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Abstract Evolutionary suicide is a riveting phenomenon in which adaptive evolution
drives a viable population to extinction. Gyllenberg and Parvinen (Bull Math Biol
63(5):981–993, 2001) showed that, in a wide class of deterministic population mod-
els, a discontinuous transition to extinction is a necessary condition for evolutionary
suicide. An implicit assumption of their proof is that the invasion fitness of a rare
strategy is well-defined also in the extinction state of the population. Epidemic mod-
els with frequency-dependent incidence, which are often used to model the spread of
sexually transmitted infections or the dynamics of infectious diseases within herds,
violate this assumption. In thesemodels, evolutionary suicide can occur through a non-
catastrophic bifurcation whereby pathogen adaptation leads to a continuous decline
of host (and consequently pathogen) population size to zero. Evolutionary suicide
of pathogens with frequency-dependent transmission can occur in two ways, with
pathogen strains evolving either higher or lower virulence.
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1 Introduction

A naive view of evolution holds that natural selection, ‘the survival of the fittest’, will
always improve a species, making it ever better adapted to its environment. This naive
view is however false. As highlighted by Gyllenberg (2008), evolutionary suicide,
the phenomenon of natural selection leading to the very extinction of the population,
starkly proves that natural selection is not for the best of the species.

Gyllenberg et al. (2002), showed that in a structured metapopulation model with
evolving dispersal, a bifurcation leading to a discontinuous transition to extinction is a
necessary condition for evolutionary suicide to occur. In a follow-up paper Gyllenberg
and Parvinen (2001) extended this result to a wide class of deterministic models. It is
now widely accepted that evolutionary suicide cannot happen through a continuous
transition to extinction at a finite trait value (Parvinen and Dieckmann 2013; Rankin
and López-Sepulcre 2005; Webb 2003), although examples are known of gradual
decline towards extinction as the trait value becomes infinite (Matsuda and Abrams
1994a; Webb 2003).

It is well known that an epidemic can drive the host population extinct if incidence is
frequency-dependent (i.e. if the rate of contacts a specific host individual haswith other
hosts is constant) (Getz and Pickering 1983; Boots and Sasaki 2003; Diekmann et al.
2012). By contrast, epidemic models with density-dependent incidence (where the
contact rate is assumed to be proportional to the host population size) typically do not
predict deterministic disease-driven population extinctions [but such extinctions are
possiblewhenAllee effects are considered (Hilker et al. 2009;Gandon andDay 2009)].
Frequency-dependent incidence [also called standard incidence (Allen 2007)] is a good
approximation of the spread of sexually transmitted diseases, because mates seek each
other out even if population density is low and therefore random encounters are rare
(Getz and Pickering 1983). It is also believed to be a suitable description of infection
process in vector-bornediseases [where relatively large vector populations and changes
in vector behaviour may compensate for variations in host density (Antonovics et al.
1995; Thrall et al. 1995)] and for infections among animals in herds [which occupy
an area proportional to the number of individuals, such that small herds concentrate
in a small area keeping the contact rate constant (de Jong et al. 1995; Diekmann et al.
2012)].

The question we pose here is simple: starting with a viable host-pathogen system in
which transmission is frequency-dependent, can the pathogens evolve in such a way
that they drive their hosts (and therefore themselves) to extinction? If so, what is the
nature of the bifurcation leading to evolutionary suicide?

Boots and Sasaki (2003) investigated the evolution of pathogen transmission and
virulence under frequency-dependent incidence in a simple optimization model, and
found that the pathogen may evolve such that it drives the system extinct. Their study
did not focus on the type of bifurcation leading to extinction, but the simple structure
of the model suggests that extinction happens as population size declines to zero
continuously. This is in apparent contradiction with the results of Gyllenberg and
Parvinen (2001) and Gyllenberg et al. (2002).

In this paper, we show that adaptive dynamics of pathogen virulence can lead to
evolutionary suicide through a non-catastrophic bifurcation in a rather general family
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Evolutionary suicide through a non-catastrophic bifurcation… 1103

of SI models with frequency-dependent incidence. For didactical purposes, we start
by introducing a relatively simple family of autonomous SI models, determine the
condition for evolutionary suicide with evolving pathogen virulence and argue that,
if evolutionary suicide occurs, it occurs via a continuous transition to extinction. We
reconcile this with the results of Gyllenberg et al. (2002) and Gyllenberg and Parvinen
(2001) by arguing that epidemic models with frequency-dependent incidence violate
an implicit assumption ofGyllenberg et al. (2002) andGyllenberg andParvinen (2001),
thereby allowing for a new route to evolutionary suicide. We proceed by analyzing in
more detail two specific toy models. These models show that evolutionary suicide can
occur via two different routes: extinctionmay be the consequence of evolution towards
either more or less virulent strains. The latter, less intuitive route may happen because
as the infectious lifetime of an infected host is prolonged with decreased virulence,
the prevalence of the disease increases and the host population birth rate may decline
to the extent that the population is no longer viable. Evolution to self-extinction may
in fact occur in more involved systems that include arbitrary population dynamics,
pathogens with arbitrary effects on the birth and death rates of the host and on the
way the host interacts with its environment, and non-autonomous dynamics where the
birth and death rates fluctuate in time. We demonstrate this in Appendix 1, thereby
generalizing the results of Boots and Sasaki (2003). We conclude the main part of the
paper with a discussion.

2 SI epidemics with frequency-dependent transmission

We consider an SI model with frequency-dependent incidence described by the dif-
ferential equations

dS

dt
= bS(N , x)S + bI (N , x)I − μ(N )S − β(α)

SI

N
d I

dt
= β(α)

SI

N
− μ(N )I − α I. (1)

Here S and I denote, respectively, the density of susceptible and infected (as well
as infectious) hosts. N = S + I is the total host population density, and x = S/N
is the fraction of susceptible hosts. The per capita birth rates of susceptibles and
infecteds, bS and bI , respectively, depend on the fraction of susceptibles or on the
total population density (see details below in Model I and Model II). The per capita
background mortality rate is denoted by μ. We assume that μ is a non-decreasing
function of N ; for example, when population densities become higher the resources
become more scarce, leading to increased host mortality. The transmission rate β(α)

increaseswith virulence (i.e. the disease-induced death rate),α, according to the classic
transmission-virulence trade-off hypothesis (Anderson and May 1982). In Appendix
1, we consider a much more general model and show that evolutionary suicide can
happen independently of many details incorporated in (1).

The important assumption of this model in view of evolutionary suicide is that
incidence is frequency-dependent, i.e., a susceptible host encounters a fixed number
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1104 B. Boldin, É. Kisdi

of other hosts per unit of time, the fraction I/N of them being infected. Frequency-
dependent incidence is routinely assumed for sexually transmitted diseases (e.g. Thrall
et al. 1993; Thrall and Antonovics 1997; Boots and Sasaki 2003; Berec and Maxin
2013; Bernhauerová and Berec 2015). It is also believed to be a suitable description of
infection process among animals in herds (Diekmann et al. 2012; de Jong et al. 1995)
and in vector-borne diseases (Antonovics et al. 1995; Thrall et al. 1993, 1995). We
elaborate more on this assumption in the Discussion.

