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Abstract A stochastic hybridmodel for the production of the antibiotic subtilin by the
Bacillus subtilis is investigated. This model consists of 5 variables with four possible
discrete dynamical states and this high dimensionality represents a bottleneck for
using statistical tools that require to solve the corresponding Fokker–Planck problem.
For this reason, a suitable reduced model with 3 variables and two dynamical states
is proposed. The corresponding Fokker–Planck hyperbolic system is used to validate
the evolution statistics and to construct a robust feedback control strategy to increase
subtilin production. Results of numerical experiments are presented that show the
effectiveness of the proposed control scheme.
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1 Introduction

One of the main purposes of mathematical biology is to develop models describing the
time evolution of biological systems. Oncemodels are available, simulation with these
models may help biologist to better understand and even predict the behaviour of the
corresponding biological system. Furthermore, a dynamical model makes possible
to design control strategies to attain desired objectives (e.g., high final compounds
production) in an optimal way. This latter less investigated task involves a modelling
step, where the objectives and the controlmechanism are defined, and a solution step of
the resulting optimization problem. These steps represent a challenging endeavour in
applied mathematics, especially in the case where the evolution model has a stochastic
structure. This is the case when considering mathematical models of genetic and
biochemical phenomena where fluctuations in the dynamics must be included. In
particular, low concentration of molecules results in interactions that occur at random
time and may change the system thus producing a different dynamics. For this reason,
there is a growing effort in modelling micro biological systems as stochastic hybrid
systems (Aihara and Suzuki 2010; Cassandras and Lygeros 2010; Kouretas et al. 2007;
Singh and Hespanha 2010), where the state space is either discrete or continuous. The
dynamics of these systems can be described as piecewise-deterministic stochastic
Markov processes that are governed by ordinary differential equations that change
their deterministic structure at random points in time. For a first general formulation
of these systems, we refer to (Davis 1984), where the name piecewise deterministic
process (PDP) appears for the first time. For a recent review, see Teel et al. (2014).

One focus of our work is to investigate a PDP system for modelling the production
of the antibiotic subtilin that is synthesized by Bacillus subtilis to eliminate competing
microbial species in the same ecosystem; see, e.g., Stein (2005) for a discussion of the
importance of B. subtilis antibiotics. Our starting point is the mathematical subtilin
production model proposed by Hu et al. (2004) in 2004, and refined subsequently in
Cinquemani et al. (2008), Cinquemani et al. (2007), Koutroumpas et al. (2008), Parisot
et al. (2008). In thismodel, the production of the antibiotic is affected by environmental
stimuli and the local population density of the Bacillus itself. Whenever the amount of
nutrients is sufficient, the B. subtilis population grows without changing the subtilin
concentration. However, when the amount of nutrients falls under a threshold value,
subtilin production starts, thus changing the state dynamics of themodel. TheB. subtilis
produces subtilin to eliminate competing species and eventually other B. subtilis cells,
with the purpose of reducing the demand for nutrients while the decomposition of the
killed cells also releases additional nutrients in the environment. We remark that the
model in Hu et al. (2004) introduces 5 variables with 4 possible discrete dynamical
states.

Wenotice that subtilin productionmodels are inherently stochastic in order tomodel
the random behaviour of the gene expression for the proteins production. In the model
of Hu et al. (2004), the dynamics switches randomly between 4 states according to
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a discrete time Markov chain. Indeed, in view of using a PDP model framework, we
shall use a continuous time renewal process with exponentially distributed switching
inter-time events. The model in Hu et al. (2004) could be improved by including a
“bursting translation” that cannot be modelled with a renewal process Chong et al.
(2014), aMonod termGuez et al. (2007) in order take into account a nutrient-dependent
population growth, and a more detailed mechanism for cell mortality. However, our
main focus is not to improve this model of subtilin production. Our aim is to design an
efficient control strategy that can accommodate different mathematical representation
of the subtilin production mechanism.

Although our approach is valid for any number of state variables and dynamical
states, it is advantageous to consider a reduced model to reduce the complexity of
computation. For this purpose, we construct and validate a reduced PDP model with
3 dependent variables and 2 possible dynamical states. In particular, we show with
numerical experiments, involving Monte Carlo simulation, that the 5- and 3-variables
models match within a significant region of the state space. While we do not provide a
biological explanation for our model reduction, we can demonstrate that for a subset
of the state space the phenomenology of the two models is similar. We remark that our
reduced model evolves along two continuous-state dynamics as in Abate et al. (2010).

The reduction of the number of variables and dynamical states describing subtilin
production allows an easier use of the corresponding Fokker–Planck (FP) equation that
models the evolution of the probability density functions (PDFs) of the PDP model.
This is a system of first-order partial differential equation of hyperbolic type with
Cauchy data given by the initial PDFs distribution (Annunziato 2008; Annunziato and
Borzì 2014). Notice that the number of state variables correspond to the dimension of
the spatial domain where the FP problem is defined, whereas the number of dynami-
cal states, among which the subtilin model is switching, corresponds to the number of
PDFs that describe the marginal probability distributions of the PDP system on these
states.

The use of the FP system is very advantageous in order to analyse and control
the reduced PDP model. In fact, the PDF obtained solving the FP problem allows
to characterize the whole shape of the randomness present in the subtilin production
system and makes possible to design a robust control strategy solving a deterministic
FP control problem.We compare results ofMonte Carlo simulationwith the 3-variable
model and of the FP system demonstrating the ability of the FP solution to capture the
entire statistics of our subtilin production model.

