
J. Math. Biol. (2016) 72:1039–1079
DOI 10.1007/s00285-015-0948-2 Mathematical Biology

Adaptive dynamics of saturated polymorphisms

Éva Kisdi1 · Stefan A. H. Geritz1

Received: 19 November 2014 / Revised: 20 September 2015 / Published online: 16 December 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Westudy the joint adaptive dynamics of n scalar-valued strategies in ecosys-
tems where n is the maximum number of coexisting strategies permitted by the
(generalized) competitive exclusion principle. The adaptive dynamics of such sat-
urated systems exhibits special characteristics, which we first demonstrate in a simple
example of a host–pathogen–predator model. The main part of the paper characterizes
the adaptive dynamics of saturated polymorphisms in general. In order to investigate
convergence stability, we give a new sufficient condition for absolute stability of an
arbitrary (not necessarily saturated) polymorphic singularity and show that saturated
evolutionarily stable polymorphisms satisfy it. For the case n = 2, we also intro-
duce a method to construct different pairwise invasibility plots of the monomorphic
population without changing the selection gradients of the saturated dimorphism.

Keywords Adaptive dynamics · Coevolution · Competitive exclusion principle ·
Environmental feedback · Saturated community
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1 Introduction

Many models of adaptive dynamics start with an initial system harbouring a single
resident strategy, and investigate whether natural selection leads to the evolution of

This paper is dedicated to Mats Gyllenberg on the occasion of his 60th birthday.

B Éva Kisdi
eva.kisdi@helsinki.fi

1 Department of Mathematics and Statistics, University of Helsinki,
PO Box 68, 00014 Helsinki, Finland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-015-0948-2&domain=pdf


1040 É. Kisdi, S. A. H. Geritz

higher levels of polymorphism via evolutionary branching (Geritz et al. 1998; for a
collection of examples, see http://www.mv.helsinki.fi/home/kisdi/addyn.htm). In this
paper, we take the opposite starting point: we consider ecological systems where the
maximum number of strategies is already present, and investigate the joint adaptive
dynamics of these.

In order to determine the maximum number of coexisting strategies, the concept of
environmental feedback variables is of key importance. The environmental feedback
variables include all ecological variables such as the population densities of resources,
predators, parasites, andmutualists,which together determine the populationdynamics
of a given strategy. In other words, if the environmental feedback variables were fixed,
then the population would grow according to a linear model. All nonlinearities of
population growth enter via the dependence of the environmental feedback variables on
the population itself (Metz et al. 1992, 1996a; Mylius and Diekmann 1995; Diekmann
et al. 1998, 2001, 2003).

The number of strategies coexisting at equilibrium is bounded by the number of
the environmental feedback variables (Levin 1970; Geritz et al. 1997; Meszéna et al.
2006). This statement is a generalization of the competitive exclusion principle. In
competitive systems, it is well known that the number of species (or strategies) present
at equilibrium cannot exceed the number of resources they compete for (excepting the
degenerate case of neutral coexistence; MacArthur and Levins 1964). As recognized
already by Levin (1970), the same principle applies also outside competitive systems
if the resources are replaced with the generalized notion of environmental feedback
variables. Note that even if the environmental feedback is infinite dimensional, coex-
istence of infinitely many species is nongeneric (Gyllenberg and Meszéna 2005).

In this paper, we consider ecological systems with n independent environmental
feedback variables containing n strategies. In the main text, we focus on equilibria,
where the exclusion principle guarantees that generically no more than n strategies
can coexist. We call such n-morphic populations saturated polymorphisms.

Non-equilibrium dynamics may increase the dimension of the environmental feed-
back, but the claim that n dimensions limit coexistence to at most n species remains
valid. The exclusion principle and our results therefore extend to non-equilibrium sys-
tems with finite-dimensional environmental feedback as well. More details on this are
given in Appendix A.

The adaptive dynamics of saturated polymorphisms bear some particular character-
istics. Obviously, evolutionary branching is impossible in a saturated polymorphism.
Models where n = 1 and the population growth rate is a uniformly monotonic func-
tion of the single environmental feedback variable are optimizationmodels, the special
properties of which are well understood (Metz et al. 1996b, 2008;Meszéna et al. 2001;
Gyllenberg and Service 2011; Gyllenberg et al. 2011; Metz and Geritz 2015). One
may readily expect that these special properties generalize in some form also to satu-
rated polymorphisms with n > 1, but so far only sporadic observations exist for the
latter. In a model with two environmental feedback variables, Svennungsen and Kisdi
(2009) pointed out that a dimorphic singularity of scalar strategies is convergence
stable if it is evolutionarily stable; the same holds in optimization models. It may be
noticed in several published models that the isoclines of zero selection gradients in
saturated dimorphisms intersect at right angles at the dimorphic singularities (see e.g.
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Figure 1 of Geritz and Kisdi 2000; Figure 1 of Mathias and Kisdi 2002; Figure 3 of
Svennungsen and Holen 2007; Figure 3 of Svennungsen and Kisdi 2009; Figure 4 of
Boldin and Kisdi 2012; Figure 2 of Weigang and Kisdi 2015), which hints at further
unexplored properties of saturated polymorphisms. It is the aim of this paper to study
the specific properties of the adaptive dynamics of saturated polymorphisms.

In Sect. 2 of this paper, we use a simple example to demonstrate a number of
features exhibited by the evolution of saturated polymorphisms. Our main results, in
Sect. 3, are given in a series of propositions that characterize the adaptive dynamics
of saturated polymorphisms in general. When considering convergence stability, we
extend the conditions for the strongest form of stability, called absolute stability, to
arbitrary k-morphic singularities (see Appendix B) before applying them to saturated
polymorphisms. In Sect. 4, we explore some connections between the adaptive dynam-
ics of saturated polymorphisms and of populations one level of polymorphism lower.
For the case of n = 2, we also introduce a construction method to obtain different
pairwise invasibility plots without changing the selection gradients of the saturated
dimorphism; this illustrates how the adaptive dynamics of saturated polymorphisms
are constrained relative to lower levels of polymorphism.

2 A motivating example

Before turning to our main results, we present an example in order to illustrate the
phenomena the generality of which we are going to prove. In this section, we consider
a model with n = 2 environmental feedback variables. This implies that at most two
strategies can coexist at equilibrium, i.e., a dimorphic population is saturated; and
since the coevolution of two strategies is easy to visualize, we can demonstrate the
properties of adaptive dynamics in saturated communities graphically.

We take the evolution of pathogen virulence under selective predation as an exam-
ple. The model we investigate in this section is closely related to the model studied
by Morozov and Best (2012), who have demonstrated evolutionary branching of
pathogens under selective predation, and to the model of Kisdi et al. (2013), who
analyzed eco-evolutionary cycles in this system. The model is the same as what Kisdi
(2015) used as an example to illustrate how one can construct trade-off functions to
obtain evolutionary branchingor anyother outcomeof adaptive dynamics inmonomor-
phic resident populations. The evolution of a dimorphic population in this model has,
however, not yet been explored.

2.1 The specific model

We consider a host population that harbours m strains of the pathogen (we shall focus
on m = 2). The population density I j of hosts infected with the j th strain obeys the
dynamics

d I j
dt

= [
β(α j )S − (α j + μ + ν) − (c + φ(α j ))P

]
I j for j = 1, . . . ,m. (1)

123



1042 É. Kisdi, S. A. H. Geritz

Here α j is the virulence of strain j , which also determines its transmission rate β(α j ).
μ and ν are the natural mortality rate and the rate of recovery, respectively. An infected
host is subject to predation at rate c + φ(α j ), where c is the baseline predation rate
that also applies to healthy hosts and φ(α j ) is the excess predation rate that depends
on the virulence of the strain. The model has two environmental feedback variables
determined by the resident system, the population density of susceptible hosts (S) and
the density of predators (P).

The dynamics of S and P are described by additional equations, which we shall
refer to as the embedding model:

dS

dt
= B(N ) − (μ + cP)S −

m∑

j=1

β(α j )I j S + ν

m∑

j=1

I j (2a)

dP

dt
=

⎡

⎣γ cN + γ

m∑

j=1

φ(α j )I j + θζ Z − δ

⎤

⎦ P (2b)

dZ

dt
= [ρ(Z) − ζ P] Z (2c)

where N = S + ∑m
j=1 I j is total host density. In (2a), hosts are born susceptible at

the population birth rate B(N ), and susceptible hosts die at the per capita rate given
by the sum of the background mortality rate, μ, and mortality due to predation, cP .
Infection and recovery occur as described above, and recovered individuals return
to the susceptible class (no acquired immunity). In (2b), we assume that predators
convert all hosts they capture into predator offspring at a conversion factor γ . The
predator has also an alternative prey, with density Z , which is captured at a rate ζ and
converted with a factor θ . The predators die at a constant rate δ. Finally, (2c) describes
the dynamics of the alternative prey, which has a density-dependent per capita growth
rate ρ(Z) in absence of predation.

In this example, we assume that the full ecological dynamics in Eqs. (1) and (2)
attain a unique stable equilibrium. In the numerical examples presented in Figs. 1 and 2,
we have confirmed this by checking all equilibria and their Jacobians in monomorphic
(m = 1) and dimorphic (m = 2) resident populations over the part of the trait space
shown. We remark, however, that the results of Sect. 2.2 would not change even if
the system had non-equilibrium dynamics (see Appendix A). The numerical analysis
was done in Mathematica 9.0.1 (Wolfram Research). Since the equilibrium equations
derived from (1) can generically not be satisfied for more than two strains of the
pathogen at positive densities, the system is saturated with m = 2 strains.

If a new mutant strain αmut appears at an infinitesimally low density in the resident
system at equilibrium, then, from Eq. (1), initially the mutant grows exponentially at
the rate given by its invasion fitness,

r(αmut , Ŝ, P̂) = β(αmut )Ŝ − (αmut + μ + ν) − (c + φ(αmut ))P̂ (3)

where Ŝ and P̂ are the equilibriumdensities of susceptibles and predators, respectively.
Assume that mutations have small phenotypic effect (i.e., a mutant of strain j is
characterized with a virulence αmut = α j + dα with a small mutational effect dα).
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Then by a series mutations that invade and substitute the former resident, the j th strain
evolves towards higher or lower virulence according to whether its selection gradient,

Dj = ∂r

∂αmut

∣∣∣∣
αmut=α j

= β ′(α j )Ŝ − 1 − φ′(α j )P̂ (4)

is positive or negative (Geritz et al. 1998; Geritz 2005).

2.2 Dimorphic evolution

Let us now focus on the saturated case m = 2. Setting d Ii/dt = 0 for i = 1, 2 in (1)
and solving for S and P , we obtain the densities at the interior equilibrium for any
given pair of strains, α1 and α2, as

Ŝ(α1, α2) = g(α2)h(α1) − g(α1)h(α2)

g(α2)β(α1) − g(α1)β(α2)
(5a)

P̂(α1, α2) = h(α2)β(α1) − h(α1)β(α2)

g(α1)β(α2) − g(α2)β(α1)
(5b)

where g(α) = c+φ(α) and h(α) = α +μ+ ν. Substituting these into (4), we imme-
diately obtain the selection gradients D1(α1, α2) and D2(α1, α2) directly as functions
of the trait values α1 and α2. Note that for some trait values, Ŝ(α1, α2), P̂(α1, α2) or
the equilibrium densities Î1(α1, α2), Î2(α1, α2), Ẑ(α1, α2) obtained from the embed-
ding model may be negative, i.e., not all points (α1, α2) correspond to biologically
feasible dimorphisms. Nevertheless, we extend the definition of the selection gradient
to all points where Ŝ(α1, α2) and P̂(α1, α2) in (5) exist, and investigate which subset
represents biologically feasible systems in Sect. 2.3.

In Fig. 1, the horizontal and vertical arrows show the direction of evolution ofα1 and
α2 (should the dimorphism be feasible) from the selection gradients D1(α1, α2) and
D2(α1, α2), respectively. According to the selection gradients, we obtain the isoclines
of strain j , i.e., the curves defined by Dj (α1, α2) = 0 (thick lines in Fig. 1). The
dimorphic singularity, where directional evolution comes to a halt in both strains,
corresponds to the intersection of the isoclines away from the diagonal α2 = α1.
Furthermore, a community on the j th isocline is uninvadable with respect to mutants
of strain j if

∂2r(αmut , Ŝ(α1, α2), P̂(α1, α2))

∂α2
mut

∣
∣∣∣∣
αmut =α j

< 0 (6)

(Geritz et al. 1998; continuous versus dashed isoclines in Fig. 1). The intersection of
uninvadable isoclines corresponds to an evolutionarily stable dimorphic singularity.
The shading in Fig. 1 shows the equilibrium values Ŝ(α1, α2) in the left panels and
P̂(α1, α2) in the right panels.

