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Abstract The retina is the tissue layer at the back of the eye that is responsible for
light detection. Whilst equipped with a rich supply of oxygen, it has one of the highest
oxygen demands of any tissue in the body and, as such, supply and demand are finely
balanced. It has been suggested that the protein neuroglobin (Ngb), which is found
in high concentrations within the retina, may help to maintain an adequate supply
of oxygen via the processes of transport and storage. We construct mathematical
models, formulated as systems of reaction–diffusion equations in one-dimension, to
test this hypothesis. Numerical simulations show that Ngb may play an important
role in oxygen transport, but not in storage. Our models predict that the retina is
most susceptible to hypoxia in the regions of the photoreceptor inner segment and
inner plexiform layers, where Ngb has the potential to prevent hypoxia and increase
oxygen uptake by 30–40 %. Analysis of a simplified model confirms the utility of
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Ngb in transport and shows that its oxygen affinity (P50 value) is near optimal for this
process. Lastly, asymptotic analysis enables us to identify conditions under which the
piecewise linear and quadratic approximations to the retinal oxygen profile, used in
the literature, are valid.

Keywords Asymptotics · Facilitated diffusion · Hypoxia · Oxygen transport ·
Reaction–diffusion equations

Mathematics Subject Classification 92B05 · 92C30 · 35K57

1 Introduction

The retina is the ocular tissue which detects visual information. Despite being well
vascularised, it has a high oxygen demand (Anderson and Saltzman 1964; Anderson
1968; Yu and Cringle 2001; Wangsa-Wirawan and Linsenmeier 2003) placing it in
danger of hypoxia (oxygen deprivation). In this paper we construct reaction–diffusion
models for retinal oxygen distribution and use them to examine the role of the protein
neuroglobin (Ngb) in the prevention of hypoxia.

The retina extends from the optic disc to the ora serrata and has a multilayered
structure, consisting of numerous cell-types (see Fig. 1a). The retina consists of the
following layers, beginning with the outermost layer: the retinal pigment epithelium
(RPE), the photoreceptor layer, consisting of the outer and inner segments (OSs and
ISs), the outer nuclear layer (ONL), the outer plexiform layer (OPL), the inner nuclear
layer (INL), the inner plexiform layer (IPL), the ganglion cell layer (GCL), the nerve

Fig. 1 Diagrams of the human eye and retina. aDiagram of the (right) human eye, viewed in the transverse
plane. Figure reproduced, with modifications, from http://www.nei.nih.gov/health/coloboma/coloboma.
asp, courtesy: National Eye Institute, National Institutes of Health (NEI/NIH). b Diagram of the human
retina, showing the retinal layers and cell types. The diagram is oriented such that the top lies outermost and
the bottom innermost in the eye.R rod photoreceptor,C cone photoreceptor,H horizontal cell,B bipolar cell,
MMüller glial cell, A amacrine cell,G ganglion cell. Figure reproduced, with permission andmodifications,
from Swaroop et al. (2010)
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Retinal oxygen distribution and the role of neuroglobin 3

fibre layer (NFL) and the inner limitingmembrane (ILM) (see Fig. 1b). The outer retina
extends from the RPE to the middle of the OPL, where the photoreceptors synapse
with bipolar and horizontal cells, whilst the inner retina spans the region between the
inner OPL and the ILM. Photoreceptors are responsible for the detection of light and
can be characterised as either rods or cones. Following light detection the visual signal
is transmitted via the neurons of the inner retina to the optic nerve and then to the brain.

Oxygen is supplied to the retina via two separate vascular systems: the choriocap-
illaris and the retinal capillaries. The choriocapillaris is a capillary layer which lies
directly outward from the RPE and which supplies the outer retina with oxygen. It
forms the innermost layer of the choroid and is supplied and drained by blood vessels
lying deeper in this tissue. The retinal circulation supplies the inner retina with oxygen
and is supplied and drained by the central retinal artery and vein. Throughout most
of the mid-peripheral retina, the retinal circulation consists of two capillary layers,
one deep and the other superficial (Oyster 1999; Pournaras et al. 2008; Kur et al.
2012). Therefore, in this paper, we shall consider only the two retinal capillary layer
scenario.

Whilst the oxygen distribution across the human retina has not been measured, it
has been measured for a variety of mammals including rats (Yu et al. 1994, 1999,
2000, 2004), rabbits (Stefánsson 1988), cats (Alder et al. 1983; Linsenmeier 1986;
Linsenmeier andYancey 1989;Haugh et al. 1990; Linsenmeier andBraun 1992; Braun
et al. 1995; Linsenmeier and Padnick-Silver 2000; Padnick-Silver and Linsenmeier
2003) and monkeys (Yu et al. 2005; Birol et al. 2007, see also Yu and Cringle 2001,
2005; Wangsa-Wirawan and Linsenmeier 2003, for reviews). Under dark conditions
(dark adaptation, DA) the photoreceptor ISs consume oxygen at twice the rate at which
they consume oxygen under light conditions (light adaptation, LA). As a result, the
retinal oxygen profile drops under DA, meaning that the retina is more likely to expe-
rience hypoxia under DA. Hypoxia is detrimental to cells, both in limiting oxidative
metabolism and in increasing the production of reactive oxygen species, upsetting
the redox potential and leading to oxidative stress and damage (Kohen and Nyska
2002).

Birol et al. (2007) have measured oxygen profiles across the retina of the macaque
monkey under DA and LA. The outer retina is normoxic (healthy) under LA and
near-hypoxic (just above the hypoxic threshold, see Sect. 2.1) under DA, whilst
the inner retina may be near-hypoxic under either LA or DA, depending upon
local retinal capillary density (see Fig. 2, where the inner retina is normoxic under
LA and near-hypoxic under DA in this case). Since the macaque retina is physi-
ologically similar to that of the human, it is likely that the human retina is also
vulnerable to hypoxia, especially under DA. Thus any factor that promotes retinal
oxygenation may be vital in preventing or minimising retinal hypoxia and hence cell
death.

Burmester et al. (2000) discovered a new vertebrate globin protein which they
named neuroglobin because of its preferential expression in the cells of the nervous
system, including the retina. Ngb has a similar structure and molecular mass to that
of myoglobin (Mb) (Burmester and Hankeln 2009) and, as such, it has been proposed
that Ngb, like Mb, may play a role in oxygen transport and storage (Burmester et al.
2000; Burmester and Hankeln 2004, 2009).
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Fig. 2 Retinal oxygen profiles. Graphs show the oxygen distribution across the perifoveal retina of a
macaque monkey under DA (a) and LA (b). The retina is normoxic under LA, whilst near-hypoxic regions
are present in both the inner and outer retina under DA. Grey lines show the profiles measured using an
oxygen-sensitive microelectrode, whilst black lines show a piecewise linear and quadratic approximation
fitted to the outer retinal profile. Figure reproduced, with permission, from Birol et al. (2007)

Despite its oxygen binding properties, it is far from certain that Ngb plays a signif-
icant role in oxygen transport and storage, and opinion as to the main function of Ngb
remains divided (Burmester and Hankeln 2009).

In this paper we investigate the possible role of Ngb in oxygen transport and storage
in the human retina. The question we wish to address is this: could Ngb prevent tissue
hypoxia by transporting oxygen from regions of high oxygen tension to regions of low
oxygen tension, or by providing a temporary store of oxygen during a period when
oxygen is scarce?

A number of mathematical models for retinal oxygen distribution have been con-
structed (see for instance, Dollery et al. 1969; Linsenmeier 1986; Stefánsson 1988;
Haugh et al. 1990; Linsenmeier and Braun 1992; Braun et al. 1995; Linsenmeier and
Padnick-Silver 2000;Cringle andYu2002;YuandCringle 2002). Themajority of these
models fit piecewise linear and quadratic polynomials to oxygen profiles measured
using oxygen sensitive microelectrodes. They assume that the oxygen concentration is
at steady-state and are posed on one-dimensional domains, oriented in a radial direc-
tion, across the width of the retina. They assume that the rate of oxygen uptake is
constant in each model layer (where model layers incorporate various cellular layers)
and so reduce to solving d2c

dx2
= Q in each layer, where c is the oxygen concentration,

x is the distance across the retina and Q is the rate of oxygen uptake. In those layers in
which Q > 0, the profile is quadratic and in those layers in which Q = 0, the profile
is linear. In Sect. 4.3 we perform an asymptotic analysis to determine conditions under
which the assumption of a constant rate of oxygen uptake is valid, and, in so doing,
aim to place existing models on a stronger theoretical foundation.

To the best of our knowledge, only one mathematical model of retinal oxygen
distribution incorporating Ngb has been developed (Fago et al. 2004b). This model
contains three layers spanning the outer retina, between the choriocapillaris and the
deep retinal capillaries. Unlike themodelsmentioned above, aMichaelis–Menten term
is used for the rate of oxygen uptake. The proportion of Ngbmolecules in their oxygen
bound and unbound states are assumed to be at quasi-steady-state at all times. The
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Retinal oxygen distribution and the role of neuroglobin 5

model predicts that Ngb concentrations would have to exceed 100 µM to be effective
in oxygen storage and to be greater than 300 µM to be effective in oxygen transport.
Since they assume that the Ngb concentration does not exceed 100 µM, Fago et al.
conclude that Ngb does not play a significant role in either the transport or storage of
oxygen.However, based upon our reasoning in theOnlineResource,we argue thatNgb
concentrations could reach, and, perhaps, significantly exceed, these concentrations
in some locations. In what follows we expand Fago et al.’s model to account for both
the inner and outer retina, dropping the quasi-steady-state assumption and exploring
the full range of biologically realistic Ngb concentrations.

The remainder of this paper is structured as follows. In Sect. 2 we derive time-
dependent and steady-state models on single and eight layer geometries for the
dynamics of oxygen and Ngb within the retina. In Sect. 3 we present the results
for the single layer model. In Sect. 4 we present the results for the eight layer model.
Lastly, in Sect. 5, we summarise our findings and discuss possible directions for future
research.

2 Model formulation

In this section we derive two models for the oxygen and Ngb concentrations across
the retina. The first model treats the retina as a single cell layer, whilst the second
model captures details of its structure and geometry by decomposing it into four cell
layers, spread across eight model layers. The single layer model is a toy model, used
to ascertain, for a general case, whether Ngb has the potential to play a significant role
in oxygen transport and storage, whilst the second model is used to investigate Ngb’s
role in the human retina.

We develop time-dependent and steady-state versions of each of these models. The
time-dependent versions are used to investigate the oxygen storage properties of Ngb,
whilst the steady-state versions are used to investigate the oxygen transport properties
of Ngb.

Ngb is a ‘hexacoordinate’ globin, with the sixth coordination position of the heme
group occupied by an internal histidine molecule in the absence of an external ligand
(Burmester and Hankeln 2004, 2009; Fago et al. 2004b). This means that in order for
oxygen to bind to Ngb, the histidine molecule must first unbind from the heme group.