The main purpose of our work is to define a robust control strategy for subtilin
production where an external control mechanism is provided by the concentration
of nutrients. Specifically, we formulate FP-based optimal control problems with the
objective to increase the production of subtilin.

We refer to Annunziato and Borzì (2010), Annunziato and Borzì (2013a), Annun-
ziato and Borzì (2013b), Annunziato and Borzì (2014), Annunziato et al. (2015), for
successful applications of the FP control strategy to different stochastic models. How-
ever, in contrast to these references, in the present work, we consider a different class
of objectives such that the resulting control is of feedback type. In fact, a recent theo-
retical result in Annunziato et al. (2014) shows that using objectives that correspond
to statistical expectation functionals, the adjoint formulation of FP optimal control
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problems coincides with the Hamilton–Jacobi–Bellman (HJB) approach (Bertsekas
2005). Further, the advantage of our derivation is the statistical FP interpretation of
the control strategy and the possibility to extend this strategy to situations (e.g. other
objectives) where the HJB scheme is not applicable. Notice that in Abate et al. (2010)
a stochastic optimal control problem is also considered, with the aim to provide a
principle for the phenomenological modelization of the subtilin production within the
population of B. subtilis.

In the next section, we illustrate the 5-variables model of subtilin production
(Cinquemani et al. 2007; Hu et al. 2004), and present results of numerical experi-
ments. In Sect. 3, we discuss a new reduced model with 3 variables, that are a subset
of the original 5 dependent variables. Results of numerical experiments with Monte
Carlo simulations show a similar behaviour of the twomodels. In Sect. 4, we introduce
the general PDP framework and the formulation of the FP problem. Results of numer-
ical experiments are presented in this section to validate the PDF solution of the PDP
FP system with Monte Carlo simulations of the subtilin production PDP model. In
particular, we use the FP system to visualize the three-dimensional PDF of the subtilin
PDP process. In Sect. 5, we discuss our FP control scheme, introducing optimization
objectives and deriving the optimal control law. Notice that the optimization functional
models the cost of the nutritional control and the attainment of the desired increase
of subtilin production. In Sect. 6, we illustrate a discretization scheme to compute
the control functions. These functions are obtained by solving a nonlinear backward-
in-time hyperbolic system with terminal condition given by the target objectives. In
Sect. 7, we present results of numerical experiments where control functions are com-
puted to increase the production of subtilin. These control functions are implemented
in both full and reduced subtilin PDP models and validated by Monte Carlo simula-
tions. The results of these numerical experiments demonstrate the effectiveness of the
proposed optimization framework. A section of conclusions completes the exposition
of our work.

2 The model of subtilin production

The production of the antibiotic subtilin is affected by environmental stimuli and by
the local population density of the Bacillus itself. Whenever the amount of nutrients is
sufficient, the population of the B. subtilis increases without a remarkable change in
subtilin concentration. However, when the amount of nutrients falls under a threshold,
subtilin production starts. The B. subtilis produces subtilin as a strategy to increase
the amount of nutrition by eliminating competing species and other B. subtilis cells.
Consequently, the increase of subtilin reduces the demand for nutrients and the decom-
position of the killed cells also releases additional nutrients in the environment.

The mechanism of subtilin production can be sketched as follows. If the amount of
nutrients is scarce, the composition of SigH, a sigma factor that regulates gene expres-
sions, is turned on. This sigma factor enables the production of SpaRK (SpaR and
SpaK) proteins by binding the promoter regions of their genes. The SpaRK ensamble
directs the production of the subtilin structural peptide SpaS, the biosynthesis com-
plex SpaBTC, and the immunity machinery SpaIFEG. The complex SpaBTCmodifies
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SpaS to yield the final product subtilin; see Cinquemani et al. (2008), Cinquemani et al.
(2007), Hu et al. (2004), Kouretas et al. (2007), Koutroumpas et al. (2008).

In the subtilin production model presented in Hu et al. (2004), the complexes
SpaBTC and SpaIFEG are not taken into account and the proteins SpaK and SpaR are
considered as one protein SpaRK. This model comprises 5 variables: the normalized
population of B. subtilis, y1, the concentration of the nutrients, y2, and the concen-
trations of the molecules SigH, SpaRK, and SpaS that are denoted with y3, y4, and
y5.

The growth of the B. subtilis population can be modelled by the logistic equation

d y1
dt

= r y1

(
1 − y1

D∞(y2)

)
, (1)

where D∞(y2) represents the equilibrium population size depending on the amount
of nutrients y2. It is given by

D∞(y2) = min

{
y2
Y0

, Dmax

}
, (2)

where Y0 and Dmax are constants. They represent constraints on the population due to
space limitation and competition within the population. The dynamics of the nutrients
y2 is given by

d y2
dt

= −k1y1 + k2y5, (3)

where k1 and k2 are constants describing the rate of nutrient consumption and the rate
of nutrient production, respectively. The first term in (3) describes the consumption
proportional to the population size of B. subtilis and the second term describes the
increase proportional to the concentration of SpaS protein, because of SpaS eliminates
the competitors in the environment. The bar over y5 denotes the average concentration
of all SpaS. For simplicity, we assume that y5 = ξ y5 as in Hu et al. (2004).