Figure 1 has several conspicuous features:

– At the dimorphic singularity (i.e., away from the diagonal α2 = α1), the iso-
clines intersect at right angles such that near their intersection, the α1-isocline is
perpendicular to the α1-axis and the α2-isocline is perpendicular to the α2-axis.
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1044 É. Kisdi, S. A. H. Geritz

Fig. 1 Trait evolution plot obtained from Eq. (1). Horizontal and vertical arrows show the direction of
evolution in α1 and α2, respectively, according to the sign of (4). The directions change across the isoclines
and across the diagonal α2 = α1 (thick lines). Segments of the isoclines where condition (6) holds and
where it does not hold are drawn with continuous and dashed lines, respectively. The grey shading shows
the equilibrium values of the feedback variables, Ŝ(α1, α2) in the left panels and P̂(α1, α2) in the right
panels (light shading represents high values). The bottom panels contain white guide lines to highlight
that the equilibrium values of the environmental feedback variables at points on the α1- (α2-) isoclines
equal their limiting values at the diagonal at the same α1- (α2-) coordinate; otherwise the bottom panels are
identical to the top panels. The plots are symmetric on the diagonal because the labelling of the two strains
is arbitrary. Functions and parameters: β(α) = α0.15, φ(α) = 1 − e−α , μ = 1, ν = 0.1, c = 2

– A strain evolves towards its isocline if and only if the isocline is uninvadable
(uninvadable isoclines are drawn with solid lines in Fig. 1). An evolutionarily
stable dimorphic singularity is also convergence stable and vice versa (note that
this is generally not the case under frequency-dependent selection (Eshel 1983),
but it is so in Fig. 1).
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– The isoclines trace out special lines on the surfaces of environmental feedbacks.
For each feedbackvariable, it holds that theα1-isocline follows the pointswhere the
feedback has a critical pointwith respect to changingα1 (i.e., looking horizontally),
and the same applies to the α2-isocline with respect to changing α2 (looking
vertically).

– The equilibrium value of each feedback variable at the α1-isocline equals the limit
of the same feedback variable to the diagonal at the same α1-coordinate (directly
below/above the isocline, shown at two points by the vertical guide lines in the
bottom panels of Fig. 1); and the equilibrium value of each feedback variable at
the α2-isocline equals to the limit of the same feedback variable to the diagonal
at the same α2-coordinate (directly to the right/left of the isocline, shown at two
points by the horizontal guide lines).

– Each environmental feedback has a saddle point at the dimorphic ESS.
– Each environmental feedback attains critical points where the isoclines cross the
diagonal α2 = α1.

These features constrain the evolution of the saturated dimorphic system, and also
indicate a strong link between the adaptive dynamics of the saturated dimorphism and
the geometry of the ecological equilibria of the feedback variables as functions of
the resident trait values. In Sect. 3, we prove these statements in suitably generalized
forms for arbitrary saturated polymorphisms.

It is important to notice that all information contained in Fig. 1 has been
obtained from Eq. (1) and is therefore completely independent of the embed-
ding model in (2). Changing the details of the embedding model will thus not
affect the position and evolutionary stability of isoclines and dimorphic singu-
larities. This implies very considerable freedom in the ecological model. One
could not only change the values of parameters and the shapes of functions
that only occur in the embedding model (such as the birth rate function B
or the dynamics of the alternative prey given by the function ρ), but also
add (or remove) alternative prey species; introduce competitors or other preda-
tors that affect the alternative prey species, thereby building more complex food
webs; introduce other pathogens infecting either the focal host (with full cross-
immunity) or other species in the food web; etc. All these changes would not affect
Fig. 1.

The only piece of relevant information that is not given in Fig. 1, andwhich depends
on the embedding model, is the positivity and stability of the ecological equilibrium.
In particular, at some points in Fig. 1, the nontrivial equilibrium Î1 or Î2 will be
negative, i.e., some points will be outside the area of coexistence of the two strains.
Assuming that the ecological attractor is unique for each pair of strains, the area
of coexistence can be derived from the adaptive dynamics of monomorphic popula-
tions.

2.3 Monomorphic evolution and the area of coexistence

If only a single resident strain is present (m = 1), then Eq. (1) is not sufficient to
determine both Ŝ and P̂ . In monomorphic populations, the equilibrium values of the
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Fig. 2 Pairwise invasibility
plots (left panels) and the area of
coexistence overlaid the trait
evolution plot (right panels). In
the pairwise invasibility plots,
“+” and “−” mark the sign of
the invasion fitness; in a, the
inset shows that the rightmost
singularity is an evolutionary
branching point. In the trait
evolution plots, the white parts
are the area of coexistence; other
notations as in Fig. 1. Notice
that the selection gradients and
isoclines are identical across the
right panels (they form a
constant “backdrop” in the
figures) and identical to Fig. 1.
The only difference is the area of
coexistence, which derives from
the corresponding pairwise
invasibility plot. Functions and
parameters in Eq. (1) as in
Fig. 1; those in Eq. (2),
B(N ) = (b0 − aN )N ;
ρ(Z) = ρ0(1 − Z/K );
γ = 0.00136; θ = 0.005; δ = 1;
ρ0 = 40; K = 200 and a
b0 = 27.45, a = 0.001779,
ζ = 0; b b0 = 27.45,
a = 0.001779, ζ = 0.5; c
b0 = 27.45, a = 0.001779,
ζ = 1.25; d b0 = 41.25,
a = 0.0556, ζ = 0; e b0 = 41,
a = 0.0556, ζ = 0
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environmental feedbacks, and therefore also the invasion fitness in (3) depend on the
embedding model. Let sα(αmut ) denote the invasion fitness of a rare mutant αmut in
the monomorphic resident population of strain α, i.e., sα(αmut ) = r(αmut , Ŝ, P̂) with
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Ŝ and P̂ taking the equilibrium values of the resident system of strain α. The strains
α1 and α2 are mutually invasible if sα1(α2) > 0 and sα2(α1) > 0. Assuming that the
ecological attractor is unique, the two strains coexist at positive densities if and only
if they are mutually invasible. The area of coexistence can therefore be constructed by
taking the sign plot of the invasion fitness (known as pairwise invasibility plot), and
combining it with its mirror image on the diagonal α2 = α1; the overlapping positive
parts give the area of mutual invasibility (Geritz et al. 1998).

Figure 2 illustrates how the pairwise invasibility plot (left panels) and the area of
coexistence (white area in the right panels) change with changing some parameters
of the embedding model. Since the dimorphic invasion fitness is not affected by the
embedding model, the dimorphic selection gradients, the isoclines, and the dimorphic
singularity remain the same; these give the identical “backdrop” in each of the right
panels of Fig. 2. We have verified in these examples that all monomorphic populations
in the range of α shown and all dimorphic populations in the area of coexistence have
a unique positive equilibrium of the system (1) and (2), and that this equilibrium is
asymptotically stable; and that pairs of strains outside the area of coexistence have no
positive ecological equilibria.

The embedding model influences whether a dimorphic singularity is in the area of
coexistence (i.e., whether it represents a biologically feasible system) and whether it
can be reached from an initially monomorphic population via evolutionary branching.
Figure 2 demonstrates this. The three examples in panels (a), (b), and (c) differ only
in ζ , the predator’s capture rate towards its alternative prey; this seemingly minor
detail can however make a significant difference for evolution. In panel (a), the pair-
wise invasibility plot exhibits three monomorphic singularities, a convergence stable
ESS, a repellor, and an evolutionary branching point. After evolutionary branching,
the two strains can evolve to the dimorphic evolutionarily stable singularity at the
intersection of the isoclines. (Note that if the less virulent strain evolves too fast, then
the trajectory can also leave the area of coexistence so that the more virulent strain
goes extinct; the remaining strain then evolves to the ESS.) In panel (b), there is no
evolutionary branching point, but the dimorphic evolutionarily stable singularity is
still in the area of coexistence, so that it can be reached by an initially dimorphic
population. In panel (c), the dimorphic singularity is not in the area of coexistence.
In an initially dimorphic population, the more virulent strain evolves upwards until
the trajectory leaves the area of coexistence and the less virulent strain goes extinct.
The remaining strain then evolves to the highest monomorphic singularity, which is
an ESS.

Panels (a), (d), and (e) of Fig. 2 differ only in the parameters of the birth rate
function B. In panels (a) and (d), there is an evolutionary branching point, but in
panel (d), the dimorphic singularity is not in the area of coexistence; after branching
in (d), the dimorphic population evolves until the more virulent strain goes extinct. In
panel (e), the area of coexistence cannot be reached from monomorphic populations,
and evolution in an initially dimorphic population leads to the extinction of the more
virulent strain.

In Sect. 4.2, we discuss how the shape of the pairwise invasibility plot can be
influenced by choosing a function of the embedding model appropriately.

123
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3 General model

Consider a model where n environmental feedback variables, E1, . . . , En , determine
the invasion fitness r(x, E1, . . . , En) of a strategy characterized with a scalar trait
value x ∈ X ⊆ R. If n resident strategies x1, . . . , xn coexist at an equilibrium, then
each must have zero growth rate such that

r(x1, E1, . . . , En) = 0
... (7)

r(xn, E1, . . . , En) = 0

The n resident strategies are embedded in an ecosystem consisting of the envi-
ronmental feedbacks such as resources and predators, and possibly other species that
interact with the feedbacks and with each other. The equilibrium conditions of the
entire ecosystem are given by the n equations in (7) that determine the equilibrium
values of the n feedback variables, together with n + k equations of the form

Fi (x1, . . . , xn, E1, . . . , En, N1, . . . , Nn, Z1, . . . , Zk) = 0 for i = 1, . . . , n + k
(8)

for the equilibrium values of N1, . . . , Nn , the population densities of the n res-
ident strategies, and for the equilibrium values of Z1, . . . , Zk , which represent
all other population dynamical variables of the model. The latter may be popu-
lation densities of other species, such as the alternative prey in the example of
Sect. 2, where Fi (i = 1, 2, 3) are the right hand sides of the three equations in
(2). The resident strategies may also have structured populations, in which case
Ni is the total population size of strategy xi (or any suitable norm of its popula-
tion vector), and the variables describing its population structure (e.g. the relative
frequencies of xi -individuals in various demographic states) are listed among the
variables Z1, . . . , Zk . The same applies when the environmental feedbacks are
biological species with structured populations; for example, if the juveniles of a
species are consumed by the residents but the adults are not, then the juvenile
density is one of the environmental feedback variables, whereas the adult density
appears as one of the variables Z1, . . . , Zk . Note that N1, . . . , Nn may also appear
in the feedback variables. For example, the weighted sum

∑n
i=1 w(xi )Ni may be

one of the feedback variables, say E j , in which case (8) contains the equation
E j − ∑n

i=1 w(xi )Ni = 0.
The central question of this paper is how much information we can extract from

only the invasion fitness function (x, E1, . . . , En) �→ r(x, E1, . . . , En) (and therefore
from Eq. (7)) about the coevolution of the trait values x1, . . . , xn of the n coexisting
strategies. In other words, we investigate to what extent the adaptive dynamics of a
saturated polymorphism is independent of all the details (and this typically includes
many details) that appear only as part of the embedding model in Eq. (8).

We make the following assumptions about the invasion fitness and the embedding
model:
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(A1) The invasion fitness r is twice continuously differentiable with respect to all its
arguments, and the functions F1, . . . , Fn+k are continuously differentiable with
respect to all their arguments.

(A2) Equations (7) and (8) have an isolated solution for the equilibrium values
of the feedback variables E1, . . . , En and of N1, . . . , Nn , Z1, . . . , Zk when
(x1, . . . , xn) is in an open set U1 ⊆ X

n .

Note that x1, . . . , xn must all be different for (x1, . . . , xn) ∈ U1. For simplicity, we
shall treat the equilibrium as if it were unique, but the propositions can be extended
to multiple equilibria using the results of Geritz et al. (2002). For non-equilibrium
population dynamics, see Appendix A.

(A3) If N j = 0, then the functions F1, . . . , Fn+k are constant with respect to x j .

The last assumption corresponds to the biological fact that if a strategy is not present,
then its trait value does not influence the dynamics of the system.

We adopt the notation ∂ j r(x, E1, . . . , En) for the partial derivative of r with respect
to its j th argument evaluated at the point (x, E1, . . . , En), andweuse double subscripts
to denote second partial derivatives.

Let Ê1(x1, . . . , xn), . . . , Ên(x1, . . . , xn) denote the solution of Eq. (7) for the equi-
librium values of the feedback variables for (x1, . . . , xn) ∈ U1. Since the trait values
x1, . . . , xn fully determine the feedbacks Ê1, . . . , Ên , they also determine the selection
gradients of the n strategies,

∂1r(x1, Ê1(x1, . . . , xn), . . . , Ên(x1, . . . , xn))
...

∂1r(xn, Ê1(x1, . . . , xn), . . . , Ên(x1, . . . , xn))

(9)

Hence at each point (x1, . . . , xn) ∈ U1, we can say whether the j th strategy evolves
towards higher or lower trait values (∂1r(x j , Ê1, . . . , Ên) is positive or negative). In
particular, the n − 1 dimensional manifold in Xn determined by

∂1r(x j , Ê1(x1, . . . , xn), . . . , Ên(x1, . . . , xn)) = 0 (10)

corresponds the x j -isocline, where the selection gradient of the j th strategy vanishes.
A point on the x j -isocline is uninvadable by mutants of x j if

∂11r(x j , Ê1(x1, . . . , xn), . . . , Ên(x1, . . . , xn)) < 0 (11)

(which is a sufficient condition; the same with ≤ is necessary). A point in U1 where
all n isoclines intersect and therefore all selection gradients vanish is an n-morphic
evolutionary singularity. If (11) is satisfied for all strategies ( j = 1, . . . , n) at the
singularity, then the singularity is evolutionarily stable (sensu Maynard 1982, p. 10).
Since in degenerate cases equality may hold in (11) for some strategies of an evolu-
tionarily stable singularity, we shall refer to a singularity where the strict inequalities
are satisfied for each strategy as a generic evolutionarily stable singularity.
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The selection gradients, the isoclines, the singularities, and their evolutionary sta-
bility are therefore determined by the trait values via the invasion fitness in Eq. (7),
irrespectively of the embedding model in Eq. (8). Below we explore what information
can be extracted from the invasion fitness and Eq. (7) alone for the adaptive dynamics
of an n-morphic population.

