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Abstract Not every exposure to virus establishes infection in the host; instead, the
small amount of initial virus could become extinct due to stochastic events. Different
diseases and routes of transmission have a different average number of exposures
required to establish an infection. Furthermore, the host immune response and antiviral
treatment affect not only the time course of the viral load provided infection occurs, but
can prevent infection altogether by increasing the extinction probability. We show that
the extinction probability when there is a time-dependent immune response depends
on the chosen form of the model—specifically, on the presence or absence of a delay
between infection of a cell and production of virus, and the distribution of latent and
infectious periods of an infected cell. We hypothesise that experimentally measuring
the extinction probabilitywhen the virus is introduced at different stages of the immune
response, alongside the viral load which is usually measured, will improve parameter
estimates and determine the most suitable mathematical form of the model.
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1 Introduction

A host viral infection can be established with just one introduced virion. However,
there is a chance that deaths of virions and infected cells occur such that the infection
fails and the virus population becomes extinct. As a result, not every exposure to
virus leads to systemic infection; there is a chance element in the number of times
an individual is exposed to a pathogen before systemic infection is established, as
demonstrated by animal studies in diseases such as SIV (Keele et al. 2009). Factors
which lead to viral extinction before systemic infection is established include the
innate and adaptive immune responses, spatial heterogeneity in infection processes,
and the stochastic nature of processes such as infection of cells by virions, production
of virions from cells and death of virions and infected cells.

The extinction probability when a number of virions is introduced to the host is
of interest, not only because it reflects important information about the reproduction
characteristics of the virus and the effectiveness of the mode of transmission, but also
because theremaybeways tomanipulate this extinction probability anddefend the host
against infection. Many studies of the host immune response and of pre/post-exposure
drug prophylaxis have concentrated on their effect on the viral load (Beauchemin
and Handel 2011; Dobrovolny et al. 2013; Smith and Ribeiro 2010) rather than the
extinction probability, but the ability to induce stochastic extinction is another way to
quantify the effectiveness of the immune response or intervention.

Studies of successive respiratory viral infections in animals have shown thatmorbid-
ity and mortality are reduced when infections are separated by days or weeks (Seo and
Webster 2001; Walzl et al. 2000; Bodewes et al. 2011; Laurie et al. 2010); in the case
of different influenza A subtypes, the subsequent infection can be prevented altogether
(Laurie et al. 2015). The reduction of viral shedding can be attributed to cross-reactive
adaptive immunity and a heightened innate immune response.Wehypothesise that sub-
sequent infections are prevented altogether when the immune response is so effective
that stochastic extinction of the virus becomes likely (Cao et al. 2015). The propor-
tion of prevented subsequent infections depends on the interval between primary and
subsequent exposures, so the effect is time-dependent. Studies have also shown that
pre-exposure interferon treatment in animals can prevent infection with pandemic
influenza (Steel et al. 2010), and that both pre- and post-exposure prophylaxis reduce
the probability of HIV infection (Cardo et al. 1997; Baeten et al. 2012; Grant et al.
2010; Thigpen et al. 2012). Because infection is often initiated by only one or a few
virions (Keele et al. 2008), stochasticity plays an important role in the effectiveness
of prophylaxis. The short timeframe within which post-exposure prophylaxis must be
administered suggests that the extinction probability is time-dependent.

In the absence of a time-dependent immune response, stochastic models for HIV
incorporating target cells and virions have been studied using Monte Carlo simula-
tions of the multi-type branching process (Heffernan and Wahl 2005; Kamina et al.
2001; Tan and Wu 1998), or by simulating solutions to stochastic differential equa-
tions where the infection and death processes are diffusion processes, represented by

123



On the extinction probability in models of within-host infection… 789

noise terms in the equations (Tuckwell and Corfec 1998). Kamina et al. (2001) has
shown that branching process simulations estimate the extinction probability more
accurately than diffusion approximations. However, estimation of the extinction prob-
ability using simulations can be computationally costly; this makes the procedure
infeasible for certain situations. For example, when conducting sensitivity analyses,
sampling procedures generate many different parameter sets for which the extinction
probability must be simulated. In addition, when fitting models to experimental data
using methods such as maximum likelihood estimation, the likelihood of the observed
data given model parameters at each point in parameter space depends on the extinc-
tion probability at that point. Analytic results for the extinction probability have been
obtained, but most of these have either only kept track of the number of infected cells
(Merrill 2005) or the number of virions (Tuckwell et al. 2008).

Pearson et al. (2011) derived analytic expressions for the extinction probability
when an arbitrary number of infected cells and/or virions is introduced to the host.
This method provides a fast, accurate calculation of the extinction probability, but it is
assumed that the rates of target cell infection by a single virion, death of a single virion,
production of a virion by a single cell, and death of a single cell are constant throughout
the early stage of infection, when the extinction probability is non-negligible. This is
not necessarily the case if the immune response is changing during the early stage
of infection, such as through vaccination, prophylaxis or previous infection. Conway
et al. (2013) extended the work of Pearson et al. (2011) to cover the case when there is
explicit time-dependence of the infection rate and viral production rate, and used the
results to analyse the effect of pre- and post-exposure prophylaxis for HIV. In general,
the time dependence of the model parameters may not be explicit; the parameters may
be functions of other model compartments, which may be time-varying.

Both Pearson et al. (2011) and Conway et al. (2013) have assumed that infected
cells are immediately able to produce virus, whereas biologically there is a delay, often
termed the latent period, caused by intracellular events which must happen before the
production of virions. In addition, both Pearson et al. (2011) and Conway et al. (2013)
have assumed that the mean lifetime of an infected cell is exponentially-distributed,
such that the most likely mean lifetime is zero. Since this is biologically unlikely,
models with different latent and infectious periods have been developed. Adding these
complexities into the model lead to more realistic viral dynamics (Jensen 1948; Gross-
man et al. 1998; Lloyd 2001), andmakesmodel parametersmore biologically plausible
(Baccam et al. 2006; Beauchemin et al. 2008).