The sigma factor SigH is produced if and only if the amount of nutrients y2 falls
below a certain threshold ηDmax for some η > 0. So the dynamics of y3 can be
modeled as follows

d y3
dt

= χ(−∞, ηDmax )(y2) k3 − λ1y3, (4)

where k3 represents the production rate of SigH, λ1 represents its natural decaying
rate, and χM (y) := {1 if y ∈ M, 0 if y /∈ M} denotes the indicator function.

It follows from (4) that the concentration y3 decreases exponentially towards zero
whenever the concentration of the nutrients rises above the threshold, and tends expo-
nentially towards k3/λ1, whenever the concentration of the nutrients falls below the
threshold.

The production of the protein SpaRK is controlled by a binary state switch S1
activated randomly with probability depending on the concentration of SigH. The
ensemble SpaRK is produced if and only if S1 is ON. Therefore the dynamics of y4 is
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as follows
d y4
dt

=
{

−λ2y4 if S1 is OFF,

k4 − λ2y4 if S1 is ON,
(5)

where k4 represents the SpaRK production rate and λ2 represents its natural decaying
rate. The variable y4 decreases exponentially towards zero whenever the switch S1 is
OFF and tends exponentially towards k4/λ2, whenever the switch S1 is ON.

The production of the protein SpaS is also controlled by a binary switch denoted
by S2 depending on SpaRK (see below). Its dynamics is similar to the dynamics of
y4. We have

d y5
dt

=
{

−λ3y5 if S2 is OFF,

k5 − λ3y5 if S2 is ON.
(6)

The parameter k5 represents the production rate and λ3 represents the natural decaying
rate of SpaS.Thevariable y5 decreases exponentially towards zerowhenever the switch
S2 is OFF and tends exponentially towards k5/λ3 whenever the switch S2 is ON. In
this subtilin production model, the switches S1 and S2 depend on the concentrations
of y3 and y4, respectively. Summarizing, we have that the subtilin production model
can be in four different dynamical states given by

(S1, S2) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)} ,

where ON= 1 and OFF= 0.
Notice that in Hu et al. (2004), the switch S1 is modelled as evolving randomly

according to a 2-states discrete timeMarkov chain with transition probabilities a0(y3)
and a1(y3), depending on the concentration of SigH.

Hence, as discussed in Hu et al. (2004), we assume the following

a0(y3) = e−�Grk/RT y3
1 + e−�Grk/RT y3

and a1(y3) = 1

1 + e−�Grk/RT y3
, (7)

where �Grk is the Gibbs free energy of the molecular configuration when the switch
S1 in ON, T is the temperature in Kelvin and R = 1.99 cal/mol/K is the gas constant
(Hill 1960; Hu et al. 2004).

Likewise, the switch S2 is also modelled according to a Markov chain, with b0(y4)
and b1(y4) denote the probabilities that S2 switches from OFF to ON and from ON to
OFF, respectively. As above, we assume the following

b0(y4) = e−�Gs/RT y4
1 + e−�Gs/RT y4

and b1(y4) = 1

1 + e−�Gs/RT y4
. (8)

In the left side of Fig. 1 we show a schematic representation of the dependence of
the 5 variables according to Eqs. (1), (3), (4), (5), (6).

In order to visualize the time evolution of the subtilin production scheme and to
allow a comparison with our reduced model, we present results of numerical Monte
Carlo simulation with the 5-variables model with the following setting; compare with
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Fig. 1 Dependence chain of the state variables for the full (left) and the reduced (right) model. Dashed
lines stand for a probabilistic dependence in the Markov process

Hu et al. (2004). We have, r = 0.02, Dmax = 1, k1 = 0.1, k2 = 0.4, k3 = 0.5, k4 =
1, k5 = 1, ξ = 0.1, λ1 = 0.2, λ2 = 0.2, λ3 = 0.2, η = 4,Y0 = 5, e−�Grk/RT = 0.4
and e−�Gs/RT = 0.4. The initial values are y1(0) = 0.01, y2(0) = 10, y3(0) = 0,
y4(0) = 0, y5(0) = 0, and the final time T = 1000. The initial state is set as
s0 = 1.

The possibility to model the switching dynamics with a continuous time Markov
process with random switching events is also mentioned in Hu et al. (2004) and further
elaborated in Singh and Hespanha (2010) and Kouretas et al. (2006). In particular, in
the last reference the Authors provide a relationship between the discrete time-step
size and the rate of exponentially distributed events, with a model with 8 discrete
states. Our Monte Carlo simulation of the subtilin stochastic dynamics are performed
according to the continuous time Markov process defined in the next section. We use
exponentially distributed inter-time events with switching rate μ = 1 that, for the
moment, can be identified as the reciprocal of the discrete time defined in Abate et al.
(2010), Hu et al. (2004) for the discrete time Markov process.

In Fig. 2, a run of the subtilin production model is shown. We see that whenever
the amount of nutrients y2 falls under the threshold ηDmax (here ηDmax = 4), y3
starts to be produced according to (4). The increasing of y3 makes it more likely
that S1 switches ON, resulting in an increased y4 according to (5). Due to a higher
probability of S2 switching ON, y5 will increase according to (6). As a consequence,
more nutrients aremade available by (3). On the other hand, if y2 is above the threshold
ηDmax , y3 decreases according to Eq. (4). This makes it more likely that S1 switches
OFF resulting in the decrease of y4 governed by (5). Due to a higher probability of S2
switching OFF, y5 decreases according to (6). As a consequence of (3), less nutrients
are available. Therefore, one can expect that an equilibrium configuration may be
reached by the system.