The results obtained from Eq. (7) are biologically relevant only if the equilib-
rium of the population dynamics is admissible, i.e., the population densities are
nonnegative and the equilibrium is asymptotically stable. As far as the environmen-
tal feedbacks are concerned, one can restrict the set U1 of n-morphisms such that
Ê1(x1, . . . , xn), . . . , Ên(x1, . . . , xn) correspond to positive population densities for
all (x1, . . . , xn) ∈ U1; often this will amount to requiring Êi (x1, . . . , xn) ≥ 0 for all
i , but there might be other constraints as well (for example, if E1 is the total density
of a biological species and E2 is the density of individuals of the same species in
a particular class, like juveniles, then one has to require Ê1 ≥ Ê2). Whether or not
N1, . . . , Nn and Z1, . . . , Zk are biologically possible and whether the equilibrium is
asymptotically stable, however, depends on the embedding model in (8). Even though
the results are of biological interest only if the equilibrium is admissible, the results
themselves are not affected by the embedding model and hold for any N1, . . . , Nn and
Z1, . . . , Zk .

3.1 Isoclines and singularities

We first explore how the isoclines and singularities relate to the equilibria of the
environmental feedback variables as functions of the trait values. Let

A =
⎡

⎢
⎣

∂2r(x1, Ê1, . . . , Ên) . . . ∂n+1r(x1, Ê1, . . . , Ên)
...

. . .
...

∂2r(xn, Ê1, . . . , Ên) . . . ∂n+1r(xn, Ê1, . . . , Ên)

⎤

⎥
⎦ (12)

By implicit differentiation of Eq. (7) with respect to the trait value x j , we obtain

A

⎡

⎢⎢
⎢
⎣

∂ Ê1
∂x j
...

∂ Ên
∂x j

⎤

⎥⎥
⎥
⎦

= −∂1r(x j , Ê1, . . . , Ên) e j (13)

where e j is the j th unit vector of dimension n. Writing (13) for j = 1, . . . , n yields n

matrix equations or a total of n2 equations for the n2 derivatives ∂ Êi
∂x j

(i, j = 1, . . . , n).
Notice that A is independent of the choice of j .

We assume the following non-degeneracy condition on A:

(A4) The matrix A given in (12) and all its minor matrices Ai j obtained by deleting
the i th row and the j th column of A are nonsingular when (x1, . . . , xn) is in
some open set U2 ⊆ X

n .
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In Sects. 3.1 and 3.2, we restrict the analysis to the subsetU1 ∩U2 of the product trait
space Xn , so that assumptions (A2) and (A4) apply.

Equation (13) restricts how the equilibria of the environmental feedbacks vary with
a trait value according to the following

Lemma 1 If one environmental feedback, Êi , as a univariate function of the trait
value x j with all other trait values fixed, has a critical point at (x1, . . . , xn), then this
point is a critical point of all environmental feedbacks as univariate functions of x j .

Proof Given ∂ Êi
∂x j

= 0, we have from Eq. (13) that
∑n

l=1 akl
∂ Êl
∂x j

= 0 for all k 
= j

(where akl is the k, l element of A), so that ∂ Êi
∂x j

= 0 implies
∑

l 
=i akl
∂ Êl
∂x j

= 0 for all

k 
= j . This is a homogeneous linear system of equations for the n−1 derivatives ∂ Êl
∂x j

,
l = 1, . . . , i − 1, i + 1, . . . , n. The matrix of this system is A j i , which is assumed to

be non-singular by (A4), so that the solution is the zero vector. Hence ∂ Êi
∂x j

= 0 implies

∂ Êl
∂x j

= 0 for all l = 1, . . . , n. ��

Proposition 1 If an environmental feedback Êi , as a univariate function of x j , has
a critical point at (x1, . . . , xn), then this point is on the x j -isocline of the saturated
n-morphism. Conversely, at all points of the x j -isocline each environmental feedback
must have a critical point as a function of x j .

Proof By Lemma 1, ∂ Êi
∂x j

= 0 implies ∂ Êl
∂x j

= 0 for all l = 1, . . . , n such that the left

hand side of (13) is the zero vector. Therefore ∂1r(x j , Ê1, . . . , Ên) = 0 and the point
is on the x j -isocline. Conversely, if the point (x1, . . . , xn) is on the x j -isocline, then

the right hand side of (13) is the zero vector, so that under (A4), ∂ Êi
∂x j

must be zero for
all i = 1, . . . , n. ��

This result explains why, in Fig. 1, the α1-isocline traces the points where the
contour lines of both environmental feedback variables are horizontal (the feedbacks
attain local minima or maxima when varying α1), and, analogously, the α2-isocline
traces points where the contour lines of both environmental feedback variables are
vertical (the feedbacks attain local minima or maxima when varying α2; recall that in
the example of Fig. 1, virulence is the trait value, i.e., xi = αi ).

Proposition 2 At an evolutionary singularity of a saturated n-morphism, each envi-
ronmental feedback Êi (i = 1, . . . , n) has a critical point as a multivariate function of

all trait values. Moreover, the Hessian matrix
[

∂2 Êi
∂x j ∂xk

]
at the n-morphic evolutionary

singularity is a diagonal matrix for each environmental feedback Êi (i = 1, . . . , n).

Proof At the evolutionary singularity all isoclines intersect, therefore byProposition 1,
each environmental feedback has a critical point as a function of all trait values.
Differentiating Eq. (13) implicitly with respect to xk gives
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∂A
∂xk

⎡

⎢⎢⎢
⎣

∂ Ê1
∂x j
...

∂ Ên
∂x j

⎤

⎥⎥⎥
⎦

+ A

⎡

⎢⎢⎢
⎣

∂2 Ê1
∂x j ∂xk

...
∂2 Ên

∂x j ∂xk

⎤

⎥⎥⎥
⎦

= −b jke j (14)

with

b jk = δ jk∂11r(x j , Ê1, . . . , Ên) +
n∑

l=1

∂1,l+1r(x j , Ê1, . . . , Ên)
∂ Êl

∂xk
(15)

where δ jk is the Kronecker delta. At the intersection of the x j - and xk-isoclines,
∂ Êl
∂x j

= ∂ Êl
∂xk

= 0 holds for all l = 1, . . . , n by Proposition 1, and therefore (14)
simplifies to

A

⎡

⎢⎢⎢
⎣

∂2 Ê1
∂x j ∂xk

...
∂2 Ên

∂x j ∂xk

⎤

⎥⎥⎥
⎦

=
{−∂11r(x j , Ê1, . . . , Ên)e j if k = j

0 otherwise
(16)

Whenever k 
= j , i.e., at the intersection of two different isoclines, it follows from

assumption (A4) that ∂2 Êi
∂x j ∂xk

= 0 for i = 1, . . . , n. At the intersection of all isoclines
the same holds for any choice of k 
= j , and therefore the Hessian matrix is diagonal.

��
In Fig. 1, the dimorphic singularity is at a saddle point of each environmental feed-

back, and it can be seen from the contour lines of the feedbacks that the eigenvectors
of their Hessians are the unit vectors so that the Hessians are diagonal matrices.

Proposition 3 At an evolutionary singularity of a saturated n-morphism, the isoclines
intersect at right angles such that the x j -isocline ( j = 1, . . . , n) is tangent to a
hyperplane perpendicular to the x j coordinate axis.

Proof By Proposition 1, the x j -isocline is implicitly determined by ∂ Êi
∂x j

= 0
(where i is arbitrary). By implicit differentiation of this equation, we obtain
∑n

k=1
∂ Êi

∂xk∂x j
dxk = 0 to hold on the x j -isocline, i.e., the normal vector of the

x j -isocline is
[

∂ Êi
∂x1∂x j

, . . . ,
∂ Êi

∂xn∂x j

]T
. Since at the n-morphic singularity all mixed

derivatives are zero by Proposition 2, the normal vector of the x j -isocline simplifies

to ∂2 Êi
∂x2j

e j . ��

This result explains why the α1-isocline is locally vertical and the α2 isocline is
locally horizontal at the dimorphic singularity in Fig. 1.

Proposition 4 If n = 2 and the invasion fitness is uniformly monotonic in the envi-
ronmental feedback variable Ei for given i , then Êi (x1, x2), as a bivariate function
of the trait values, has a saddle point at a generic evolutionarily stable dimorphic
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singularity; Êi (x1, x2) is maximized as a function of one trait value and minimized as
a function of the other.

Proof Take k = j in Eq. (16) and use Cramer’s rule to obtain

∂2 Êi

∂x2j
= −∂11r(x j , Ê1, . . . , Ên) · (−1)i+ j det A j i

det A
(17)

for all i, j at the singularity. In general, it is difficult to establish the signs of the
determinants in this expression, but in the case of n = 2, the minor matrices are
simply elements of A, such that det A j i = ∂i+1r(x j , Ê1, Ê2). If the invasion fitness
is uniformly monotonic in the i th environmental feedback variable, then det A j i has
the same sign for j = 1 and j = 2. The second derivatives ∂11r(x1, Ê1, Ê2) and
∂11r(x2, Ê1, Ê2) characterize the uninvadability of the x1- and x2-isoclines, respec-
tively (cf. (11)), and they are both negative at a generic evolutionarily stable singularity.
Since for given i , ∂11r(x j , Ê1, Ê2) and det A j i do not change sign when changing j ,
but (−1)i+ j does, the sign of (17) with j = 1 is the opposite to its sign with j = 2.
Together with Proposition 1, this shows that Êi (x1, x2) is maximized as a function of
one trait value and minimized as a function of the other, and thus has a saddle point at
a generic evolutionarily stable dimorphic singularity. ��

In the example of Sect. 2, the invasion fitness is uniformly increasing as a function
of the density of susceptibles (S) and uniformly decreasing as a function of predator
density (P). Accordingly, the dimorphic ESS is situated at a saddle point of both Ŝ
and P̂ (Fig. 1).

3.2 Convergence stability

The adaptive dynamics of n coevolving scalar traits can be approximated by the canon-
ical equation

dx1
dt

= c1(x1, . . . , xn)∂1r(x1, Ê1(x1, . . . , xn), . . . , Ên(x1, . . . , xn))

... (18)
dxn
dt

= cn(x1, . . . , xn)∂1r(xn, Ê1(x1, . . . , xn), . . . , Ên(x1, . . . , xn))

where the speed factors c j (x1, . . . , xn) contain the frequency and size of mutations as
well as the equilibrium population size and population structure of strategy j in the
n-morphism of strategies x1, . . . , xn (Dieckmann and Law 1996; Durinx et al. 2008).
On the x j -isocline, the right hand side of the j th equation is zero, and the n-morphic
singularity is a fixed point of the canonical equation. Below we discuss three stability
concepts related to isoclines and singularities: isoclinic stability (Marrow et al. 1996),
strong convergence stability (Marrow et al. 1996; Leimar 2009), and absolute stability
(Matessi and Pasquale 1996; Leimar 2009).
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We say that a point on the x j -isocline is isoclinically stable if it is an attractor of
the one-dimensional adaptive dynamics of x j assuming that all other trait values are
fixed, i.e., if it is an attractor of (18) when c j > 0 and ci ≡ 0 for all i 
= j .

Proposition 5 A point on the x j -isocline of a saturated polymorphism is isoclinically
stable if and only if it is uninvadable by mutants of x j .

Proof From (18), ∂11r(x j , Ê1, . . . , Ên) + ∑n
i=1 ∂1,i+1r(x j , Ê1, . . . , Ên)

∂ Êi
∂x j

< 0 is
the sufficient condition for isoclinic stability (whereas the same with ≤ is necessary).

By Proposition 1, ∂ Êi
∂x j

= 0 for i = 1, . . . , n on the x j -isocline, and therefore the

sufficient condition simplifies to ∂11r(x j , Ê1, . . . , Ên) < 0 (necessary with ≤). This
is the same as the condition for evolutionary stability in (11). ��

This explains why, in Fig. 1, the horizontal (vertical) arrows point towards the
α1- (α2-) isocline where the isocline is uninvadable (thick continuous lines), but point
away from the isoclinewhere the isocline is invadable (dashed lines). Isoclinic stability
is however neither necessary nor sufficient for an evolutionary singularity to be an
attractor of the canonical equation when all strategies evolve (Marrow et al. 1996),
and convergence to a fixed point of (18) depends on the speed factors c1, . . . , cn .

Following Leimar (2009), we say that the evolutionary singularity is strongly con-
vergence stable if it is a locally asymptotically stable fixed point of (18) for any speed
factors that are positive at the singularity and are continuously differentiable functions
of the trait values. (Note that Leimar (2009) derives the conditions for strong con-
vergence stability in case of a monomorphic population with an evolving trait vector,
whereas we consider an n-morphic population where each strategy has a scalar trait.
The difference is that in Leimar’s model, a single mutation can cause a difference in
all entries of the trait vector, whereas in our model, one mutation changes the trait
value of only one strategy.)