We apply the method presented by Pearson et al. (2011) to calculate the extinc-
tion probability at different stages of infection for a within-host viral model with a
time-dependent immune response modelled by ordinary differential equations, with
multiple latent and infectious stages. We take a different approach to Conway et al.
(2013) by directly solving for the probability function for extinction from a given state
and time, rather than using the probability generating function. Using a case where
the viral infection is strongly affected by the time dependence of the immune response
(Laurie et al. 2015; Cao et al. 2015),we show that the calculations agree with the
results obtained using Monte Carlo simulations, and examine the change in extinction
probability when the number of latent and infectious stages, and the mean duration of
these stages, changes.
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2 Derivation of the extinction probability

2.1 The TIV model with continuous production of virions

A common model for within-host viral infection is the TIV model (Perelson 2002).
The transitions are

V + T
β→ I (1a)

I
δ→ ∅ (1b)

I
p→ I + V (1c)

V
c→ ∅ (1d)

where T is the number of uninfected target cells, I is the number of infected cells,
V is the number of infectious virions, and →∅ denotes transition to the empty set
i.e. clearance. Homogeneous mixing between uninfected cells and virions is assumed.
Uninfected cells become infected by virus at rate β per target cell per virion. Infected
cells produce infectious virions at a rate p per cell and die at a rate δ per cell, where 1/δ
is the mean life span of a productively infected cell; they also produce noninfectious
virions, but as these do not contribute to the infection dynamics, they are ignored.
Free virus is cleared at rate c per virion, as well as being lost to entry into target cells.
This model is considered ‘continuous’ because the infected cells continually produce
virions during their lifetime, in contrast to the ‘burst’ model where all virions are
released when a cell dies. In this study, we will focus on the continuous production
stochastic model, but the same methods can be applied to the burst model. The mean-
field kinetics of both models are given by the deterministic equations

dT

dt
= −βT V (2a)

d I

dt
= βT V − δ I (2b)

dV

dt
= pI − cV − βT V . (2c)

Some versions of the above deterministic model have a scaling factor in front of
the βT V term in Eqs. 2a and 2b; this is because the number of infectious virions
in the host usually cannot be measured in absolute terms, but only in terms of units
such as plaque forming units (PFU), 50% egg infectious doses (EID50) or 50% tissue
culture infectious doses (TCID50). Often, even these cannot be measured directly, and
one only knows the concentration of these units in samples drawn from the host. The
scaling factor is the ratio between the number of virions required to infect a cell and the
number of virions corresponding to one measurement unit; if we assume that V is the
absolute number of virions, and each cell is infected by exactly one virion, the scaling
factor is not required. We will consider the most commonly modelled case, where
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infection of a target cell requires only one virion. A detailed study of the feasibility
of different binding processes is beyond the scope of this paper and is left for future
work.

The basic reproduction number R0 is given by

R0 = βpT0
δ(c + βT0)

= γα (3)

where γ = βT0/(c + βT0) is the probability that a virion infects a cell and α = p/δ
is the mean number of virions produced by an infected cell in its lifetime. It is defined
as the number of secondary infected cells due to a single infected cell in a population
of uninfected cells of size T0, i.e. the number of cells infected by virions produced
directly by the first infected cell.

2.2 The extinction probability for the TIV model

For a time-independent immune response (constant β,δ,p,c), the system is most sus-
ceptible to stochastic extinction in early infection, when virion and infected cell
numbers are small. At this stage, the change in target cell numbers due to infec-
tion is small, so T is approximately constant (T ≈ T0) and we can simplify Eq. 1 to

V
βT→ I (4a)

I
δ→ ∅ (4b)

I
p→ I + V (4c)

V
c→ ∅. (4d)

The continuous-time Markov chain becomes a multi-type branching process. The
extinction probabilities when the system is initiated with a single virion or a single
infected cell are given respectively by (Pearson et al. 2011)

ρV = min

(
1 − R0 − 1

α
, 1

)
(5a)

ρI = min(1/R0, 1). (5b)

If the system is initiated with nV virions and nI infected cells, because the extinc-
tions of the lineages of each virus and infected cell are independent, the extinction
probability is given by

ε(nV , nI ) = ρ
nV
V ρ

nI
I . (6)

In natural infection or inoculation experiments where the hosts are initially naive
to infection, the initial condition is nI = 0, nV > 0.
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It is worth noting that for acute diseases such as influenza where the viral load peak
is orders of magnitude higher than the initial value, many studies neglect the loss of
virions due to entry into target cells to initiate infection (Lee et al. 2009; Miao et al.
2010; Baccam et al. 2006; Saenz et al. 2010; Pawelek et al. 2012). By neglecting virion
loss due to cell entry, the transitions for the model become

V
βT→ I + V (7a)

I
δ→ ∅ (7b)

I
p→ I + V (7c)

V
c→ ∅. (7d)

This simplification assumes that βT � c, which becomes more valid as the infec-
tion progresses and target cell depletion occurs. As the aforementioned studies are not
focussed on the very early stages of infection, the assumption is used to simplify the
form of the model. However, for very early infection where the target cells have not
been depleted, the assumption is not necessarily valid. The extinction probabilities
become

ρV = min

(
c(δ + p)

p(βT + c)
, 1

)
(8a)

ρI = min

(
δ(βT + c)

βT (δ + p)
, 1

)
. (8b)

By rewriting Eq. 5 as

ρV = min

(
c(δ + p) + δβT

p(βT + c)
, 1

)
(9a)

ρI = min

(
δ(βT + c)

βT p
, 1

)
, (9b)

one can see that neglecting loss of virus due to entry into cells underestimates the
extinction probability, as virions have the opportunity to infect more than one cell.