For the forthcoming comparison with the evolution of the reducedmodel, we depict
in Fig. 3 another run of the 5-variables model with different initial conditions: y1(0) =
0.5, y2(0) = 10, y3(0) = 1, y4(0) = 1, and y5(0) = 1. The other parameters are as
given above.

We note that in both simulation of Figs. 2 and 3, the time evolution of the population
y1 and nutrients y2 are much less fluctuating with respect than the other state variables.
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Fig. 2 A run of the subtilin production model with initial conditions y1(0) = 0.01, y2(0) = 10, y3(0) = 0,
y4(0) = 0, y5(0) = 0, and end time T = 1000

This is in agreement with the fact that the latter describe the part of the system at the
micro scale where the fluctuations are faster than those at the macro scale, such as y1
and y2.

Finally, in Fig. 4, we depict the evolution of the average of the states values based
on Nrun = 200 runs of the model. The final average values are: y1 = 0.71, y2 =
3.756, y3 = 1.661, y4 = 1.832, y5 = 1.995.

3 A reduced model of subtilin production

One of the main purposes of our work is to construct a reduced model of subtilin
production to reduce the number of dependent variables and dynamical states. This
modelling step is instrumental for the effective use of the FP system governing the
evolution of the PDFs of the subtilin production PDP model, that is needed in order
to statistically analyse this model and to derive a robust control mechanism. For the
purpose of model reduction and based on results of experiments, we assume that the
variable y1 of (1) is at equilibrium or very slowly varying around its mean value.
Therefore, we have

0 = d y1
dt

= r y1

(
1 − y1

D∞(y2)

)
,
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Fig. 3 A run of the subtilin production model with the initial conditions y1(0) = 0.5, y2(0) = 10,
y3(0) = 1, y4(0) = 0.2, and y5(0) = 1, and end time T = 1000

which is fulfilled for y1 = 0 or y1 = D∞(y2). Notice that the case y1 = 0 corresponds
to the absence of population and this equilibrium point is unstable. The equilibrium
point of the second case is stable and corresponds to the value of the population
fluctuating around Abate et al. (2010), as confirmed by the figures in Sect. 2. Hence,
we can assume y1 ≈ D∞(y2), and more precisely 〈y1〉 = D∞(y2).

According to (2), we have D∞(y2) ≈ y2/Y0, provided that Dmax is large enough.
This dropping out of y1 means that we observe the model evolution around the popula-
tion equilibrium regardless of its fluctuations. Further, because the value of y1 has no
a direct influence on the microscopic states y3, y4, y5, we can argue that the behaviour
of the model is less sensitive to this approximation. Therefore, we obtain y1 ≈ y2/Y0,
and (3) becomes

d y2
dt

≈ −k1
y2
Y0

+ k2y5. (9)

In addition, as shown in Figs. 2, 3 and 4, we notice that the complexes SpaRK
and SpaS have similar behaviour. As illustrated in Fig. 1, SpaRK is not taken into
consideration (as in Abate et al. 2010) and we remain with three variables.
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Fig. 4 Evolution of average states values corresponding to 200 runs of the subtilin production model with
initial conditions y1(0) = 0.5, y2(0) = 10, y3(0) = 1, y4(0) = 1, and y5(0) = 1, and end time T = 1000
(left); distribution of the state values at end time (right)

In the following, we denote the state variables of the reduced model with x1, x2 and
x3, where x1 = y2 denotes the amount of nutrients, x2 = y3 denotes the concentration
of SigH, and x3 = y5 denotes the concentration of SpaS. We obtain the following
reduced subtilin production PDP model

d x1
dt

= −k̃1x1 + k2ξ x3

d x2
dt

= χ(−∞, ηDmax )(x1) k3 − λ1x2

d x3
dt

=
{

−λ3x3 if S2 is OFF

k5 − λ3x3 if S2 is ON,

(10)

where we set k̃1 ≈ k1/Y0.
Notice that in our model, the protein SpaRK does not appear and only the S2

switch is considered. Moreover, now the probability transition matrix for the switch
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Fig. 5 A run of the reduced subtilin production model with the initial conditions x1(0) = 10, x2(0) = 1,
x3(0) = 1, and end time T = 1000

S2 depends on the concentration of SigH, i.e. x2, and is given by

q̂(x2) =
(
1 − b0(x2) b0(x2)
b1(x2) 1 − b1(x2),

)
(11)

where b0 and b1 are defined in (8). We show in the right side of Fig. 1 a schematic
representation of the chain dependence of the reduced model.

For the purpose of comparison with the original 5-variables model, we depict in
Fig. 5 one run of (10), and in Fig. 6, we show the evolution of the variable averages
computed with 200 runs; compare with Figs. 3 and 4, respectively. In particular, see
Figs.4 and 6 to recognize very similar statistical distribution of the values (y2, y3, y5)
with the values (x1, x2, x3) at end time.