Proposition 6 An evolutionary singularity of a saturated n-morphism is both evolu-
tionarily stable and strongly convergence stable if ∂11r(xi , Ê1, . . . , Ên) < 0 at the
singularity for i = 1, . . . , n, whereas it is neither evolutionarily stable nor locally
asymptotically stable for any positive speed factors if the (strict) opposite of any of
these inequalities holds.

Proof By Proposition 2, ∂ Êi
∂x j

= 0 for all i and j at the singularity. Hence the Jacobian
of (18) simplifies to the diagonal matrix

⎡

⎢
⎣

c1∂11r(x1, Ê1, . . . , Ên) . . . 0
...

. . .
...

0 . . . cn∂nnr(xn, Ê1, . . . , Ên)

⎤

⎥
⎦ (19)

and therefore the fixed point is asymptotically stable if ∂11r(xi , Ê1, . . . , Ên) < 0 for
all i ; and this condition coincides with the condition of evolutionary stability in (11).

��
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Strong convergence stability assumes that the speed factors c j (x1, . . . , xn) are con-
tinuously differentiable with respect to the trait values. We say that the singularity is
absolutely stable (cf. Leimar 2009) if it is Lyapunov stable for any conceivable evo-
lutionary trajectory, also when the speed factors are non-smooth functions of the trait
values. This includes the most extreme path that is consistent with the selection gra-
dients (see Matessi and Pasquale 1996). Contrary to Matessi and Pasquale (1996)
and Leimar (2009), we consider Lyapunov stability rather than asymptotic stability
because stasis is also a path consistent with the selection gradients. In Appendix B,
we derive a sufficient condition for the absolute stability of an arbitrary (not neces-
sarily saturated) polymorphic singularity, and then apply this condition to saturated
polymorphisms.

Proposition 7 Every generic evolutionarily stable singularity of a saturated n-
morphism is absolutely stable.

Proof See Appendix B. ��
In Fig. 1 it can easily be checked, by constructing the most extreme path, that the

evolutionary trajectories cannot leave the neighbourhood of the dimorphic ESS.

3.3 Limits to points on the diagonal

In this section, we investigate the limit of the environmental feedbacks and of the
selection gradients when two of the n coexisting strategies approach the same trait
value. In the case of n = 2, this corresponds to the limit when the two trait values go
to a point on the diagonal of the trait evolution plot (e.g. of Fig. 1), (x1, x2) → (x0, x0).
For n > 2, we ease the presentation by assuming, without loss of generality, that the
two strategies that approach the common value x0 are the first two strategies, x1 and
x2. For simplicity, we shall refer to the hyperplane (x, x, x3, . . . , xn) as “the diagonal”
also in the case of n > 2.

Let x1 = x0 + εξ1 and x2 = x0 + εξ2 with arbitrary ξ1 
= ξ2 and ε > 0, and
let Ē1(ε), . . . , Ēn(ε) denote the equilibrium values of the environmental feedback
variables obtained from the equations

r(x0 + εξ1, Ē1(ε), . . . , Ēn(ε)) = 0

r(x0 + εξ2, Ē1(ε), . . . , Ēn(ε)) = 0

r(x3, Ē1(ε), . . . , Ēn(ε)) = 0
... (20)

r(xn, Ē1(ε), . . . , Ēn(ε)) = 0

We denote the equilibrium feedbacks with Ēi rather than Êi because here we consider
them as functions of ε, with ξ1, ξ2, x0, x3, . . . , xn suppressed in the notation. When
ε = 0 (i.e., x2 = x1), the model does not have isolated equilibria and the first two
rows of A are identical so that A is singular, hence assumptions (A2) and (A4) do not
hold. For the diagonal, we replace (A2) with the assumption
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(A5) The limits Ēi (0) := limε→0 Ēi (ε) (i = 1, . . . , n) exist and are independent
of the choice ξ1 
= ξ2. The limits Ē ′

i (0) := limε→0 Ē ′
i (ε) (i = 1, . . . , n) exist

for all ξ1 
= ξ2 (these typically depend on the choice of ξ1, ξ2). If Eqs. (7) and
(8) have multiple solutions for the population dynamical equilibria, then the
focal equilibrium, as a function of the trait values, extends continuously to the
diagonal.

Proposition 8 As (x1, x2, x3, . . . , xn) → (x0, x0, x3, . . . , xn), the equilibrium val-
ues of the environmental feedback variables of a saturated n-morphism converge
to the equilibrium feedbacks of an (n − 1)-morphic population with strategies
(x0, x3, . . . , xn) where the selection gradient of the first strategy vanishes.

If n = 2, then the equilibrium values of the environmental feedback variables
converge to the equilibrium feedbacks of a monomorphic population if that has an
evolutionary singularity at x0.

(For n > 2, the analogous result holds for every diagonal, i.e., for any pair of resident
strategies xi and x j going to the same trait value x0.)

Proof From the difference of the first two equations of (20), we obtain

lim
ε→0

r(x0+εξ1,Ē1(ε),...,Ēn(ε))−r(x0+εξ2,Ē1(ε),...,Ēn(ε))
ε(ξ1−ξ2)

= ∂1r(x0, Ē1(0), . . . , Ēn(0)) = 0

so that in the limit ε → 0, we can rewrite the system of equations as

∂1r(x0, Ē1(0), . . . , Ēn(0)) = 0

r(x0, Ē1(0), . . . , Ēn(0)) = 0

r(x3, Ē1(0), . . . , Ēn(0)) = 0
... (21)

r(xn, Ē1(0), . . . , Ēn(0)) = 0

The same system of equations must hold if the point (x0, x3, . . . , xn) is on the x1-
isocline of an (n−1)-morphic population or, in case of n = 2, if x0 is a monomorphic
evolutionary singularity. ��

To interpret the above proposition, recall that it depends on the embedding model
whether or not an (n−1)-morphic population is on its x1-isocline (or a monomorphic
population has a singularity at x0). However, if the embedding model is such that
(x0, x3, . . . , xn) is in fact on the x1-isocline (or x0 is a monomorphic singularity),
then the feedbacks of the (n− 1)-morphic population with these traits are equal to the
limits Ēi (0).

For n > 2, the case when l > 2 strategies approach the same trait value can
be treated analogously, and with higher l, this limit leads to increasingly degenerate
isocline points or singularities. Consider the example (x1, x2, x3) → (x0, x0, x0) in a
saturated trimorphism. Analogously to (20), we have

123



Adaptive dynamics of saturated polymorphisms 1057

r(x0 + εξ1, Ē(ε)) = 0

r(x0 + εξ2, Ē(ε)) = 0

r(x0 + εξ3, Ē(ε)) = 0

where Ē(ε) abbreviates the arguments Ē1(ε), Ē2(ε), Ē3(ε). Taking the limit ε → 0,
we obtain the first two equations of (21) as well as

lim
ε→0

1
ε(ξ1−ξ3)/2

[
r(x0+εξ1,Ē(ε))−r(x0+εξ2,Ē(ε))

ε(ξ1−ξ2)
− r(x0+εξ2,Ē(ε))−r(x0+εξ3,Ē(ε))

ε(ξ2−ξ3)

]

= ∂11r(x0, Ē(0)) = 0

The equilibrium values of the feedback variables therefore converge to the equilibrium
feedbacks of a monomorphic population that has an evolutionary singularity at x0 at
the bifurcation point between being invadable and uninvadable (i.e., evolutionarily
stable).

Proposition 9 The point (x1, . . . , xn) is on the x j -isocline of the saturated n-morphic
population if and only if at this point each environmental feedback variable has the
same equilibrium value as its limit to the point (x1, . . . , xl−1, x j , xl+1, . . . , xn) for
all l 
= j .

In the case of n = 2, the point (x1, x2) is on the x1-isocline if and only if at this
point each environmental feedback variable has the same equilibrium value as its limit
to the point (x1, x1). Likewise, the point (x1, x2) is on the x2-isocline if and only if at
this point each environmental feedback variable has the same equilibrium value as its
limit to the point (x2, x2).

Proof If the point (x1, . . . , xn) is on the x1-isocline, then ∂1r(x1, E1, . . . , En) = 0
must hold together with Eq. (7). These are the same n+1 equations as the n equations
in (21) written for x0 = x1 together with r(x2, E1, . . . , En) = 0. Hence on the
x1-isocline, Êi (x1, . . . , xn) = Ēi (0). An analogous result holds for every diagonal
(e.g. (x1, . . . , x j−1, x1, x j+1, . . . , xn) instead of (x1, x1, x3, . . . , xn)) and for every
isocline. ��

This result underlies that in Fig. 1, theα1-isocline traces pointswhere each feedback
has the same value as its limit to the diagonal at the same α1-coordinate, whereas the
α2-isocline traces points where each feedback has the same value as its limit to the
diagonal at the same α2-coordinate (see the white guide lines in the bottom panels).

In the remainder of this section, we investigate the points where the isoclines of a
saturated polymorphism intersect the diagonal (see a summary for the simplest case
n = 2 at the end of this section). Let

Xc = {x : ∂11r(x, Ē1(0), . . . , Ēn(0)) = 0} (22)

Generically, Xc consists of isolated points. Note that for n > 2, Xc depends
on the choice of x3, . . . , xn , and when necessary, we emphasise this by writ-
ing Xc(x3, . . . , xn). Suppose that the embedding model is such that the point
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(x0, x3, . . . , xn) is on the x1-isocline of the (n−1)-morphic population; by Proposition
8, the equilibrium of the environmental feedbacks in this (n − 1)-morphic population
is given by Ē1(0), . . . , Ēn(0). If x0 ∈ Xc, then (x0, x3, . . . , xn) is at a bifurcation
point between being invadable and uninvadable by mutants of the first strategy. In
particular, if n = 2 and the embedding model is such that x0 ∈ Xc is a monomorphic
singularity, then x0 is at a bifurcation point between a generic ESS and an invadable
singularity (such as an evolutionary branching point). The following two propositions
link the elements of Xc to the environmental feedback variables and to the isoclines
of the n-morphic population under the non-degeneracy condition given in assumption
(A8) in Appendix C.

Proposition 10 The points (x0, x0, x3, . . . , xn) of the diagonal with x0 ∈ Xc(x3, . . . ,
xn) have the following properties:

(i) The x1- and x2-isoclines of the saturated n-morphic population intersect the
diagonal exactly at these points;

(ii) The limiting value of each equilibrium environmental feedback attains a critical
point as a function of x1 and x2 at exactly these points.

(For n > 2, the analogous result holds for every diagonal.)

Proof See Appendix C. ��
Corollary.At the point(s) (x0, . . . , x0)with x0 ∈ Xc(x0, . . . , x0) all isoclines of the n-
morphic population intersect and the limiting value of each equilibrium environmental
feedback variable attains a critical point as a function of all trait values, provided that
the limits of Êi (x1, . . . , xn) and its first derivatives exist for all i when (x1, . . . , xn) →
(x0, . . . , x0).

Proposition 11 The x1- and x2-isoclines of the n-morphic population have common
points with the x1-isocline of the (n − 1)-morphic population exactly at the points
where the latter bifurcates between being invadable and uninvadable by mutants of
the first strategy.

In the case of n = 2, the x1- and x2-isoclines connect to the monomorphic singu-
larity if and only if the monomorphic singularity is at a bifurcation point between a
generic ESS and an invadable singularity.

(For n > 2, the analogous result holds for every pair of n-morphic isoclines.)

Proof This follows directly from the fact that the x1-isocline of the (n − 1)-morphic
population is embedded in the diagonal (x, x, x3, . . . , xn) and, by part (i) of Proposi-
tion 10, the x1- and x2-isoclines of the n-morphic population intersect the diagonal at
the points {(x, x, x3, . . . , xn)|x ∈ Xc(x3, . . . , xn)}. ��

For dimorphisms, Proposition 11 can be deduced from the Appendix of Geritz et al.
(1999), which holds true also in the unsaturated case. Moreover, this general result for
dimorphisms can be extended to arbitrary n-morphisms by fixing strategies x3, . . . , xn .
The above short proof of Proposition 11, however, assumes that the n-morphism is
saturated.
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Proposition 12 In the case of saturated dimorphisms (n = 2), the vector of selection
gradients is asymptotically perpendicular to the diagonal as (x1, x2) → (x0, x0), and
it points towards (away from) the diagonal if ∂11r(x0, Ē1(0), . . . , Ēn(0)) is negative
(positive).

Proof See Appendix C. ��
For n = 2, the results in this section imply the following relationship between

the adaptive dynamics of monomorphic and dimorphic populations. The diagonal of
the trait evolution plot is divided into segments separated by the points (x0, x0) with
x0 ∈ Xc, at which points the isoclines intersect the diagonal and the (limits of the)
environmental feedbacks have critical points. Within each segment, the monomorphic
populationmay have either an ESS or an invadable singularity (such as an evolutionary
branching point) depending onwhether the vector of the dimorphic selection gradients
points towards the diagonal or away from the diagonal (cf. Geritz et al. 1998). The
location of the monomorphic singularity depends on the embedding model, but given
the location, its invadability does not. In the example of Fig. 1, Xc contains the two
elements 0.932 and 3.044. A monomorphic singularity at x0 is invadable if x0 is in
the interval (0.932, 3.044) and evolutionarily stable if it is outside [0.932, 3.044].