2.3 Extension to more realistic models with time-independent parameters

The continuous production TIVmodel has been extended to include an exponentially-
distributed latent stage where infected cells do not yet produce virions, reflecting the
delay in virion production due to biological processes which must happen in the cell
to induce virion production. For many diseases, such as influenza and HIV, the length
and form of the latent phase affect parameter estimates (Herz et al. 1996; Mittler et al.
1998; Nelson et al. 2000), and the parameters in the model take on more realistic
values when fit to data if a latent stage is included (Baccam et al. 2006; Beauchemin
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et al. 2008). The extinction probability in this case is a function of the initial number
of virions, latently infected cells and actively infected cells, and the absorbing state is
when all of these quantities are zero.

In the general case there are multiple latent and infectious stages, each with
exponentially-distributed transition times, and the simplest model recovered as a spe-
cial case with one latent and one infectious stage. These models use the method of
stages to make the distribution of the total time spent in the latent and infectious period
more realistic (Jensen 1948; Grossman et al. 1998; Lloyd 2001), such that the most
likely transition time is no longer zero, as in the case of the exponential distribu-
tion. The resulting distributions for the total latent and infectious period distributions
are Erlang distributions with means 1/δL and 1/δI , and modes (K − 1)/(K δL) and
(M − 1)/(MδI ) respectively, where K and M are the number of latent and infec-
tious stages respectively. This is analogous to having gamma-distributed latent and
infectious periods in an epidemic model (Anderson and Watson 1980). Because the
transition times for each stage are exponentially-distributed, the resultingmodel is still
a Markov chain, and the procedure by Pearson et al. (2011) can be used to calculate
the extinction probability. The extinction probability is then a function of the initial
number of virions, latently infected cells in each stage, and actively infected cells in
each stage, and the absorbing state is when these 1 + K + M quantities are all zero.

The transitions for the continuous production model with K latent stages and M
infectious stages are given by

V
βT→ L1 (10a)

Lk
K δL→ Lk+1, k = 1, 2, . . . , K − 1 (10b)

LK
K δL→ I1 (10c)

Im
MδI→ Im+1, m = 1, 2, . . . , M − 1 (10d)

IM
MδI→ ∅ (10e)

Im
p→ Im + V, m = 1, 2, . . . , M (10f)

V
c→ ∅ (10g)

for K > 0 and

V
βT→ I1 (11a)

Im
MδI→ Im+1, m = 1, 2, . . . , M − 1 (11b)

IM
MδI→ ∅ (11c)

Im
p→ Im + V, m = 1, 2, . . . , M (11d)

V
c→ ∅ (11e)

for K = 0.
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The independence of virion/cell lineage extinction can be written in this case as

ε(nV , nL1, . . . , nLK , nI1, . . . , nIM ) = ρ
nV
V

K∏
k=1

ρ
nLk
Lk

M∏
m=1

ρ
nIm
Im . (12)

Following the procedure of Pearson et al. (2011), we obtain the following set of
simultaneous equations for the extinction probabilities:

ρV = 1

βT + c
(βTρI1 + c) (13a)

ρL1 = ρL2 = . . . = ρLK = ρI1 (13b)⎡
⎢⎢⎢⎢⎣

χ η

. . .
. . .

. . . η

χ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ρI1
ρI2
...

ρI M

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
...

0
−η

⎤
⎥⎥⎥⎦

where η = MδI

p + MδI

χ = pρV

p + MδI
− 1. (13c)

The M-by-M matrix in Eq. 13c is a Toeplitz tridiagonal matrix (with zeros in the
diagonal below the main diagonal); inverting it yields (Huang and McColl 1997)

⎡
⎢⎢⎢⎣

ρI1
ρI2
...

ρI M

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

min((−η/χ)M , 1)
min((−η/χ)M−1, 1)

...

min((−η/χ), 1)

⎤
⎥⎥⎥⎦ . (14)

Note that η/χ < 0. Equation 13a can be solved simultaneously with the first row of
Eq. 14 to obtain a numerical result for ρV and ρI1, which can then be substituted into
Eqs. 13b and 14 to find the remaining extinction probabilities.

The extinction probability for a latent cell in any stage is equal to the extinction
probability for an infectious cell in the first stage, because for each latent stage, there is
only one possible transition. Thus, the latent cell transitions to an infectious cell in the
first stage, with an unchanged number of virions, with probability 1, and the latency
does not affect the extinction probability. The extinction probability of an infected cell
in stageM−m is equal to the extinction probability in stageM , to the power ofm. This
is because the infected cell is guaranteed to pass through each stage, and the stages
are identical. Consequently, the probability mass function for the number of virions
produced by an infected cell in m stages is the same as the probability mass function
for the number of virions produced by m infected cells in one of those stages, and the
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extinction probability is the same in both cases. The independence of extinction of
each infected cell leads to the aforementioned result.

2.4 Extension to a time-dependent immune response

For a time-dependent immune response, we focus on the case where during early
infection, when virion and infected cell counts are low and stochastic extinction is
most likely, the contribution to the immune response by the low number of virions and
infected cells is small; rather, the immune response is mainly induced by factors such
as a pre-existing infection or prophylaxis. The pre-existing infection or prophylaxis
may also change the number of target cells over time, such that the assumption in the
previous subsections that T is constant is no longer valid. The unidirectional interaction
between immune response and virus/infected cells allows a generalisation of the TIV
model parameters to be explicit functions of time.

We use ε(
−→m , t) to denote the extinction probability when the system starts from

the state−→m at time t . We need the probabilities pi (
−→m , t, t+τ) that at time t , given the

state−→m , the i th reaction (infection of a target cell, death of an infected cell, production
of a virion, or death of a virion) is the next reaction, and it occurs at time t + τ . We
must integrate over all possible times to next event τ to find the extinction probability
at time t .