For these experiments, the parameter setting is as follows:
k̃1 = 0.02, k2 = 0.4, k3 = 0.5, k5 = 1, ξ = 0.1, λ1 = 0.2, λ3 = 0.2, η = 4, Dmax =
1, e−�Gs/RT = 0.4 and T = 1000. The initial values are x1(0) = 10, x2(0) = 1 and
x3(0) = 1.

A comparison of the outcomes of our experiments shows that our reduced model
is able to provide, within a representative state space, the same biological behaviour
as the full subtilin PDP model, while requiring much less computational effort.

123



738 V. Thalhofer et al.

0 100 200 300 400 500 600 700 800 900 1000

x
1

0

5

10

15

0 100 200 300 400 500 600 700 800 900 1000

x
2

0

1

2

3

4

0 100 200 300 400 500 600 700 800 900 1000

x
3

0

1

2

3

4

5

0

5

10

15

0

1

2

3

4

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 6 Evolution of the average variables values corresponding to 200 runs of the reduced subtilin pro-
duction model with initial conditions x1(0) = 10, x2(0) = 1, x3(0) = 1, and end time T = 1000 (left);
distribution of the state values at end time (right)

4 The PDP formulation and the corresponding Fokker–lanck system

A piecewise-deterministic stochastic process is a model governed by a set of differen-
tial equations that change their deterministic structure at random points in time; see,
e.g., Aihara and Suzuki (2010), Annunziato (2012), Cassandras and Lygeros (2010),
Cocozza-Thivent et al. (2006), Costa and Dufour (2003), Davis (1984), Faggionato
et al. (2009), for a partial list of references.

We consider, the subtilin PDP model (10) that is a first-order system of ordinary
differential equations, where the driving function is affected by a renewal process,
denoted with S(t) : [t0,∞[→ S = {0, 1}, that is a discrete 2-states Markov jump
process. The 3-variables function x(t) = (x1(t), x2(t), x3(t)), x : [t0,∞) → �,
� ⊆ R

3, is defined by the following properties. We have

(a) The state function satisfies the following equation

ẋ(t) = AS(t)(x, uS(t)), t ∈ [t0,∞), (12)

where S(t) : [t0,∞[→ S is a Markov process (defined below by c) and d))
with discrete states S = {0, 1}. Correspondingly, given s ∈ S, we say that the
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dynamics is in the (deterministic) state s, driven by the dynamics-control function
As : � × U → R

3, that is taken from the following set of functions {A1, A2}
given by

A1(x, u1) =
⎛
⎝ −k̃1 x1 + k2 ξ x3 + u1

χ(−∞, ηDmax )(x1) k3 − λ1x2
−λ3x3

⎞
⎠ ,

and

A2(x, u2) =
⎛
⎝ −k̃1 x1 + k2 ξ x3 + u2

χ(−∞, ηDmax )(x1) k3 − λ1x2
k5 − λ3x3

⎞
⎠ ,

where us ∈ U ⊂ R denotes the value of the control acting on the subtilin PDP
model in the state s. Notice that the controls model an increase or decrease of
concentration of the nutrients.

(b) The state function satisfies the initial condition x(t0) = x0 ∈ � being in the initial
state s0 = S(t0).

(c) The process S(t) is characterized by an exponential PDF, ψs : R+ → R
+, of

inter-time transition events, as follows

ψs(τ ) = μse
−μsτ , with

∫ ∞

0
ψs(τ )dτ = 1, (13)

where μs represents the rate of the transition events for each state s ∈ S. In other
words it is the PDF for the time the system stays in the state s.

(d) The process S(t) is modelled by a stochastic transition probability matrix, q̂ :=
{qi j }, with the following properties

0 ≤ qi j ≤ 1,
S∑

i=1

qi j = 1, ∀i, j ∈ S. (14)

When a transition event occurs, the PDP system switches instantaneously from a
state j ∈ S, with dynamic function A j , randomly to a new state i ∈ S, driven by
the dynamic function Ai . Virtual transitions from the state j to itself are allowed
for this model, this means that we allow q j j > 0.

Both (c) and (d) define the Markov renewal process S(t), that generates a temporal
sequence of transition events (t0, t1, . . . , tk, tk+1, . . .) and states
(s0, s1, . . . , sk, sk+1, . . .). Notice that the state function x(t) is continuous through
jumps of the renewal process.

We remark that one of the main tools for analysing stochastic processes is the fact
that the evolution of the PDFs associated to the states of these processes is governed
by time-dependent PDEs, with a given initial PDF configuration. Specifically, in the
case of PDP models, a system of first-order hyperbolic PDEs is obtained. We call this
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system the Fokker-Planck system of our subtilin PDP model. It is given by

∂t fs(x, t) +
3∑

i=1

∂i (A
i
s(x, us) fs(x, t)) =

2∑
l=1

Qls(x) fl(x, t) s = 1, 2, (15)

where ∂i denotes the partial derivative with respect to the variable xi , Ai
s denotes the

i-th component of As , and

Qls(x) =
{

μl qls(x) if l �= s,

μs(qss(x) − 1) if l = s,

notice, that
∑2

s=1 Qls(x) = 0.
For the reduced subtilin production model, the stochastic matrix qls(x) is defined

by (8) and (11). As we anticipated in the text above, the rate of switching events μs

is a characteristic of the continuous time Markov process that is not included in the
description given in Hu et al. (2004), where the discrete time case is treated. The value
1/μs can be approximately regarded as the discrete time step of such model. For a
more accurate correspondence, we refer to Kouretas et al. (2006). In our simulation
we use μs as a time scaling factor of the process.