Due to the singularity of (1) at S = I = 0, we rewrite the system in terms of the
total population density N and the fraction of susceptible hosts x as

dN

dt
= N [xbS(N , x) + (1 − x)bI (N , x) − μ(N ) − α(1 − x)] (2a)

dx

dt
= (1 − x) [xbS(N , x) + (1 − x)bI (N , x) − β(α)x + αx] . (2b)

Assume that, in the absence of pathogens, the host population settles at a nontrivial
equilibrium, say N∗. In the deterministic setting, a pathogen strain with virulence α

is able to invade a naive host population precisely when its basic reproduction ratio

R0(α) = β(α)

μ(N∗) + α
(3)

exceeds one. From now on we assume that R0(α) > 1, i.e. we consider only strains
that can invade a naive host population.

Suppose now that the pathogen is endemic and focus on the viability of the host
population. According to (2), the fraction of susceptible hosts x changes faster than
the total population density N whenever N is in a vicinity of zero. For N close to zero
we can therefore assume that x attains a quasi-equilibrium x0 implicitly defined by
the equation

x0bS(0, x0) + (1 − x0)bI (0, x0) − (β(α) − α)x0 = 0 (4a)

and approximate the changes in N with the equation

dN

dt
= N [x0bS(0, x0) + (1 − x0)bI (0, x0) − μ(0) − α(1 − x0)] . (4b)

The host population goes extinct if the expression in the brackets of (4b) is negative;
using (4a), this is equivalent to

V (α) := β(α)x0 − μ(0) − α (5)

being negative (note that x0 also depends on α).
Consider α as a bifurcation parameter for the dynamical system in (2). This system

undergoes a transcritical bifurcation at α = αext when V (αext) = 0 holds together
with (4a) (provided that V ′(αext) �= 0). If this bifurcation is of the forward type (as it
is in both models we study below; Boldin 2006), then it corresponds to the transition
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between host persistence and extinction. If extinction occurs, it occurs via a continuous
decline of host population density N to zero. In the context of system (2), which
assumes a closed population and frequency-dependent incidence, this bifurcation is
of codimension 1. In the original model (1), however, x is not defined when N = 0
(but is defined in the limit N → 0). If V ′(αext) < 0, then extinction occurs when
α increases beyond αext, whereas if the opposite holds, then extinction occurs as α

decreases. Extinctionmay happen due to increasing or decreasing virulence depending
on how strongly the transmission rate β increases with virulence and how x0 changes
with changing α.

Suppose now that we have a viable host-pathogen system. Can virulence evolve in
such a way that the system is driven to extinction?

3 Adaptive dynamics of virulence with a continuous transition to
extinction: a tale of two models

Assume that a strain α is resident in the population and that the system settles at the
equilibrium (N̂ , x̂) (note that N̂ and x̂ depend onα). Assuming thatmultiple infections
cannot occur, the initial growth of a mutant strain with virulence αmut is given by

d Imut

dt
=

[
β(αmut)x̂ − μ(N̂ ) − αmut

]
Imut

and therefore the mutant invades successfully if its long-term growth rate

r(αmut, α) = β(αmut)x̂ − μ(N̂ ) − αmut (6)

is positive. If mutations are of small effect (|αmut−α| is small) and are infrequent such
that the ecological and evolutionary time scales are separated, then virulence evolves
towards higher or lower values depending on whether the selection gradient

D(α) = ∂r

∂αmut

∣∣∣∣
αmut=α

= β ′(α)x̂ − 1 (7)

is, respectively, positive or negative (Geritz et al. 1998).
Let now αext be a bifurcation point given by V (αext) = 0. If the selection gradient

D(αext) = β ′(αext)x0(αext) − 1 (8)

is positive, then evolutionary suicide occurs at α = αext whenever traits α < αext
are viable and traits α > αext are not viable. If D(αext) is negative, then evolutionary
suicide occurs at α = αext whenever traits α > αext are viable and traits α < αext
are not viable. In other words, evolutionary suicide occurs at α = αext if and only if
D(αext) and V ′(αext) have opposite signs. We have now arrived at the following

Theorem 1 Let the dynamics of the host-pathogen system be described by the system
of differential equations in (2) and let x0(α) be a quasi-equilibrium corresponding to
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the extinction state N = 0, i.e. a solution of (4a). Let V (α) be as in (5) and let αext
satisfy V (αext) = 0. Furthermore, let the selection gradient in αext, D(αext), be as in
(8). If x0(αext) is a stable equilibrium of (2b) corresponding to the extinction state
N = 0 then evolutionary suicide occurs at α = αext if and only if

sign(D(αext)) �= sign(V ′(αext)). (9)

In agreementwith Boots and Sasaki (2003) andBernhauerová andBerec (2015), we
demonstrate below that the adaptive dynamics of α can indeed make the system cross
a bifurcation point αext given by V (αext) = 0. By considering two special cases of (2)
we show that evolutionary suicide can occur in two different ways, either by pathogen
evolving towards higher virulence or (less intuitively) towards lower virulence, and
explicitly demonstrate that evolutionary suicide occurs via a continuous decline of
host population density towards zero.

Gyllenberg and co-workers proved that in the context of local bifurcations of the
population dynamics (andwith the evolving trait considered as the bifurcation parame-
ter), a discontinuous transition to extinction is a necessary condition for evolutionary
suicide to occur in a wide class of models under mild assumptions (Gyllenberg et al.
2002;Gyllenberg and Parvinen 2001). One of these assumptions is that invasion fitness
is well defined also in the extinction state of the population. This assumption holds in
most models of ecology, but does not hold in the present model. When the pathogen
has driven the host population extinct so that S = N = 0, the fraction of susceptible
hosts, x = S/N , is undefined, and therefore the invasion fitness in (6) does not exist.
The limit of x at the point of extinction [x0 in (4)] however does exist, and determines
the direction of evolution according to the selection gradient in (8) when α → αext in
a viable system.

3.1 Model I

We first investigate a toy model in which the per capita birth rates of susceptible and
infected hosts, bS and bI , respectively, depend only on the fraction of susceptible hosts
x , i.e.

dN

dt
= N

[
xbS(x) + (1 − x)bI (x) − μ(N ) − α(1 − x)

]
(10a)

dx

dt
= (1 − x)

[
xbS(x) + (1 − x)bI (x) − β(α)x + αx

]
. (10b)

The system in (10) is a generalization of the model considered in Berec and Maxin
(2013). In Berec and Maxin (2013), the authors investigate an epidemiological model
of a partially sterilizing, sexually transmitted disease in which they take into account
the fact that in sexually transmitted diseases, host population birth rates and the rate
of infection transmission are both mediated by the mating process. Assuming that
σ ∈ [0, 1] is the probability of not becoming sterile upon infection and that both
partners must be fertile to produce offspring, they arrive at
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bS(x) = b[x + σ(1 − x)]
bI (x) = σbS(x) (11)

for some positive constant b. In general, we expect bS and bI to be increasing functions
of x as the number of fertile matings can decrease if the pathogen (partially) sterilizes
the host.