Writing C, N, NH and NO for oxygen, Ngb, Ngb-His and Ngb-O2 respectively, the
reaction scheme may be written as

N
k+
h�

k−
h

NH, (1)

N + C
k+
o�

k−
o

NO, (2)

where k+
h , k

−
h , k

+
o and k−

o are the forward and reverse rate constants for the different
reactions (see Table 1 for values).
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Table 1 Dimensional parameters associated with the single layer model (see Eqs. (3)–(8))

Parameter Description Value Source

L̃ Minimum retinal width 80 µm Webvision, http://
webvision.med.utah.
edu/

k Oxygen solubility in
retinal tissue

2.4 × 10−5 LO2(L
tissue mmHg)−1

Linsenmeier and Braun
(1992)

c̃ Typical oxygen
concentration at the
choriocapillaris

60 mmHg (5.8× 10−5 M) Wangsa-Wirawan and
Linsenmeier (2003)

Birol et al. (2007)

ñ Average Ngb
concentration across the
retina

100 µM Schmidt et al. (2003)

Do Oxygen diffusion
coefficient

1.97 × 10−9 m2 s−1 Roh et al. (1990)

Dn Ngb diffusion coefficient 1.73 × 10−11 m2 s−1 Jürgens et al. (1994)

McGuire and Secomb
(2001)

L Retinal width 80–320 µm Webvision, http://
webvision.med.utah.
edu/

cc Oxygen concentration at
the choriocapillaris

60 mmHg (typically)
(5.8 × 10−5 M)

Wangsa-Wirawan and
Linsenmeier (2003)

Birol et al. (2007)

nT Ngb concentration 0– 4000 µM Schmidt et al. (2003,
2005)

Bentmann et al. (2005)

Ostojić et al. (2006, 2008)

Rajendram and Rao
(2007)

Q Maximum rate of oxygen
uptake

0–20 mlO2
(100 g tissue min)−1 (0
to 1.33 × 10−4 M s−1)

Haugh et al. (1990)

Cringle and Yu (2002);
Birol et al. (2007)

Wangsa-Wirawan and
Linsenmeier (2003)

γ Michaelis constant 1 mmHg (9.6 × 10−7 M) Costa et al. (1997);
Richmond et al. (1999)

McGuire and Secomb
(2001)

Goldman (2008)

k+
o Rate constant of oxygen

binding to Ngb
170 × 106 M−1 s−1 Kiger et al. (2004)

k−
o Rate constant of oxygen

dissociation from Ngb
0.7 s−1 Kiger et al. (2004)
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Table 1 continued

Parameter Description Value Source

k+
h Rate constant of histidine

binding to Ngb
1800 s−1 Kiger et al. (2004)

k−
h Rate constant of histidine

dissociation from Ngb
0.6 s−1 Kiger et al. (2004)

Where two sets of units are stated, the first set was specified in the reference and the second, in brackets,
uses units consistent with the dimensional model

Fig. 3 Single layer model
diagram. Oxygen is supplied to
the tissue via the choriocapillaris
at x = 0 and the net-flux of
oxygen at x = L is zero

2.1 Single layer model

We begin by formulating a system of four partial differential equations (PDEs) for the
concentrations of O2, c(x, t), Ngb, n(x, t), Ngb-His, nh(x, t) and Ngb-O2, no(x, t),
on a one-dimensional domain x ∈ (0, L) and for time t ∈ (0,∞).We choose a domain
orientation perpendicular to the wall of the eye, which cuts across the retinal layers,
starting at x = 0, where the RPE meets the choriocapillaris and ending at x = L , at
the ILM, where the retina meets the vitreous humour (see Fig. 3).

Using the principle of mass balance and applying the law of mass action to the
reaction scheme (1)–(2), we derive the following PDE for oxygen,

∂c

∂t
= Do

∂2c

∂x2
︸ ︷︷ ︸

diffusion

− Qc

γ + c
︸ ︷︷ ︸

uptake by
retinal tissue

+ k−
o no − k+

o nc
︸ ︷︷ ︸

unbinding from and
binding to Ngb

, (3)

where Do is the oxygen diffusion coefficient, which is assumed to be constant (Roh
et al. 1990). The rate of oxygen uptake is known to be near constant above hypoxic
levels, but falls rapidly to zero as oxygen levels fall below a critical oxygen con-
centration (Goldman 2008). Since we are interested in the role of Ngb in preventing
tissue hypoxia, it is important that our oxygen uptake term captures this concentration
dependence (Goldman 2008). Thus we use a Michaelis–Menten term for the oxygen
uptake (see Wilson et al. 1988; Costa et al. 1997), where Q is the maximum rate of
oxygen uptake by the retinal tissue (achieved in the limit as c → ∞) and γ is the
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8 P. A. Roberts et al.

Michaelis constant, the concentration of oxygen at which the rate of oxygen uptake is
Q/2. The inclusion of oxygen dependence in the uptake term represents an important
difference between this model of retinal oxygen distribution and most existing ones
(see, for example, Dollery et al. 1969; Stefánsson 1988; Haugh et al. 1990; Linsen-
meier and Braun 1992; Braun et al. 1995; Cringle and Yu 2002; Yu and Cringle 2002,
an exception being Fago et al. 2004b). We also interpret γ as being the hypoxic thresh-
old: regions in which oxygen concentrations drop below this value are considered to
be hypoxic (Richmond et al. 1999; McGuire and Secomb 2001, see also the Online
Resource for further details).

Proceeding similarly, we derive PDEs for Ngb (n), Ngb-His (nh), andNgb-O2 (no),

∂n

∂t
= Dn

∂2n

∂x2
+ k−

h nh + k−
o no − k+

h n − k+
o nc, (4)

∂nh
∂t

= Dn
∂2nh
∂x2

+ k+
h n − k−

h nh, (5)

∂no
∂t

= Dn
∂2no
∂x2

+ k+
o nc − k−

o no. (6)

In (4)–(6) we assume that the diffusion coefficients for Ngb, Ngb-His and Ngb-O2 are
identical since they are almost identical in molecular weight and structure (see Keener
and Sneyd 1998, where a similar assumption is made about Mb).

We close Eqs. (3)–(6) by imposing the following initial and boundary conditions:

c(x, 0)=cinit (x), n(x, 0)=ninit (x),

nh(x, 0)=nhinit (x), no(x, 0)=noinit (x), (7)

c(0, t) = cc,
∂n

∂x
(0, t) = ∂nh

∂x
(0, t) = ∂no

∂x
(0, t) = 0,

∂c

∂x
(L , t) = ∂n

∂x
(L , t) = ∂nh

∂x
(L , t) = ∂no

∂x
(L , t) = 0. (8)

In (8) cc is the oxygen concentration in that part of the retina which abuts the
choriocapillaris. We use a Dirichlet boundary condition at x = 0, rather than a Robin
boundary condition, since the fenestrated capillaries of the choriocapillaris are highly
permeable to lowmolecular weight substances such as oxygen (Törnquist et al. 1990).
For simplicity, the flux of oxygen at the ILM (x = L) is assumed to be zero. This is
reasonable since the rate of oxygen consumption by the vitreous is negligible (Stefáns-
son 1988; Cringle and Yu 2002). We could alternatively have used Robin boundary
conditions; however, in the absence of better data, this added complexity is unjustified.
Due to their size, Ngb, Ngb-His and Ngb-O2 are unable to leave the cells of the retina
and, hence, we impose zero-flux boundary conditions for these species at x = 0, L .
See Table 1 for parameter values (where a single value for Q is chosen from the range
displayed in the table for any given simulation).
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Retinal oxygen distribution and the role of neuroglobin 9

2.1.1 Non-dimensionalisation

To simplify the subsequent analysis, we recast the system in non-dimensional form,
scaling the independent variables, dependent variables and initial conditions as:

x∗ = x

L̃
, t∗ = Do

L̃2
t, c∗ = c

c̃
, n∗ = n

ñ
, n∗

h = nh
ñ

, n∗
o = no

ñ
,

c∗
ini t = cinit

c̃
, n∗

ini t = ninit
ñ

, n∗
hini t = nhinit

ñ
, n∗

oini t = noinit
ñ

,

where L̃ is the minimum retinal width, c̃ is a typical oxygen concentration at the
choriocapillaris and ñ is the average Ngb concentration across the retina (see Table 1).
(We scale c and cinit with c̃, rather than cc, and x and t with L̃ , rather than L, so that
results using different values of cc and L can be compared more easily.) We define the
following non-dimensional parameters:

L∗ = L

L̃
, c∗

c = cc
c̃

, D = Dn

Do
, Q∗ = L̃2

Doc̃
Q, γ ∗ = γ

c̃
,

α = c̃

ñ
, k1 = L̃2ñ

Do
k+
o , k2 = L̃2ñ

Doc̃
k−
o , k3 = L̃2

Do
k+
h , k4 = L̃2

Do
k−
h .

Dropping the stars, the system (3)–(6) becomes

∂c

∂t
= ∂2c

∂x2
− Qc

γ + c
+ k2no − k1nc, (9)

∂n

∂t
= D

∂2n

∂x2
+ k4nh + αk2no − k3n − αk1nc, (10)

∂nh
∂t

= D
∂2nh
∂x2

+ k3n − k4nh, (11)

∂no
∂t

= D
∂2no
∂x2

+ αk1nc − αk2no, (12)

with initial and boundary conditions as in (7) and (8). See Table 2 for non-dimensional
parameter values.

2.1.2 Steady-state formulation

At steady-state, summation and integration of (10)–(12) subject to the zero-flux bound-
ary conditions yields n + nh + no = constant = nT , where nT , the total Ngb
concentration, is given. Thus the total quantity of Ngb in its three forms is locally
conserved across the domain. We use this identity to eliminate eq. (10), writing
n = nT − nh − no in Eqs. (9), (11) and (12), to obtain the steady-state boundary
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10 P. A. Roberts et al.

Table 2 Non-dimensional
parameters associated with the
single layer model (see
Eqs. (7)–(12))

Values given to an accuracy of at
most three significant figures

Parameter Value

L 1–4

cc 1

nT 0–40

D 8.78 × 10−3

Q 0–7.52

γ 0.017

α 0.58

k1 55,200

k2 3.95

k3 5,850

k4 1.95

value problem:

0 = d2c

dx2
− Qc

γ + c
+ k2no − k1(nT − nh − no)c, (13)

0 = D
d2nh
dx2

+ k3(nT − nh − no) − k4nh, (14)

0 = D
d2no
dx2

+ αk1(nT − nh − no)c − αk2no, (15)

for c = c(x), nh = nh(x) and no = no(x), with boundary conditions as in (8). We
note that when D = 0, k2no − k1(nT − nh − no)c = 0 (by Eq. (15)), so that Eq. (13)
becomes 0 = d2c/dx2 − Qc/(γ + c). This is the same form taken by the oxygen
equation in the absence of Ngb. Therefore, although D � 1, Ngb diffusion plays an
important role and cannot be neglected.