The FP system (15) is a first-order hyperbolic system describing the evolution of
the probability density functions, fs, s ∈ S. We write f = ( f1, f2)T . The functions
f1(x, t) and f2(x, t) are the two marginal PDFs related to the two dynamical states.
We consider (15) with initial conditions given by

fs(x, 0) = f 0s (x) s = 1, 2, (16)

where x ∈ �, f 0s (x) ≥ 0 and
∑2

s=1

∫
�

f 0s (x) dx = 1.
Notice that (15) represents a transport equation for the “flux” of probability. The left-

hand side of (15) represents the total derivative of the flux driven by the deterministic
transport velocity fields As . The right-hand side of (15) describes the balance between
the flux of probability incoming to and outcoming from the two states, according to
the rates of events μs and the stochastic matrix qi j of the driving Markov process.
Details on the derivation and the analysis of these much less investigated FP equations
can be found in Annunziato (2008), Annunziato (2007), Annunziato and Borzì (2014)
and references therein.

Also taking into account the initial conditions, we determine the spatial domain �

sufficiently large such that the probability Pr(x(t) ∈ � : t ∈ (0, T )) = 1. Setting the
invariant domain for PDP is a difficult problem, we refer to Teel et al. (2014) for a
discussion on this subject. To set this domain appropriately, we use results of Monte
Carlo simulation to get an estimate of � and afterwards compare it with the PDFs
obtained solving (15). In Fig. 7, we depict the surface level of the PDFs for the value
0.01 (left), that approximately represents the envelope of the region where the PDP
process evolves. In the same figure, we show a sample trajectory of the PDP model,
obtained by integration of (10) (right).
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Fig. 7 Representation of the probability density function in the 3 dimensional space. Surface level where
the value of the PDF is 0.01 (left). A trajectory of the state simulated by integration of (10) (right)

We note that we are evaluating the process at equilibrium, and since it is Markovian
and stationary, then the process is ergodic (e.g. see Rey-Bellet 2006). Hence, a single
trajectory of the process is able to describe the associated invariant measure of the
probability space. The agreement between the two sets confirms the choice of the
computational domain and allows to set homogeneous boundary conditions to (15).

5 The Fokker–Planck optimal control framework

In this section, we define a control strategy for our subtilin production model where
the control mechanism represents the concentration of the nutrients and the purpose
of the control is to increase the production of antibiotic. We quote that an example
of control mechanism is introduced in Abate et al. (2010) with the aim to describe
the internal production of subtilin by the B. subtilis. On the other hand, we promote
a control mechanism for the production of subtilin driven by an additional external
input of nutrients.

Our control strategy results from a PDE optimal control formulation Borzì and
Schulz (2012) where the PDE constraint is the FP system (15). This approach is
formally similar to Annunziato and Borzì (2014), but in the present work, we choose
objective functionals that correspond to statistical expectations rather than to likelihood
functions of PDFs. This special choice has enormous consequences on the resulting
control strategy. In fact, the approach in Annunziato and Borzì (2014) requires to
solve an optimality problem consisting of the FP system, its adjoint, and the optimality
conditions, and the resulting control is of open-loop type. On the other hand, with our
setting, the adjoint FP system is uncoupled from the FP system, and the optimality
condition can be inserted in the adjoint FP system thus obtaining a HJB problem
that gives a control of closed-loop type. We refer to Annunziato et al. (2014) for a
discussion and comparison between these two approaches.
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For our purpose, we consider the following objective functional

J ( f, u) = 1

2

2∑
s=1

∫ T

0

∫
�

|us(x, t)|2 fs(x, t) dx dt +
2∑

s=1

∫
�

gs(x) fs(x, T )dx . (17)

The first term in this functional can be interpreted as the mean nutrition effort rep-
resented by the control u = (u1, u2), u : � × (0, T ) → R

2, and gs models an
attractive potential for the final configuration. Specifically, with (17) we require that
our reduced subtilin production PDP model, in both dynamical states, approaches at
time T a desired configuration corresponding to a desired value of SpaS (x3) given by
the parameter d3. Accordingly, we choose the following attracting potential

g(x3) = − α

2σ
√
2π

e
− (x3 − d3)2

2σ 2 , (18)

where σ > 0. We take g1(x3) = g(x3) and g2(x3) = g(x3).
We remark that the function g has not a biological correspondence in the model of

B. subtilis, since it represents a model parameter for the optimization control problem,
whose aim is to set the desired final value of the SpaS concentration. We notice that
if the value of the weight α is too small, the optimization problem becomes harder to
solve.

