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Abstract Antiviral treatment is one of the key pharmacological interventions against
many infectious diseases. This is particularly important in the absence of preventive
measures such as vaccination. However, the evolution of drug-resistance in treated
patients and its subsequent spread to the population pose significant impediments to
the containment of disease epidemics using treatment. Previous models of population
dynamics of influenza infection have shown that in the presence of drug-resistance,
the epidemic final size (i.e., the total number of infections throughout the epidemic) is
affected by the treatment rate. Thesemodels, through simulation experiments, illustrate
the existence of an optimal treatment rate, not necessarily the highest possible rate, for
minimizing the epidemic final size. However, the conditions for the existence of such
an optimal treatment rate have never been found. Here, we provide these conditions for
a class of models covered in the literature previously, and investigate the combination
effect of treatment and transmissibility of the drug-resistant pathogen strain on the
epidemic final size. For the first time, we obtain the final size relations for an epidemic
model with two strains of a pathogen (i.e., drug-sensitive and drug-resistant). We also
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discuss this model with specific functional forms of de novo resistance emergence,
and illustrate the theoretical findings with numerical simulations.

Keywords Epidemic modelling · Treatment · Drug-resistance ·
Final size relation · Reproduction numbers

Mathematics Subject Classification 92B05 · 37N25

1 Introduction

In the 1930s, the pioneering work of Kermack and McKendrick established an
extremely important principle, stating that the level of susceptibility must exceed a
certain threshold in order for an epidemic to occur in a population (Kermak andMcK-
endrick 1927, 1931). This principle was deduced from a simple system of differential
equations describing the dynamics of susceptible (S), infected (I ), and recovered (R)
individuals in a homogeneouslymixedpopulation, the so-called classical SIRepidemic
model. Since then, many epidemiological models have been developed and studied to
address the conditions for disease control (Brauer and Castillo-Chavez 2010; Keeling
and Rohani 2008), should the level of susceptibility in the population warrant the
occurrence of an epidemic. A key parameter that has been thoroughly investigated in
these models is the basic reproduction number, commonly denoted by R0 (Ander-
son and May 1992; Diekmann and Heesterbeek 2000, defined (in the epidemiological
context) as the average number of secondary infections generated by a single infec-
tious individual introduced into an entirely susceptible population. Translation of the
Kermack and McKendrick principle in the context of the basic reproduction number
provides the threshold condition R0 > 1 for an epidemic to take place (Diekmann
and Heesterbeek 2000; van den Driessche and Watmough 2002). Naturally, the aim
of public health intervention measures is to reduce R0 below one in order to halt the
epidemic spread.

Among disease interventions that have been practiced, antiviral treatment remains
a key pharmacological measure to reduce illness, lower disease transmissibility, and
therefore reduce R0 to sufficiently low values to make disease control feasible. In
the absence of preventive measures (such as vaccination), antiviral treatment is par-
ticularly important for disease management. However, many infectious pathogens
can evolve and generate successor strains that confer drug-resistance (Domingo and
Holland 1997). The evolution of resistance is generally associated with impaired
transmission fitness compared to the drug-sensitive strains of the infectious pathogen
(Moghadas 2011). In the absence of treatment, drug-resistant strains may be com-
petitively disadvantaged compared to the drug-sensitive strains and may go extinct.
However, treatment prevents the growth and spread of the drug-sensitive strains, and
therefore induces a selective pressure that favours the drug-resistant strains to replicate
and restore their fitness to a level suitable for successful transmission (Andersson and
Levin 1999; Björkman et al. 2000;Maisnier-Patin andAndersson 2004). This phenom-
enon has been observed in several infectious diseases, in particular for management
of influenza infection using antiviral drugs (Rimmelzwaan et al. 2005).
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Previous models of influenza epidemics and pandemics have investigated strategies
for antiviral treatment in order to reduce the epidemic final size (i.e., the total number of
infections throughout the epidemic), while preventing wide spread drug-resistance in
the population (Hansen andDay2011;Lipsitch et al. 2007;Moghadas 2008;Moghadas
et al. 2008, 2009). Through computer simulations, these studies have shown that, when
the drug-resistant strain is highly transmissible, there is an optimal treatment rate
for minimizing the final size (Lipsitch et al. 2007; Moghadas 2008; Moghadas et al.
2008). This optimal treatment rate is not necessarily the highest possible level. Despite
the recognition of this optimal treatment rate, no theoretical investigation has been
conducted to determine the conditions under which the final size is minimum. In fact,
no prior study has expressed the final size relations for epidemic models that contain
two strains of a pathogen with different transmissibilities. Here, we develop a model
that describes the population dynamics of infections caused by drug-sensitive and
drug-resistant strains of a pathogen. We derive the final size relations, and determine
conditions under which the epidemic final size decreases with increasing the treatment
rate. Our theoretical results, for the first time, formulate the conditions for the existence
of an optimal treatment rate within its plausible range, at which the epidemic final size
undergoes a local minimum. We discuss the findings for two distinct structures of the
model by consideringdifferent functional forms for the development of drug-resistance
during treatment, and illustrate the results by numerical simulations. Finally we close
the paper with some concluding remarks and questions to be addressed in future work.