Fig. 4 Eight layer model diagram. Oxygen is supplied to the tissue via the choriocapillaris and retinal
capillaries and the net-flux of oxygen at x = L8 is zero. The flux of Ngb between layers is zero, except
at those boundaries marked with stars, across which the concentration and flux of Ngb is continuous. RPE
retinal pigment epithelium, ONL outer nuclear layer, OPL outer plexiform layer, INL inner nuclear layer,
IPL inner plexiform layer, GCL ganglion cell layer, NFL nerve fibre layer
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2.2 Eight layer model

In this sectionwedevelop adetailedmodel to take account of the complex,multilayered
structure of the human retina.

We decompose our model retina into eight layers as follows: layer 1 contains the
RPE; layer 2, the photoreceptor OSs; layer 3, the photoreceptor ISs; layer 4, the ONL;
layer 5, the outer half of the OPL; layer 6, the inner half of the OPL, the INL and
the outer half of the IPL; layer 7, the inner half of the IPL, and the outer half of the
GCL and NFL and layer 8, the inner half of the GCL and NFL (see Fig. 4). (Note that
whilst Cringle and Yu (2002) also divide the model retina into 8 layers, their layers are
arranged differently, incorporating different tissue layers.) We label the ends of each
model layer by Li , where i ∈ {1, 2, . . . , 8} and 0 < L1 < L2 < · · · < L8.

The number and arrangement of layers have been chosen to allow us to account for
the differing oxygen demands of the various retinal layers, to allow the incorporation
of vasculature along the boundaries between layers and to allow for the containment
of Ngb within certain layers. The model includes all three vascular layers: the chori-
ocapillaris (on the left-hand boundary of layer 1), the deep retinal capillaries (on the
boundary between layers 5 and 6), and the superficial retinal capillaries (on the bound-
ary between layers 7 and 8, see Fig. 4). The deep and superficial retinal capillary layers
are both laminar, passing through the OPL and GCL/NFL (Chan et al. 2012; Kur et al.
2012; Tan et al. 2012).

As with the single layer model, the following non-dimensional equations hold in
each retinal layer:

∂c

∂t
= ∂2c

∂x2
− Qic

γ + c
+ k2no − k1nc, (16)

∂n

∂t
= D

∂2n

∂x2
+ k4nh + αk2no − k3n − αk1nc, (17)

∂nh
∂t

= D
∂2nh
∂x2

+ k3n − k4nh, (18)

∂no
∂t

= D
∂2no
∂x2

+ αk1nc − αk2no, (19)

where Qi (1, . . . , 8) denotes themaximum rate of oxygen uptake in each layer. Guided
byRoh et al. (1990), we suppose that the oxygen diffusion coefficient is constant across
the retina and we make the same assumption for the diffusivity of Ngb.

The initial conditions for the eight layer model are the same as in (7). The oxygen
boundary conditions for the eight layer model are as follows:

c(0, t) = cc,
∂c

∂x
(L8, t) = 0, [c(Li , t)]+− = 0, for i = 1, . . . , 7,

[

∂c

∂x
(Li , t)

]+

−
=

{

0, for i = 1, . . . , 4 and 6,

ĥi (c(Li , t) − cv), for i = 5 and 7.
(20)
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12 P. A. Roberts et al.

where ĥ represents the permeability of the retinal capillaries (the dimensional version
has the units of permeability, that is ms−1) and also accounts for their density, whilst
cv is the concentration of oxygen in the retinal capillaries (see the Online Resource for
more details). The ‘−’ and ‘+’ subscripts and superscripts indicate that the quantity
is evaluated on the left- and right-hand sides of the boundary respectively.

Thus we impose Dirichlet and zero-flux boundary conditions at the left- and right-
hand ends of the domain respectively, as for the single layer model, with continuity of
concentration and flux at all internal boundaries except those at which the capillaries
lie, where the flux is discontinuous (see Eq. (20)).

We impose zero-flux boundary conditions upon Ngb, Ngb-His and Ngb-O2 at
x = 0, L1, L5, L6 and L8 since these represent boundaries between cell layers
and Ngb molecules are too large to pass through cell membranes (Ngb only existing
intracellularly). As can be seen from Fig. 3a, b of the Online Resource, Ngb is highly
concentrated within the photoreceptor ISs (layer 3), whilst being absent from the pho-
toreceptor OSs (layer 2) and present in comparatively low concentrations within the
ONL (layer 4). It is not known what prevents Ngb from diffusing from layer 3, into
layers 2 and 4; however, it may be that the narrow connecting cilium prevents Ngb
from diffusing between layers 2 and 3. Therefore, we also impose zero-flux boundary
conditions upon Ngb, Ngb-His and Ngb-O2 at x = L2 and L3, in order to maintain
the localisation of Ngb within the ISs. The concentration and flux of Ngb, Ngb-His
and Ngb-O2 are continuous across x = L4 and L7 since these model boundaries
occur within cell layers, there being nothing to physically prevent these species from
diffusing across these boundaries.

2.2.1 Steady-state formulation

As with the single layer model, the following non-dimensional equations define the
steady-state distributions for c = c(x), nh = nh(x) and no = no(x) in each retinal
layer:

0 = d2c

dx2
− Qic

γ + c
+ k2no − k1(nTi − nh − no)c, (21)

0 = D
d2nh
dx2

+ k3(nTi − nh − no) − k4nh, (22)

0 = D
d2no
dx2

+ αk1(nTi − nh − no)c − αk2no, (23)

where Qi and nTi (1, . . . , 8) denote the maximum rate of oxygen uptake in each layer
and the total Ngb concentration in each layer respectively. The boundary conditions
are the same as for the time-dependent eight layer model (see (20) above).

The dimensional and non-dimensional parameters associated with the eight layer
model are presented in Tables 3 and 4 respectively (where the upper and lower val-
ues for Q3 correspond to DA and LA respectively). Those parameters used in the
eight layer model which are the same as in the single layer model are stated in
Tables 1 and 2.
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Retinal oxygen distribution and the role of neuroglobin 13

Table 3 Dimensional parameters associated with the eight layer model (see Eqs. (16)–(23))

Parameter Description Value Source

L1 Positions of the
boundaries between
retinal layers

5 µm Yu et al. (1994)
Webvision, http://
webvision.med.utah.
edu/

L2 27.5 µm

L3 50 µm

L4 100 µm

L5 106.5 µm

L6 193.5 µm

L7 237.5 µm

L8 250 µm

nTi
(i = 1, 4, . . . , 8)

Typical Ngb
concentrations in each
retinal layer

2 µM Schmidt et al. (2003,
2005)

nT2 0 µM Bentmann et al. (2005)

nT3 200–4000 µM Ostojić et al. (2006, 2008)

Rajendram and Rao
(2007)

Q1 Maximum rate of oxygen
uptake by each retinal
layer

4.5 mlO2
(100 g tissue min)−1

(3 × 10−5 M s−1)

Qi (i = 2, 4) 0 mlO2
(100 g tissue min)−1

Haugh et al. (1990)

Q3 10–20 mlO2
(100 g tissue min)−1

(6.67 × 10−5 to
1.33 × 10−4 M s−1)

Cringle and Yu (2002)

Wangsa-Wirawan and
Linsenmeier (2003)

Birol et al. (2007)

Qi (i = 5, . . . , 8) 4 mlO2
(100 g tissue min)−1

(2.67 × 10−5 M s−1)

ĥ5 Permeability of the deep
retinal capillaries

6.5 × 10−5 ms−1

(typically)
Gillies et al. (1995)

ĥ7 Permeability of the 1.3 × 10−4 m s−1

(typically) superficial
retinal
capillaries

Tan et al. (2012)

cv Oxygen concentration in
the retinal
capillaries

40 mmHg (typically)
(3.84 × 10−5 M)

Hardarson et al. (2009)

Hardarson and Stefánsson
(2010)

Where two sets of units are stated, the first set was specified in the reference and the second, in brackets,
uses units consistent with the dimensional model
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Table 4 Non-dimensional
parameters associated with the
eight layer model (see
Eqs. (16)–(23))

Values given to an accuracy of at
most three significant figures

Parameter Value

L1 0.063

L2 0.34

L3 0.63

L4 1.25

L5 1.33

L6 2.42

L7 2.97

L8 3.13

nTi (i = 1, 4, . . . , 8) 0.02

nT2 0

nT3 2–40

Q1 1.69

Qi (i = 2, 4) 0

Q3 3.76–7.52

Qi (i = 5, . . . , 8) 1.50

ĥ5 2.64

ĥ7 5.28

cv 0.67

Fig. 5 Simulation results from the steady-state single layer model. As the total concentration of Ngb, nT ,
is increased, the steady-state oxygen concentration at x = L increases above the hypoxic threshold, γ .
Equations (8) and (13)–(15) were solved using the FEM with 101 mesh points. Dimensional values are
given in brackets for x (µm), c (mmHg) and nT (µM). Parameter values: L = 1.25 (100 µm), cc = 1
(60 mmHg) and Q = 1.88 (3.33 × 10−5 Ms−1). Remaining parameter values as in Table 2
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Retinal oxygen distribution and the role of neuroglobin 15

3 Single layer model results

3.1 Numerical solutions to the steady-state problem: oxygen transport

We begin by presenting results for the steady-state single layer problem, where we
investigate the role of Ngb in oxygen transport. The equations for the single layer
model, (8) and (13)–(15), were solved using the finite element method (FEM). We
validated our FEMsolutions to the steady-state problemby checking that theymatched
the steady-state solutions to the time-dependent problem, (7)–(12), solved using the
method of lines. In what follows, all variable and parameter values are given in their
non-dimensional form, unless stated otherwise.

Figure 5 shows how increasing the total concentration of Ngb in the retina, nT ,
affects the steady-state oxygen distribution. Increased Ngb levels result in a minor
decrease in the oxygen concentration in the well oxygenated region of the tissue near
x = 0, but a significant increase in the oxygen concentration near x = L . The decrease
in oxygen concentration near the choriocapillaris is insignificant since oxygen is rich
here; however, the increase in oxygen concentration near x = L represents a significant
alleviation of hypoxia. Indeed, the oxygen concentration does not pass beneath the
hypoxic threshold, γ , for nT ≥ 12, where nT = 16 is the maximum biologically
realistic value for a domain of this length.

3.2 Analysis of a simplified single layer model

In this section we develop and analyse a simplified version of the single layer model at
steady-state. We use the simplified model to investigate Ngb’s effect upon the domain
length that can be supported under normoxic conditions and upon theminimumoxygen
concentration when oxygen levels do not become hypoxic. (Keener and Sneyd 1998,
Chapter 2, perform a similar analysis for a problem involving the facilitated diffusion
of oxygen by Mb in a slab reactor, the main difference being that their equations lack
an oxygen uptake term.)

