lim
t→∞

∫ ∞

t
ik0(a − t)

π(a)

π(a − t)
da = 0

and hence

lim
t→∞

∫ ∞

t
β(a)ik0(t − a)

π(a)

π(a − t)
da = 0.

In the following we only prove Eq. 4.4 since Eq. 4.5 can be proved similarly.
Since lim supt→∞ Bk(t) ≤ Mk for all k ∈ Nn , it follows from Lemma 2.3 that

lim sup
t→∞

(
n∑

l=1

lp(l)

(∫ t

0
β(a)Bl(t − a)π(a)da +

∫ ∞

t
β(a)il0(a − t)

π(a)

π(a − t)
da

))

≤
n∑

l=1

lp(l)MlK .

Let k0 ∈ Nn . On the other hand, for ε > 0, there exists T ≥ 0 such that

Bk0(t) ≥ lim sup
t→∞

Bk0(t) − ε for t ≥ T .
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Then, for t ≥ T ,

∫ t

0
Bk0(t − a)π(a)da ≥

∫ t−T

0
Bk0(t − a)π(a)da

≥
[

lim sup
t→∞

Bk0(t) − ε

] ∫ t−T

0
π(a)da.

These, combined with Eq. 4.6, give

Bk0(t) ≤ σk0〈k〉
(

1 −
[

lim sup
t→∞

Bk0(t) − ε

] ∫ t−T

0
π(a)da

) (
n∑

l=1

lp(l)MlK

)

.

Taking lim sup on both sides of the above inequality yields

lim sup
t→∞

Bk0(t) ≤ σk0〈k〉
(

1 − K1

[

lim sup
t→∞

Bk0(t) − ε

])(
n∑

l=1

lp(l)MlK

)

.

As ε is arbitrary, we obtain

lim sup
t→∞

Bk0(t) ≤ σk0〈k〉−1
(

1 − K1 lim sup
t→∞

Bk0(t)

)(
n∑

l=1

lp(l)MlK

)

,

which immediately implies Eq. 4.4. 
�
Now we are ready to prove the main result of this section.

Theorem 4.4 Suppose that R0 > 1. If i0 ∈ 	 satisfying

n∑

k=1

kp(k)
∫ ∞

0
β(a)ik0(a)da > 0,

then the solution i satisfies limt→∞ i(t) = E∗.

Proof By Eq. 3.4, we only need to show that limt→∞ Bk(t) = B∗
k for k ∈ Nn . The

arguments below are similar to those in Wang and Dai (2008).
First, we show that lim supt→∞ Bk(t) ≤ B∗

k for k ∈ Nn . Clearly, it follows from
Propositions 2.1 that �(i(t, ·)) ≤ ‖β‖∞ for t ∈ R+. Then Bk(t) ≤ σk‖β‖∞ for
t ∈ R+ and hence by Lemma 4.3 we have lim supt→∞ Bk(t) ≤ 1/K1 � u(1)

k for
k ∈ Nn . For m ∈ N and k ∈ Nn , define

u(m+1)
k = σk〈k〉−1K

∑n
l=1 lp(l)u

(m)
l

1 + σk〈k〉−1K1K
∑n

l=1 lp(l)u
(m)
l

.
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By Lemma 4.3, we have

lim sup
t→∞

Bk(t) ≤ u(m)
k for all k ∈ Nn and m ∈ N.

Moreover, u(2)
k ≤ u(1)

k for k ∈ Nn and hence by induction we have

u(m+1)
k ≤ u(m)

k for all k ∈ Nn and m ∈ N.

Let uk = limm→∞ u(m)
k for k ∈ Nn . Then

lim sup
t→∞

Bk(t) ≤ uk and uk = σk〈k〉−1K
∑n

l=1 lp(l)ul
1 + σk〈k〉−1K1K

∑n
l=1 lp(l)ul

for k ∈ Nn . It follows that f (
∑n

k=1 kp(k)uk) = ∑n
k=1 kp(k)uk . This implies that

∑n
k=1 kp(k)uk = B̂∗ or 0. Therefore, we have lim supt→∞ Bk(t) ≤ B∗

k for k ∈ Nn .
Next, we show that lim inf t→∞ Bk(t) ≥ B∗

k for k ∈ Nn . By Lemma 4.2,
there exists η > 0 such that lim inf t→∞ �(i(t, ·)) ≥ η. Also, for k ∈ Nn , since
lim supt→∞ Bk(t) ≤ B∗

k , we see that

lim sup
t→∞

∫ ∞

0
ik(t, a)da = lim sup

t→∞

[∫ t

0
Bk(t − a)π(a)da

+
∫ ∞

t
ik0(a − t)

π(a)

π(a − t)
da

]

≤
∫ ∞

0
i∗k (a)da < 1.