2 The model

To develop the model with drug-sensitive and drug-resistant pathogen strains (from
now on, refered to as resistant strain and sensitive strain, respectively, throughout the
paper), we divided a homogeneously mixing population of size N (t) into classes of
individuals with epidemiological statuses as susceptible (S), infected with the sensi-
tive strain (IS ), infected with the sensitive strain under treatment (IT ), infected with
the resistant strain (IR ), and recovered individuals (R). Since treatment is ineffective
against the resistant strain, we combined the two classes of resistance with and without
treatment. In the model considered here, susceptible individuals can become infected
through contacts with infected individuals in a bilinear mass action incidence. We
assume that β is the baseline transmission rate of the sensitive strain; δR denotes the
relative transmissibility of the resistant strain; δT is the relative transmissibility of
treated infection with the sensitive strain; η is the rate at which individuals infected
with the sensitive strain are treated; and γS , γT , γR are the recovery rates for individuals
with the sensitive strain without treatment, sensitive strain with treatment, and resis-
tant strain, respectively; with the initial conditions S(0) > 0, IS (0) ≥ 0, IR (0) ≥ 0,
and IT (0) = R(0) = 0. We also assume that treatment reduces the infectiousness, and
therefore transmissibility, of the sensitive strain (δT < 1) (Halloran et al. 2006). Treat-
ment may also shorten the infectious period (1/γT ≤ 1/γS ) (Moghadas et al. 2008).
Since resistance generally emerges with compromised transmission fitness (Domingo
andHolland 1997), we assume a lower transmissibility of the resistant strain compared
to that of the sensitive strain without treatment (δR < 1). With these assumptions, the

123



346 Y. Xiao et al.

Fig. 1 Model diagram for
transitions between
subpopulations

model is schematically represented in Fig. 1, and the equations for S and IS are given
by

S′ = −β
(
IS + δT IT + δR IR

)
S,

I ′
S

= β
(
IS + δT IT

)
S − (

γS + η
)
IS .

The novelty of our model relates largely to the emergence of resistance as a prob-
ability function of time since the start of treatment. Experimental studies suggest that
the rate of developing resistance increases with time, as resistant mutants in viruses
isolated from treated patients were mostly detected several days after the start of treat-
ment (Kiso et al. 2004; Ward et al. 2005). We do not attempt to provide a detailed
picture of the resistance development, but assume that resistance emerges in treated
individuals at a rate which depends on the time since the onset of treatment. Our pri-
mary purpose is to explore how the increase in treatment rate affects the total number
of infections (i.e., the epidemic final size).