To simplify our analysis we make two changes: we replace the Michaelis–Menten
term, Qc/(γ + c), with a step function QH(c− γ ), so that the rate of oxygen uptake
is equal to zero when c < γ and Q when c ≥ γ . Secondly, we set ñ = 58 µM, so
that α = 1. This alternative choice for the non-dimensionalisation does not affect the

Table 5 Non-dimensional parameters associated with the simplified single layer model (see Eqs. (24)–
(26))

Parameter Value

nT 0–69.4

α 1

k1 31,800

k2 2.27

Only those parameter values that change have been listed, all other parameter values remain as in Table 2.
(Values given to an accuracy of at most three significant figures)
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16 P. A. Roberts et al.

behaviour of the system, it merely simplifies the analysis presented below (allowing
cancellation of the kinetic terms). The non-dimensional parameters nT , k1 and k2
also change, attaining the values stated in Table 5, whereas all other parameter values
remain as in Table 2.

Following these simplifications, Eqs. (13)–(15) take the form

0 = d2c

dx2
− QH(c − γ ) + k2no − k1nc, (24)

0 = D
d2nh
dx2

+ k3n − k4nh, (25)

0 = D
d2no
dx2

+ k1nc − k2no, (26)

where n = nT − no − nh . We impose the boundary conditions (8) to close the system.
We begin by considering the case where the retina becomes hypoxic, such that

c(x) ≤ γ for xc ≤ x ≤ L . Adding Eqs. (24) and (26), applying the zero-flux boundary
condition for no at x = 0 and integrating between 0 and x supplies

0 = dc

dx
(x) − dc

dx
(0) + D

dno
dx

(x) − Q
∫ x

0
H(c − γ )dx̃

︸ ︷︷ ︸

=min(x,xc)

, (27)

where xc is the maximum domain length that can be supported under normoxic con-
ditions, such that c(xc) = γ . Applying the zero-flux boundary conditions for c and no
at x = L , we find that dc

dx (0) = −Qxc. Rearranging Eq. (27), we obtain the following
expression for J (x), the flux of oxygen (in its bound and unbound forms):

J (x) = −
(

dc

dx
+ D

dno
dx

)

= Q(xc − min(x, xc)). (28)

Integrating Eq. (28) between 0 and xc, we obtain the following expression:

JA =
∫ xc

0
J (x)dx = (cc − γ ) + D(no(0) − no(xc)) = Qx2c

2
, (29)

where JA is a conserved quantity equal to the area under the curve J (x). We seek
an expression for xc, in order to determine the contribution of Ngb to the domain
length that can be supported under normoxia. We proceed by deriving leading order
approximations for no(0) and no(xc) in terms of c(0) = cc and c(xc) = γ respectively.
Expanding the dependent variables in regular power series in terms of the small para-
meter ε = 0.1 and substituting into Eqs. (24)–(26), we retain the (dominant) leading
order terms and neglect higher order terms.

We begin by re-scaling the variables and parameters, fixing ε = 0.1 to separate the
various scales. We scale c = εc∗, since c is of this order across most of the retina (see,
for instance, Fig. 5), D = ε2D∗, γ = ε2γ ∗, k1 = ε−4k∗

1 and k3 = ε−3k∗
3 .
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Retinal oxygen distribution and the role of neuroglobin 17

In Appendix 1 we show that n is bounded above by αk2nT /k3. Using the alternative
non-dimensionalisation adopted in this section, this becomes k2nT /k3 ≈ ε3nT (where
the changes in α and k2 cancel). Whilst no and nh vary across the domain, they are
of the same order of magnitude, and so, at leading order, they satisfy the conservation
relation no + nh = nT . Assuming that 2 ≤ nT ≤ 69.4, the Ngb terms can be scaled
in one of two ways, depending upon the size of nT :

– Scaling 1: for 2 ≤ nT < 7 we scale n = ε3n∗, where nh = O(1), no = O(1) and
nT = O(1).

– Scaling 2: for 7 ≤ nT ≤ 69.4 we scale n = ε2n∗, nh = ε−1n∗
h , no = ε−1n∗

o and
nT = ε−1n∗

T .

In both cases n/nT = O(ε3), nh/nT = O(1) and no/nT = O(1). In what follows
we work with the first scaling, noting that the leading order solution under the second
scaling is the same. Applying Scaling 1 to Eqs. (24)–(26) we obtain:

0 = ε
d2c∗

dx2
− QH∗(c∗ − γ ∗) + k2no − k∗

1n
∗c∗, (30)

0 = ε2D∗ d2nh
dx2

+ k∗
3n

∗ − k4nh, (31)

0 = ε2D∗ d2no
dx2

+ k∗
1n

∗c∗ − k2no, (32)

where H∗(c∗ −γ ∗) = H(c−γ ). Upon dropping the stars, Eqs. (31) and (32) provide

k3n − k4nh = 0, k1nc − k2no = 0, (33)

at leading order. Substituting the second of these equations into (30), the dominant
balance involves the diffusion and uptake terms. For x ≥ xc, QH(c−γ ) = 0, so that,
after applying c(xc) = γ , together with the zero-flux boundary condition at x = L ,
we find that c(x) = γ for x ∈ [xc, L]. For x ∈ [0, xc), c > γ , so that QH(c−γ ) > 0,

and we must scale x = ε
1
2 x∗ to attain a dominant balance between the diffusion

and uptake terms, resulting in a quadratic oxygen profile in this region. Applying this
scaling to Eqs. (31) and (32) retrospectively, we see that the leading order equations
in (33) are preserved. Formally, there is also a boundary layer at x = 0, to allow us to
satisfy the boundary conditions there (though there is no sharp change in the solution
in this region).

We use (33), together with the leading order conservation relation nh + no = nT ,
to derive an expression for no in terms of c as follows

no = nT c

P50 + c
, where P50 := k2k3

k1k4
. (34)

P50 is the oxygen concentration at which exactly half of the Ngb molecules are in
their oxygen bound form, that is at which no = nT /2 (=nh at leading order). This
expression for P50 differs from that used by Kiger et al. (2004), where P50 = k2(k3 +
k4)/(k1k4). Kiger et al.’s expression can be obtained by considering the unscaled,
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18 P. A. Roberts et al.

Fig. 6 Graph showing that the approximate solution for no matches closely with the numerical solution.
The numerical solution was obtained by solving Eqs. (8) and (24)–(26) using the FEM, with 101 mesh
points. The approximate solution was obtained using the numerical solution for c in Eq. (34). Parameter
values: L = 1, cc = 1, nT = 34.7 and Q = 1.50. Remaining parameter values as in Tables 2 and 5.
Parameters and variables are in their unscaled form

spatially homogeneous versions of Eqs. (24)–(26) with Q = 0. However, since k4 �
k3 (in their unscaled form), the difference between these two expressions is small. As
Fig. 6 reveals, the approximate solution for no in Eq. (34) matches closely with the
numerical solution.

Substituting for no from (34) into (29) we obtain

JA = (cc − γ )

⎛

⎜

⎜

⎜

⎝

1 + P50DnT
(P50 + cc)(P50 + γ )
︸ ︷︷ ︸

Ngb contribution

⎞

⎟

⎟

⎟

⎠

= Qx2c
2

. (35)

Rearranging Eq. (35), we may derive an expression for xc, the maximum domain
length that can be supported under normoxic conditions, as follows

xc =
√

2(cc − γ )

Q

(

1 + P50DnT
(P50 + cc)(P50 + γ )

)

. (36)

If nT = γ = 0 then (36) reduces to the expression derived by Dollery et al. (1969)
for the maximum tissue length that can be supported by a single vascular bed. It can
be seen both from Eq. (36) and from Fig. 7a that Ngb increases the size of xc. For
cc = 1 and nT = 34.7 (our predicted maximumNgb concentration for domains of this
length, assuming a maximal retinal width of 320 µm, and that Ngb is absent from all
other retinal layers), xc is 11 % longer than it would be in the absence of Ngb. Further,
Ngb makes a proportionally larger contribution to xc as cc decreases (see Fig. 7a), for
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Retinal oxygen distribution and the role of neuroglobin 19

Fig. 7 Graphs showing results for the simplified model. Graphs a and c show the proportional increase in
xc and c(L) respectively, due to the action of Ngb, the effect being more pronounced for lower values of cc .
Graphs b and d show the effect of P50 upon xc and c(L) respectively. The value of the dependent variable
at P50 = √

γ cc is marked with a circle in each case. The value of xc is maximal at P50 = √
γ cc; however,

c(L) takes its maximum value for some P50 >
√

γ cc . Graphs a and b were obtained using solutions to
(36) and graphs c and d were obtained using solutions to (39). Parameter values: Q = 1.50, c–d L = 1, b,
d cc = 1 and nT = 34.7. Remaining parameter values as in Tables 2 and 5. The key on the left applies to
graphs a and c only

instance, when nT = 34.7 and cc = 0.33, xc is 23 % larger than it would be in the
absence of Ngb.

Differentiating Eq. (36) with respect to P50, we find that xc achieves a global
maximum at P50,max = √

γ cc. Figure 7b shows the dependence of xc upon P50, with
the maximum value of xc, at which P50 = P50,max , marked with a circle. It can be
seen that the curve is fairly flat in the vicinity of P50,max such that xc remains near
maximal for a small decrease, or even quite a large increase, in P50 away from P50,max .
Further, xc decreases sharply as P50 approaches zero for P50 < 0.05. This result is
surprising since it is usually assumed that Ngb would be a more effective oxygen
transporter if it had a lower P50 value: our analysis reveals that as P50 decreases
below P50,max , Ngb will become less effective in oxygen transport. For cc = 1,
P50,max = 0.129 = 7.44 µM = 7.75 mmHg, which is within the range of measured
values in the literature (see Table 3 of the Online Resource).

So far we have assumed that the retina becomes hypoxic at some location, x =
xc < L . If instead, oxygen levels are normoxic throughout the domain, that is xc > L ,
then we may derive an expression for c(x = L), the minimum oxygen concentration.
Equation (28) becomes

J (x) = −
(

dc

dx
+ D

dno
dx

)

= Q(L − x). (37)
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Integrating (37) between 0 and L and substituting for no from (34) we obtain

JA = (cc − c(L))

(

1 + P50DnT
(P50 + cc)(P50 + c(L))

)

= QL2

2
. (38)

This equation can be rearranged to give the following expression for c(L):

c(L) = −A + √
A2 − 4B

2
, (39)

where we have chosen the positive root to satisfy the condition that c(L) = cc when
Q = nT = 0 (see Eq. (38)), and

A = P50 + QL2

2
+ P50DnT

P50 + cc
− cc, B = P50

(

QL2

2
− DnT cc

P50 + cc
− cc

)

. (40)

Figure 7c shows that Ngb acts to increase c(L), making a proportionally larger
contribution for lower cc. Indeed, for L = 1, cc = 1, nT = 34.7 (our predicted
maximum Ngb concentration for domains of length L = 1) and Q = 1.50, c(L) is
53 % higher than what it would be in the absence of Ngb.

Plotting c(L) against P50 shows that the maximum value of c(L) does not cor-
respond with P50 = √

γ cc, but instead lies at a P50 significantly above this value
(this relationship was found to hold for all combinations of parameter values tested,
see Fig. 7d). It may be that the optimum P50 lies somewhere above

√
γ cc, since xc

decreases slowly as P50 increases beyond
√

γ cc, but c(L) increases more rapidly. In
both cases a decrease in P50 below

√
γ cc is disadvantageous, counter to the prevailing

assumption that lower P50 values improve Ngb’s effectiveness in oxygen transport.