4 Embedding models and invasion boundaries

In this section, we study how the connections between the adaptive dynamics of satu-
rated n-morphisms and the invasibility of (n−1)-morphisms depend on the embedding
model in Eq. (8). For n = 2, this amounts to the relationship between the dimorphic
selection gradients (i.e., the constant “backdrop” in the right-hand panels of Fig. 2)
and the pairwise invasibility plot of a monomorphic population.

The invasion fitness of a mutant strategy xm in the (n − 1)-morphic resident
population of strategies x1, . . . , xm−1, xm+1, . . . , xn changes sign when, in the pop-
ulation dynamics of the n-morphism, the boundary equilibrium (N1, , . . . , Nm−1, 0,
Nm+1, . . . , Nn) undergoes a transcritical bifurcation. The manifold of this transcriti-
cal bifurcation is an (n − 1)-dimensional manifold in the n-dimensional product trait
space, which we refer to as the xm-invasion boundary. In the case of n = 2, the x2-
invasion boundary is the line of the pairwise invasibility plot that separates “+” areas
of invasion from “−” areas of non-invasion in the left panels of Fig. 2. The x1-invasion
boundary is the mirror image of the x2-invasion boundary on the diagonal x2 = x1; in
Fig. 2, it appears in the right panels delineating the area of coexistence together with
the x2-invasion boundary. The xm-invasion boundary is implicitly determined by

F1(x1, . . . , xn, Ê1(x), . . . , Ên(x), N1, . . . , Nm−1, 0, Nm+1, . . . , Nn, Z1, . . . , Zk) = 0

.

.

.

Fn+k(x1, . . . , xn, Ê1(x), . . . , Ên(x), N1, . . . , Nm−1, 0, Nm+1, . . . , Nn, Z1, . . . , Zk) = 0

(23)

where Êi (x) = Êi (x1, . . . , xn) for i = 1, . . . , n are determined by Eq. (7).
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4.1 Connection between isoclines and invasion boundaries

Geritz et al. (1999, see their Appendix) have shown that the isoclines of dimorphic
selection gradients connect to the invasion boundaries of the pairwise invasibility plot
at specific points. Here we generalize their results to the isoclines of saturated n-
morphisms. We conjecture that Propositions 13 and 14 are valid also for unsaturated
n-morphisms, but proving them for the unsaturated case is beyond the present paper.

Lemma 2 If the point (x1, . . . , xm, . . . , xn) is on the xm-invasion boundary and x̄m
is such that Êi (x1, . . . , x̄m, . . . , xn) = Êi (x1, . . . , xm, . . . , xn) for i = 1, . . . , n, then
the point (x1, . . . , x̄m, . . . , xn) is also on the xm-invasion boundary.

Proof By assumption (A3), the functions Fi in Eq. (23) do not depend on the
value of their mth argument. Hence xm enters Eq. (23) only via the environmen-
tal feedbacks Ê1, . . . , Ên , and if these are the same at (x1, . . . , x̄m, . . . , xn) as at
(x1, . . . , xm, . . . , xn), then (x1, . . . , x̄m, . . . , xn) also satisfies (23). ��

For n = 2, this lemma implies that if a point is on the x2-invasion boundary,
then every point with the same x1-coordinate and with the same values of Ê1 and
Ê2 (cf. Fig. 1) are also on the invasion boundary. Hence the equilibrium values of
the environmental feedback variables in dimorphic populations constrain the possible
shapes of pairwise invasibility plots.

In the next two propositions, we first consider the intersection of an invasion bound-
ary with the isocline of a different strategy, and then the intersection of the xm-invasion
boundary with the xm-isocline.

Proposition 13 If the point (x1, . . . , xm, . . . , xn) is both on the x j -isocline and on
the xm-invasion boundary with j 
= m, then the (n− 1)-morphic population obtained
by deleting strategy xm is also on its x j -isocline. Conversely, if the (n − 1)-morphic
population obtained by deleting xm is on the x j -isocline of the (n − 1)-morphism
and the point (x1, . . . , xm, . . . , xn) is on the x j -isocline of the n-morphism, then
(x1, . . . , xm, . . . , xn) is on the xm-invasion boundary.

In the case of n = 2, if a point (x1, x2) is on the x1-isocline and also on the
x2-invasion boundary, then x1 is a monomorphic singularity; and conversely, if x1 is
a monomorphic singularity and (x1, x2) is on the x1-isocline, then it is also on the
x2-invasion boundary. Analogously, if (x1, x2) is on the x2-isocline and also on the
x1-invasion boundary, then x2 is a monomorphic singularity; and conversely, if x2 is
a monomorphic singularity and (x1, x2) is on the x2-isocline, then it is also on the
x1-invasion boundary.

Proof Consider the case n = 2. If the point (x1, x2) is on the x1-isocline, then, by
Proposition 9, Êi (x1, x2) equals its limit to (x1, x1) for i = 1, 2. If (x1, x2) is also
on the x2-invasion boundary, then, by Lemma 2, (x1, x1) must be on the x2-invasion
boundary, i.e., must be a point where the x2-invasion boundary intersects the diagonal
x2 = x1. Hence x1 is a monomorphic singularity. Conversely, if x1 is a monomorphic
singularity, then the point (x1, x1) is on the x2-invasion boundary. By Lemma 2, every
point (x1, x2) that has the same equilibrium values of the environmental feedback
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variables as their limiting values at (x1, x1) are also on the x2-invasion boundary. By
Proposition 9, these points are on the x1-isocline. The analogous statements for the
x2-isocline and x1-invasion boundary follow from symmetry. For n > 2, see Appendix
D. ��
Proposition 14 At all points where the xm-isocline intersects the xm-invasion bound-
ary, the xm-invasion boundary is tangent to an (n−1)-dimensional hyperplane parallel
to the xm-axis.

Proof See Appendix D. ��
Note that Proposition 13 needs assumption (A5) but Proposition 14 does not. In

the case of n = 2, Proposition 13 means that whenever the x1-isocline intersects the
x2-invasion boundary, there is a monomorphic singularity on the diagonal at the same
x1-coordinate; and whenever the x2-isocline intersects the x1-invasion boundary, there
is a monomorphic singularity on the diagonal at the same x2-coordinate. Proposition
14 implies that the x2-isocline connects to the leftmost and to the rightmost points
of the x2-invasion boundary (i.e. to points where the x2-invasion boundary is locally
vertical), whereas the x1-isocline connects to the minima and to the maxima of the x1-
invasion boundary (i.e., where the x1-invasion boundary is locally horizontal). These
connection points can readily be observed in Fig. 2 (see also Geritz et al. 1999).

4.2 Embedding models and pairwise invasibility plots for n = 2

In this section, we show how certain elements of the embedding model can be chosen
such that we obtain a particular segment of the invasion boundary according to will.
This constructionmethod demonstrates how the invasion boundaries can change while
then-morphic adaptive dynamics remainotherwise the same.For simplicity,we restrict
this analysis to n = 2, and construct parts of the x2-invasion boundary, i.e., of the
borderline between “+” and “−” areas of the pairwise invasibility plot, over a constant
“backdrop” of the dimorphic selection gradients (cf. Fig. 2).

Suppose that the embeddingmodel contains a function h the shape ofwhichwemay
choose. h could stand for a density-dependent demographic rate, such as the density-
dependent birth rate of the host in our motivating example (function B in Eq. (2)). For
the sake of simplicity, we assume that h is univariate and occurs only in F1, such that
the embedding model is as given in (8), except that the first equation is replaced with

F̃1(x1, x2, Ê1(x1, x2), Ê2(x1, x2), N1, N2, Z1, . . . , Zk, h( f )) = 0

where f = f (x1, x2, Ê1(x1, x2), Ê2(x1, x2), N1, N2, Z1, . . . , Zk) such that h may
depend on an arbitrary combination of the demographic variables (in our motivating
example, the birth rate depends on the sum of susceptible and infected densities, i.e.,
on the sum of one of the feedback variables and the two resident population densities).
We make two assumptions about F̃1 and f :

(A6) F̃1 is aC1-diffeomorphism as a function of h for all values of its other arguments.
(A7) If N j = 0, then f is constant with respect to x j ( j = 1, 2).
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In many simple models F̃1 is linear in h, so that (A6) holds trivially (for example,
Eq. (2a) is linear in B). (A7) is analogous to assumption (A3) and expresses the
biological fact that if a strategy is not present, its trait value is irrelevant. We use (A7)
in Appendix E. It is important that the invasion fitness does not contain h, so that
changing h does not affect the selection gradients of dimorphic populations.

From (23), a point (x1, x2) is on the x2-invasion boundary if

F̃1(x1, x2, Ê1(x1, x2), Ê2(x1, x2), N1, 0, Z1, . . . , Zk, h( f )) = 0

F2(x1, x2, Ê1(x1, x2), Ê2(x1, x2), N1, 0, Z1, . . . , Zk) = 0
... (24)

Fk+2(x1, x2, Ê1(x1, x2), Ê2(x1, x2), N1, 0, Z1, . . . , Zk) = 0

Let N1 and Z1, . . . , Zk take values that satisfy the last k + 1 equations in (24), and let
f̂ (x1, x2) denote the value of f at these arguments and N2 = 0. The point (x1, x2) is
on the invasion boundary if h is chosen such that h( f̂ (x1, x2)) = ĥ0(x1, x2), where
the value ĥ0(x1, x2) is the solution of

F̃1(x1, x2, Ê1(x1, x2), Ê2(x1, x2), N1, 0, Z1, . . . , Zk, ĥ0(x1, x2)) = 0

Assumption (A6) guarantees that ĥ0(x1, x2) exists and is unique. One can make the
invasion boundary follow a parameterised curve (x1(p), x2(p)) by choosing h such
that h( f̂ (x1(p), x2(p))) = ĥ0(x1(p), x2(p)), but this is possible only as long as
p �→ f̂ (x1(p), x2(p)) is an injection.

In Appendix E, we show that the invasion boundary is tangent to a line with slope
κ at the point (x1, x2) if h is chosen according to

h( f ) = ĥ0(x1, x2) + ĥ1(x1, x2; κ)( f − f̂ (x1, x2)) + O(( f − f̂ (x1, x2))
2) (25)

with ĥ1(x1, x2; κ) given by Eq. (47) in Appendix E.
This constructionmethod gives considerable freedom for obtaining pairwise invasi-

bility plotswith certain desired local properties. Three important caveatsmust however
be made. First, by Lemma 2 in Sect. 4.1, certain points of the invasion boundary are
linked to each other via the environmental feedback variables, so that forcing the
invasion boundary to a given point can create other invasion boundary points as well.
Second, it remains to be seen whether the population dynamical equilibrium of the
dimorphism (x1, x2) with h( f ) given in (25) is admissible. Third, on which side of
the invasion boundary the mutants can or cannot invade (which is the “+” vs “−”
side of the invasion boundary on the pairwise invasibility plot) is determined by the
invasion fitness, not the embedding model. If an invasion boundary goes through the
point (x1, x2), then a mutant strategy x2 + δ can invade the monomorphic resident
population of x1 if the sign of ∂1r(x2, Ê1(x1, x2), Ê2(x1, x2)) is the same as the sign
of δ.

In the remainder of this section, we show how this construction method can be
used to obtain a monomorphic singularity of a desired type. Generic monomorphic
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singularities occur where the invasion boundary intersects the diagonal. The stabil-
ity properties of a monomorphic singularity at x0 are characterized by the second
derivatives

C00 = ∂2sx (y)

∂y2

∣
∣∣∣
y=x=x0

and C11 = ∂2sx (y)

∂x2

∣
∣∣∣
y=x=x0

where sx (y) is the invasion fitness of mutant strategy y in the resident population
of x , i.e., sx (y) = r(y, E1, E2) with E1 and E2 assuming their equilibrium values
in the monomorphic population of strategy x (Geritz et al. 1998). The eight generic
types of monomorphic singularities are distinguished by the signs of C00, C11, and
|C00| − |C11| (see Figure 2 of Geritz et al. 1998). A simple calculation shows that the
slope of the invasion boundary at the monomorphic singularity is κ = C11/C00.

Taking the limit (x1, x2) → (x0, x0) in (25), we can construct h such that the
invasion boundary intersects the diagonal at an arbitrarily chosen point (x0, x0).
This means that we can force a monomorphic singularity to exist at x0. Recall that
C00 = ∂11r(x0, Ē1(0), Ē2(0)) is determined independently of the embedding model
(cf. Proposition 12) so that the choice of h will not influence it, and C00 is zero when
x0 ∈ Xc. By varying κ , however, we can achieve any value of C11, and therefore we
can construct any of the four types of monomorphic singularities admitted by the sign
of C00 (see Appendix E on the case of C00 = 0). If Xc is nonempty (which is easiest
seen from whether the dimorphic isoclines intersect the diagonal, see Proposition 10),
then generically the diagonal has segments with negative and with positiveC00. In this
case, one can construct h to obtain an arbitrary monomorphic singularity: first choose
x0 such that C00 has the appropriate sign, and then choose κ to obtain the desired
singularity. Once again, this is up to the admissibility of the population dynamical
equilibrium.