This is summarised by the equation

ε(
−→m , t) =

∫ ∞

0

R∑
i=1

pi (
−→m , t, t + τ)ε(

−→m + d−→m i , t + τ)dτ,
−→m �= −→

0 , (15)

where R = 4 is the total number of possible reactions, and the boundary condition

ε(
−→
0 , t) = 1. (16)

This is a time-dependent generalisation of Eqs. 8 and 9 in Pearson et al. (2011).
Equations 6 and 12 still hold, but the probabilities are now time-dependent:

ε(nV , nL1, . . . , nLK , nI1, . . . , nIM , t) = ρV (t)nV
K∏

k=1

ρLk(t)
nLk

M∏
m=1

ρIm(t)nIm .

(17)
The time-dependent event probabilities pi (

−→m , t, t+τ) are given by (Lu et al. 2004)

pi (
−→m , t, t + τ) = ri (t + τ) exp

[
−

R∑
s=1

∫ t+τ

t
rs(τ

′)dτ ′
]

. (18)
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Combining Eqs. 18 and 15, we obtain (after some algebra, including differentiating
on both sides to turn the integral equation into a differential equation)

d

dt

[
ε(

−→m , t)
] =

R∑
i=1

ri (t)
[
ε(

−→m , t) − ε(
−→m + d−→m i , t)

]
. (19)

For the TIVmodel, substituting−→m = (nV , nI ) = (1, 0) and−→m = (0, 1) separately
into Eq. 19 yields the two simultaneous equations

dρV

dt
= β(t)T (t) [ρV − ρI ] + c(t) [ρV − 1] (20a)

dρI

dt
= δ(t) [ρI − 1] + p(t) [ρI − ρV ρI ] . (20b)

Similarly, for the model with multiple latent and/or infectious stages, substitut-
ing −→m = (nV , nL1, . . . , nLK , nI1, . . . , nIM ) = (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . ,
(0, . . . , 0, 1) in turn, we obtain the following set of simultaneous equations for the
extinction probabilities:

dρV

dt
= β(t)T (t) [ρV − ρL1] + c(t) [ρV − 1] (21a)

dρLk

dt
= K δL(t)[ρLk − ρLk+1], k = 1, . . . , K − 1 (21b)

dρLK

dt
= K δL(t)[ρLK − ρI1] (21c)

dρIm

dt
= MδI (t)[ρIm − ρIm+1] + p(t)[ρIm − ρV ρIm], m = 1, . . . , M − 1

(21d)

dρI M

dt
= MδI (t) [ρI M − 1] + p(t) [ρI M − ρV ρI M ] . (21e)

Equations 20 and 21 are a set of coupled ordinary differential equations which
can be solved given initial conditions; in other words, if we know the extinction
probabilities for introduction of one virion, introduction of one latent cell at each
stage and introduction of one infected cell at each stage at any particular time, we can
solve for the extinction probabilities at any time. Often, the time-dependent immune
response is such that the parameters approach a constant value as t → ∞, so ρV (t),
ρLk(t) and ρIm(t) approach their time-independent values as given in Eq. 13. We
can thus set the values of ρV (t), ρLk(t) and ρIm(t) at some time t much longer
than the timescale of the infection, and solve backwards in time to find the values
of ρV (t), ρLk(t) and ρIm(t) when the immune response is changing most. For the
time-dependent case, it is no longer true that ρL1(t) = · · · = ρLK (t) = ρI1(t), or
that the extinction probability is independent of the mean and distribution of the latent
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Table 1 Parameter values for
the TIV model with multiple
infectious stages, adapted from
Cao et al. (2015)

Parameter Value Units

p 14 Infected cell−1 day−1

c 20 Day−1

β 5 × 10−7 Target cell−1 virion−1 day−1

T0 7 × 107 Target cell

V0 10 Virion

period, because changing the time spent in the latent period shifts the period for which
the cell is infectious, and the immune response during that period will be different.

3 Dependence of the extinction probability of virions on the number and
mean duration of latent and infectious stages

Having developed a method for calculating the extinction probability, we examine
how the extinction probability of introduced virions depends on the form of the model
chosen, i.e. the number of latent and infectious stages and themean latent and infectious
periods, for both the TIVmodel and a model with a time-dependent immune response.
We focus on the extinction probability when virions rather than infected cells or latent
cells are introduced, because this is the route of transmission for both natural infection
and inoculation experiments.

3.1 TIV model

From Eq. 13, we can see that the extinction probability of virions is independent of
the number and duration of latent stages, but is dependent on the number of infectious
stages and the mean infectious period. We vary the number of infectious stages and
the mean infectious period, and fix the remaining parameters, to show the effect of
these parameters. The fixed parameter values are taken from Cao et al. (2015), which
are chosen to be typical values for influenza infection (Table 1).

Figure 1 shows the extinction probability when introducing ten virions, varying the
mean infectious period 1/δI and the number of infectious stages M , indicated in the
legend. The number of virions is chosen to be 10 to mimic the number of infectious
virions introduced to the upper respiratory tract in an influenza infection; justification
is given in Online Resource 1. The results for different numbers of virions can be
obtained using Eq. 12. The simultaneous equations 13a and the first row of Eq. 14
are solved for ρI1 numerically using Matlab 2014b’s fzero function, with a starting
guess of ρI1 = 0; the result is substituted into Eq. 13a to solve for ρV . The code
for generating all the figures in this paper is provided at https://bitbucket.org/prism2/
extinction_probability_ayan.

We see that when the number of infectious stages is held constant, the extinction
probability decreases as the mean infectious period increases. This is because as the
expected number of virions produced by an infected cell (p/δI ) increases, the basic
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Fig. 1 Extinction probability when introducing ten virions, varying the mean infectious period 1/δI and
the number of infectious stages M , indicated in the legend. Parameters are given in Table 1

reproduction number R0 increases. As the mean infectious period increases to infinity,
the extinction probability of one virion approaches c/(βT + c), because in this limit
once the virion infects a cell, the cell lives forever and so the conditional extinction
probability is zero; thus, the extinction probability is equal to the probability that the
virion dies before infecting a cell. On the other hand, as the mean infectious period
decreases such that R0 approaches 1, the extinction probability approches 1. When
the mean infectious period is held constant, the extinction probability decreases as the
number of stages increases. If we can determine the parameters p, c, β, T0, V0 and one
of δI and M accurately using data such as viral load measurements, then data on the
extinction probability can help us determine the remaining parameter. The distribution
of the latent period, on the other hand, cannot be determined experimentally using the
extinction probability, but nevertheless affects other aspects of infection such as the
viral load time course.