3.1.1 Resident population dynamics

When the disease is not present in the population, the host population density changes
according to the equation

dN

dt
= N [bS(1) − μ(N )] .

We assume that bS(1) > μ(0) such that the trivial equilibrium N = 0 is unstable.
When μ is an increasing function of the population density N , the condition bS(1) >

μ(0) guarantees the existence of a unique, globally stable positive equilibrium N∗
whenever limN→∞ μ(N ) > bS(1). We assume that such an equilibrium exists and
determine N∗ as the solution of μ(N ) = bS(1). Since by assumption R0 > 1, the
disease-free equilibrium (N∗, 1) of (10) is unstable (see Appendix 2 for details).

The total population density, N , does not feature in (10b). Endemic equilibria
of (10b) are found as solutions of xbS(x) + (1 − x)bI (x) − β(α)x + αx = 0 or,
equivalently, as solutions of G(x) = x where

G(x) := bI (x)

bI (x) − bS(x) + β(α) − α
. (12)

IfR0 > 1 then

1. −bS(1) + β(α) − α > 0 and since bS is an increasing function of x it follows that
−bS(x)+β(α)−α > 0 for every x ∈ [0, 1]. If bI (x) �= 0 on [0, 1] (as is the case
with bI in (11)) then 0 < G(x) < 1 for every x ∈ [0, 1].

2. x �→ G(x) is an increasing function.

Hence, equation G(x) = x has at least one solution in (0, 1). The number of biolog-
ically meaningful equilibria depends on the precise form of the functions bS and bI .
With bS and bI in (11), there is a unique positive equilibrium x̂ , which is globally
stable (Berec and Maxin 2013).

Let now x̂(α) denote a stable equilibrium of (10b). Remember that x̂ is independent
of N . The asymptotic equation for the total host population density becomes

dN

dt
= N

[
β(α)x̂(α) − μ(N ) − α

]
(13)

whereas V in (5) becomes

V (α) = β(α)x̂(α) − μ(0) − α. (14)
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If V (α) < 0 then N = 0 is the only non-negative equilibrium of (13) and success-
ful pathogen invasion drives the host-pathogen system to extinction. If, on the other
hand, V (α) > 0, the equilibrium N = 0 is unstable. Whenever limN→∞ μ(N ) >

β(α)x̂(α) − α, there exists a unique positive equilibrium N̂ which is globally stable.
The virulence of a strain that separates population persistence from population

extinction, αext, therefore satisfies V (αext) = 0. To demonstrate evolutionary suicide,
we shall assume that R0(αext) > 1.

3.1.2 Evolutionary suicide

For a resident strain α at the endemic equilibrium (N̂ , x̂), the selection gradient is
given by (7). Evolutionary suicide occurs at α = αext when D(αext) and V ′(αext) have
opposite signs. Note that

V ′(α) = D(α) + β(α)x̂ ′(α). (15)

The equilibrium value x̂ satisfies G(x̂) = x̂ with G given in (12). To simplify the
argument we consider birth rates of infected individuals of the form bI (x) = σbS(x)
for some σ ∈ [0, 1] (the birth rates used in numerical examples that follow have
such a form; this assumption is however not necessary for evolutionary suicide). From
implicit differentiation of G(x̂) − x̂ = 0 we obtain

x̂ ′(α) = (1 − β ′(α))x̂2

σbS(x̂) − b′
S(x̂)(σ x̂(1 − x̂) + x̂2)

, (16)

to be substituted in (15). Let us show that evolution to self-extinction can occur by
adaptation towards either more or less virulent strains.
Evolutionary suicide caused by adaptation towards higher virulenceWe can demon-
strate evolutionary suicide at α = αext assuming that b′

S(x̂(αext)) is sufficiently small
for the denominator of x̂ ′(α) in (16), evaluated at α = αext, to be positive. Con-
sider first the degenerate situation where D(αext) = 0, i.e., β ′(αext) = 1

x̂(αext)
. In this

degenerate case, by (15), the sign of V ′(αext) is given by the sign of x̂ ′(αext), which,
according to (16), is negative since 1 − β ′(αext) = 1 − 1

x̂(αext)
< 0. By continuity,

V ′(αext) remains negative alsowhenβ ′(αext) slightly exceeds 1
x̂(αext)

, i.e.when D(αext)

is slightly positive. A suitable value of β ′(αext) therefore guarantees that strains in a
vicinity of αext increase beyond the critical virulence αext into the extinction zone.
When strains evolve higher virulence, infected hosts die faster, but also cause more
secondary infections; in addition, changes in birth rates and in the density-dependent
background mortality rate shift the equilibrium prevalence of the disease. If the infec-
tion prevalence increases (i.e., x̂ decreases), then the average per capita death rate can
increase (due to the disease-induced deaths) and the average per capita birth rate can
decrease (due to the lower birth rate of infected hosts as well as the dependence of
the individuals’ birth rates on the prevalence) to the extent that the population can no
longer be sustained.
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Evolutionary suicide caused by adaptation towards lower virulence Suppose now that
β ′(αext) = 0 so that D(αext) = −1, i.e., the selection gradient is strongly negative. In
this case, V ′(αext) > 0 (and evolutionary suicide happens) when β(αext)x̂ ′(αext) > 1
(cf. (15)). When substituting x̂ ′(αext) from (16) (with β ′(αext) = 0) into this last
inequality, we distinguish two cases:

1. When σbS(x̂(αext)) < β(αext)x̂2(αext), then β(αext)x̂ ′(αext) > 1 holds if
b′
S(x̂(αext)) = 0. In this case, evolutionary suicide can occur without the infec-

tion prevalence affecting the per capita birth rates of the hosts. When the (locally
constant) birth rate of infected individuals, σbS , is sufficiently low, a constant
transmission rate leads to evolutionary suicide at αext. By continuity, the same
holds also if the transmission rate increases sufficiently slowly with virulence.

2. When σbS(x̂(αext)) > β(αext)x̂2(αext), then evolutionary suicide via decreasing
virulence cannot occur with (locally) constant birth rates, but may still occur if the
birth rates change with infection prevalence. For β ′(αext) = 0, β(αext)x̂ ′(αext) >

1 holds when the denominator of (16) is positive and sufficiently small, more
precisely when

σbS(x̂(αext)) − β(αext)x̂2(αext)

σ x̂(αext)(1 − x̂(αext)) + x̂2(αext)
< b′

S(x̂(αext))

<
σbS(x̂(αext))

σ x̂(αext)(1 − x̂(αext)) + x̂2(αext)
.