5 Discussion

We studied the adaptive dynamics of coexisting strategies assuming that the
invasion fitness depends on a finite number n of environmental feedback vari-
ables and the maximum number of strategies that can coexist in equilibrium,
given by n, are already present. In the saturated polymorphism of strategies
x1, . . . , xn , the equilibrium values assumed by the environmental feedback variables,
Ê1(x1, . . . , xn), . . . , Ên(x1, . . . , xn), are determined from the fact that residents are
selectively neutral in their self-generated environment, so that the invasion fitness of
each resident strategy is zero (see Eq. (7)). The selection gradients, their isoclines, and
the evolutionary singularities depend only on the environmental feedback variables,
and are thus independent of all model details that do not feature in the invasion fitness.

We can therefore separate the equations of the ecological model into two sets. The
first set consists of the n equations that directly describe the dynamics of the pop-
ulation densities (or, in case of structured populations, the norms of the population
density vectors) of the coexisting strategies. These equations contain the expression of
the invasion fitness as a function of the trait value and of the environmental feedback
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variables (Eq. (1) in our motivating example of Sect. 2). The second set of equa-
tions, to which we refer to as the embedding model, consists of all other equations of
the ecological model, including the equations for the dynamics of the environmental
feedback variables (Eq. (2) in the example of Sect. 2). The selection gradients, iso-
clines, and evolutionary singularities of saturated polymorphisms are independent of
the embedding model. In other words, all information contained in Fig. 1 derives from
the invasion fitness alone.

The embedding model, however, affects the positivity and stability of the popu-
lation dynamical equilibrium (see Appendix A on the extension to non-equilibrium
population dynamics). While the invasion fitness alone determines the position and
the adaptive dynamic stability of the n-morphic singularities, it remains to be seen
whether these singularities are admissible in the sense that they correspond to biolog-
ically feasible and ecologically stable systems (see Fig. 2).

The dimensionality of the environmental feedback may be infinite. This occurs
also in very simple models, such as the trait-dependent Lotka–Volterra competi-
tion model (Metz et al. 1996a; Kisdi 1999), where the feedback environment is
given by a function rather than by scalars. However, since models tend to inves-
tigate simple ecosystems, if the dimensionality of the feedback is finite, then it
is often low. Dimorphisms are saturated in a number of models (see examples
in Sects. 1 and 2), so that evolutionary branching in a monomorphic population,
studied by most models, leads directly to a saturated system. In reality, the num-
ber of environmental feedback variables is likely high, but many of the feedbacks
may have only a weak effect on the invasion fitness. These “weak” feedbacks can
facilitate coexistence in only a narrow part of the product trait space (cf. Meszéna
et al. 2006), and outside this part the adaptive dynamics of the system is well
approximated by a model omitting the “weak” feedbacks, leaving only relatively
few.

The propositions of Sect. 3 characterize the adaptive dynamics of saturated poly-
morphisms. Some of these results are analogous to optimization models (which are
saturated with n = 1; see Metz et al. 2008). Importantly, the conditions for evo-
lutionary stability and convergence stability coincide in the n-dimensional adaptive
dynamics of saturated polymorphisms (Propositions 6 and 7) as they do in optimiza-
tion models (Meszéna et al. 2001; Metz et al. 2008). In unsaturated polymorphisms,
convergence stability may depend on the speed factors of the canonical equation (see
Eq. 18), and there are several stability concepts that differ in the assumptions about the
speed factors (Leimar 2009). In Appendix B, we give a new sufficient condition for
the absolute stability of an arbitrary (not necessarily saturated) k-morphic singularity.
This has previously been available only for k = 2 (Matessi and Pasquale 1996; Kisdi
2006). This sufficient condition is always satisfied at evolutionarily stable singularities
of saturated polymorphisms (k = n; see Proposition 7).

The adaptive dynamics of coevolving strategies may exhibit limit cycles (Khibnik
andKondrashov1997), and a k-morphic evolutionary singularity (which is afixedpoint
of the canonical equation for k strategies) can undergo a Hopf bifurcation (see e.g.
Marrow et al. 1996; Gavrilets 1997; Dercole et al. 2003, 2010). At the singularities
of saturated polymorphisms, however, the Jacobian evaluates to a diagonal matrix
(see (19)), so that a Hopf bifurcation cannot occur. This again resembles the adaptive
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dynamics of optimizationmodels, which have a strict Lyapunov function and therefore
converge to the optimal strategy.

In optimization models, a (locally) optimal strategy corresponds to an extremum
of the equilibrium value of the single environmental feedback, Ê(x), as a function of
the resident strategy x , and if the invasion fitness r(x, E) increases in E , then this
extremum is a minimum. This has been shown by Mylius and Diekmann (1995) and
Metz et al. (1996b, 2008), and it also follows directly from our Eq. (17) with n =
1. In saturated n-morphisms, the evolutionarily stable singularities still correspond
to critical points of each environmental feedback (Proposition 2), but these critical
points are generally not extrema when n ≥ 2. In particular, in the case of n = 2,
the evolutionarily stable dimorphic singularities are saddle points of Ê1(x1, x2) and
Ê2(x1, x2), such that an environmental feedback is maximized as a function of one
trait value and minimized as a function of the other (Proposition 4).

To explain this last result heuristically, suppose that the invasion fitness is an
increasing function of both E1 and E2, and focus attention on the neighbourhood
of a dimorphic singularity (x1, x2). Comparing the singular dimorphism with the
dimorphism (x1 + dx1, x2), if we have Ê1(x1 + dx1, x2) > Ê1(x1, x2), then we must
have Ê2(x1 + dx1, x2) < Ê2(x1, x2). This is because in both dimorphisms, the res-
ident strategy x2 must have zero invasion fitness, so that an increase in Ê1 must be
compensated by a decrease in Ê2. Hence moving horizontally in the (x1, x2)-plane,
the two feedbacks change in opposite directions. By an analogous argument, the same
holds also vertically. (Note that Fig. 1 is different because in the model of Sect. 2, the
invasion fitness increases in S but decreases in P .) Next, recall that in order to coexist,
x1 and x2 must have different sensitivities towards the two environmental feedback
variables (Meszéna et al. 2006). In our framework, this means that the rows of matrix
A in (12) must be different (cf. assumption (A4)). Suppose that strategy x1 is strongly
sensitive to E1 but only weakly to E2 (in the sense that the first element of the first row
in A is large and the second element of the first row is small), and the opposite holds
for x2. Then, by continuity from optimization, Ê1 is at a minimum with respect to x1;
and by the argument above, Ê2 is at a maximum with respect to x1. Analogously, Ê2
is at a minimum with respect to x2; and Ê1 is at a maximum with respect to x2. In
other words, Ê1 attains a minimum as a function of x1 but a maximum as a function
of x2, i.e., it has a saddle point; and Ê2 attains a maximum as a function of x1 but a
minimum as a function of x2, i.e., it too has a saddle point.

In Sects. 3.3 and 4.1, we explored how the adaptive dynamics of saturated n-
morphisms connect to the adaptive dynamics of (n − 1)-morphic populations. The
analysis can be extended to the connections also to lower levels of polymorphism, as
shown briefly by an example in Sect. 3.3. For n = 2, the results of Sect. 3.3 neatly
separate the roles of the invasion fitness and the embedding model. The invasion
fitness alone determines the dimorphic selection gradients and hence the location and
stability properties of the dimorphic singularities, as well as the evolutionary stability
of a monomorphic singularity given its location. The embedding model influences the
location and convergence stability of monomorphic singularities and the admissibility
of population dynamical equilibria.

The separation between the invasion fitness and the embedding model motivates
the construction method we presented in Sect. 4.2. By changing only the embedding
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model but not the invasion fitness, we can obtain different pairwise invasibility plots
and areas of coexistence to the same trait evolution plot (as in Fig. 2). Suppose that
the embedding model contains a function that is not part of the invasion fitness. By
choosing this function suitably up to first order, we can construct a model such that
the invasion boundary of the pairwise invasibility plot goes through a given point at
a given slope. We used this construction method to obtain different monomorphic
singularities without changing the dimorphic selection gradients.

The construction method solves the inverse problem of finding a model to a given
outcome, and similar in principle to the so-called critical function analysis, where one
constructs trade-off functions such that the model exhibits an evolutionary singularity
with required properties (Mazancourt and Dieckmann 2004; Kisdi 2006; Geritz et al.
2007; Kisdi and Boldin 2013; Kisdi 2015) or some other behaviour such as eco-
evolutionary cycles (Kisdi et al. 2013). These construction methods are useful in
systematically exploringwhether a certain evolutionary outcome, such as evolutionary
branching, is possible at all, and if so, under which conditions it occurs. Adamson
and Morozov (2014) show a similar inverse problem approach to purely ecological
dynamics.

The construction method presented here could be extended to investigate evolu-
tionary phenomena that are not related to evolutionary singularities. A particularly
interesting possibility is to study evolution to extinction. Extinction can occur such
that the evolution of one strategy drives another strategy extinct, but also via evo-
lutionary suicide, whereby a strategy evolves to its own extinction (Gyllenberg and
Parvinen 2001;Gyllenberg et al. 2002;Webb 2003;Boldin andKisdi 2015). Evolution-
ary suicide has so far been studied only in monomorphic populations. A catastrophic
bifurcation (such as a saddle-node bifurcation) of population dynamics is a necessary
condition for evolutionary suicide (Gyllenberg and Parvinen 2001; Gyllenberg et al.
2002), assuming that the invasion fitness remains well defined in the extinct state (see
Boldin andKisdi 2015). In this paper, we used the constructionmethod to obtain a tran-
scritical bifurcation of population dynamics (i.e., the invasion boundary), but a similar
method could be used to obtain a saddle-node bifurcation of population dynamics. By
choosing the slope of the saddle-node bifurcation line such that the evolving dimorphic
population crosses it, one can obtain extinction via a catastrophic bifurcation; and by
placing the saddle-node bifurcation line on an isocline near a dimorphic singularity
(where the selection gradient is parallel to an axis), one can ensure that extinction is
due to the evolution of the strategy that goes extinct, i.e., evolutionary suicide occurs.
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Appendix A

In the main text, we assume that the resident population dynamics attain an asymp-
totically stable equilibrium. If the resident system exhibits non-equilibrium dynamics
such that the environmental feedbacks vary in time, then the environment is charac-
terized by the functions t �→ E1(t), . . . , En(t) and is therefore infinite dimensional
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unless there exists an alternative, finite-dimensional characterization. In this Appen-
dix, we show how such finite-dimensional representations can be found and be used
to extend the results of Sect. 3 to some non-equilibrium systems.

In the main text, we assume that the invasion fitness can be written as a function of
the invading strategy and numbers Ê1, . . . , Ên that represent the environment, such
that Ê1, . . . , Ên depend on the resident strategies but not on the invading strategy.
Assume that the focal strategies have unstructured populations. The invasion fitness
of the mutant xmut is then given by the time average of its population growth rate, i.e.,
by

〈r(xmut , E1(t), . . . , En(t), ψ(t))〉

where the angle brackets 〈·〉 denote the time average and we assume that the expecta-
tion exists (Metz et al. 1992). We included a new (possibly vector-valued) argument
ψ(t) of the population growth rate r to accommodate non-autonomous population
dynamics, i.e., the possible effect of temporal fluctuations in the physical environment
such as the weather. For the present argument, it does not matter whether the environ-
mental feedbacks vary in time due to endogeneous non-equilibrium dynamics or due
to external fluctuations.

If r(xmut , E1, . . . , En, ψ) is linear in E1, . . . , En and inψ , then the invasion fitness
simplifies to

〈r(xmut , E1(t), . . . , En(t), ψ(t))〉 = r(xmut , 〈E1(t)〉, . . . , 〈En(t)〉, 〈ψ(t)〉) (26)

such that the resident population affects the invasion fitness only via the time averages
〈E1(t)〉, . . . , 〈En(t)〉 of the environmental feedback variables. Equation (7) are then
equivalent to

r(x1, 〈E1(t)〉, . . . , 〈En(t)〉, 〈ψ(t)〉) = 0
...

r(xn, 〈E1(t)〉, . . . , 〈En(t)〉, 〈ψ(t)〉) = 0

and all results of Sect. 3 are valid with Êi = 〈Ei (t)〉 for i = 1, . . . , n.
There is considerable freedom in how the environmental feedback variables are

defined in a given model, and in simple models it is often possible to chose the
environmental feedback variables and ψ such that r is linear in them and (26) applies.
In the remainder of this Appendix, we show several examples based on the host–
pathogen–predator model in Sect. 2.

Suppose first that in the model of Sect. 2, the natural mortality rate μ depends on
time (e.g. varies with the seasons). Since the population growth rate

r(αmut , S, P, μ) = β(αmut )S − (αmut + μ + ν) − (c + φ(αmut ))P (27)

is linear in S and in P and also in μ, we can apply (26) directly with E1(t) = S(t),
E2(t) = P(t) and ψ(t) = μ(t). In other words, we can use 〈S(t)〉 and 〈P(t)〉
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1068 É. Kisdi, S. A. H. Geritz

in place of Ŝ and P̂ , respectively, throughout the analysis of the model. In par-
ticular, the values of 〈S(t)〉 and 〈P(t)〉 in a resident population of strains α1 and
α2 are the same as Ŝ(α1, α2) and P̂(α1, α2) in (5), respectively, in a population at
equilibrium with μ constant at the value of 〈μ(t)〉. Therefore, the adaptive dynam-
ics of dimorphic populations would not be affected by the fluctuations (Fig. 1
would remain the same). Many simple models of unstructured populations based
on mass action are similar to this example. In Lotka–Volterra models, it is well
known that the time averages of population densities equal to their equilibrium values
also if the system does not converge to the equilibrium; the same principle applies
here.