3.2 A model of re-infection with a time-dependent immune response

We will now apply the method of calculating the extinction probability with a time-
dependent immune response to the scenario detailed by Cao et al. (2015), in which the
host is sequentially infected with two different influenza viruses. In the experiment
which motivated this model, it was observed that when ferrets were infected sequen-
tially with different strains of influenza virus, infection with the second virus was
prevented in some ferrets and not others, depending on the strains used and the inter-
val between primary and secondary exposures (the inter-exposure interval) (Laurie
et al. 2015). Moreover, for some combinations of strains and inter-exposure intervals,
infection with the second virus was only seen in a subset of ferrets, suggesting that
stochastic effects are important for this temporary immunity. For those ferrets where
infection with the second virus was eventually established, the level of the second
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Fig. 2 Induction of a time-dependent immune response by the first virus. Reproduced from Cao et al.
(2015)

virus stayed low for up to days after infection; this supports the hypothesis that sto-
chastic extinction, which is most likely for low virion numbers, was responsible for
the prevented infections. Motivated by the results of this experiment, Cao et al. (2015)
developed a mechanistic model for strain-dependent and strain-independent compo-
nents of the immune response to influenza in ferrets, and showed through numerical
simulation that stochastic extinction was likely for certain numbers of initial virions,
and a chosen inter-exposure interval and set of parameter values. Here, we explore
extinction in this model systematically, and evaluate how changing the inter-exposure
interval, initial number of virions, mean latent and infectious periods, and number
of latent and infectious stages changes the extinction probability. This will lead to a
better understanding of the phenomenon of temporary immunity.

The early kinetics of the first virus strain, when extinction ismost likely to occur, are
not affected by the second strain (which is not yet present), so the infection parameters
can be treated as time-independent and the extinction probability is given by Eqs. 6
and 5. However, given the large inoculum and naive state of the host, extinction is
unlikely to occur, and indeed was never observed in the experiments. Our interest lies
in the early kinetics of the second strain, where the time-dependent immune response
initiated by the first strain affects the extinction probability. Figure 2 shows the ways
by which the first virus induces a time-dependent immune response [reproduced from
Cao et al. (2015)].

The target cell pool, T , is shared by the two viral strains. The time-dependent innate
immune response is mediated by type I interferon F , which is produced in response
to infected cells. It acts in three ways to modify infection kinetics, through:
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1. Introduction of a temporary resistant state R in target cells;
2. Inhibition of the production of virions from infected cells; and
3. Direct killing of infected cells.

The model also captures the role of antibodies (A), responsible for strain-specific
viral clearance and induction of long-term sterilising immunity, mediated by stimu-
lation of B cells (B). In addition, target cells are replenished at a rate proportional to
the product of the number of target and dead cells. Cao et al. (2015) has explored the
dynamics of all three mechanisms; to aid exposition, we focus on one mechanism,
which we choose to be the second mechanism (inhibition of the production of virions
from infected cells). However, the extinction probability can be calculated for each of
the mechanisms using the same method.

The equations for the dynamics of virus 1, the target cells and the induced immune
response (for the second mechanism) are

dV1
dt

= pV 1

1 + s1F
I1 − δV 1V1 − κA1V1A1 − β1V1T (22a)

dT

dt
= gT T

(
1 − T + I1

T0

)
− β1V1T (22b)

d I1
dt

= β1V1T − δI1 I1 (22c)

dF

dt
= pF1 I1 − δF F (22d)

dB1

dt
= m11V1(1 − B1) − m21B1 (22e)

d A1

dt
= m31B1 − r1A1 − κ ′

A1V1A1 (22f)

The solution of Eq. 22 for the number of target cells and amount of type I interferon
is shown in Fig. 3 for the parameters in Table 2, which are adapted from Cao et al.
(2015) and will be used for the remainder of the study. The time dependence of the
extinction probability of the second virus is then entirely due to these two functions.

The second virus and infected cell equations can be written in the form of the TIV
model with time-dependent parameters which are functions of the two time courses
shown in Fig. 3:

dV2
dt

= pV 2

1 + s2F
I2 − (δV 2 + β2T )V2

= p(t)I2 − (δV 2 + β2T (t))V2

where p(t) ≡ pV 2

1 + s2F(t)
(23a)

d I2
dt

= β2V2T (t) − δI2 I2. (23b)
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Fig. 3 The number of target cells, T (t), and the amount of type I inferferon, F(t)

Table 2 Parameter values for the two-strain model

Parameter Value Units

pV 1, pV 2 14 Infected cell−1 day−1

δV 1, δV 2 20 Day−1

κA1 0.2 Antibody unit−1 virion−1 day−1

κ ′
A1 1 × 10−3 Antibody unit−1 virion−1 day−1

β1, β2 5 × 10−7 Target cell−1 virion−1 day−1

g 0.8 Day−1

δF 2 Day−1

m11 2.5 × 10−6 Virion−1 day−1

m21 10−2 Day−1

m31 1.2 × 104 Day−1

r1 0.2 Day−1

δI1 3 Day−1

s1, s2 1 Interferon unit−1

pF1 10−7 Infected cell−1 day−1

pF2 5 × 10−6 Infected cell−1 day−1

V01 10 Virion

T0 7 × 107 Target cell

Parameters are identical to those presented in Cao et al. (2015), adjusting for differences in units. The
interferon and antibody are measured in arbitrary units, while the B cell compartment is unitless, as it is
normalised to the highest measured value; see Cao et al. (2015) for justification. All initial values, except
V01 and T0, are zero