We define α(a) to be the probability of being in the treated class (IT ) at time a fol-
lowing the initiation of treatment without developing drug-resistance. Thus, 1− α(a)

represents the probability of developing drug-resistance earlier than time a follow-
ing the start of treatment. Here, we assume that individuals infected with the sensitive
strain may develop drug-resistance after the start of treatment, and therefore α(0) = 1.
Since the probability of resistance emergence increaseswith the outgrowth of pathogen
replication, it is biologically reasonable to have the following assumption on the prob-
ability function α:

(H) α(a) : [0,∞) −→ [0, 1] is a non-negative non-increasing, piecewise differ-
entiable function with possibly a finite number of jumps, lima→∞ α(a) = 0, and∫ ∞
0 α(a) da is bounded.
Using this assumption and adopting the idea from van den Driessche and Zou

(2007), one can easily obtain the total number of treated individuals with the sensitive
strain (without developing drug-resistance) at any time t by using

IT (t) =
∫ t

0
ηIS (ξ)e−γT (t−ξ)α(t − ξ) dξ. (1)
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Differentiation of (1) gives

I ′
T
(t) = ηIS (t) +

∫ t

0
ηIS (ξ)e−γT (t−ξ)α′(t − ξ) dξ − γT IT (t),

in which, since α′(a) ≤ 0, the term
∫ t

0
ηIS (ξ)e−γT (t−ξ)α′(t − ξ) dξ,

represents the flow from IT to IR following the emergence of drug-resistance during
treatment. Assuming that there are no disease-induced deaths, and neglecting birth
and natural death during the epidemic, the total population size remains constant
(N (t) = N ). Since recovered individuals are no longer susceptible to reinfection, we
may omit the equation for R without affecting the dynamics of disease transmission in
the model. Considering the development of drug-resistance in treated individuals and
direct transmission of resistance as influx of the IR class, the model can be expressed
in the form

S′ = −β
(
IS + δT IT + δR IR

)
S, (2)

I ′
S

= β
(
IS + δT IT

)
S − (

γS + η
)
IS , (3)

I ′
T

= ηIS +
∫ t

0
ηIS (ξ)e−γT (t−ξ)α′(t − ξ) dξ − γT IT , (4)

I ′
R

= δRβ IR S −
∫ t

0
ηIS (ξ)e−γT (t−ξ)α′(t − ξ) dξ − γR IR . (5)

It is easy to verify that the above model is well-posed with non-negative initial
conditions. By using the variation-of-constants formula for the equations for IS , IR , R,
and considering that S′ = 0 if S = 0, one can deduce that these variables remain non-
negative using a contradiction argument. Thus, from (1), it can be seen that IT (t) ≥ 0
for all t . Furthermore, the fact that the total population S + IS + IT + IR + R is
a positive constant guarantees the boundedness of the model solutions (Brauer and
Castillo-Chavez 2010; Xiao and Zou 2013).

Remark Themodel (2)–(5) can also be derived by the introduction of an age-structured
subpopulation and the probability of developing drug-resistance at a certain time. Let
J (t, a) represent the population size of individuals infected with the sensitive strain
at time t , for whom treatment has initiated at time t − a. Then

(
∂

∂t
+ ∂

∂a

)
J (t, a) = − (

p(a) + γT

)
J (t, a),

with the boundary condition J (t, 0) = ηIS (t), and the initial condition J (0, a) = 0
for a ≥ 0, where p(a) is the rate at which treated individuals develop drug-resistance
at time a. Thus, the total number of infected individuals who develop drug-resistance
at time t following the start of treatment is given by

Q(t) =
∫ ∞

0
p(a)J (t, a) da =

∫ t

0
p(a)J (t − a, 0)e− ∫ a

0

(
γT +p(s)

)
ds da.
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Let α′(a) = −p(a)e− ∫ a
0 p(s) ds be the probability of developing drug-resistance

exactly at time a. Using the change of variable ξ = t − a, we obtain

Q(t) = −
∫ t

0
ηIS (t − a)e− ∫ a

0 γT dsα′(a) da =
∫ t

0
ηIS (ξ)e−γT (t−ξ)α′(t − ξ) dξ,

which gives the integral term in (4). The remaining parts of the model can then be
derived by using our approach described above.