Starting with a strain in a vicinity of αext, evolution decreases virulence beyond αext.
As the rate of pathogen transmission does not decrease significantly by decreased
virulence and infected individuals live longer, infection prevalence increases for con-
stant or moderately prevalence-dependent birth rates (cf. (16)). If infected individuals
either have sufficiently low birth rates, or the birth rates decrease quickly enough with
increasing prevalence, evolution to self-extinction occurs.

3.1.3 Numerical examples

We demonstrate the two pathways to evolutionary suicide by two numerical examples.
We take the birth rates bS and bI as given by (11) with b = 2 and σ = 0.7. We
furthermore assume that the backgroundmortality is of the formμ(N ) = μ0e0.01N and
the transmission-virulence trade-off is β(α) = 10α

β0α+1 for some constants μ0 and β0.

Example 1 Let β0 = 0.1, μ0 = 0.5.
In this case R0(α) > 1 for α ∈ [0.23, 87.77]. Starting with mild initial strains,

evolution increases virulence past the critical point αext = 1.18 (denoted by the red dot
in the pairwise invasibility plot in Fig. 1a), beyond which the pathogen drives its host
(and itself) to extinction. As virulence increases towards the extinction point αext, the
corresponding equilibrium values of the host population density, N̂ (α), decrease con-
tinuously to zero (cf. Fig. 1b).With adaptation towards higher virulence the prevalence
1 − x̂(α) increases (cf. Fig. 1c).
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(a)

(b) (c)

Fig. 1 Example 1: a pairwise invasibility plot (PIP): white and black regions correspond to, respectively,
positive and negative invasion fitness; in light grey region strains cannot invade a naive host population; in
dark grey region, pathogens drive the host population to extinction. To increase visibility, we restrict the
maximal virulence to 2. The red dot depicts the point of extinction, αext . b Graph of α �→ N̂ (α). Arrows
depict the direction of evolution. c Graph of α �→ 1− x̂(α). Arrows depict the direction of evolution (colour
figure online)

Example 2 Let now β0 = 1, μ0 = 0.1.
Here,R0(α) > 1 for α ∈ [0.29, 6.70]. When starting with a highly virulent strain,

evolution decreases virulence past the critical point αext = 6 (depicted by the red dot
in Fig. 2a), beyond which the pathogen drives the host and itself to extinction. As
infected hosts live longer when virulence decreases, the prevalence 1− x̂(α) increases
(cf. the right end of Fig. 2c). Again, the host population density continuously declines
to zero as virulence approaches the critical value αext (cf. the right end of Fig. 2b).

Note however that, in this example, the host-pathogen system is protected from
extinction when relatively mild strains are circulating in the population. When initial
strains have low virulence, pathogens evolve to a CSS close to α = 1 (depicted by the
blue dot in Fig. 2a).

3.2 Model II

We now look at a model where per capita birth rates of susceptible and infected hosts,
bS and bI respectively, depend only on the total population density and consider the
system

123



Evolutionary suicide through a non-catastrophic bifurcation… 1111

(a)

(b) (c)

Fig. 2 Example 2: a PIP:white and black regions correspond to, respectively, positive and negative invasion
fitness; in light grey region strains cannot invade a naive host population; in dark grey region, the pathogen
drives the host population to extinction. The red and the blue dot depict, respectively, the extinction point
αext and the CSS virulence αCSS. b Graph of α �→ N̂ (α). Arrows depict the direction of evolution when
initial virulence exceeds αext . c Graph of α �→ 1 − x̂(α). Arrows depict the direction of evolution when
initial virulence exceeds αext (colour figure online)

dN

dt
= N

[
bS(N )x + bI (N )(1 − x) − μ(N ) − α(1 − x)

]
(17a)

dx

dt
= (1 − x)

[
bS(N )x + bI (N )(1 − x) − β(α)x + αx

]
. (17b)

We assume that bS and bI are decreasing functions of N such that bI (N ) ≤ bS(N ).

3.2.1 Resident population dynamics

In the absence of the disease, equation

dN

dt
= N

[
bS(N ) − μ(N )

]

describes the dynamics of host population density in time. We assume that bS(0) −
μ(0) > 0 so that the trivial equilibrium N = 0 is unstable. Nontrivial equilibria are
solutions of bS(N )−μ(N ) = 0. If bS andμ are such that a unique nontrivial solution,
N∗, exists, then the population stabilizes at N∗ in absence of the disease. We assume
that this is indeed the case. Since by assumptionR0 > 1, the disease-free equilibrium
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(N∗, 1) is unstable (see Appendix 3 for details). In order to analyse the existence of
endemic equilibria of (17) and their stability, we observe from (17) that nontrivial
equilibrium values of N (if they exist) are solutions of

F(N ) = R(N )x̂(N ) = 1 (18)

where

R(N ) = β(α)

μ(N ) + α
, (19a)

x̂(N ) = bI (N )

bI (N ) − bS(N ) + β(α) − α
. (19b)

If N̂ is a biologically meaningful solution of (18), the corresponding x̂ is calculated
from (19b). An endemic equilibrium (N̂ , x̂) is therefore such that the expected number
of secondary infections caused by one newly infected individual in the environment
(N̂ , x̂) in all of its infectious life is equal to one. We observe the following:

1. N �→ R(N ) is a non-increasing function of N with R(N∗) = R0 > 1.
2. x̂(N ) is biologically meaningful (0 ≤ x̂(N ) ≤ 1) precisely when f (N ) :=

−bS(N ) + β(α) − α ≥ 0. Since f is an increasing function of N with
f (N∗) = (μ(N∗) + α)(R0 − 1) > 0, the range of meaningful values of N
is some interval [N0, N∗] (which may, or may not contain 0).

3. N �→ x̂(N ) is a decreasing function of N in the region where f (N ) ≥ 0. Hence,
F is a decreasing function of N in the region where f (N ) ≥ 0.

4. F(N∗) = R0bI (N∗)
bI (N∗)+(μ(N∗)+α)(R0−1) < 1 since bI (N∗) ≤ bS(N∗) = μ(N∗) <

μ(N∗) + α.

Case I. f (0) = −bS(0) + β(α) − α < 0
There exists a unique positive value N0 such that f (N0) = 0 and we focus on the

interval [N0, N∗]. Note that F(N0) = R(N0) > 1 since R(N ) is decreasing in N
and R(N∗) = R0 > 1. In this case, there exists a unique N̂ ∈ (N0, N∗) that solves
F(N ) = 1. The corresponding x̂ = x̂(N̂ ) is biologically meaningful, which gives a
unique endemic equilibrium (N̂ , x̂) of (17). The equilibrium (N̂ , x̂) is locally stable
(see Appendix 3 for details). The only other (meaningful) equilibria of (17) are (0, 1)
and (N∗, 1), which are both unstable.
Case II. f (0) = −bS(0) + β(α) − α > 0

The range of biologically meaningful values of N is [0, N∗]. We conclude:

1. if F(0) > 1 there exists a unique positive N̂ that solves F(N ) = 1. The corre-
sponding x̂ = x̂(N̂ ) is biologically meaningful, which gives a unique endemic
equilibrium (N̂ , x̂) of (17). Again, this equilibrium is locally stable. In addition
to the endemic equilibrium, there exists the steady state (0, x0) with

x0 = bI (0)

bI (0) − bS(0) + β(α) − α
. (20)

The equilibrium (0, x0) is unstable (see Appendix 3 for details).
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2. Whenever F(0) < 1, there is no positive solution of F(N ) = 1. It is straightfor-
ward to check that in this case, the equilibrium (0, x0) with x0 in (20) is locally
stable (cf. Appendix 3).