We substitute the time courses T (t) and p(t) into Eq. 20. β(t), δ(t) and c(t) in Eq.
20 are constants, equal to β2, δI2 and δV 2 in Eq. 23 respectively. We solve the coupled
ODEs in Eq. 20 for the extinction probability when one virion of V2 is introduced
at time t after the introduction of a fixed number of virions of V1, then use Eq. 6 to
calculate the extinction probability when nV virions of V2 are introduced. To solve
the ODEs, we use our knowledge that as t → ∞, T (t) → T0 and p(t) → pV 2,
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Fig. 4 Calculated versus simulated extinction probabilities when introducing ten virions of the second
strain a number of days after primary inoculation (the inter-exposure interval), indicated on the x-axis.
Parameters are as per Table 2. The simulated probabilities are obtained over 1000 simulations for each
scenario. The grey area indicates the 95% prediction interval for the proportion of extinction events out
of 1000, assuming that the number of extinction events follows a binomial distribution where the event
probability is the calculated extinction probability

so ρV (t) and ρI (t) approach the values given in Eq. 5. Thus, we set the initial
values

ρV (te) = min

(
1 − R02 − 1

α2
, 1

)
(24a)

ρI (te) = min(1/R02, 1), (24b)

where te is a predetermined time much further than the end of the primary infection
such that T (te)/T0, p(te)/pV 2 and δ(t)/δI2 are all approximately equal to one. The
subscript 2 indicates that R0 and α are to be calculated using the parameters of the
second virus.

The ODEs are solved using MATLAB R2014b’s ode15s ODE solver (The Math-
Works, Natick, MA), with absolute tolerance of 10−12 and relative tolerance of 10−6.
We set te = 50, which is much longer than the time course of a single infection.
For numerical stability of the ODE solver, we substitute t ′ = −t , then integrate
from t ′ = −te to t ′ = 0. We validate the results against stochastic simulations con-
ducted using Gillespie’s tau-leap algorithm (Gillespie 2001) conducted with timestep
dt = 10−3.

Figure 4 shows the calculated versus simulated extinction probabilities when intro-
ducing ten virions of the second strain a number of days after primary inoculation
(the inter-exposure interval), as indicated on the x-axis, with the time-dependent para-
meters in Fig. 3. The simulated probabilities are obtained over 1000 simulations for
each scenario. The grey area indicates the 95% prediction interval for the proportion
of extinction events out of 1000, assuming that the number of extinction events fol-
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Fig. 5 Calculated versus simulated extinction probabilities when introducing different numbers of virions
of the second strain (as indicated on the x-axis) with a 3.5-day inter-exposure interval. Parameters are as per
Table 2. The simulated probabilities are obtained over 1000 simulations for each scenario. The grey area
indicates the 95% prediction interval for the proportion of extinction events out of 1000, assuming that the
number of extinction events follows a binomial distribution where the event probability is the calculated
extinction probability

lows a binomial distribution where the event probability is the calculated extinction
probability. We get excellent agreement between the calculated and simulated results.

Figure 5 shows the calculated versus simulated extinction probabilities when intro-
ducing different numbers of virions of the second strain (as indicated on the x-axis)
with a 3.5-day inter-exposure interval. We get excellent agreement between the cal-
culated and simulated results over a wide range of initial virion numbers.

We can modify the model to include K latent stages and M infectious stages for the
cells infected with the second virus. Although one may be biologically motivated to
do the same for the first virus, for ease of comparison we leave our model for the first
virus unchanged with no latent stages and one infectious stage for the first virus, such
that T (t) and p(t) are the same as for the previous case. Equation 23 then becomes
[with the same definitions of T (t) and p(t)]

dV2
dt

= p(t)
M∑

m=1

Im2 − (δV 2 + β2T (t))V2 (25a)

dL12

dt
= β2V2T (t) − K δL2L12 (25b)

dLk2

dt
= K δL2Lk−1,2 − K δL2Lk2, k = 2, . . . , K − 1 (25c)

dLK2

dt
= K δL2LK−1,2 − K δL2LK2 (25d)

d I12
dt

= K δL2LK2 − MδI2 I12 (25e)
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Fig. 6 Extinction probabilitieswhen introducing ten virions of the second strainwith varying inter-exposure
intervals, for different values of 1/δL2 as indicated by the legend. Parameters are as per Table 2

d Im2

dt
= MδI2 Im−1,2 − MδI2 Im2, m = 2, . . . , M − 1 (25f)

d IM2

dt
= MδI2 IM−1,2 − MδI2 IM2. (25g)

The initial values at t = te are given by Eq. 13, where all parameter values are
for the second virus. We will investigate how changing the mean latent and infectious
periods of the second virus, 1/δL2 and 1/δI2, and the number of latent and infectious
stages, K and M , changes the extinction probability. All other parameters will be
fixed, and are listed in Table 2.

First, we assume that for cells infected with the second virus, there is one latent
stage, and one infectious stage with δI2 = 3.

Figure 6 shows the calculated extinction probabilities when introducing ten virions
of the second strain with varying inter-exposure intervals, for different values of 1/δL2
as indicated by the legend. Parameters are as per Table 2.We see that for this particular
model and set of initial conditions, if the second virus is introduced in the early stage of
infection, increasing 1/δL increases the extinction probability. This is because increas-
ing the mean latent period increases the chance that a cell infected with the second
virus soon after introduction becomes infectious when the innate immune response
is most active, so the expected number of virions it produces decreases. However, if
the second virus is introduced in the middle stage of the first infection (2–5 days),
when the innate immune response is most active, then increasing 1/δL2 decreases the
extinction probability. This is because increasing 1/δL2 increases the chance that a
cell infected with the second virus soon after introduction becomes infectious when
the innate immune response is much less active, so the expected number of virions it
produces increases. Moreover, as the mean latent period approaches 0, the extinction
probability curve approaches that of the model without a latent stage, as shown in
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Fig. 7 Extinction probabilitieswhen introducing ten virions of the second strainwith varying inter-exposure
intervals, for different values of 1/δI2 as indicated by the legend. Parameters are as per Table 2, with δL2 = 3
and one latent stage

Fig. 4. A comparison with simulation results for this figure and subsequent figures is
given in Online Resource 1, and agreement is excellent.