3 Reproduction numbers

In this section, we provide expressions for the reproduction numbers of the model.
In the absence of treatment, it can easily be seen that the basic reproduction number
for the sensitive strain is R0 = βN/γS (Diekmann and Heesterbeek 2000; van den
Driessche and Watmough 2002), where N represents the total population size, which
is constant in the absence of demographics and disease-induced death. When treat-
ment is applied,R0 is reduced to a related number, the so-called control reproduction
number, denoted byRc in our study. Here we provide the expression forRc in terms
of the model parameters.

Let

α∗ := lim
t→∞

∫ t

0
e−γT ξα(ξ) dξ, (6)

where α∗ is the Laplace transform of the function α(a), evaluated at γT . Clearly, α
∗

represents the average time period that an individual infected with the sensitive strain
remains in the treatment class before developing drug-resistance. By the properties of
α(a) in (H) (i.e., α(a) ≤ 1 for all a ≥ 0), we have

0 < α∗ ≤ lim
t→∞

∫ t

0
e−γT ξ dξ = 1

γT

,

and therefore γT α∗ represents the probability that an infected individual will recover
during the course of treatment. Thus,

Λ = − lim
t→∞

∫ t

0
e−γT (t−ξ)α′(t − ξ) dξ = 1 − γT α∗, (7)

is the probability that a treated individual will develop drug-resistance. Now, suppose
that a single infectious case with the sensitive strain is introduced into a population that
is entirely susceptible.When treatment is implemented, the number of secondary cases
with the sensitive strain generated by the initial infectious case is given by βN/(γS +η)

without treatment, and δT ηα∗βN/(γS + η) during treatment before developing drug-
resistance. Thus the number of infections with the sensitive strain is given by

RS = βN
(
γS + η

) + δT ηα∗βN
(γS + η)

.
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From (7), it can be seen that the initial case will also generate a number of secondary
(resistant) infections given by δRη(1−γT α∗)βN/(γR (γS +η)) after developing drug-
resistance during treatment. Thus the total number of new infections generated by a
single case of infection with the sensitive strain is given by

RS
c = βN

γS + η
+ ηδT α∗βN

γS + η
︸ ︷︷ ︸
total number of new cases

generated before the

initial infection with the

sensitive strain develops

drug-resistance

+ η(1 − γT α∗)δRβN

(γS + η)γR

.

︸ ︷︷ ︸
total number of new cases

generated after the initial

infection with the sensitive

strain has developed

drug-resistance

Introduction of an individual infected with the resistant strain into the population
will result in the generation of only new infections with the resistant strain. The total
number of these new cases is given by

RR = δRβN/γR .

The next generation method (van den Driessche and Watmough 2002) gives the
control reproduction number for (2)−(5):

Rc = max
{
RS ,RR

}
.

In many epidemic modes, the control reproduction number is used to determine
whether or not the epidemic will occur. This may be acheived by linearizing the
model about the equilibrium point at which no infection is present (i.e., disease-free
equilibrium), and evaluating the dominant eigenvalue of the system. This eigenvalue is
often referred to the reproduction number, providing a threshold condition for epidemic
to occur (when exceeds 1), but does not necessarily correspond to the number of
secondary infections generated by a single infectious case.

Remark The next generation method (van den Driessche and Watmough 2002) for
computing Rc disregards the number of infected individuals with the resistant strain
caused by an initial infection of the sensitive strain after drug-resistance has devel-
oped. To compute this number (i.e., RS

c ), one can use the individual tracing method
(Moghadas 2008). In epidemic models considering the demographic structure, Rc is
often used as a threshold for determining the persistence or eradication of the disease.
In our model with a short-term epidemic duration, and without demographics (omit-
ting birth and death rates), we focus on the final size of the total infections, which
depends not only on RS but alsoR

S
c .