The only remaining equilibria of (17) are (0, 1) and (N∗, 1), which are both unstable.
It is worth pointing out that, whenμ(0) increases, the value of F(0) is pushed below

one and the stable endemic equilibriumdisappears.Hence,when backgroundmortality
rates are high enough, a successful invasion of the pathogen results in extinction of
the whole system.

Suppose that a resident strain α settles at an endemic equilibrium (N̂ , x̂) where
N̂ is the solution of (18) and the corresponding x̂ is obtained from (19b). Inserting
the thus obtained x̂ in (7) yields the selection gradient for the current model. Note
that, if in the course of pathogen evolution virulence α and transmission rate β(α)

are such that the assumption of Case I holds, then host population densities remain
bounded away from zero and evolutionary suicide is not possible. Evolution towards
extinction is possible only when virulence and transmission rates are such that the
condition of Case II is satisfied. Observe also that the unique positive equilibrium
(N̂ , x̂) depends continuously on the evolving parameter α. Evolutionary suicide, if it
occurs, is therefore necessarily non-catastrophic.

3.2.2 Evolutionary suicide

We focus on virulence values α and transmission rates β(α) such that β(α) − α >

max{μ(N∗), bS(0)}. This guarantees that (1) R0 > 1 and (2) the interval of mean-
ingful population densities is [0, N∗] (i.e. we consider Case II in which evolutionary
suicide is possible).

The preceding analysis reveals that the critical value of virulence αext, which sep-
arates population extinction from population persistence, satisfies F(0)|α=αext = 1
(again, we assume thatR0(αext) > 1). Hence, evolutionary suicide occurs at α = αext
whenever

sign D(αext) �= sign
d

dα
F(0)

∣∣∣
α=αext

. (21)

Note that, with V defined in (5) and x0 as in (20), we have

sign
d

dα
F(0)

∣∣∣
α=αext

= sign V ′(αext),

and therefore the condition in (21) is equivalent to the condition for evolutionary
suicide given in (9).

From implicit differentiation of (18) evaluated at N = 0, we obtain

bI (0)β(αext)
d

dα
F(0)|α=αext

= β ′(αext)
[
bI (0) − (μ(0) + αext)

]
+

[
(μ(0) + αext) − bI (0)β(αext)

μ(0) + αext

]
(22)
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and so the sign of d
dα

F(0)|α=αext coincides with the sign of the right-hand side of
(22). Let us show that evolution to self-extinction can occur by increasing as well as
decreasing virulence.
Evolutionary suicide caused by adaptation towards higher virulenceWhen β ′(αext) =
1

x̂(0) = β(αext)
μ(0)+αext

[i.e. when D(αext) = 0] Eq. (22) simplifies to

bI (0)β(αext)
d

dα
F(0)|α=αext = −(μ(0) + αext)

[ β(αext)

μ(0) + αext
− 1

]
< 0 (23)

and so d
dα

F(0)|α=αext < 0. Hence, d
dα

F(0)|α=αext is negative also when β ′(αext) is

slightly above β(αext)
μ(0)+αext

, i.e. when D(αext) is slightly positive. Evolutionary suicide

occurs at α = αext such that evolution increases virulence beyond the point where the
population is no longer viable.
Evolutionary suicide caused by adaptation towards lower virulence We distinguish
two cases.

1. If bI (0) > μ(0) + αext (i.e. if the birth rate of infected hosts is high enough so
that even a fully infected host population is viable) then evolutionary suicide is
not possible. In this case, d

dα
F(0)|α=αext < 0 whenever β ′(αext) = 1

x̂(0) (see (23))

and therefore also whenever β ′(αext) < 1
x̂(0) such that D(αext) < 0 (see (22)).

2. If bI (0) < μ(0)+αext evolutionary suicide becomes possible if in addition (μ(0)+
αext) − bI (0)β(αext)

μ(0)+αext
> 0. Indeed, d

dα
F(0)|α=αext is then positive for β ′(αext) = 0,

which implies D(αext) < 0. By continuity, the same holds also when β ′(αext) is
slightly above zero.

When virulence decreases and transmission rates remain practically unchanged, a
higher fraction of the population is infected. If the birth rate of infected hosts is
sufficiently low, then the population can no longer persist and evolutionary suicide
occurs.

3.3 Numerical examples

In the examples that follow, we assume that bS = b
(
1 − N

K

)
with b = 2, K = 1000

and that bI = σbS with σ = 0.5. We furthermore assume the per capita background
host mortality to be of the form μ(N ) = 0.01(N + μ1) for some positive μ1. Lastly,

the trade-off between transmission and virulence is assumed to be β(α) = 10α
1+α

.

Example 3 Let μ1 = 1.
In this case,R0(α) > 1 for α ∈ [0.24, 7.10]. Pathogens evolve towards an interme-

diate level of virulence αCSS = 0.84 (depicted by the blue dot in Fig. 3a) when initial
strains aremild.When the initially introduced strain is highly virulent, however, evolu-
tion drives the pathogen towards lower virulence and past the critical point αext = 6.25
(depicted by the red dot in Fig. 3a) beyond which the host population, along with the
pathogens, becomes extinct. As this happens, the host population density declines to
zero continuously (cf. the right end of Fig. 3b).
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(a)

(b) (c)

Fig. 3 Example 3: a PIP:white and black regions correspond to, respectively, positive and negative invasion
fitness; in light grey region strains cannot invade a naive host population in dark grey region, the pathogen
drives the host population to extinction. The red and the blue dot depict, respectively, the extinction point
αext and the CSS αCSS. b Graph of α �→ N̂ (α). Arrows depict the direction of evolution when initial
virulence exceeds αext . c Graph of α �→ 1 − x̂(α). Arrows depict the direction of evolution when initial
virulence exceeds αext (colour figure online)

Example 4 Let μ1 = 80.
With this example, we demonstrate the devastating effect of increased background

mortality. When the natural death rate of a host is low then mild initial strains evolve
towards some intermediate level of virulence (cf. Fig. 3a), keeping the host population
and itself viable. When some factors unrelated to the disease (such as food availabil-
ity or temperature) sufficiently increase the host’s natural mortality rate, then even
mild strains might drive the population towards extinction. As μ1 increases, the CSS
increases beyond αext. When relatively harmless initial strains evolve higher virulence
they pass the critical value αext = 0.845 (depicted by the red dot in Fig. 4a) and the
whole system becomes extinct (cf. Fig. 4b). With adaptation towards higher virulence
and therefore towards higher transmission, the prevalence 1− x̂ increases (cf. Fig. 4c).