By contrast, Fig. 7 shows the calculated extinction probabilities when 1/δI2 is
changed. ten virions of the second strain are introduced with varying inter-exposure
intervals, for different values of 1/δI2 as indicated by the legend. Parameters are as per
Table 2, with δL2 = 3 and one latent stage. In contrast to increasing 1/δL2, increasing
1/δI2 always decreases the extinction probability. This is because increasing 1/δI2
increases the basic reproduction number R02 by increasing the expected number of
virions produced by an infected cell (p2/δI2) in the absence of the immune response.
In the presence of the immune response, increasing 1/δI2 still increases the expected

number of virions produced by a cell which becomes infected at time t ,
∫ ∞

t
p2/(1+

s2F(t)) exp(−δI2(t
′)) dt ′.

Figure 8 shows the extinction probabilities when introducing ten virions of the
second strain with a 3.5-day inter-exposure interval, for different values of 1/δL2 and
1/δI2 as indicatedby the x- and y-axes,when there is one latent stage andone infectious
stage. We see that as 1/δI2 is increased, for the extinction probability to be conserved,
1/δL2 must be decreased. 1/δL and 1/δI cannot both be determined by measurements
of extinction probability at one time point alone, but when considered with additional
data, such as viral load data, the degeneracy in parameter values is less than if each
type of data were considered separately. Measurements of extinction probability for
different inter-exposure intervals, then fitting parameters to be consistent with the data
at all time points, is another way of decreasing the degeneracy.

We now look at how changing the number of latent and/or infectious stages changes
the extinction probability. First, we consider a model with no latent stages and M
infectious stages. We hold δI2 constant at 3.
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Fig. 8 Extinction probabilities when introducing ten virions of the second strain with a 3.5-day inter-
exposure interval, for different numbers of 1/δL2 and 1/δI2 as indicated by the x- and y-axes, when there
is one latent stage and one infectious stage. Parameters are as per Table 2
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Fig. 9 Extinction probabilitieswhen introducing ten virions of the second strainwith varying inter-exposure
intervals, for different numbers of infectious stages as indicated by the legend. Parameters are as per Table
2, and δI2 is held constant at 3

Figure 9 shows the extinction probabilities when introducing ten virions of the
second strain with varying inter-exposure intervals, for different numbers of infectious
stages as indicated by the legend. We see that for short inter-exposure intervals (0–1
days) and long inter-exposure intervals (6 days or more), increasing the number of
infectious stages decreases the extinction probability, but for medium inter-exposure
intervals (2–5 days), increasing the number of infectious stages increases the extinction
probability. For long inter-exposure intervals, the number of target cells at the time
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Fig. 10 Extinction probabilities when introducing ten virions of the second strain with varying inter-
exposure intervals, for different numbers of infectious stages as indicated by the legend. Parameters are as
per Table 2 except q1 = 5 × 10−6, and δI2 is held constant at 3

of introduction is close to T0 and the immune response F is close to zero, so the
dependence of the extinction probability on the number of infectious stages is like that
of the TIV model in Fig. 1. For short inter-exposure intervals, the initial conditions
suggest that exponential growth of infected cells and virions is likely (as target cells
have not been depleted and the immune response is not yet active), so if extinction
has not occurred by the time the temporary depletion of target cells and the immune
response occur, the number of virions and infected cells will have grown large enough
to survive the immune response. Hence, the dependence of the extinction probability
on the number of infectious stages is once again like that of the TIVmodel. Formedium
inter-exposure intervals, it appears that the dependence of the extinction probability on
the number of infectious stages depends on the parameter functions. For example, if we
change q1 to 5×10−6 in the model, thus changing T (t) and F(t) such that the immune
response is stronger and target cells do not become as depleted, we see in Fig. 10 that
increasing the number of infectious stages decreases the extinction probability for all
inter-exposure intervals. Compared to changing the mean infectious period, changing
the number of infectious stages only has a small effect on the extinction probability
for our model and parameters; this is because the chosen mean latent and infectious
periods, which lie within the biologically realistic parameter ranges for influenza,
are short compared to the timeframe within which the immune response changes
significantly, so the distributions of latent and infectious periods do not have a large
effect on the immune response experienced by an infectious cell. However, since the
biologically realistic parameter ranges for the mean latent and infectious period are
large, changing their values within this range has a large effect on the immune response
experienced by an infectious cell.

Finally, we consider a model with K latent stages and one infectious stage. Both
δL2 and δI2 are held constant at 3.
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Fig. 11 Extinction probabilities when introducing ten virions of the second strain with varying inter-
exposure intervals, for different numbers of latent stages as indicated by the legend. Parameters are as per
Table 2, and both δL2 and δI2 are held constant at 3

Figure 11 shows the extinction probabilities when introducing ten virions of the sec-
ond strain with varying inter-exposure intervals, for different numbers of latent stages
as indicated by the legend. As the number of latent stages increases, the extinction
probability increases slightly for short inter-exposure intervals, but decreases slightly
for long inter-exposure intervals (the difference is too small to be seen in the fig-
ure). Increasing the number of latent stages decreases the variance in the time taken
for an infected cell to become infectious. As a result, for short inter-exposure inter-
vals, the first infected cells are more likely to become infectious when the immune
response is strong, rather than before or after the time at which there is a strong
immune response. For long inter-exposure intervals, the immune response exponen-
tially decays, so decreasing the variance in the time the first infected cells become
infectious decreases the mean immune response experienced by the infectious cells.
Overall, for this particular model of the immune response and initial values, the dif-
ference in extinction probability for different numbers of latent and infectious stages
is small, suggesting that the number of latent and infectious stages may be difficult to
determine from experimental measurements of extinction probability. However, the
number of latent and infectious stages chosen will affect the viral load time course
given a set of parameters, so when the extinction probability data is combined with
other data such as viral load measurements, the number of latent and infectious stages
chosen will impact parameter estimates.