Now, the FP optimal control formulation consists in minimizing (17) subject to
the constraint given by (15). The solution to this problem is characterized by the
solution of the corresponding FP optimality system (Annunziato and Borzì 2014),
that is formally obtained by setting to zero the Fréchet derivatives of the following
Lagrange function with respect to the optimization variables ( f1, f2, p1, p2, u1, u2).
The Lagrange function is given by

L( f, p, u) :=1

2

2∑
s=1

∫ T

0

∫
�

|us(x, t)|2 fs(x, t) dx dt +
2∑

s=1

∫
�

gs(x) fs(x, T )dx

+
2∑

s=1

∫
�

∫ T

0
ps(x, t)

(
−∂t fs(x, t) −

3∑
i=1

∂i (A
i
s(x, u) fs(x, t)) +

2∑
l=1

Qls(x) fl(x, t)

)
dt dx,

(19)
where p = (p1, p2) : � × [0, T ] → R

2 represents the Lagrange multiplier.
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In particular, the derivatives of L with respect to the PDFs result in the following
adjoint FP system

1

2
|us(x, t)|2 + ∂t ps(x, t) +

3∑
i=1

Ai
s(x, us)∂i ps(x, t) = −

2∑
l=1

Qsl(x)pl(x, t)

(20a)

ps(x, T ) = gs(x) (20b)

us(x, t) +
3∑

i=1

(
∂Ai

s

∂us

)
∂i ps(x, t) = 0, s = 1, 2, (20c)

where (20a) are the adjoint FP equations, (20b) represents the terminal conditions, and
(20c) represents the optimality conditions. Notice, that the adjoint FP problem does
not depend on the PDFs and is defined backwards in time.

We see that in correspondence to our subtilin model, (20c) becomes the following

us(x, t) + ∂1 ps(x, t) = 0 s = 1, 2. (21)

We insert this result in the adjoint FP equations and obtain the following

∂t ps(x, t) +
3∑

i=1

Ai
s(x)∂i ps(x, t) − 1

2

(
∂1 ps(x, t)

)2 = −
2∑

l=1

Qsl(x)pl(x, t)

ps(x, T ) = gs(x), s = 1, 2.

(22)

The resulting (p1, p2) are inserted in (21) to obtain the controls u1 and u2.

6 Discretization of the adjoint FP problem

In this section, we illustrate the numerical solution of (22) in � × (0, T ) . We define
the time step size δt = T/N , N > 0, and the corresponding time points are given by

Iδt = {tn = n δt, n = 0, 1, . . . , N } . (23)

We also consider a grid for the (x1, x2, x3) variables as follows

xi1 = (i − 1)h1 + c1 i = 1, . . . , M,

x j
2 = ( j − 1)h2 + c2 j = 1, . . . , M,

xk3 = (k − 1)h3 + c3 k = 1, . . . , M,

(24)

where hi denotes the mesh size in the i th variable space and ci is the left point in the
i-th direction.
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We use explicit finite-difference schemes. The time differentiation operator is given
by

Dt p
n
i jk = 1

δt

(
pn+1
i jk − pni jk

)
. (25)

For the space discretization, we have the forward difference operator D+
1 (pni jk) =

(pni+1 jk−pni jk)/h1, the backwarddifference operator D
−
1 (pni jk) = (pni jk−pni−1 jk)/h1,

and the central difference operator D0
1 = (pni+1 jk− pni−1 jk)/(2h1). The action of these

operators on the second and third components are denoted with the indeces 2, and 3.
(p)+ = max(p, 0), (p)− = min(p, 0) denote the positive and negative values. Hence,
the discrete adjoint problem becomes the following

Dt p
n+1
i jk +

(
−k̃1 x

1
i + k2 ξ x3k

)+
D+
1 pn+1

i jk +
(
−k̃1 x

1
i + k2 ξ x3k

)−
D−
1 pn+1

i jk

+
(
χ(−∞, ηDmax )(x

1
i ) k3 − λ1x

2
j

)+
D+
2 pn+1

i jk

+
(
χ(−∞, ηDmax )(x

1
i ) k3 − λ1x

2
j

)−
D−
2 pn+1

i jk

+
(
−λ3x

3
k

)+
D+
3 pn+1

i jk +
(
−λ3x

3
k

)−
D−
3 pn+1

i jk − 1

2

(
D0
1 pn+1

i jk

)2
= −Q11

i jk p
n+1
i jk − Q12

i jkr
n+1
i jk (26)

and

Dt r
n+1
i jk +

(
−k̃1 x

1
i + k2 ξ x3k

)+
D+
1 r

n+1
i jk +

(
−k̃1 x

1
i + k2 ξ x3k

)−
D−
1 r

n+1
i jk

+
(
χ(−∞, ηDmax )(x

1
i ) k3 − λ1x

2
j

)+
D+
2 r

n+1
i jk

+
(
χ(−∞, ηDmax )(x

1
i ) k3 − λ1x

2
j

)−
D−
2 r

n+1
i jk

+
(
k5 − λ3x

3
k

)+
D+
3 r

n+1
i jk +

(
k5 − λ3x

3
k

)−
D−
3 r

n+1
i jk − 1

2

(
D0
1 r

n+1
i jk

)2
= −Q21

i jk p
n+1
i jk − Q22

i jkr
n+1
i jk . (27)

We can prove that this discretization scheme is stable and first-order accurate pro-
vided that the following Courant–Friedrichs–Lewy-like condition on the time-step
size is satisfied

δt ≤ 1

max
s∈S

(
3∑

i=1

1
hi

|Ai
s |

)
+ max

s∈S |Qss |
, (28)

where Ai
s denotes the i-th component of As . Once the discrete solutions pni jk and r

n
i jk

are known, the controls are obtained by the discrete version of (21), using standard
centred discretization

un1,i jk = −D0
1(p

n
i jk), un2,i jk = −D0

1(r
n
i jk)
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Fig. 8 First 20 runs of the Monte–Carlo simulation of the uncontrolled full system (left) and the corre-
sponding relative frequency at time T = 10 of 100 (right)

in the interior of the domain, and D±
1 next to the boundary.