4 Discussion

Evolutionary suicide, i.e., evolution to self-extinction, is an intriguing phenomenon
that has been found in a number of models of various ecological systems (Matsuda and
Abrams 1994b; Gyllenberg and Parvinen 2001; Gyllenberg et al. 2002; Parvinen 2007,
2010; Parvinen and Dieckmann 2013). The notion itself is similar to the idea of the
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(a)

(b) (c)

Fig. 4 Example 4: a PIP:white and black regions correspond to, respectively, positive and negative invasion
fitness; in grey region, the pathogen drives the host population to extinction. In this case R0(α) > 1 for
α ∈ [0.26, 6.94]. For better viewing, we plot the PIP for αres, αmut ∈ [0.7, 1.1]. The red dot depicts
the extinction point αext . b Graph of α �→ N̂ (α). Arrows depict the direction of evolution. c Graph of
α �→ 1 − x̂(α). Arrows depict the direction of evolution (colour figure online)

tragedy of the commons, originally put forward by Hardin (1968) (but see also Rankin
et al. (2007)). In the context of pathogen evolution, Gandon and Day (2009) showed
an example of evolutionary suicide via a catastrophic saddle-node bifurcation owing
to an Allee effect in the host population dynamics. In all examples of evolution-driven
extinctions cited above, evolutionary suicide happens via a discontinuous transition
to extinction.

In this paper we consider a family of SI models for evolving pathogen virulence
under frequency-dependent incidence. Here evolutionary suicide happens when the
pathogen drives the entire host population extinct, including all infected hosts that
carry the pathogen. Because the transmission rate of the pathogen is proportional to
the frequency of susceptible hosts relative to the total host population size, the extinc-
tion state corresponds to a singularity in population dynamics and the invasion fitness
is undefined in the extinction state. This violates the assumptions of Gyllenberg et al.
(2002) and Gyllenberg and Parvinen (2001) and evolutionary suicide becomes possi-
ble also via a non-catastrophic transcritical bifurcation, i.e., such that the population
density declines to zero continuously. We demonstrate this possibility with examples
in Figs. 1, 2, 3 and 4.

In absence ofAllee effects, the assumption of a constant contact rate (i.e. frequency-
dependent incidence) is crucial for evolutionary suicide. To see this, let C(N ) denote
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the contact rate as a function of population density. Generalizing the model in (2), the
system

dN

dt
= N [xbS(N , x) + (1 − x)bI (N , x) − μ(N ) − α(1 − x)]

dx

dt
= (1 − x) [xbS(N , x) + (1 − x)bI (N , x) − β(α)xC(N ) + αx] (24)

describes the dynamics of the host population density and the fraction of suscepti-
ble hosts. In frequency-dependent transmission we have C(N ) = 1 for all population
densities, whereas the classical mass-action assumptionC(N ) = N yields the density-
dependent incidence. Heesterbeek and Metz (1993) and Antonovics et al. (1995) use
a Holling II-like argument to derive the rate of contacts C(N ) in a mechanistic man-
ner. This leads to incidence functions that resemble density-dependent transmission
at very low population densities and approximate frequency-dependent transmission
when population density is sufficiently high. With mass-action description and the
mechanistically derived contact rates in Heesterbeek andMetz (1993) and Antonovics
et al. (1995) we haveC(0) = 0. In such a case, the extinction state in (24) corresponds
to the trivial equilibrium (0, 1) [cf. the only negative term in the right hand side of
the second equation in (24) vanishes so that in equilibrum, x must go to 1 as N goes
to zero], and (0, 1) is unstable in absence of Allee effects. Evolutionary suicide is
therefore not possible in such models.

Frequency-dependent incidence is nevertheless a very popular model for sexually
transmitted diseases, since due to the individuals actively searching for mates, the
mating rate (which is the contact rate) can be constant for all but the lowest population
densities. C(N ) saturates already at low densities also because of the long handling
times, which include e.g. gestation and parental care (Antonovics et al. 1995). Our
model therefore properly describes the evolution of the pathogen until the host popu-
lation density becomes very low. At small population sizes, the population dynamics
is no longer deterministic, and there is a high risk of extinction due to demographic
stochasticity (Boots and Sasaki 2003;Matsuda andAbrams 1994a).With a Holling II -
like contact rate, therefore, evolutionary suicide may occur in the sense that the evolv-
ing pathogen drives the host below the minimum viable population size necessary for
persistence in face of demographic stochasticity (Nunney and Campbell 1993). This
is similar to the runaway evolution found by Matsuda and Abrams (1994a) and to
the “gradual extinctions” examples of Webb (2003), but, importantly, in our models
extinction occurs without the trait (here virulence) evolving unboundedly. Frequency-
dependent incidence is also an accurate model for animals in herds; since the area
the herd occupies shrinks in proportion to the decreasing number of individuals, the
contact rate remains constant (de Jong et al. 1995).

The majority of pathogens in nature utilize multiple transmission routes (e.g. direct
host-to-host, vector-borne, environmental, vertical) (Antonovics et al. 1995; Ryder
et al. 2007; Boldin and Kisdi 2012; Bernhauerová and Berec 2015), thus making the
traditional density-/frequency-dependent incidence dichotomy too simplistic. Instead,
to realistically account for the richness in contacts leading to infection transmission,we
might incorporate in our models a combination of density- and frequency-dependent
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transmission. As observed in Bernhauerová and Berec (2015), including vertical
transmission to a model with frequency-dependent incidence does not remove the pos-
sibility of evolutionary suicide. Similarly, Ryder et al. (2007) reveals that evolution
to self-extinction may be possible when density-dependent transmission is included
into a model with frequency-dependent transmission (however, the scope for parasite-
driven population extinctions narrows).

In our models, the host population goes extinct if the prevalence of the disease
(1− x̂) is sufficiently high and the disease is harmful, in the sense that the birth rate of
infected hosts is sufficiently low and/or their death rate is sufficiently high. Since a high
death rate of the infecteds may lead to a low prevalence of the disease, evolutionary
suicide may happen via two different routes, depending on how the disease-induced
mortality (virulence) is linked to transmission and therefore to prevalence. We now
discuss these two routes in turn.

Our general model in Appendix 1 demonstrates that if virulence is independent of
transmission, the pathogen always evolves towards high transmission rates. This is
in agreement with Boots and Sasaki (2003), but extended to the case where increas-
ing transmission is not without any harm to the host: if the damage caused to the
host by a more aggressively infectious pathogen is felt only in a reduced birth rate of
the host, then the damage does not influence the evolution of transmission. From the
pathogen’s point of view, producing new susceptibles via birth is akin to producing
common goods for the pathogen. When shared with many individuals in a large pop-
ulation, the production of common goods provides no benefit to the individual and
hence damaging the production does not influence individual fitness (Sigmund 2010).
As the pathogen evolves towards high transmission, the prevalence of the disease
increases so that more hosts suffer from a low birth rate and from the (transmission-
independent) disease-induced mortality, which may lead to the extinction of the host
population.