Suppose now that predators interfere with each other when hunting for the prey,
such that the presence of a second predator decreases the capture rate of the first. A
somewhat sloppy way to include predator interference is to replace Eq. (1) with

d I j
dt

= [
β(α j )S(t) − (α j + μ(t) + ν) − (1 − e(α j )P(t))(c + φ(α j ))P(t)

]
I j

where the factor (1 − e(α j )P(t)) is the probability that a hunting predator is not
disturbed, and e may depend on α j because hosts much weakened by the pathogen
may be captured faster by the predator, giving less opportunity for interference. This
introduces a quadratic term with P2 into the population growth rate

r(αmut , S, P, μ) = β(αmut )S − (αmut + μ + ν) − (c + φ(αmut ))

+ e(αmut )(c + φ(αmut ))P
2

In this case, we can define three environmental feedback variables, E1(t) = S(t),
E2(t) = P(t) and E3(t) = [P(t)]2. r is linear of each of these, so that (26) applies.
Note that through the quadratic term, fluctuations introduce a new feedback, essentially
the variance of P(t). It remains to be seen whether three strains can coexist in this
system or the number of environmental feedback variables has been inflated without
increasing the maximum number of coexisting strains. This depends on the trade-off
structure of the pathogen; if φ and e are constants, then E2 and E3 combine into a
single environmental feedback variable E(t) = (1 − eP(t))(c + φ)P(t), of which r
is a linear function, and therefore no more than two strains can coexist.

Suppose next that the natural mortality rate μ depends also on the total density
of the host population, N . Then the population growth rate is the same as in (27),
but next to E1(t) = S(t) and E2(t) = P(t), we have E3(t) = μ(N (t), t) as a new
environmental feedback variable chosen such that (26) applies. In this case, the explicit
time-dependence of μ is absorbed into E3(t).

As a final example, assume that the predator has Holling II functional response and
μ depends only on t again. Then the population growth rate

r(αmut , S, P, μ) = β(αmut )S − (αmut + μ + ν)

− (c + φ(αmut ))
P

1 + T
(
cS + ∑

k(c + φ(αk))Ik
)
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is linear in the environmental feedback variables E1(t) = S(t) and

E2(t) = P(t)

1 + T
(
cS(t) + ∑

k(c + φ(αk))Ik(t)
)

so that (26) applies.
Note that in general, it need not be possible to choose a finite number of environmen-

tal feedback variables such that the population growth rate r is linear in them; Geritz
et al. (2007) is an example where this is not possible. In these cases, non-equilibrium
systems have infinite dimensional feedbacks, which does not constrain the number of
coexisting strategies.

Appendix B

In thisAppendix,wefirst give a sufficient condition for absolute stability of an arbitrary
k-morphic singularity, where the polymorphism is not necessarily saturated. Next, we
show that this condition is always satisfied at a generic evolutionarily stable singularity
of a saturated polymorphism.

To describe non-smooth evolutionary trajectories, we consider a differential inclu-
sion approximation of a trait substitution sequence with small mutation steps. Let
x = (x1, . . . , xk) be a vector of k ≤ n coexisting one-dimensional resident strate-
gies, and let sx(y) denote the invasion fitness of an initially rare mutant strategy y.
The selection gradient ∂ysx(y)|y=xi for the resident strategy xi and the evolutionary
change dxi/dt of the same strategy always have the same sign, i.e.,

dxi
dt

· ∂ysx(y)|y=xi ≥ 0 for i = 1, . . . , k. (28)

A function t �→ x(t) = (x1(t), . . . , xk(t)) is a solution of the differential inclusion
(28) if it is continuous, piecewise differentiable and satisfies (28) in every point where
it is differentiable. A point x∗ = (x∗

1 , . . . , x
∗
k ) is called absolutely stable if for every

open neighbourhood U of x∗ there exists an open neighbourhood V ⊂ U of x∗ such
that every solution of (28) that starts in V will stay inU for all t ≥ 0. One readily sees
that if x∗ is absolutely stable, then it is a singular point, i.e.,

∂ysx(y)|y=xi = 0 for i = 1, . . . , k.

Linearisation of (28) at a singularity x∗ gives

dxi
dt

·
k∑

j=1

bi j (x j − x∗
j ) ≥ 0 for i = 1, . . . , k. (29)

where
bi j = ∂2y sx(y)δi j + ∂x j ∂ysx(y) (30)
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evaluated for y = x∗
i and x = x∗, and where δi j is the Kronecker delta. Note that bi j

in (30) is the same as in (15) of the main text.

Proposition 15 Let x∗ = (x∗
1 , . . . , x

∗
k ) be a singular point. If the matrix B = (bi j ) is

strictly negative diagonally dominant, i.e., if there exists d1, . . . , dk > 0 such that

bii
di

< −
∑

j 
=i

|bi j |
d j

∀i, (31)

then x∗ is absolutely stable for the dynamics given by (29).

Proof Let x 
= x∗ and take i0 ∈ {1, . . . , k} such that

di0 |xi0 − x∗
i0 | = max

j
d j |x j − x∗

j | > 0. (32)

Then in particular xi0 − x∗
i0


= 0, and so we can rewrite (29) as

d(xi0 − x∗
i0
)2

dt
·
⎛

⎝bi0i0 +
∑

j 
=i0

bi0 j (x j − x∗
j )

xi0 − x∗
i0

⎞

⎠ ≥ 0. (33)

Moreover, from the diagonal dominance (31) and property (32) we have

bi0i0
di0

< −
∑

j 
=i0

|bi0 j |
d j

≤ −
∑

j 
=i0

|bi0 j |
d j

d j |x j − x∗
j |

di0 |xi0 − x∗
i0
|

≤ − 1

di0

∑

j 
=i0

bi0 j (x j − x∗
j )

xi0 − x∗
i0

,

and hence

bi0i0 +
∑

j 
=i0

bi0 j (x j − x∗
j )

xi0 − x∗
i0

< 0.

From this inequality and the differential inclusion (33), we get that d(xi0 − x∗
i0
)2/dt ≤

0 and hence also d(di0 |xi0 − x∗
i0
|)/dt ≤ 0, which, by property (32), is equivalent to

d

dt

(
max

j
d j |x j − x∗

j |
)

≤ 0. (34)

The nested sets Vε = {(x1, . . . , xk) : max j d j |x j − x∗
j | < ε} for different values

of ε > 0 are therefore forward invariant for the differential inclusion (29). From this
it immediately follows that x∗ is absolutely stable. For example, in the definition of
absolute stability for given but otherwise arbitrary neighbourhood U any V = Vε for
ε > 0 sufficiently small such that Vε ⊂ U suffices. ��
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For the special case of k = 2 coevolving strategies, the conditions for absolute
stability have been determined by Matessi and Pasquale (1996) and presented by
Kisdi (2006) in the form b11, b22 < 0 and b11b22 > |b12b21|. These are equivalent to
condition (31) for k = 2. Leimar (2009) considered the absolute stability of monomor-
phic singularities ofmultidimensional traits. This is different from the present situation
because several traits of the same strategy can be affected by a singlemutationwhereas
the traits of several strategies cannot; the differential inclusion (28) applies to the
latter.

Next, we apply the above proposition to saturated polymorphisms (k = n). In the
notation of the main text, (30) is

bi j = ∂11r(xi , Ê1, . . . , Ên)δi j +
n∑

l=1

∂1,l+1r(xi , Ê1, . . . , Ên)
∂ Êl

∂x j

where Ê1, . . . , Ên are evaluated at the singularity and, in accordance with the main
text, we have dropped the star that denoted the singularity earlier in this Appendix. By

Proposition 2, ∂ Êi
∂x j

= 0 for all i and j at a singularity of a saturated polymorphism,

and hence we have bii = ∂11r(xi , Ê1, . . . , Ên) and bi j = 0 for all i 
= j . At a generic
evolutionarily stable singularity, bii < 0 (cf. (11)). This implies that (31) is satisfied
for any positive d1, . . . , dn , and therefore a generic evolutionarily stable singularity
of a saturated polymorphism is also absolutely stable. In the special case of n = 2,
Svennungsen and Kisdi (2009) used the same argument with the stability condition
given in Kisdi (2006) to prove that every generic evolutionarily stable dimorphism is
absolutely stable.

Appendix C

Proof of Proposition 10 We start with proving part (ii) of the proposition. The first
step is to derive the limiting value of Ē ′

i (ε) as ε → 0. From implicit differentiation of
(20) with respect to ε, we obtain

A(ε)

⎡

⎢
⎣

Ē ′
1(ε)
...

Ē ′
n(ε)

⎤

⎥
⎦ =

⎡

⎢⎢⎢
⎢⎢
⎣

−ξ1∂1r(x0 + εξ1, Ē1(ε), . . . , Ēn(ε))

−ξ2∂1r(x0 + εξ2, Ē1(ε), . . . , Ēn(ε))

0
...

0

⎤

⎥⎥⎥
⎥⎥
⎦

(35)

where A(ε) is as defined in (12), i.e., ai j = ∂ j+1r(xi , Ē1(ε), . . . , Ēn(ε)), with x1 =
x0 + εξ1 and x2 = x0 + εξ2. Let Ai (ε) denote the matrix obtained by replacing the
i th column of A(ε) with the vector on the right hand side of (35). By Cramer’s rule,
the solution of (35) is

Ē ′
i (ε) = det Ai (ε)

det A(ε)
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Because the derivatives on the right hand side of (35) are zero at ε = 0 (cf. (21)),
Ai (0) is singular. A(0) is singular because its first two rows are the same. Hence to
take the limit ε → 0, we use L’Hôpital’s rule,

Ē ′
i (0) = lim

ε→0
Ē ′
i (ε) = lim

ε→0

d
dε

det Ai (ε)

d
dε

det A(ε)
(36)

We derive the limit of the numerator and that of the denominator of (36) in turn.
We first expand the determinant det Ai (ε) using its i th column, which is the vector on
the right hand side of Eq. (35):

det Ai (ε) = (−1)i+1 [
ξ1∂1r(x0 + εξ1, Ē1(ε), . . . , Ēn(ε)) det A1i (ε)

−ξ2∂1r(x0 + εξ2, Ē1(ε), . . . , Ēn(ε)) det A2i (ε)
]

Differentiating with respect to ε and taking the limit ε → 0, we obtain

lim
ε→0

d

dε
det Ai (ε)

= (−1)i+1

[

(ξ21 − ξ22 )∂11r + (ξ1 − ξ2)

n∑

l=1

∂1,l+1r Ē
′
l(0)

]

det A1i (0) (37)

where all derivatives of r are evaluated at (x0, Ē1(0), . . . , Ēn(0)). Here we used that
∂1r(x0, Ē1(0), . . . , Ēn(0)) = 0 (cf. (21)) and because the first two rows of A(0) are
the same, A1i (0) = A2i (0).

Next, we expand det A(ε) using its first two rows (i.e., using minors of order 2
rather than elements of a single row):

det A(ε) =
n−1∑

j=1

n∑

k= j+1

(−1)1+2+ j+k D jk(ε) det A(1,2),( j,k)(ε)

where A(1,2),( j,k)(ε) is obtained from A(ε) by deleting its first two rows and the j th
and kth columns when n > 2 and det A(1,2),( j,k)(ε) is replaced with 1 when n = 2;
and

Djk(ε)

= det

(
∂ j+1r(x0 + εξ1, Ē1(ε), . . . , Ēn(ε)) ∂k+1r(x0 + εξ1, Ē1(ε), . . . , Ēn(ε))

∂ j+1r(x0 + εξ2, Ē1(ε), . . . , Ēn(ε)) ∂k+1r(x0 + εξ2, Ē1(ε), . . . , Ēn(ε))

)
.

Note that Djk(0) = 0 for all j, k, and

lim
ε→0

dD jk(ε)

dε
=

(

ξ1∂1, j+1r +
n∑

l=1

∂l+1, j+1r Ē
′
l(0)

)

∂k+1r

+
(

ξ2∂1,k+1r +
n∑

l=1

∂l+1,k+1r Ē
′
l(0)

)

∂ j+1r
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−
(

ξ2∂1, j+1r +
n∑

l=1

∂l+1, j+1r Ē
′
l(0)

)

∂k+1r

−
(

ξ1∂1,k+1r +
n∑

l=1

∂l+1,k+1r Ē
′
l(0)

)

∂ j+1r

= (ξ1 − ξ2)
(
∂1, j+1r ∂k+1r − ∂1,k+1r ∂ j+1r

)

where all derivatives of r are evaluated at (x0, Ē1(0), . . . , Ēn(0)). Using these iden-
tities, we obtain

lim
ε→0

d

dε
det A(ε)

= (ξ1 − ξ2)

n−1∑

j=1

n∑

k= j+1

(−1) j+k+1 (
∂1, j+1r ∂k+1r−∂1,k+1r ∂ j+1r

)
det A(1,2),( j,k)(0)

(38)

Substituting (37) and (38) into (36) and cancelling the factor (ξ1 − ξ2) (recall that
ξ1 
= ξ2) yields the result

Ē ′
i (0) = (−1)i

[
(ξ1 + ξ2)∂11r + ∑n

l=1 ∂1,l+1r Ē ′
l(0)

]
det A1i

∑n−1
j=1

∑n
k= j+1(−1) j+k

[
∂1, j+1r ∂k+1r − ∂1,k+1r ∂ j+1r

]
det A(1,2),( j,k)

(39)

for i = 1, . . . , n, where all derivatives of r are evaluated at (x0, Ē1(0), . . . , Ēn(0)).
We assume that the non-degeneracy condition

(A8)
∑n−1

j=1
∑n

k= j+1(−1) j+k
[
∂1, j+1r ∂k+1r − ∂1,k+1r ∂ j+1r

]
det A(1,2),( j,k) 
= 0

holds.
(39) is a system of linear equations for Ē ′

i (0). With the particular choice ξ2 = −ξ1,
(39) is homogeneous and therefore Ē ′

i (0) = 0 for all i . This corresponds to the fact

that Êi (x1, . . . , xn) is invariant under the permutation of its arguments (the labelling
of the strategies is arbitrary), so that the environmental feedback contours of Fig. 1
are symmetric about the diagonal.