Then we can get

lim inf
t→∞ Bk(t) ≥ σk

(

1 − lim sup
t→∞

∫ ∞

0
ik(t, a)da

)

lim inf
t→∞ �(i(t, ·))

≥ σkη

(

1 −
∫ ∞

0
i∗k (a)da

)

> 0.

Therefore, we can choose v
(1)
k > 0 such that

lim inf
t→∞ Bk(t) ≥ v

(1)
k for k ∈ Nn

and

f

(
n∑

k=1

kp(k)v(1)
k

)

> 0. (4.7)
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For k ∈ Nn and m ∈ N, define

v
(m+1)
k = σk 〈k〉−1 K

∑n
l=1 lp(l)v

(m)
l

1 + σk 〈k〉−1 K1K
∑n

l=1 lp(l)v
(m)
l

.

By Lemma 4.3, we have

lim inf
t→∞ Bk(t) ≥ v

(m)
k for k ∈ Nn and m ∈ N.

Furthermore, Eq. 4.7 implies that

n∑

k=1

kp(k)v(2)
k >

n∑

k=1

kp(k)v(1)
k .

It follows that v
(3)
k ≥ v

(2)
k for all k ∈ Nn and hence by induction v

(m+1)
k > v

(m)
k for

all k ∈ Nn and m ∈ N. Denote vk = limm→∞ v
(m)
k (>0) for k ∈ Nn . Then we have

lim inf
t→∞ Bk(t) ≥ vk and vk = σk 〈k〉−1 K

∑n
l=1 lp(l)vl

1 + σk 〈k〉−1 K1K
∑n

l=1 lp(l)vl
.

It is easy to see that
∑n

k=1 kp(k)vk > 0 and f (
∑n

k=1 kp(k)uk) = ∑n
k=1 kp(k)uk ,

which imply that
∑n

k=1 kp(k)uk = B̂∗. Therefore, we can easily get lim inf t→∞ Bk(t)
≥ B∗

k for k ∈ Nn . This completes the proof. 
�

5 Sensitivity analysis and simulations

ByTheorems 3.2 and 4.4, the reproduction number R0 is a key threshold for the control
of the disease. In this section, we first carry out the sensitivity analysis of R0 in terms
of transmission parameters. For convenience, we set

γ (a) =
{
0, a ≤ τ

γ, a ≥ τ
and β(a) =

{
0, a ≤ ω,

β, a ≥ ω.

In other words, the incubation period is ω and the cure period is τ . Then

R0 = σβ
eγ (τ−ω)

γ

〈k2〉
〈k〉 if ω ≥ τ

and

R0 = σβ
γ (τ − ω) + 1

γ

〈k2〉
〈k〉 if ω < τ.
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In either case, one can easily see that ∂R0
∂σ

> 0, ∂R0
∂β

> 0, ∂R0
∂γ

< 0, ∂R0
∂τ

> 0, and
∂R0
∂ω

< 0. Therefore, in order to prevent the outbreak of the disease, one can decrease
the exposure rate and/or the transmission rate, or shorten the cure period, or improve
the cure rate, or lengthen the latent period.

By the expression of R0, it is easy to see that the topological structure of the
complex network plays an important role on controlling the disease spread. Elasticity
is a powerful tool to help us to realize it. According to the definition of elasticity, the
elasticity of R0 to the five parameters (σ , β, ω, τ , and γ ) are

Eσ
R0

= σ

R0

∂R0

∂σ
= 1 and Eβ

R0
= β

R0

∂R0

∂β
= 1

in either case and if ω ≥ τ then

Eγ

R0
= γ

R0

∂R0

∂γ
= (τ − ω)γ − 1,

Eτ
R0

= τ

R0

∂R0

∂τ
= γ τ,

Eω
R0

= ω

R0

∂R0

∂ω
= −γω

while if ω < τ then

Eγ

R0
= γ

R0

∂R0

∂γ
= − 1

γ (τ − ω) + 1
,

Eτ
R0

= τ

R0

∂R0

∂τ
= γ τ

γ (τ − ω) + 1
,

Eω
R0

= ω

R0

∂R0

∂ω
= − γω

γ (τ − ω) + 1
.