7 Numerical experiments

In this section, we present results of numerical experiments to compute and validate
the control functions for both the full and reduced subtilin production PDP models.
We consider a time horizon with T = 10 and � is given by

� = (1 , 7) × (0 , 4) × (−0.5 , 5.5).

This domain is chosen based on results of numerical experiments with μs = 5, s =
1, 2, ηDmax = 4.0. For the discretization, we chose M = 61 and N = 501. For our
experiments, we set the target value d3 = 3, the attracting potential intensity α = 10
and the wideness σ = 0.3.

123



746 V. Thalhofer et al.

x
1

3.5

4

4.5

x
2

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

x
3

0

2

4

3.5

4

4.5

0 1 2 3 4 5 6 7 8 9 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

0

2

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 9 First 20 runs of the Monte–Carlo simulation of the uncontrolled system with x1(0) = 4.5, x2(0) =
1.0 and x3(0) = 0 (left) and the corresponding relative frequency at time T = 10 of 100 (right). The
nutrient starts from the value 4.5, and SigH from 1. When the value of nutrients is under the threshold value
4, the SigH value increases. The final value of SpaS is moderately low
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Fig. 10 First 20 trajectories of Monte–Carlo simulation of the controlled system states (left) and the
corresponding relative frequency of 100 runs (right). The control of the nutrients acts to increase the value
of the production of SpaS towards the desired value

In Fig. 8 we see the simulation for the full uncontrolled model with the same para-
meters of Sect. 2. The initial conditions are set to y1(0) = 0.9, y2(0) = 4.5, y3(0) =
1, y4(0) = 0.5, y5(0) = 0. On the left hand side we show the first 20 runs of Monte
Carlo simulation with our PDP subtilin production model with zero controls. On the
right-hand side, the relative frequency at time T = 10 of 100 runs is depicted. We
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Fig. 11 First 20 trajectories of Monte Carlo simulation of the controlled system states for the full model
(left) and the corresponding relative frequency of 100 runs (right). The control calculated with the reduced
model is used to control the full model. It acts so to increase the value of the production of SpaS towards
the desired value

get the following average values at the final time y1 = 0.885, y2 = 3.84, y3 =
1.174, y4 = 0.876, y5 = 0.91.

On the left-hand side of Fig. 9, we show the first 20 runs of Monte Carlo simulation
with our PDP subtilin production model with zero controls. On the right-hand side,
the relative frequency at time T = 10 of 100 runs is depicted. The initial conditions
are x1(0) = 4.0, x2(0) = 1.0, and x3(0) = 2.0. The mean values of these simulations
at terminal time, are x1 = 3.861, x2 = 1.083 and x3 = 0.759.

Our purpose is to apply an optimal control that increases the subtilin production,
that is, increase x3 towards a desired value d3. To determine the optimal controls u1
and u2, we solve the adjoint problem (26), (27). The resulting controls are inserted
in the reduced PDP model and a new set of Monte–Carlo simulation is performed.
Figure 10 shows the first 20 runs of the Monte–Carlo simulation and the obtained
relative frequencies at terminal time T = 10.We see that the control is able to steer the
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subtilin model to considerably increase antibiotic production. Specifically, we obtain
the following average values of the final states x1 = 3.783, x2 = 2.242, x3 = 1.743.
This result shows the ability of the control to increase the concentration of SpaS and
therefore of the subtilin.

In Fig. 11, we show results of Monte Carlo simulation for the controlled full model,
where we insert the controls u1 and u2, which have been obtained with the reduced
model, in the state equation for the nutrients y2. We see that the statistics of y2, y3, y5
and of x1, x2, x3 have striking similar behaviour. Further, the population y1 is almost
constant at the equilibrium value, and the SpaRKvariable y4 spans in the same range of
value of the uncontrolled case.With the same initial condition of the uncontrolled case,
we get the following average values at the final time y1 = 0.873, y2 = 3.717, y3 =
2.241, y4 = 1.919, y5 = 1.584, we see the good match of y2, y3, y5 with the values
of the former simulation, and the increased value of the SpaS y5 with respect to the
uncontrolled case.

8 Conclusions

A stochastic hybrid model for the production of the antibiotic subtilin by theB. subtilis
was investigated. The high-dimensionality of this model motivated the formulation of
a suitable reduced model that was to match the dynamics of the full model within
a significant portion of the state space. In correspondence to this reduced model, a
Fokker–Planck hyperbolic system was formulated that describes the evolution of the
probability density functions of the states of the reduced model. These functions were
used to validate the entire evolution statistics of the reduced model. Furthermore,
these functions were used in the formulation of a control objective with the purpose to
increase subtilin production while minimizing the costs of nutrition controls. The opti-
mization of this objective under the differential constraints given by the Fokker–Planck
system resulted in a robust feedback control strategy to increase subtilin production.
Results of numerical experiments were presented that demonstrated the validity of
the proposed control scheme. Future work aims at extending the present strategy to
accommodate, e.g. cell variability, Monod terms, and non-Markovian dynamics for
the gene transcription.
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