4 Final size relations

In this section, we attempt to provide an expression for the final size relation of the
model (2)−(5). We will use the notation f̂ to denote

∫ ∞
0 f (t) dt for an arbitrary non-
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negative integrable function, and define the initial conditions S(0) = S0, IS (0) = IS0,
IR (0) = IR0, IT (0) = 0, with S0 + IS0 + IR0 = N . Summation of the Eqs. (2)−(5)
gives

(
S + IS + IT + IR

)′ = − (
γS IS + γT IT + γR IR

)
< 0. (8)

Hence, (S + IS + IT + IR ) is a decreasing function bounded below by zero, and
therefore approaches a limit as t → ∞. Since S is non-negative and decreasing, S
approaches a non-negative limit S∞ as t → ∞. Since S0+ IS0+ IR0 = N , integration
of (8) from 0 to ∞ gives

N − S∞ = γS ÎS + γT ÎT + γR ÎR . (9)

Integration of (2) from 0 to ∞ leads to

log
S0
S∞

= β
[
ÎS + δT ÎT + δR ÎR

]
. (10)

IntegratingEq. (1), one can easily see (using (6) and the changeof variable t−ξ = u)
that

ÎT = η ÎS

∫ ∞

0
e−γT uα(u) du = η ÎSα

∗. (11)

Substituting (11) into (9) and (10) gives

N − S∞ = (
γS + γT ηα∗) ÎS + γR ÎR , (12)

log
S0
S∞

= β
[
(1 + δT ηα∗) ÎS + δR ÎR

]
. (13)

In simple epidemic models, such as the one proposed in Kermak and McKendrick
(1927), there are two equations relating S∞ and R0 (or Rc) with a single integral
term. It is therefore possible to eliminate this integral term and obtain a transcendental
equation (the so-called “final size relation”), relating N − S∞ and the basic reproduc-
tion number. However, this is not possible for Eqs. (12) and (13), and we are unable
to determine the explicit form of the epidemic final size in the terms of the model
parameters. We therefore propose the following approach to understand the effect of
treatment rate on the epidemic final size.

Solving (12) and (13) as a system of linear equations for ÎR and ÎS , we obtain:

(
R∗(η) − RR

)
ÎR = R∗(η)

γR

(N − S∞) − N

γR

log
S0
S∞

, (14)

(
RR − R∗(η)

)
ÎS = RR

(γS + γT ηα∗)
(N − S∞) − N

(
γS + γT ηα∗) log

S0
S∞

, (15)
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where

R∗(η) :=
(
1 + δT ηα∗)

γS + γT ηα∗ βN . (16)

Remark We may interpret R∗(η) as the total treatment-mediated number of new
infections generated by an infectious case with the sensitive strain. This interpretation
can be easily obtained by considering

(
γS + γT α∗η

γS + η

)

︸ ︷︷ ︸
probability that an individual infected

with the sensitive strain remains

sensitive infection before recovery

R∗(η) =
(

γS

γS + η
+ δT ηγSα

∗

γS + η

)
R0.

︸ ︷︷ ︸
total number of new cases

generated before the initial

infection with the sensitive strain

develops drug-resistance

A simple calculation yieldsR∗(0) = R0. Since treatment is expected to reduce the
infectious period and/or transmissibility of the sensitive strain (i.e., δT /γT ≤ 1/γS ), we
obtain

dR∗(η)/dη = α∗ (
γSδT − γT

)

(
γS + γT ηα∗)2 βN ≤ 0.

Therefore, R∗(η) is a decreasing function of η, and limη→∞ R∗(η) = δT βN/γT .
The behaviour of the system (2)−(5) depends on the values of δR/γR and δT /γT .

Suppose δT/γT < δR/γR , indicating that the total number of new cases generated by
an infectious case with the sensitive strain under treatment (δT βN/γT ) is less than the
total number of new cases generated by an infectious case with the resistant strain
(δRβN/γR ). In this case, by the properties of R∗(η) and fitness impairment of the
resistant strain (δR/γR < 1/γS ), there exists a unique η∗ > 0 such that R∗(η∗) = RR ,
where

η∗ = γSδR − γR

α∗ (
γR δT − γT δR

) .