3.2.1 Comparing numerical and approximate solutions

In deriving an analytical solution for xc we have made two simplifying assumptions:
(i) that the Michaelis–Menten term for oxygen uptake may be approximated by a step
function and (ii) that no can be approximated as a function of c (Eq. (34)). In this
section we compare the approximate analytical solutions with the numerical solutions
to the full (Eqs. (8) and (13)–(15)) and simplified (Eqs. (8) and (24)–(26)) problems.
When solving the simplified problem numerically, we replace the step function in
(24), H(c−γ ), with the modified hyperbolic function, 12 (tanh((c−γ )/δ)+1), where
δ = 0.001, so as to avoid the numerical difficulties resulting from a discontinuity in
the governing equations.

Figure 8a compares the approximate solution to the numerical solution to the full
problem, for the proportional increase in xc due to Ngb (the numerical solution to the
simplified problem provides a closer match to the approximate solution, but is omitted
for clarity), whilst Fig. 8b compares the results for the approximate solution and the
numerical solutions to the simplified and full models, for the dependence of xc upon
P50. The difference between results is at most O(ε) (where ε = 0.1) in all cases, as
expected for a leading order approximation. The numerical solution to the simplified
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Fig. 8 Graphs comparing numerical and approximate solutions to the single layermodel. Graph a compares
the results for the proportional increase in xc , due to the action of Ngb, from the approximation (36) and
the solution to the full problem (8) and (13)–(15). In general the approximate solution overestimates the
numerical solution, particularly for small values of cc . Graph b compares the results for the effect of P50
upon xc from the approximation (36), the solution to the simplified problem (8) and (24)–(26) and the
solution to the full problem (8) and (13)–(15); the value of xc at P50 = √

γ cc is marked with a circle.
The numerical solutions to the simplified and full problems lie mostly beneath the approximate solution.
The numerical solutions to the full and simplified problems were obtained using the FEM with 801 mesh
points. Parameter values: L = 2 and Q = 1.50; b cc = 1 and nT = 34.7. Remaining parameter values as
in Tables 2 and 5

problem achieves its maximum for P50 slightly above
√

γ cc, whilst the numerical
solution to the full problem achieves its maximum for P50 ≈ 0.28 = 16.7 mmHg.
This is approximately twice

√
γ cc = 0.13 = 7.7 mmHg, and lies at the upper end of

the rangeofmeasuredvalues in the literature (seeTable 3of theOnlineResource,where
the bracketed P50 values are the ones consistentwith the parameters used in ourmodel).
Unlike the approximate and simplified numerical solutions, the prediction of xc from
the full numerical solution initially decreases as P50 increases from 0 (this result was
verified using the Matlab routine pdepe to solve the time-dependent problem (7)–
(12), allowing it to settle to steady-state). Whilst this results in a local maximum at
P50 = 0, the global maximum remains at P50,max,numeric > 0. Therefore, we have
a reasonable agreement between the numerical solutions to the full and simplified
problems and our approximations.

4 Eight layer model results

4.1 Numerical solutions to the steady-state problem: oxygen transport

As with the single layer model, we solved the steady-state eight layer model, (20)–
(23), using the FEM. We validated our FEM solutions to the steady-state problem by
checking that they matched the steady-state solution to the time-dependent problem,
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Fig. 9 Simulation results from the eight layer model showing the oxygen distribution in the healthy human
retina under LA and DA in the absence of Ngb. The spatial extent of the different layers is depicted by the
vertical lines, whilst the hypoxic threshold, c = γ , is denoted by a horizontal line. The oxygen concentration
in the outer retina (layers 1–5) and layer 6 is significantly lower under DA due to the increased rate of oxygen
uptake by the photoreceptor ISs. Equations (20)–(23) were solved using the FEM with 501 mesh points.
Under LA Q3 = 3.76, whereas under DA Q3 = 7.52. In both cases nTi = 0 (i = 1, . . . , 8). Remaining
parameter values as in Tables 2 and 4

(7) and (16)–(20), solved using the method of lines. We now return to the non-
dimensionalisation described in Sect. 2 (as opposed to that adopted in Sect. 3.2).

Figure 9 shows the oxygen profile across a healthy human retina under LA (dotted
curve) and DA (solid curve) in the absence of Ngb. The boundaries between model
layers are shown by vertical lines and the layers are labelled 1–8, whilst a horizontal
line marks the hypoxic threshold, γ . The only difference between LA and DA in our
model is that the rate of oxygen uptake by the photoreceptor ISs, Q3, under DA is
double that under LA. As a result, the oxygen concentration in the outer retina (layers
1–5) and in layer 6, is significantly lower underDA than under LA,whereas the oxygen
concentration in layers 7 and 8 remains relatively unaffected.

The parameters used to generate this plot are either taken directly from the literature,
or estimated from the literature, except for the permeabilities of the deep and superficial
retinal capillaries, ĥ5 and ĥ7. These are chosen to yield oxygen profiles similar to those
measured in the rat (see Yu et al. 1994, Figure 2(a)) and macaque (see Fig. 2) retinas
(which are physiologically and biochemically similar to the human retina), whilst
satisfying the constraint ĥ7 = 2ĥ5, since the superficial retinal capillary bed has twice
the density of the deep retinal capillary bed (Tan et al. 2012, see the Online Resource
for more details). Therefore, our simulations of the retinal oxygen profile in humans
constitute testable predictions.

Since the oxygen profile in the inner retina of the macaque may descend to near
hypoxic levels (see Fig. 2a), we choose the permeabilities such that the inner retinal
oxygen profile descends beneath the hypoxic threshold in the absence of Ngb under
DA. This allows us to test whether Ngb could prevent hypoxia in such a scenario,
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raising the oxygen profile to levels similar to those seen in the healthy macaque.
Further, as we vary ĥ5 and ĥ7 between 0.2–3.1 and 0.4–6.2 respectively (under DA,
results not shown) we find that the outer retina will remain normoxic provided cc is
not significantly reduced, whilst the inner retina (layers 6–8) will remain hypoxic,
achieving its minimum in layer 6, as is the case in Fig. 9.

We note that whilst Fig. 9 matches well with the oxygen profile seen in rats (see, for
example, Yu and Cringle 2002), our model places the minimum inner retinal oxygen
concentration at a position outward from that measured in the macaque (see Fig. 2).
However, in the absence of measurements for the retinal oxygen profile in humans
with which to compare our results, it is not clear that any modification of the model
would be an improvement.

In Fig. 10 we show that Ngb may prevent inner retinal hypoxia. The parameters
chosen are the same as those for Fig. 9 under DA (for which the inner retina is hypoxic
in the absence of Ngb). The solid curve shows the oxygen profile in the absence of Ngb
(this is the same as the solid curve in Fig. 9) and the dotted curve shows the oxygen
profile in the presence of Ngb, when Ngb is most heavily concentrated in layers 3, 6,
7 and 8. This Ngb distribution corresponds with that found in the retina of the rat by
Bentmann et al. (2005) (see Online Resource). The average Ngb concentration across
the retina in this simulation is approximately 432µM,which is larger than the average
of 100–200µMmeasured in themouse retina by Schmidt et al. (2003). However, since
Ngb is confined to the cytosol (the fluid compartment of cells excluding the nucleus
and organelles) of retinal cells, itmay be thatNgb could reach an average concentration
in the cytosol much greater than 200 µM, without the average concentration of Ngb
across the whole retina exceeding this value. As such, the Ngb concentration in our
model should be interpreted as the concentration in the cytosol. It can be seen that the
addition of Ngb raises the oxygen profile in the inner retina, increasing the minimum
in layer 6 so that it no longer passes beneath the hypoxic threshold, c = γ . (In this
case, our model predicts an average inner retinal oxygen level of 8.5 mmHg, which is
within the range of values measured by Birol et al. (2007) in the rhesus monkey.) This
corresponds to an increase in the minimum rate of oxygen uptake in the inner retina
from 40.1 to 53.3 % of Q6, the maximum rate of oxygen uptake in this region (see
Eq. (21)).

In Fig. 11 we decrease cc, cv , ĥ5 and ĥ7 (the oxygen concentration at the choriocap-
illaris and in the retinal capillaries, and the permeabilities of the deep and superficial
retinal capillaries respectively) so that the outer retina is hypoxic in the absence of
Ngb, more closely representing the macaque retina under DA (Birol et al. 2007). It is
found that if Ngb is concentrated primarily in the photoreceptor ISs (L2 < x < L3),
then it may prevent outer retinal hypoxia (raising the outer retinal minimum oxygen
concentration to 1.1 mmHg, which falls within the range 1.3 ± 0.2 mmHg measured
by Yu et al. (2005) in the macaque). This corresponds to an increase in the minimum
rate of oxygen uptake in the outer retina from 36.8 to 51.8 % of Q3, the maximum
rate of oxygen uptake in this region (see Eq. (21)). We remark that the inner retina is
hypoxic in both cases since there is insufficient Ngb in this region. In this case, the
average concentration of Ngb across the retina is approximately 362 µM.

There is some variability between measured retinal oxygen distributions, particu-
larly within the inner retina. Therefore, whilst it is beyond the scope of the present

123



24 P. A. Roberts et al.

Fig. 10 Simulation results from the eight layer model showing how the presence of Ngb in the inner retinal
layers may prevent inner retinal hypoxia under DA. Key: Ngb absent (solid curve nTi = 0, i = 1, . . . , 8);
Ngb present (dotted curve nT1 = nT4 = nT5 = 0.02, nT2 = 0 and nT3 = nT6 = nT7 = nT8 = 6.50).
Equations (20)–(23) were solved using the FEM with 501 mesh points. Parameter values: Q3 = 7.52.
Remaining parameter values as in Tables 2 and 4

Fig. 11 Simulation results from the eight layermodel showing how the presence ofNgb in the photoreceptor
ISs may prevent outer retinal hypoxia under DA. Key: Ngb absent (solid curve nTi = 0, i = 1, . . . , 8);
Ngb present (dotted curve nT1 = nTi = 0.02, nT2 = 0, nT3 = 40, i = 4, . . . , 8). Equations (20)–(23)

were solved using the FEM with 501 mesh points. Parameter values: cc = 0.5, Q3 = 7.52, ĥ5 = 2.03,
ĥ7 = 4.06 and cv = 0.5. Remaining parameter values as in Tables 2 and 4
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work, we note that a detailed parameter sensitivity analysis would provide a valuable
extension, allowing us to determine the range of scenarios underwhichNgb is effective
in preventing or alleviating hypoxia.

4.2 Numerical solutions to the time-dependent problem: oxygen storage

Simulations were run for both the single and eight layer models to determine the
maximum period of time for which Ngb could buffer the retina against hypoxia,
following either an increase in the rate of oxygen uptake, Q, or a decrease in the
oxygen supply, cc or cv (results not shown). It was found that Ngb could prevent
hypoxia for no more than a few seconds and hence we conclude that it is unlikely to
play a significant role in oxygen storage.