If Ē ′
i (0) = 0 holds for all ξ1, ξ2 for some i , then ∂11r(x0, Ē1(0), . . . , Ēn(0))must be

zero for (39) to hold. Thismeans that x0 ∈ Xc. Furthermore, (39) is then homogeneous,
and therefore Ē ′

i (0) = 0 holds for all i , so that each environmental feedback attains
a critical point as a function of x1 and x2. Conversely, if x0 ∈ Xc, then (39) is
homogeneous and it follows immediately that Ē ′

i (0) = 0 for all i and for all ξ1, ξ2, so
that all environmental feedbacks attain a critical point on the diagonal as functions of
x1 and x2. This proves part (ii) of Proposition 10.

To prove part (i), take a first order Taylor expansion of (9) to obtain

∂1r(x0 + εξ1, Ē1(ε), . . . , Ēn(ε)) =
[
ξ1∂11r +

∑n

l=1
∂1,l+1r Ē

′
l(0)

]
ε + O(ε2)

∂1r(x0 + εξ2, Ē1(ε), . . . , Ēn(ε)) =
[
ξ2∂11r +

∑n

l=1
∂1,l+1r Ē

′
l(0)

]
ε + O(ε2)
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where all derivatives of r on the right hand side are evaluated at (x0, Ē1(0), . . . ,
Ēn(0)). Choose x0 = x1+x2

2 such that ξ2 = −ξ1. With this choice, it follows from
Eq. (39) that Ē ′

l(0) = 0 for all l. Then, up to order ε, the vector of selection gradients
of the first two strategies is

[
1

−1

]
ξ1∂11r(x0, Ē1(0), . . . , Ēn(0))ε (40)

These two selection gradients vanish simultaneously, and vanish if and only if x0 ∈ Xc.
This proves part (i) of Proposition 10.

Proof of Proposition 12 When n = 2, the vector in (40) is the vector of all selection
gradients. This vector is perpendicular to the diagonal x2 = x1, and its direction is
determined by the sign of ∂11r(x0, Ē1(0), . . . , Ēn(0)).

Appendix D

In this Appendix, we prove Propositions 13 and 14 concerning the common points of
isoclines and invasion boundaries.
Proof of Proposition 13 for the general case n ≥ 2. Let the n-vector xmj denote the
vector obtained from x = (x1, . . . , xn) by replacing itsmth entry with the value of x j .
The point xmj is therefore on the diagonal xm = x j . With a slight abuse of notation, let
Ēi (xmj ) denote the limiting value of Êi (x) on the diagonal. If x is on the x j -isocline
of the n-morphism, then, by Proposition 9, Êi (x) = Ēi (xmj ) for i = 1, . . . , n. If x is
also on the xm-invasion boundary, then, by Lemma 2 in Sect. 4.1, the diagonal point
xmj must also be on the xm-invasion boundary. This implies that the diagonal point is a
point of the x j -isocline of the (n−1)-morphic population. Conversely, if the diagonal
point xmj is an x j -isocline point of the (n−1)-morphism, then it is on the xm-invasion
boundary of the n-morphism. By Lemma 2, every point x which differs from xmj only
in its xm-coordinate and at which Êi (x) = Ē(xmj ) holds for i = 1, . . . , n must also
be on the xm-invasion boundary. By Proposition 9, these points are on the x j -isocline
of the n-morphism.

Proof of Proposition 14 Define the column vector x¬m = (x1, . . . , xm−1, xm+1,

. . . , xn)T as the (n − 1)-vector obtained from (x1, . . . , xn) by deleting xm , define
N¬m analogously, and let Z = (Z1, . . . , Zk)

T . We can then rewrite Eq. (23) in the
form

G(x¬m, xm, N¬m, Z) = 0 (41)

where G(x¬m, xm, N¬m, Z) ∈ R
n+k contains

Gi (x¬m, xm, N¬m, Z) = Fi (x1, . . . , xn, Ê1(x), . . . , Ên(x), N1, . . . , Nm−1, 0,

Nm+1, . . . , Nn, Z1, . . . , Zk)
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Note that Fi does not depend on its mth argument due to assumption (A3), but still
depends on xm via Ê1(x), . . . , Ên(x), which are given by the solution of (7) irrespec-
tively of whether Nm is zero or not.

First we determine the hyperplane tangent to the xm-invasion boundary at an arbi-
trary point. Implicit differentiation of (41) yields

[B, C]

⎡

⎢⎢
⎣

dx¬m
dxm
dN¬m
dZ

⎤

⎥⎥
⎦ = B [dx¬m] + C

⎡

⎣
dxm
dN¬m
dZ

⎤

⎦ = 0 (42)

where the blocks B, C of the Jacobian matrix are

B =
[

∂G
∂x¬m

]
and C =

[
∂G
∂xm

,
∂G

∂N¬m
,
∂G
∂Z

]

By Cramer’s rule, (42) yields

dxm =
det

[
−Bdx¬m, ∂G

∂N¬m
, ∂G

∂Z

]

det [C]
(43)

The hyperplane tangent to the xm-invasion boundary at a given point is the hyperplane
a1x1 + . . . + anxn = c with the coefficients chosen such that

∑
i ai dxi = 0 for any

choice of dx¬m and with dxm from (43). By choosing the unit vectors dx¬m = ei and
dx¬m = ej with i, j 
= m, we obtain

ai
a j

=
det

[
Bei , ∂G

∂N¬m
, ∂G

∂Z

]

det
[
Be j ,

∂G
∂N¬m

, ∂G
∂Z

] (44)

which determines all coefficients except am up to a constant. Let the (n − 1) column
vector a¬m contain these coefficients. am is then given by

am = −
[
aT¬mdx¬m

] det[C]
det

[
−Bdx¬m, ∂G

∂N¬m
, ∂G

∂Z

] (45)

The hyperplane tangent to the xm-invasion boundary at a given point is determined by
(44) and (45), with all derivatives evaluated at the point of tangency.

Suppose now that the point (x1, . . . , xn) is both on the xm-invasion boundary and

on the xm-isocline. By Proposition 1, we then have ∂ Ê1
∂xm

= . . . = ∂ Ên
∂xm

= 0, and this

implies ∂G
∂xm

= 0. Because the first column of C is zero, its determinant vanishes and
we get am = 0 in (45). Hence the normal of the xm-invasion boundary, (a1, . . . , an),
is perpendicular to the mth unit vector.
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Appendix E

Here we derive ĥ1(x1, x2; κ) in Eq. (25) of the main text. Although this derivation is
in the same spirit as the one in Appendix D, we detail it here since it is easier to follow
it when presented explicitly.

Let N̂1(x1, x2) and Ẑ1(x1, x2), . . . , Ẑk(x1, x2) denote the values of respectively
N1 and Z1, . . . , Zk that satisfy the k + 1 equations F2 = · · · = Fk+2 = 0
in (24) and recall the definition f̂ (x1, x2) = f (x1, x2, Ê1(x1, x2), Ê2(x1, x2),
N̂1(x1, x2), 0, Ẑ1(x1, x2), . . . , Ẑk(x1, x2)). By implicit differentiation of (24) with
respect to x1 and using that, by assumption (A3), ∂2 F̃1 = ∂2F2 = · · · = ∂2Fk+2 = 0
on the invasion boundary, we obtain

∂1 F̃1 +
2∑

i=1

∂i+2 F̃1

(
∂ Êi

∂x1
+ ∂ Êi

∂x2
κ

)

+ ∂5 F̃1 y0 +
k∑

i=1

∂6+i F̃1 yi

+∂k+7 F̃1 h
′( f̂ (x1, x2))

(
∂ f̂

∂x1
+ ∂ f̂

∂x2
κ

)

= 0

∂1F2 +
2∑

i=1

∂i+2F2

(
∂ Êi

∂x1
+ ∂ Êi

∂x2
κ

)

+ ∂5F2 y0 +
k∑

i=1

∂6+i F2 yi = 0

...

∂1Fk+2 +
2∑

i=1

∂i+2Fk+2

(
∂ Êi

∂x1
+ ∂ Êi

∂x2
κ

)

+ ∂5Fk+2 y0 +
k∑

i=1

∂6+i Fk+2 yi = 0

(46)

where κ = dx2
dx1

is the slope of the invasion boundary, y0 = ∂ N̂1
∂x1

+ ∂ N̂1
∂x2

κ , yi =
∂ Ẑi
∂x1

+ ∂ Ẑi
∂x2

κ for i = 1, . . . , k, and all derivatives of F̃1, F2, . . . , Fk+2 are evaluated at
the arguments

(x1, x2, Ê1(x1, x2), Ê2(x1, x2), N̂1(x1, x2), 0, Ẑ1(x1, x2), . . . , Ẑk(x1, x2))

and, in the case of F̃1, ĥ0(x1, x2). These equations are satisfied when h′( f̂ (x1, x2)) =
ĥ1(x1, x2; κ) where

ĥ1(x1, x2; κ) = −
∂1 F̃1+∑2

i=1 ∂i+2 F̃1
(

∂ Êi
∂x1

+ ∂ Êi
∂x2

κ
)

+ ∂5 F̃1 y0 + ∑k
i=1 ∂6+i F̃1 yi

∂k+7 F̃1
(

∂ f̂
∂x1

+ ∂ f̂
∂x2

κ
)

(47)

with the values of y0, . . . , yk that satisfy the last k + 1 equations of (46). (Since the

denominator of (47) vanishes for κ = − ∂ f̂
∂x1

/
∂ f̂
∂x2

, this particular slope of the invasion
boundary cannot be achieved.)
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In the remainder of this Appendix, we consider the special cases when (i) the point
(x1, x2) is on the x2-isocline and (ii) (x1, x2) = (x0, x0) with x0 ∈ Xc.

If the x2-invasion boundary intersects the x2-isocline away from the diagonal, then,
by Proposition 14, the invasion boundary must be tangent to a vertical line; hence
one cannot choose the function h such that the invasion boundary would have an
arbitrary slope κ . Consider (46) as a system of k+2 linear equations for the unknowns

κ, y0, y1, . . . , yn . The point (x1, x2) is on the x2-isocline if and only if
∂ Ê1
∂x2

= ∂ Ê2
∂x2

= 0

(see Proposition 1). As we show in the next paragraph, this implies ∂ f̂
∂x2

= 0. As a
result, the coefficient of κ vanishes in each equation of (46), i.e., the matrix of this
linear system is singular, and therefore the implicit function theorem does not apply.

To show that ∂ Ê1
∂x2

= ∂ Ê2
∂x2

= 0 indeed implies ∂ f̂
∂x2

= 0, note that the terms containing
κ in the last k + 1 equations of (46) all vanish, so that these equations can be solved

for y0, . . . , yn independently of κ . Since y0 = ∂ N̂1
∂x1

+ ∂ N̂1
∂x2

κ and yi = ∂ Ẑi
∂x1

+ ∂ Ẑi
∂x2

κ , this

implies ∂ N̂1
∂x2

= 0 and ∂ Ẑi
∂x2

= 0 for i = 1, . . . , k. By definition, the derivative ∂ f̂
∂x2

is
given by

∂ f̂

∂x2
= ∂2 f + ∂3 f

∂ Ê1

∂x2
+ ∂4 f

∂ Ê2

∂x2
+ ∂5 f

∂ N̂1

∂x2
+

k∑

i=1

∂6+i f
∂ Ẑi

∂x2

Hence all but the first terms vanish when ∂ Ê1
∂x2

= ∂ Ê2
∂x2

= 0; and since the deriv-

ative is evaluated at (x1, x2, Ê1(x1, x2), Ê2(x1, x2), N̂1(x1, x2), 0, Ẑ1(x1, x2), . . . ,
Ẑk(x1, x2)), ∂2 f is zero by assumption (A7).

Suppose now that we wish to have a monomorphic singularity at a point x0 ∈ Xc,
i.e., we take (x1, x2) = (x0, x0). By the definition of the set Xc, C00 = 0 at such a
singularity, i.e., it is at a bifurcation point between being uninvadable and invadable.
By Proposition 10, the limiting values of the equilibrium feedbacks attain a critical
point at (x0, x0). Hence the above argument applies with Êi (x1, x2) substituted with
its limiting value at all points, and we obtain, as above, that the matrix of the linear
system that determines κ for any given function h is singular. Therefore generically
there is no solution for κ , and the invasion boundary is tangent to a vertical line at the
singularity.
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