These expressions effects of the parameters on the basic reproduction number R0
depend on the values chosen. To further study the clear relations among the elasticities
of R0 to the parameters, for simplicity of notation, we rewrite Ei = |Ei

R0
|, i ∈

{β, σ, γ, ω, τ }. Then we have the following situations.
When the cure period is longer than the latent period, i.e., τ > ω, one can obtain

(i) for ω < τ < 2ω,

⎧
⎪⎪⎨

⎪⎪⎩

Eβ = Eσ > Eγ > Eτ > Eω if γ < 1
τ
,

Eβ = Eσ > Eτ > Eγ > Eω if 1
τ

< γ < 1
ω
,

Eτ > Eβ = Eσ > Eω > Eγ if 1
ω

< γ < 1
2ω−τ

,

Eτ > Eω > Eβ = Eσ > Eγ if 1
2ω−τ

< γ,
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and (ii) for τ > 2ω,

⎧
⎨

⎩

Eβ = Eσ > Eγ > Eτ > Eω if γ < 1
τ
,

Eβ = Eσ > Eτ > Eγ > Eω if 1
τ

< γ < 1
ω
,

Eτ > Eβ = Eσ > Eω > Eγ if 1
ω

< γ.

One can see that, for example, if ω < τ < 2ω and γ > 1
2ω−τ

then the cure period τ

has the greatest effect on R0, followed by the latent period ω, then by the transmission
rate β or the exposure rate σ , and the cure rate has the weakest effect on R0.

When the cure period is shorter than the latent period, i.e., τ < ω, one has

⎧
⎨

⎩

Eτ < Eβ = Eσ < Eγ < Eω if 0 < γ < 1
τ

Eβ = Eσ < Eτ < Eγ < Eω if 1
τ

< γ < 1
2τ−ω

Eβ = Eσ < Eγ < Eτ < Eω if 0 < γ < 1
2τ−ω

for τ < ω < 2τ , and

⎧
⎨

⎩

Eτ < Eω < Eγ < Eβ = Eσ if 0 < γ < 1
ω

Eτ < Eβ = Eσ < Eω < Eγ if 1
ω

< γ < 1
τ

Eβ = Eσ < Eτ < Eω < Eγ if γ > 1
τ

for ω > 2τ . As before, from the above relations, one can easily see which para-
meters have the most important effect on the basic reproduction number R0 in each
circumstance.

Now, we consider the combined effects of parameters on the basic production num-
ber R0. Based on the preferential algorithm (Pastor-Satorras and Vespignani 2001a, b),
we can generate a BA network with m = 3 and N = 100 by Matlab. The dynamics of
the nodes is implemented based on the BA network with 100 nodes (see Fig. 2). The
interconnectedness is 2.76 and the minimum degree is 3 while the maximum degree
kmax = 95. Figure 3a shows the effects of the transmission rate β and the cure rate γ

with τ = 10, ω = 15, and σ = 0.05. It says that the basic reproduction number R0
decreases as the cure rate γ increases and the transmission rate β decreases. Visually
the transmission rate β has the greater effect than the cure rate γ . Figure 3b indicates
that the transmission rate β has the greater effect on R0 than the latent period ω, where
τ = 10, γ = 2, and σ = 0.05. Figure 4a shows the relation of the reproduction
number R0 with the cure period τ and the latent period ω. Here β = 0.08, γ = 2,
and σ = 0.05. We see that the cure period has the greater effect than the latent period.
With β = 0.08, τ = 10, σ = 0.05, Fig. 4b tells us that the basic reproduction number
R0 is larger than 1 even when the cure rate γ is large while the latent period ω is short
enough. At the same time if the cure rate is small while the latent period ω is short
enough the basic reproduction number R0 is still larger than 1. The effects of the two
parameters γ and ω on R0 depend on the other parameters.
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Fig. 5 Stability of the equilibria of Eq. 2.5. a The disease-free equilibrium is globally asymptotically stable
when R0 < 1. Here β = 0.01, σ = 1, γ = 0.1, and τ = ω = 5; b the endemic equilibrium is globally
stable when R0 > 1. Here β = 0.05, σ = 1, γ = 0.1, and τ = ω = 5

Finally, we illustrate our theoretical results with numerical simulations using the
above network. For this purpose, we first take σ = 1,

β(a) =
{
0, a ≤ 5,
0.01, a > 5,

and

γ (a) =
{
0, a ≤ 5,
0.1, a > 5.