Under the transmission-virulence trade-off, a similar route to evolutionary suicide
exists. Evolution towards high transmission then amounts to evolution towards high
virulence (as in Figs. 1, 4) and therefore to short-lived infections. If transmission
increases fast enough, then prevalence still increases or at least remains sufficiently
high, and the host population may go extinct if infected individuals have too low a
birth rate and/or too high a mortality.

An alternative route to evolutionary suicide is when the pathogen evolves towards
lower virulence (Figs. 2, 3). Infected individuals then live longer, and can infect more
susceptibles provided that the transmission rate does not decrease too fastwith decreas-
ing virulence. As the prevalence of the disease increases, more hosts suffer from a low
birth rate and from the disease-induced mortality, which may lead to the extinction of
the host.

The second route to evolutionary suicide is particularly worrisome when consid-
ering pathogens jumping to new host species. A pathogen not yet adapted to its host
may cause considerable harm, so that it has high initial virulence. As the pathogen
evolves to reduce its virulence and hence to extend the infectious lifetime of its host,
its prevalence increases and thereby it can drive its host to extinction.

It is well known that increasing background mortality triggers the evolution of
higher transmission despite the cost of higher virulence (Lenski and May 1994).
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Under frequency-dependent incidence, this effect can be rather dangerous, because
increasing transmission can lead to evolutionary suicide and therefore to the loss of
the host population. We illustrate this possibility with Model II, where initially mild
pathogens evolve to an evolutionarily stable strain, but an increase of host background
mortality selects for more transmissible strains until evolutionary suicide happens
(Figs. 3, 4).

In adaptive dynamics, optimization models represent the special case that closest
resembles the simple scenario of the ‘survival of the fittest’. In particular, strate-
gies cannot coexist when selection is optimizing (excluding the degenerate case of
neutral coexistence), and adaptive dynamics leads to the maximization of a suitably
chosen function of trait values, hence in this sense to the ‘best’ phenotype (Metz
et al. 2008; Gyllenberg and Service 2011; Gyllenberg et al. 2011; Metz and Geritz
1989; Gyllenberg and Parvinen 2001) proved that in a wide class of optimization
models, evolutionary suicide cannot occur via the typical route of a saddle-node bifur-
cation of population dynamics. Recently, Parvinen and Dieckmann (2013) showed by
way of examples that evolutionary suicide is possible also in optimization models,
via global bifurcations; a similar model was analyzed earlier by Webb (2003). The
model of Boots and Sasaki (2003) is an optimization model predicting evolutionary
suicide. In our extension of this model, selection is generally frequency-dependent,
but in some special cases, it is optimizing. The latter is the case if, in Eq. (1), the
background mortality rate does not depend on population density [or, in the gen-
eral model (25), the background mortality rate and the virulence do not depend on
the environmental feedback variables] and the host population is regulated only via
the birth rates, so that the invasion fitness of a mutant is a monotonic function of
the single environmental feedback variable x (or 〈x〉), which implies optimization
(Metz et al. 2008). Whether or not selection is optimizing makes no qualitative dif-
ference for evolutionary suicide in these models. Note that this is possible because
frequency-dependent incidence violates the assumptions of Gyllenberg and Parvinen
(2001).

In the examples presented in this paper, evolutionary suicide occurs with evolv-
ing monomorphic pathogen populations. However, our models in general include
more than one environmental feedback variable, thus allowing for coexistence of
pathogen strains; this is true also for models including multiple transmission routes
(see e.g. Boldin and Kisdi 2012; Bernhauerová and Berec 2015). Evolutionary suicide
may therefore be possible also via polymorphic evolution, with multiple coexisting
strains driving the host-pathogen system to extinction. Evolutionary suicide in poly-
morphic populations has earlier been observed by Ferriere and Legendre (2013) in a
model of cooperation (cf. Figure 7 in their paper). It remains to be seen whether such
evolution-driven extinctions occur in host-pathogen systems with coexisting pathogen
strains.
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Appendix 1: General model

Here we consider a rather general family of SI models given by

dS

dt
= bS(Ẽ(S, I, z), t)S + bI (Ẽ(S, I, z), z, t)I − μ(Ẽ(S, I, z), t)S − β(z)

SI

N
d I

dt
= β(z)

SI

N
− μ(Ẽ(S, I, z), t)I − α(Ẽ(S, I, z), z, t)I. (25)

As in the main text, S and I are the density of susceptible and infected hosts, respec-
tively, and N = S+ I is the total host population density. z is a trait that characterizes
the infecting strain of the pathogen (e.g. its intra-host proliferation rate, see e.g. Boldin
and Diekmann 2008). For the population dynamics of a given strain in (25), z is the
parameter of interest for the bifurcation through which extinction happens. For the
adaptive dynamics, z is the evolving trait. We assume that z determines the transmis-
sion rate β(z) and also influences other demographic parameters (see below). In the
models considered in the main text, we assumed that α, the virulence, is a pathogen-
specific constant (i.e., independent of Ẽ and time) and took z = α.

The vector Ẽ contains environmental feedback variables, such as the densities of
available resources, which depend on the number of hosts who exploit these resources.
Susceptible and infected hosts may exploit the resources differently (for example,
infected hosts may be less efficient foragers), and the exploitation of infected hosts
may depend on the trait value z of the infecting strain (for example, the more the strain
damages the hosts, the less efficiently they forage), so that Ẽ depends on S, I and z.
The per capita birth rates of susceptibles and infecteds, bS and bI , respectively, depend
on the environmental feedback variables and, in the case of bI , also on the infecting
strain; with this latter assumption, we allow for a partially sterilizing pathogen whose
degree of sterilization depends on its trait value z. Similarly, the background mortality
rate (μ) and the virulence (α) depend on the environmental feedback variables, and,
in the case of α, on the infecting strain. Finally, all birth and death rates may depend
explicitly on time, i.e., they may be affected by external factors.

This model subsumes a wide variety of ecological assumptions (how the demo-
graphic rates depend on population density via resources etc.) and also a variety
of possible effects of the pathogen on its host’s demography, but retains the cru-
cial assumption of frequency-dependent pathogen transmission. The model of Boots
and Sasaki (2003) is a special case of (25) with bS(Ẽ(S, I, z), t) = b − h(S + I ),
μ(Ẽ(S, I, z), t) = u, α(Ẽ(S, I, z), z, t) = ᾱ (where b, h, u and ᾱ are positive
numbers), and either bI (Ẽ(S, I, z), z, t) = 0 (the disease is fully sterilizing) or
bI (Ẽ(S, I, z), z, t) = b − h(S + I ) (the infected hosts have the same birth rate as the
susceptibles).