4.3 Asymptotic analysis of the neuroglobin-free problem

In this section we perform an asymptotic analysis of the Ngb-free, steady-state prob-
lem, in order to validate the piecewise linear and quadratic approximations to the
oxygen profile used by Braun et al. (1995), Cringle and Yu (2002) and others. For this
purpose, we consider the parameter values to be of the same order of magnitude as
those used in Fig. 9, as these represent standard conditions for the human retina. In
the absence of Ngb there is no reason to distinguish between layers 6 and 7, since the
purpose of the boundary between these layers was to ensure that Ngb could not pass
between them. Therefore, we now group layers 6 and 7 together, labelling this new
merged layer, ‘layer 6∗’, and relabel ‘layer 8’ as ‘layer 7∗’. The details of the analysis
can be found in Appendix 2.

To summarise, we have found that c(x) is quadratic in layers 1, 3, 5 and 7∗ at leading
order, that it is linear in layers 2 and 4, and may be approximated by quadratics in
layer 6∗. That is,

c(x) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Qi x2

2 + Ai x + Bi , for i ∈ {1, 3, 5, 7∗},
Ai x + Bi , for i ∈ {2, 4},
Q6∗
2 (L5 − x)2 + √

2Q6∗cL(L5 − x) + cL , left-hand, layer 6∗,
(

1 + Q6∗ (xmin−x)2

2(γ+cmin)

)

cmin, central, layer 6∗,
Q6∗
2 (x − L6∗)2 + √

2Q6∗cR(x − L6∗) + cR, right-hand, layer 6∗,

(41)

where xmin and cmin , the position and size respectively, of the local minimum in
layer 6∗, are given by Eqs. (66) and (67) respectively in Appendix 2, cL = c(L5),
cR = c(L6∗) and the Ai s and Bi s are constants of integration. The equations contain 14
unknowns (A1 · · · A5, A7∗ , B1 · · · B5, B7∗ , cL and cR),which can be found by imposing
the 14 boundary conditions upon the external and internal boundaries (c(0) = cc,
cx (L7∗) = 0 and the concentration and flux conditions across the internal boundaries
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Fig. 12 Comparison of the approximate solution with the FEM solution to the full problem. The approxi-
mate solution matches well with the FEM solution, though it is less accurate in layers 3 and 4. The left-hand
solution in layer 6∗ is plotted from x = L5 to x = xmin , the right-hand solution is plotted from x = xmin
to x = L6∗ and the central solution is plotted throughout layer 6∗. The spatial extent of the different layers
is depicted by the vertical lines. Parameter values are the same as those used in Fig. 9 for the dark adapted
case

at x = Li , for i = 1, . . . , 6∗). The approximation is continuous, except within layer
6∗, where it is not possible to obtain continuity between the left-hand, central and
right-hand approximations. The accuracy of the approximation can be improved using
iteration, resulting in slight modifications to the values of some of the unknowns listed
above, as described in Appendix 2.

Figure 12 compares the approximate solution with the finite element solution to
the full problem using the same parameter values as in Fig. 9 for the dark adapted
case. The approximate solution agrees reasonably well with the FEM solution, though
it underestimates it, particularly in layers 3 and 4. The approximate value of xmin ,
xappmin = 2.0625 (4 d.p.), is very close to the FEM value, x FEM

min = 2.0625 (4 d.p.), with
an error of O(10−5), whilst the approximate value of cmin , c

app
min = 0.0091 (4 d.p.), is

less close to the FEM value, cFEM
min = 0.0114 (4 d.p.), though it is of the same order

of magnitude, with an error of O(10−3).
This analysis shows that the piecewise linear and quadratic profiles used by Braun

et al. (1995), Cringle and Yu (2002) and others are valid, provided the oxygen con-
centration is O(1) or O(ε). If the oxygen concentration drops to O(ε2), that is, if it
becomes hypoxic or near-hypoxic, a quadratic approximation is valid; however, the
coefficients of the quadratic are not the same as those based on the assumption of
constant oxygen uptake used in the literature. In this case the coefficients must be
modified, as outlined above. We also note that when fitting curves to measured oxy-
gen profiles, the value of Q in those layers where c = O(ε2) will be underestimated
when using a constant oxygen uptake assumption since c/(γ + c) is significantly less
than unity in these regions.
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5 Discussion

The retina is one of the most oxygen hungry tissues in the human body, such that,
despite being well vascularised, it is frequently at risk of hypoxia. In this paper we
have investigated the part that may be played by the protein Ngb in the prevention of
hypoxia, through its roles in oxygen transport and storage.

Single and eight layer models of the retina were derived in one spatial dimension for
both the steady-state and time-dependent problems associated with oxygen transport
and storage respectively (Sect. 2).

The single layer model is a toy model, such that, whilst it does not capture the
complex physiology and cellular compartmentalisation of the retina, it provides a
useful starting point for investigating the role of Ngb in oxygen transport and stor-
age for a more generic scenario. Examination of the steady-state single layer model
(Sect. 3.1) demonstrated that Ngb acts by removing oxygen from oxygen rich regions
and redistributing it to oxygen poor regions, with the potential to eliminate or alleviate
hypoxia.

Steady-state solutions of the eight layer model revealed that Ngb may play an
important role in oxygen transport in the human retina (Sect. 4.1). Whilst the effect of
Ngb on the oxygen profile is subtle, an increase in the oxygen concentration through
the hypoxic threshold, γ , may result in a significant increase in the rate of oxygen
uptake (as much as 30–40 %) since the Michaelis–Menten curve is steepest in a
neighbourhood of c = γ . It was found that Ngb may prevent inner retinal hypoxia,
provided it is sufficiently concentrated in this region. Similarly, if the outer retina is
vulnerable to hypoxia, then outer retinal hypoxia may be avoided, provided Ngb is
present in sufficient quantities in the photoreceptor ISs.

Whilst our model oxygen profiles may differ from the, as yet unmeasured, human
retinal oxygen profiles and whilst there is some inter-individual variability, the eight
layer model shows that Ngb could in principle prevent or alleviate hypoxia in the
human retina, provided Ngb is appropriately distributed. Detailed measurements of
the cytosolic Ngb concentration in different cellular layers of the retina are needed
in order to determine whether Ngb is present in the quantities that we suggest are
necessary for Ngb to play a significant role in oxygen transport.

We expect Ngb to be most highly concentrated in those layers of the retina that
are most vulnerable to hypoxia. This would mean that Ngb distribution would differ
between species, as retinal oxygen distribution differs between species, and perhaps
within individual eyes, as oxygen supply and demand vary with eccentricity. The
most closely related species in which retinal oxygen and Ngb distributions have been
measured are the mouse and rat, where it was found that Ngb is indeed most highly
concentrated in those regions where oxygen is most scarce (Yu et al. 1994; Schmidt
et al. 2003, 2005). Further studies are needed to confirm whether this holds true
in other species. The only study to date to examine the relationship between Ngb
distribution and eccentricity in the human retina found no differences in the patterns
of immunoreactivity for Ngb between the central and peripheral retina (Ostojić et al.
2008); however, this does not exclude the possibility that, whilst Ngb may be present
within the same retinal layers across the retina, itmaybedistributeddifferently between
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those layers for different eccentricities. Further experimental work is required to test
this prediction.

We also note that Ngb in one region of the retina can play a protective role in
preventing hypoxia in another region, even if Ngb cannot pass between these two
regions. This is evident in Fig. 10, where Ngb in layer 7 (x ∈ [2.42, 2.97]) raises
the oxygen concentration on the left-hand side of the layer, so that it is at a higher
concentration as it enters layer 6, a region vulnerable to hypoxia. Therefore, whilst
Bentmann et al. (2005) observe that the distribution of cytoglobin (a protein that has
also been proposed to play a role in oxygen transport within the retina, Burmester et al.
2002; Trent and Hargrove 2002) is unrelated to mitochondria distribution and oxygen
consumption, this does not imply that cytoglobin cannot play a role in oxygen transport
and storage, since it does not need to be colocalised with mitochondria containing
regions in order to increase the oxygen supply to these regions. Having said this, the
compartmentalisation of Ngb within the retina does reduce its capacity to transport
oxygen across the retina, since oxygen-bound Ngb will often meet a barrier before
reaching an oxygen poor region where it can deposit its oxygen. In other words, if Ngb
is confined within a narrow region across which the drop in oxygen concentration is
small, then Ngb will have a less pronounced effect than if allowed to move across a
larger region where the drop in oxygen concentration is large and hence across which
the drop in Ngb oxygen saturation is large.

Ngb must be present in high concentrations and the duration of unfavourable para-
meter fluctuations brief in order for Ngb to be of significant benefit in oxygen storage
(Sect. 4.2). If there was a scenario in which cc or Q oscillated on the time scale of a
few seconds, and particularly if the periods of recovery were longer than the periods
of challenge, then Ngb could prevent or reduce hypoxia to a significant degree (results
not shown); however, as far as we are aware, no such scenario exists. Thus, whilst
the model parameters may differ between individuals, it is highly unlikely that any
situation could obtain in which Ngb could store oxygen on the timescale of minutes
to hours that would be necessary for it to play a significant role in the prevention of
hypoxia via oxygen storage.

Therefore we conclude that Ngb may play an important role in oxygen transport,
but it is unlikely to play an important role in oxygen storage.

The conclusion that Ngb may play an important role in oxygen transport is further
supported by our analysis of the simplified single layer model (Sect. 3.2). This demon-
strated that Ngb increases the maximum domain length that can be supported under
normoxia, xc, and the minimum oxygen concentration in a normoxic domain, c(L).
It was found that the proportional contribution of Ngb to these quantities is larger for
lower values of cc, the oxygen concentration at the choriocapillaris. This is consistent
with the idea that Ngb has an important role in oxygen transport, particularly when
the oxygen supply is limited.

The analysis also indicated that xc is maximised for an oxygen affinity of P50,max =√
γ cc, decreasing sharply as P50 → 0 and decreasing gradually initially as P50

increases past its optimum value. This trend was confirmed by the numerical solu-
tion to the full problem; however, the P50 value for which xc is maximised was shown
to be approximately twice that predicted by the analysis. It is surprising that the opti-
mum P50 value should be so high, since it is assumed in the literature that a lower P50
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value will result in more efficient oxygen transport. For cc in the range 20–100 mmHg
(the maximum expected range in humans and other mammals), the numerical solution
to the full problem predicts that P50,max,numeric = 9.5−17.9 (±2) mmHg, whereas a
P50 corresponding to that of Mb (0.9–2.2 mmHg) is generally thought to be preferable
in the literature (see for instanceBurmester andHankeln 2004, 2009). Four of the eight
measured values of Ngb P50 presented in Table 3 of the Online Resource (relevant P50
values in brackets) fall within our predicted range, meaning that the oxygen affinity
has the value one would expect if Ngb plays a role in oxygen transport. Therefore, the
fact that Ngb has a higher P50 value thanMb is advantageous, rather than problematic,
for oxygen transport (suggesting that natural selection may have tuned this parameter
to its present value). Indeed, given the shallow gradient of the curve in Fig. 8b for
P50 > P50,max,numeric, oxygen transport would remain near-optimal even for P50 val-
ues significantly higher than P50,max,numeric. We note also that these results suggest
that the P50 value of Ngb may differ between species, varying according to the square
root of the average oxygen concentration at the capillaries. Further experimental work
is required to test this prediction.