4 Discussion

In this study, we have calculated the extinction probability of a disease upon intro-
duction of a number of virions and/or infected cells to the host. Previous studies have
derived these expressions for the TIV model, both with time-independent parameters
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(Pearson et al. 2011) and time-dependent parameters (Conway et al. 2013) which
reflect the effects of prophylaxis on viral reproduction. We have generalised these
expressions to models where cells have multiple latent and/or infectious stages, such
that the times spent in the latent and infectious stages are Erlang-distributed. We have
also shown howmechanistic models of the immune response can bewritten in terms of
time-dependent viral parameters, such that the extinction probability given the number
of initial virions and/or infected cells can be calculated.

For a time-dependent immune response, we have shown that the extinction prob-
ability depends on the time of introduction and the initial number of virions; these
results are verified by full stochastic simulations, and excellent agreement is obtained.
We have also demonstrated how the extinction probability changes when the mean
latent and infectious periods are changed, andwhen the number of latent and infectious
stages are changed. This suggests that the extinction probability at different times of
introduction can be used to help determine the parameters of the model. Because the
mapping of extinction probability to parameter values is not one-to-one, additional
information, such as the viral load time course, is also needed.

The methods used in this study are applicable to many situations where the viral
dynamics cannot be describedwith a simple TIVmodel. One of these situations, which
we have used as a case study, is when the host has prior immunity due to a previous
infection. We have shown that given a time-dependent immune response induced by
the first virus, changing the introduction time of the second virus changes the prob-
ability that infection is established. This helps explain experimental observations by
Laurie et al. (2015) that immunity conferred by a primary infection against subse-
quent infection is temporary, and is only observed in a subset of hosts under identical
experimental conditions.

Otherwithin-host influenza studies have constructed differentmodels incorporating
the effects of the immune response (Beauchemin and Handel 2011; Smith and Ribeiro
2010); the viral loads predicted by these models have been compared qualitatively
(Dobrovolny et al. 2013), and different models have been fitted to the same viral load
data to determine the best-fitting model (Pawelek et al. 2012). However, the effective-
ness of the immune responses in these models in preventing subsequent infection have
not been compared systematically. Our approach to calculating the extinction proba-
bility given a mechanistic model provides the tools to examine how different modelled
components of the immune response work together to prevent subsequent infection.
The emergence of drug-resistant viral strains during prophylaxis is an increasingly
important issue, and several models, both deterministic and stochastic, have been
developed to study the conditions for the emergence and survival of these strains
(Handel et al. 2007; Canini et al. 2014; Haeno and Iwasa 2007; Moghadas 2011), but
only some of these models take the immune response into account. Extinction prob-
ability calculations enable the study of how both stochasticity and a time-dependent
immune response affect the proliferation of drug-resistant strains.

The effect of prophylaxis on the viral load had been studied using various deter-
ministic models (Baccam et al. 2006; Beauchemin et al. 2008; Canini et al. 2014;
Dobrovolny et al. 2011, 2013); our methods can be used to evaluate how different pre-
and post-exposure drug prophylaxis regimes not only reduce the severity of infection,
but prevent infection altogether. Conway et al. (2013) analysed how pre- and post-
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exposure prophylaxis affects the probability of HIV infection becoming established.
In their model, prophylaxis has an explicit time-dependent effect on the infectivity of
virus; we have shown how these time-dependent effects can be generated by mecha-
nistic models.

A limitation of the extinction probability calculation method used in our study is
that it can only calculate the probability of extinction given that the time-dependent
immune response is independent of viral and infected cell dynamics. For example,
some models predict that the viral load oscillates before reaching a steady state, such
as due to delayed cellular immune responses (Canabarro et al. 2004); onewould expect
the extinction probability to be largest at these troughs. In these cases, extinction is
due to target cell depletion and/or immune responses which vary greatly with the
stochastic time courses of the virions and infected cells. Because of this feedback loop,
the parameters in Eq. 20 are no longer functions known a priori, and themethod cannot
be used. Also, there are experimental difficulties in obtaining the extinction probability
because extinction can only be observed once in each replica of the experiment. This
makes it difficult to determine the effect of inter-host differences on the obtained
extinction probability across hosts.

Moreover, when estimating parameters using extinction probability data, the initial
number of virions must either be known or be included as an estimated parameter.
The number of virions transmitted may be fewer than the number which reach the
infected body parts, and it is often impractical to measure the viral load immediately
after transmission. As a result, the initial viral load is often an unknown parameter
which is fitted to the data. Even if the initial viral load can be thus estimated accurately,
viral load is usually measured in units such as PFU, TCID50 or EID50, and as a sample
concentration rather than as the total number of virions in the host. There can be much
uncertainty in the conversion factor between measurement units and the number of
virions (Handel et al. 2007). If we could experimentally determine the conversion
factor between measurement units such as TCID50 and virions, this would enable a
better understanding of the impact of extinction on infection outcomes.

Our study has looked at the effect of gamma-distributed latent and infectious peri-
ods, but somemodels have used other distributions, such as a constant infectious/latent
period, a normal distribution or a log-normal distribution (Holder and Beauchemin
2011). In this case, the inter-event times are no longer Markovian, and the extinction
probability from a given state is no longer only dependent on the number of virions
and infected cells, but also on their ages. Hence, the method used in our study cannot
be directly applied in these cases. Extension to general distributions for latent and
infectious periods is the subject of future work.

Themethods used in our study can also be used in an epidemic context; for example,
where two viruses are co-circulating in the population and infection with one confers
immunity to the other, depletion of susceptibles by one virus affects the extinction
probability when another virus is introduced into the population. This is analogous to
the within-host two-strain model presented in Sect. 3.2. Exploration of the application
of our study to epidemic contexts is left for future research.
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