Then R0 = 0.7430 < 1. According to Theorem 3.2, the disease-free equilibrium E0
is globally stable (see Fig. 5a).

Now, we enlarge the transmission rate by taking

β(a) =
{
0, a ≤ 5,
0.05, a > 5.

Then R0 = 3.7150 > 1. According to Theorem 4.4, the endemic equilibrium E∗ is
globally asymptotically stable (see Fig 5b).

Since the key parameter for controlling the disease spreading is the basic reproduc-
tion number, we conclude this section by discussing the differences between the basic
reproduction numbers of homogeneous networks and heterogeneous networks, which
are

Rh
0 = σK (homogeneous networks),

R0 = σK
〈k2〉
〈k〉 (heterogeneous networks).
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Obviously, the substantial difference is that the basic reproduce number mainly
depends on the topological structure for heterogeneous networks. The higher the
degree distributions of the nodes for the networks, the larger the reproduction number
is. This implies that decreasing the degree distributions of the nodes is beneficial to
control the disease spread on complex networks.

6 Discussion

Infection age is an important factor in the transmission of infectious diseases such
as HIV, TB, and Hand–Foot–Mouth Disease. In this paper, we incorporated infection
age into a simple SIS epidemic model. Unlike existing models on complex networks,
the state variables in the model depend on the infection age a. From the mathematical
point of view, the system is described by a system of ordinary differential equations
coupled with partial differential equations rather than by a system only involving
ordinary differential equations. Such infinitely dimensional systems are a challenge
to study. From the biological point of view, the infection age enhances the intrinsic
characters of some diseases.

Roughly speaking, we established a threshold dynamics. When the basic reproduc-
tion number R0 < 1, themodel has a unique equilibrium, the disease-free equilibrium,
which is globally asymptotically stable. When R0 > 1, the disease-free equilibrium
loses its stability and there is a unique endemic equilibrium, which is globally sta-
ble. These theoretical results are supported by numerical simulations. We also carried
out the sensitivity analysis of R0 to the parameters. Our model is a generalization of
some SIS epidemic models on complex networks (Fu et al. 2013; Wang and Dai 2008,
2009). In fact, if we take β(a) = β, γ (a) = γ , and Ik(t) = ∫ ∞

0 ik(t, a)da, then Eq.
2.5 reduces to

{ d Ik(t)

dt
= σβk(1 − Ik)�(Ik) − γ Ik(t)

Ik(0) = Ik0.
k ∈ Nn (6.1)

Eq. 6.1 is the systems discussed in Fu et al. (2013), Wang and Dai (2008, 2009). If
we choose the transmission rate and treatment rate as step functions,

β(a) =
{
0, 0 ≤ a ≤ τ,

β, a > τ,
γ (a) =

{
0, 0 ≤ a ≤ τ,

γ, a > τ,

and Ik(t) =
∫ ∞

τ

ik(t, a)da, then Eq. 2.5 becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d Ik(t)

dt
= σβk(1 − Ik)�(Ik(t − τ)) − γ Ik(t), t > τ,

Ik(t) = e−γ t
∫ ∞

τ−t
i0(s)e

−γ (s−τ)ds, t ∈ (0, τ ],

Ik(0) =
∫ τ

0
ik(t, a)da.

k ∈ Nn .
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Hence our results are more general than those in the just mentioned references.
Recently, multi-strain epidemic models on complex networks have been investi-

gated by some authors (see, for example, Wang et al. 2012b;Wu et al. 2011). Obtained
results include (a) the existence and local stability of the boundary equilibria, and (b)
sufficient conditions on coexistence of strains. It is natural to introduce infection age
to these models and then establish similar results or even results on global stability.
Moreover, with the introduction of infection age, interesting complex dynamics such
as oscillations and chaotic attractors may occur. We leave this to be future work.
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