As in the main text, we rewrite the system in terms of the total population density
N and the fraction of susceptible hosts x = S

N as

dN

dt
= N [xbS(E, t) + (1 − x)bI (E, z, t) − μ(E, t) − (1 − x)α(E, z, t)]

dx

dt
= (1 − x) [xbS(E, t) + (1 − x)bI (E, z, t) − xβ(z) + xα(E, z, t)] (26)
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where E = E(N , x, z) = Ẽ(xN , (1− x)N , z). The invasion fitness of a mutant strain
zmut is given by

ρ(zmut, z) = β(zmut)〈x〉 − 〈μ(E(N , x, z), t)〉 − 〈α(E(N , x, z), zmut, t)〉 (27)

where the angle brackets 〈·〉 denote the time-averages on the ecological timescale of
Eq. (26) (Metz et al. 1992); we assume that these expectations exist. If the resident
dynamics in (26) are autonomous (i.e., if the birth and death rates do not depend
explicitly on time) and the system attains an equilibrium, then the time-averages reduce
to the values at the resident equilibrium. In this case, the environmental feedback
variables that determine the invasion fitness of a given mutant are the fraction of
susceptibles, x , and the elements of E at the resident equilibrium.

The adaptive dynamics of the pathogen trait z is governed by the selection gradient

D(z) = [∂ρ(zmut, z)/∂zmut]zmut=z

= β ′(z)〈x〉 −
〈

∂α(E(N , x, z), zmut, t)

∂zmut

∣∣∣∣
zmut=z

〉
. (28)

Following Boots and Sasaki (2003), assume first that the disease-induced death rate
is independent of the strain infecting the host, i.e., that α(E(N , x, z), zmut) does not
depend on zmut (but it may still depend on z via the environmental feedbacks). In
other words, different strains zmut of the pathogen differ in their transmission rate
β(zmut) and may also differ in their effect on the birth rate of an infected host,
bI (E(N , x, z), zmut, t) so that a strain with a higher transmission rate may be more
damaging to host fecundity. With this assumption, the selection gradient reduces to
D(z) = β ′(z)〈x〉, which has the same sign as β ′(z). The pathogen therefore evolves to
maximize its transmission rate. Assume further that the transmission rate can increase
without bound, and β(z) → ∞ as z → z0. Let the initial strain be such that the
solution of dz

dt = β ′(z) tends to z0 (if the function z �→ β(z) does not have finite local
maxima, then this is true for any initial value z). In this case, z evolves towards z0.

If a strain z is viable, i.e., if in its resident population the density of infected hosts,
I , is bounded and also bounded away from zero, then

〈 1
I
d I
dt

〉 = 0 must hold (cf. Metz
et al. 1992). By the second equation of (25), this is equivalent to

β(z)〈x〉 = 〈μ(E(N , x, z), t) + α(E(N , x, z), z, t)〉. (29)

Since μ and α are bounded, we have 〈x〉 → 0 as z → z0; a very highly transmissible
disease infects all hosts. The dynamics of the total population density then converges
to the orbit of

dN

dt
= [bI (E(N , 0, z0), z0, t) − μ(E(N , 0, z0), t) − α(E(N , 0, z0), z0, t)] N . (30)

If (30) has no other attractor than the trivial equilibrium N = 0, then the entire
host population goes extinct. In absence of Allee-effects, the birth and death rates are
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monotonic functions of the elements of E, which, in turn, are monotonic in N . In this
case, the trivial equilibrium is the only attractor of (30) if

〈bI (E(0, 0, z0), z0, t) − μ(E(0, 0, z0), t) − α(E(0, 0, z0), z0, t)〉 < 0. (31)

As z evolves towards z0, the entire host population goes extinct when (31) holds.
The evolution of the pathogen thus results in its own extinction, i.e., in evolutionary
suicide. In absence of Allee-effects, evolutionary suicide occurs as the host population
density declines to zero continuously during the course of evolution. In autonomous
systems, this happens via a local non-catastrophic bifurcation of population density.

In this Appendix, we assumed that the transmission rate can evolve to arbitrarily
high values. In reality, the transmission rate is bounded by the rate of contacts between
host individuals, and increasing the transmission rate may be possible only at the cost
of increasing virulence (Alizon et al. 2009). This model nevertheless shows, along
the lines of Boots and Sasaki (2003) but in a much more general model, that with a
sufficiently high contact rate and for some trade-off functions linking transmission
and virulence, evolutionary suicide must be possible. In the main text of this article,
we show that evolutionary suicide does happen through a non-catastrophic bifurcation
also in models with bounded transmission traded off with virulence.

Appendix 2: (In)stability of the disease-free equilibrium of Model I

The aim of this Appendix is to verify that the disease-free equilibrium of (10) is
unstable whenever R0 > 1 and locally stable when R0 is below 1. The linearization
of (10) around (N∗, 1) gives

[−N∗μ′(N∗) ∗
0 −bS(1) + β(α) − α

]
.

The upper left element of the Jacobian at (N∗, 1) is negative. Since −bS(1)+β(α)−
α > 0 ⇐⇒ R0(α) > 1, the disease-free equilibrium (N∗, 1) is unstable when
R0(α) > 1 and locally stable whenever R0(α) < 1.

Appendix 3: Local stability of equilibria of Model II

In this Appendix we discuss stability of equilibria of Model II.
The linearization of (17) takes the form

J (N , x)

=

⎡
⎢⎢⎢⎢⎣

(bS(N )x + bI (N )(1 − x) − μ(N ) − α(1 − x)) N (bS(N ) − bI (N ) + α)

+N (b′
S(N )x + b′

I (N )(1 − x) − μ′(N ))

(1 − x)(b′
S(N ) + b′

I (N )(1 − x)) (1 − x)(bS(N ) − bI (N ) − β(α) + α)

−(bS(N )x + bI (N )(1 − x) − β(α)x + αx)

⎤
⎥⎥⎥⎥⎦

.
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The assumption bS(0) > μ(0) implies that the equilibrium (0, 1) is unstable. If we
further assume that R0 > 1, the disease-free steady state (N∗, 1) is unstable.

If an endemic equilibium (N̂ , x̂) exists then the Jacobian evaluated in (N̂ , x̂) has
the form

J ((N̂ , x̂))

=
[
N̂ (b′

S(N̂ )x̂ + b′
I (N̂ )(1 − x̂) − μ′(N̂ )) N̂ (bS(N̂ ) − bI (N̂ ) + α)

(1 − x̂)(b′
S(N̂ )x̂ + b′

I (N̂ )(1 − x̂)) (1 − x̂)(bS(N̂ ) − bI (N̂ ) − β(α) + α)

]

which has the sign structure

[− +
− −

]
,

implying that (N̂ , x̂) is locally stable whenever it exists.
If the assumption of Case I holds, then there are no other equilibria of (17). The

same conclusions holds in Case II (i). When the assumption of Case II (ii) holds, there
is no endemic equilibrium of (17). There exists however an equilibrium (0, x0) with
0 < x0 < 1. We have

J ((0, x0)) =
[
β(α)x0 − μ(0) − α 0

∗ (1 − x0)(bS(0) − bI (0) − β(α) + α)

]
.

Since both diagonal elements are negative, the equilibrium (0, x0) is locally stable.
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