A tractable analytical expression for the P50 value which maximises c(L) in a
normoxic domain could not be obtained; however, numerical solution with a range of
parameter values suggests that the optimal P50 value lies consistently above that which
optimises xc, that is above P50,max,numeric. This suggests that the overall optimal P50
value may lie a little above P50,max,numeric.

In addition to illustrating the general principle that Ngb’s oxygen transport prop-
erties may be optimised for a higher P50 value than that taken by Mb, the scenarios
captured by the simplified single layer model may occur at several points in the human
retina. For instance, in both layers 3 and 6, the oxygen profile may drop from a nor-
moxic concentration at one end of the layer, to hypoxic levels within the layer, whilst
in layer 8, the oxygen concentration remains normoxic across the layer, satisfying a
zero-flux boundary condition at x = L8.

Lastly, asymptotic analysis of the steady-state Ngb-free problem (Sect. 4.3) demon-
strated that the assumption of a constant rate of oxygen uptake is valid, provided the
oxygen concentration is O(ε) (where ε = 0.1, corresponding to≈6 mmHg), or larger.
This places existing models for retinal oxygen distribution on a stronger theoretical
foundation. If the oxygen concentration drops to hypoxic or near-hypoxic levels, at
O(ε2), then the oxygen profile can still be approximated using a quadratic, but the
coefficients will be different from those which result from the constant rate of oxygen
uptake assumption.

This work could be extended in several ways. The magnitude of the histidine disso-
ciation rate, k−

h , could be made to vary according to the oxygen concentration, so that
Ngb’s oxygen affinity decreases in hypoxia and increases in normoxia, to examine the
extent to which this enhances the oxygen transport and storage properties of Ngb (see
the Online Resource and Hamdane et al. 2003, for details). Models could be developed
to examine the potential role of Ngb at other eccentricities within the human retina,
or in other species, by adjusting the parameters relating to geometry, oxygen supply
and oxygen demand. Also, cytoglobin could be included in the models, to determine
whether it significantly augments the oxygen transport and storage properties of Ngb.
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The model could also be extended to 2D or 3D, and more detailed descriptions of cell
metabolism and blood flow incorporated.

In conclusion, although Ngb’s transport function results in only a minor shift in the
oxygen profile, this can result in a significant rise in oxygen uptake andmay be enough
to prevent hypoxia if supply and demand are finely balanced. Ngb is unlikely to be
important for oxygen storage. Contrary to the prevailing assumption, the fact that Ngb
has a higher P50 value than Mb is not evidence against its role in oxygen transport,
and indeed many of the P50 values measured thus far are near optimal for oxygen
transport. Finally, the assumption of a piecewise constant rate of oxygen uptake, used
in previous studies, is valid, provided oxygen levels do not drop to O(ε2).
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Appendix 1: Placing a bound on the concentration of pentacoordinate
neuroglobin

It was found in all single and eight layer model simulations that the concentration of
pentacoordinate Ngb, n, at any given point in space is significantly lower than that of
hexacoordinate Ngb, nh , or oxygen bound Ngb, no, at that point. In this appendix we
derive a bound on n to explain why this is the case.

Beginning with the time-dependent equation for n, Eq. (10), we can re-write it in
the form

∂n

∂t
= D

∂2n

∂x2
+ f (x, t) −

(

1

κ
+ g(x, t)

)

n, (42)

where 1/κ = k3, f (x, t) = k4nh + αk2no ≥ 0 and g(x, t) = αk1c ≥ 0. Whether we
are using the single or the eight layer model, this equation will be defined on a finite
domain, which we can denote as x ∈ [0, L] without loss of generality. As usual, we
impose zero-flux boundary conditions at either end of the domain.

Consider the function M = M(t) which satisfies

dM

dt
=

(

max
x,t

( f (x, t)) + β

)

− 1

κ
M, (43)

where the constant β > 0 is arbitrarily small. This can be written as

dM

dt
= F − 1

κ
M, (44)

where F = (maxx,t ( f (x, t)) + β) > f (x, t) ≥ 0 is a constant. We close the system
by imposing the initial condition

M(0) = max
x

(n(x, 0)). (45)
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Solving this initial-value problem using the integrating factor method we obtain

M(t) = e− t
κ M(0) + κF(1 − e− t

κ ). (46)

Taking the limit as t tends to infinity we find that

lim
t→∞ M(t) = κF. (47)

Let u(x, t) := n(x, t) − M(t), then

∂u

∂t
− D

∂2u

∂x2
= ( f − F) − u

κ
− gn, (48)

from Eqs. (42) and (44). Since ( f − F) < 0 and gn ≥ 0 we have that

∂u

∂t
− D

∂2u

∂x2
+ u

κ
< 0, (49)

and therefore

∂

∂t

(

e
t
κ u

)

− D
∂2

∂x2

(

e
t
κ u

)

< 0. (50)

Defining v(x, t) := e
t
κ u(x, t), we have that

∂v

∂t
− D

∂2v

∂x2
< 0, (51)

with initial condition

v(x, 0) = n(x, 0) − max
x

(n(x, 0)), (52)

and zero-flux boundary conditions.
By the maximum principle for parabolic PDEs we have that v must achieve its

maximum on one of the boundaries x = 0, x = L or t = 0 (Ockendon et al. 2003).
Suppose that v takes its maximum value on x = 0 for some t = t1 > 0. Since
nx (0, t1) = 0 by the zero-flux boundary condition and since Mx (t1) = 0, as M is
independent of x , this implies that ux (0, t1) = 0 and so vx (0, t1) = 0. Therefore,
in order for this point to be a maximum, we require both that vt (0, t1) = 0 and
vxx (0, t1) ≤ 0. This implies that vt (0, t1) − Dvxx (0, t1) ≥ 0, which contradicts (51).
Therefore, the maximum cannot lie on the boundary x = 0. Using a similar argument
we can show that the maximum cannot lie on the boundary x = L . Therefore, the
maximummust lie on the boundary t = 0. As a check we can see that if the maximum
lies on the boundary t = 0 for some x = x1, where 0 < x1 < L , then we must have
that vt (x1, 0) ≤ 0, vx (x1, 0) = 0 and vxx (x1, 0) ≤ 0. Thus (51) may be satisfied,
provided |vt (x1, 0)| > D|vxx (x1, 0)|.

Since v(x, t) takes its maximum value on t = 0 this means that v(x, t) ≤
maxx (v(x, 0)) = maxx (n(x, 0)−maxx (n(x, 0))) = maxx (n(x, 0))−maxx (n(x, 0))
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= 0. Therefore u ≤ 0, which implies that n ≤ M . Therefore, by (47), we have
that at steady-state n ≤ κF . Taking the limit as β tends to zero, we find n ≤
κ maxx,t ( f (x, t)) = κ maxx,t (k4nh + αk2no) ≤ καk2nT = αk2nT

k3
≈ 4nT × 10−4.

This bound was found to be satisfied in all simulations.

Appendix 2: Asymptotic analysis

In the absence of Ngb, Eqs. (21)–(23) reduce to a single equation for oxygen:

0 = d2c

dx2
− Qic

γ + c
, (53)

for Qi (1, . . . , 7∗).
In layers 2 and 4, Q2 = Q4 = 0, so that an exact analytical solution to Eq. (53)

may be obtained. In all other layers, Qi is strictly positive, so that an exact analytical
solution cannot be derived. In these layers we look instead for a leading order solution.
Since the value of Qi is not, in general, continuous between layers, we cannot use
standard matching techniques to construct a solution which is valid across all layers.
Instead we use patching, ensuring that the solution in each layer satisfies the boundary
conditions between it and the adjoining layers (see Bender andOrszag 1999, pgs. 335–
336 for a discussion of patching).

We construct an asymptotic expansion for c(x):

c(x) ∼ c0(x) + εc1(x) + O(ε2), (54)

choosing ε = 0.1, so as to provide a clear separation between the various scales,
and introduce γ ∗ = ε−2γ so that γ ∗ = O(1). We also note that Qi = O(1) for
i ∈ {1, 3, 5, 6∗, 7∗} and that Q2 = Q4 = 0. Applying the scaling on γ , Eq. (53)
becomes

0 = d2c

dx2
− Qic

ε2γ ∗ + c
. (55)

We now consider the leading order solution to Eq. (55) within each layer, grouping
layers that have the same scaling.

Layer 1

In layer 1, c = O(1), as can be seen in Fig. 9, and Eq. (55) supplies, at leading order,

c(x) ∼ c0(x) = Q1x2

2
+ A1x + B1, (56)

where A1 and B1 are constants.
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Layers 2 and 4

In layers 2 and 4, Q2 = Q4 = 0, so that Eq. (55) can be solved exactly to yield

c(x) = Ai x + Bi , (57)

for i = 2, 4, where Ai and Bi are constants.

Layers 3, 5 and 7∗

In layers 3, 5 and 7∗, c = O(ε), as can be seen in Fig. 9. Rescaling oxygen as c = εc∗,
we then rescale x as x = ε1/2x∗

i + Li−1 in order to achieve a dominant balance, so
that, after returning to our original scaling on c and x we have, at leading order,

c(x) ∼ Qi x2

2
+ Ai x + Bi , (58)

for i ∈ {3, 5, 7∗}, where Ai and Bi are constants.

Layer 6∗

The situation in layer 6∗ is less straightforward. On the left- and right-hand sides of
layer 6∗, c = O(ε), whereas, toward the centre of the layer, in a neighbourhood around
the local minimum, c = O(ε2). Where c = O(ε), we could scale c and x as in layers
3, 5 and 7∗; however, in the central region, where c = O(ε2), wewould regain Eq. (53)
in the dominant balance after dropping the stars. Since seeking leading order solutions
does not allow us to avoid dealing with Eq. (53), we instead retain Eq. (53) across
the whole of layer 6∗ and use quadrature methods to derive approximate analytical
solutions for the oxygen profile in this layer.

We will derive separate approximations to the oxygen profile for the left-hand
side, centre and right-hand side of layer 6∗, in order to account for the variation in c
between O(ε) and O(ε2). We will also derive approximations to the minimum oxygen
concentration in layer 6∗, cmin , and its position, xmin .

Multiplying Eq. (53) by dc/dx and integrating between xmin and x , we find that

dc

dx
= ±√

2Q6∗

√

c − cmin − γ log

(

γ + c

γ + cmin

)

, (59)

where we take the positive (negative) root to the right (left) of xmin , since the gradient
of the oxygen profile is positive (negative) there. We note that the values of cmin and
xmin are unknown at this stage.

We begin by seeking the left-hand and right-hand approximations near L5 and L6∗
respectively. For the left-hand approximation, we integrate Eq. (59) between x and L5

123



34 P. A. Roberts et al.

to obtain

∫ cL

c(x)

(

s − cmin − γ log

(

γ + s

γ + cmin

))− 1
2

ds = √

2Q6∗(x − L5), (60)

where cL = c(x = L5) is unknown at this stage. Since c ≈ cL in the left-hand region,
where cL = O(ε), and since cmin = O(ε2) and γ = O(ε2) (see Fig. 9 for values

of cL and cmin), we may approximate the integrand by s− 1
2 to obtain the left-hand

approximation as

c(x) ≈ Q6∗

2
(L5 − x)2 + √

2Q6∗cL(L5 − x) + cL . (61)

In a similar way, we obtain the right-hand approximation:

c(x) ≈ Q6∗

2
(x − L6∗)2 + √

2Q6∗cR(x − L6∗) + cR, (62)

where cR = c(x = L6∗) is unknown at this stage. Both cL and cR may be found by
applying the boundary conditions as described at the end of this section.

To derive the central approximation, valid in the neighbourhood of xmin , we inte-
grate Eq. (59) between xmin and x . Writing log((γ + s)/(γ + cmin)) = log(1+ (s −
cmin)/(γ + cmin)), we expand the integrand (which is the same as in Eq. (60)) about
s = cmin , in powers of (s − cmin)/(γ + cmin), where s is the variable of integration
and |(s − cmin)/(γ + cmin)| � 1. Retaining only the first term and neglecting higher
order terms, we obtain the central solution:

c(x) ≈
(

1 + Q6∗(xmin − x)2

2(γ + cmin)

)

cmin, (63)

in which xmin and cmin are presently unknown.
To determine xmin , we integrate Eq. (59) between the limits xmin and L5, and xmin

and L6∗ , to obtain the following pair of equations:

∫ cL

cmin

(

s − cmin − γ log

(

γ + s

γ + cmin

))− 1
2

ds = √

2Q6∗(xmin − L5), (64)

∫ cR

cmin

(

s − cmin − γ log

(

γ + s

γ + cmin

))− 1
2

ds = √

2Q6∗(L6∗ − xmin). (65)

Subtracting Eq. (64) from Eq. (65), and noting that min(cL , cR) < s < max(cL , cR)

in the integrand, where cL = O(ε), cR = O(ε), cmin = O(ε2) and γ = O(ε2) (see

Fig. 9 for values of cL , cR and cmin), we may approximate the integrand by s− 1
2 to

obtain

xmin ≈ L5 + L6∗

2
−

(√
cR − √

cL√
2Q6∗

)

. (66)

123



Retinal oxygen distribution and the role of neuroglobin 35

We obtain an implicit expression for cmin , by substituting for xmin from Eq. (66) into
Eq. (64):

∫ cL

cmin

(

s−cmin−γ log

(

γ +s

γ +cmin

))− 1
2

ds

≈
√

Q6∗

2
(L6∗ − L5) − (

√
cR − √

cL), (67)

where the integral must be calculated numerically. With xmin and cmin specified by
(66) and (67) respectively, we can use Eq. (63) to calculate the central solution.

Using iteration to improve accuracy

We can iteratively improve the accuracy of our approximation using the exact deriv-
ative, given by Eq. (59), in the oxygen-flux boundary conditions at x = L6∗ and
x = L7∗ , given by Eq. (20), to yield:

0 = √

2Q6∗

√

cL − cmin − γ log

(

γ + cL
γ + cmin

)

+

(Q5L5 + A5(cL)) − ĥ5(cv − cL),

(68)

0 = √

2Q6∗

√

cR − cmin − γ log

(

γ + cR
γ + cmin

)

+

Q7∗(L7∗ − L6∗) − ĥ6∗(cv − cR).

(69)

The constant cmin takes the value calculated by solving (67), using the original values
of cL and cR , whilst the constant A5 is a function of cL , given by:

A5(cL) = 1

L5

[

cL − cc − 1

2

(

Q5(L
2
5 + L2

4) + Q3(L
2
2 − L2

3) − Q1L
2
1

)
]

. (70)

Equations (68)–(69) can be solved numerically, using the Matlab routine fsolve, to
find updated values for cL and cR . The updated cL and cR can then be used to calcu-
late an updated value for cmin , using Eq. (67). We may then repeat the iteration, using
the updated value of cmin in Eqs. (68)–(70), to find new values for cL and cR . Once
the solution has converged, the final values of cL and cR can then be used to calcu-
late improved values for A1, . . . , A5, B7∗ , xmin and cmin , by applying the boundary
conditions to Eq. (41) as described in Sect. 4.3 and using Eqs. (66) and (67).

It was found that iteration results in a small improvement in the accuracy of the
approximation and that the solution does not change significantly (by O(10−4) or
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greater) after the third iteration. Therefore, we use the parameters generated by the
third iteration for the approximate solution in Sect. 4.3.

References

Alder VA, Cringle SJ, Constable IJ (1983) The retinal oxygen profile in cats. Invest Ophthalmol Vis Sci
24(1):30–36

Anderson B (1968) Ocular effects of changes in oxygen and carbon dioxide tension. Trans Am Ophthalmol
Soc 66:423–474

Anderson B, Saltzman HA (1964) Retinal oxygen utilization measured by hyperbaric blackout. Arch Oph-
thalmol 72(6):792–795

Bender CM, Orszag SA (1999) Advanced mathematical methods for scientists and engineers I: asymptotic
methods and perturbation theory. Springer, Berlin

Bentmann A, Schmidt M, Reuss S, Wolfrum U, Hankeln T, Burmester T (2005) Divergent distribution
in vascular and avascular mammalian retinae links neuroglobin to cellular respiration. J Biol Chem
280(21):20660–20665

Birol G, Wang S, Budzynski E, Wangsa-Wirawan ND, Linsenmeier RA (2007) Oxygen distribution and
consumption in the macaque retina. Am J Physiol Heart Circ Physiol 293(3):H1696–H1704

Braun RD, Linsenmeier RA, Goldstick TK (1995) Oxygen consumption in the inner and outer retina of the
cat. Invest Ophthalmol Vis Sci 36(3):542–554

Burmester T, Hankeln T (2004) Neuroglobin: a respiratory protein of the nervous system. News Physiol
Sci 19(3):110–113

Burmester T, Hankeln T (2009) What is the function of neuroglobin? J Exp Biol 212(10):1423–1428
Burmester T, Weich B, Reinhardt S, Hankeln T (2000) A vertebrate globin expressed in the brain. Nature

407(6803):520–523
Burmester T, Ebner B, Weich B, Hankeln T (2002) Cytoglobin: a novel globin type ubiquitously expressed

in vertebrate tissues. Mol Biol Evol 19(4):416–421
Chan G, Balaratnasingam C, Yu PK, Morgan WH, McAllister IL, Cringle SJ, Yu DY (2012) Quantita-

tive morphometry of perifoveal capillary networks in the human retina. Invest Ophthalmol Vis Sci
53(9):5502–5514

Costa LE, Mendez G, Boveris A (1997) Oxygen dependence of mitochondrial function measured by high-
resolution respirometry in long-term hypoxic rats. Am J Physiol 273(3):C852–C858

Cringle SJ, Yu DY (2002) A multi-layer model of retinal oxygen supply and consumption helps explain the
muted rise in inner retinal PO(2) during systemic hyperoxia. Comp Biochem Physiol 132(1):61–66

Dollery CT, Bulpitt CJ, Kohner EM (1969) Oxygen supply to the retina from the retinal and choroidal
circulations at normal and increased arterial oxygen tensions. Invest Ophthalmol Vis Sci 8(6):588–
594

Fago A, Hundahl C, Malte H, Weber RE (2004b) Functional properties of neuroglobin and cytoglobin.
insights into the ancestral physiological roles of globins. IUBMB Life 56(11–12):689–696

GilliesMC,SuT,NaidooD (1995)Electrical resistance andmacromolecular permeability of retinal capillary
endothelial cells in vitro. Curr Eye Res 14(6):435–442

Goldman D (2008) Theoretical models of microvascular oxygen transport to tissue. Microcirculation
15(8):795–811

Hamdane D, Kiger L, Dewilde S, Green BN, Pesce A, Uzan J, Burmester T, Hankeln T, Bolognesi M,
Moens L, MardenMC (2003) The redox state of the cell regulates the ligand binding affinity of human
neuroglobin and cytoglobin. J Biol Chem 278(51):51713–51721

Hardarson SH, Stefánsson E (2010) Oxygen saturation in central retinal vein occlusion. Am J Ophthalmol
150(6):871–875

Hardarson SH, Basit S, Jonsdottir TE, Eysteinsson T, Halldorsson GH, Karlsson RA, Beach JM, Benedik-
tsson JA, Stefansson E (2009) Oxygen saturation in human retinal vessels is higher in dark than in
light. Invest Ophthalmol Vis Sci 50(5):2308–2311

Haugh L, Linsenmeier R, Goldstick T (1990) Mathematical models of the spatial distribution of retinal
oxygen tension and consumption, including changes upon illumination. Ann Biomed Eng 18:19–36

Jürgens KD, Peters T, Gros G (1994) Diffusivity of myoglobin in intact skeletal muscle cells. Proc Natl
Acad Sci 91(9):3829–3833

Keener J, Sneyd J (1998) Mathematical physiology. Springer, Berlin

123



Retinal oxygen distribution and the role of neuroglobin 37

Kiger L, Uzan J, Dewilde S, Burmester T, Hankeln T, Moens L, Hamdane D, Baudin-Creuza V, Marden
MC (2004) Neuroglobin ligand binding kinetics. IUBMB Life 56(11–12):709–719

Kohen R, Nyska A (2002) Invited review: oxidation of biological systems: oxidative stress phenomena,
antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30(6):620–650

Kur J, Newman EA, Chan-Ling T (2012) Cellular and physiological mechanisms underlying blood flow
regulation in the retina and choroid in health and disease. Prog Retin Eye Res 31(5):377–406

Linsenmeier RA (1986) Effects of light and darkness on oxygen distribution and consumption in the cat
retina. J Gen Physiol 88(4):521–542

Linsenmeier RA, Braun RD (1992) Oxygen distribution and consumption in the cat retina during normoxia
and hypoxemia. J Gen Physiol 99(2):177–197

Linsenmeier RA, Padnick-Silver L (2000) Metabolic dependence of photoreceptors on the choroid in the
normal and detached retina. Invest Ophthalmol Vis Sci 41(10):3117–3123

Linsenmeier RA, Yancey CM (1989) Effects of hyperoxia on the oxygen distribution in the intact cat retina.
Invest Ophthalmol Vis Sci 30(4):612–618

McGuire BJ, Secomb TW (2001) A theoretical model for oxygen transport in skeletal muscle under condi-
tions of high oxygen demand. J Appl Physiol 91(5):2255–2265

Ockendon J, Howison S, Lacey A, Movchan A (2003) Applied partial differential equations, revised edn.
Oxford University Press, Oxford
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