Because ÎR and ÎS must be non-negative, we obtain the following final size inequal-
ities from Eqs. (14) and (15):

RR <

log
S0

S∞(η)[
1 − S∞(η)

N

] < R∗(η), η < η∗, (17)

RR >

log
S0

S∞(η)[
1 − S∞(η)

N

] > R∗(η), η > η∗. (18)
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For η = η∗, we have the final size relation:

log
S0

S∞(η∗)
= RR

[
1 − S∞(η∗)

N

]
. (19)

Note that (17)−(18) do not provide any explicit expression for the final size relation.
In order to establish an equality relating the treatment rate and the epidemic final size,
we note that the right hand side of (12) represents the epidemic final size in terms of
the total number of individuals infected with the resistant strain (γR ÎR ) and the total
number of individuals infected with the sensitive strain ((γS + γT ηα∗) ÎS ) who do not
develop drug-resistance. We define the ratio of these two numbers as a function of η

by

λ(η) = γR ÎR(
γS + γT ηα∗) ÎS

.

Here, we are considering a specific situation with given parameters and initial values
of the subpopulations, so that only the treatment rate η may be varied, and λ is a
function of η only. Substitution of R∗(η) and λ(η) into (12) and (13), gives

log
S0

S∞(η)
= E(η)

(
1 − S∞(η)

N

)
, (20)

where

E(η) = R∗(η) + RRλ(η)

1 + λ(η)
. (21)

Because the final size depends on the function E which itself depends on the
unknown quantities in function λ(η), it is not possible to express the final size in terms
of the model parameters only. To determine the final size in any particular case, it is
necessary to perform numerical simulations. However, the Eq. (20) allows us to study
the possible behaviour of E(η), and the effect of the treatment rate.

We first explore the relation between the final size of the susceptible population
and the function E(η).

Lemma 1 Suppose 0 < S(η) ≤ N is a solution of the Eq. (20) for η ≥ 0. Then

S′(η)E ′(η) ≤ 0.

Proof Implicit differentiation of (20) gives,

(
E(η)

N
− 1

S∞(η)

)
S′∞(η) = E ′(η)

(
1 − S∞(η)

N

)
. (22)

Since 1 − S∞(η)/N > 0, we need only to show that S∞(η) < N/E(η). From (20),
we define the following function

G(x) = log
S0
x

− E(η)
(
1 − x

N

)
,
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for x > 0. From (20) one can see that S∞(η) is a zero of the function G(x). A simple
calculation shows that G(x) > 0 for x near zero, and G(N ) < 0 (since S0 < N ); thus
there exists x∗, with 0 < x∗ < N , such that G(x∗) = 0. Differentiating G(x) with
respect to x gives

G ′(x) = −1

x
+ E(η)

N
.

If E(η) ≤ 1, then G ′(x) < 0 for 0 < x ≤ N , which indicates that x∗ = S∞(η) is
the only zero of G. Since x∗ < N ≤ N/E(η), it follows that S∞(η) < N/E(η).

Now suppose E(η) > 1. Since G ′(x) > 0 for x > N/E(η), it follows that G(x)
is an increasing function on [N/E(η), N ]. Thus, from G(N ) < 0 it follows that
G(x) has no zero on the interval [N/E(η), N ]. Since G(S∞(η)) = 0, we conclude
that S∞(η) < N/E(η). Therefore, we have shown that in both cases (E(η) ≤ 1 and
E(η) > 1), E(η)/N − 1/S∞(η) < 0, and consequently S′(η)E ′(η) ≤ 0. �	

We now need to make an assumption about λ(η), which is the ratio of the total
number of infections with the resistant strain to the total number of infections with the
sensitive strain. We assume that λ′(η) is a non-decreasing function of η. Simulations,
presented in Sect. 5, indicate that λ′(η) ≥ 0 is a plausible assumption. In general, as
the treatment rate increases, the total number of infections with the sensitive strain
decreases, and the total number of individuals infected with the resistant strain is
expected to increase through the development of drug-resistance during treatment
or direct transmission of the resistant strain. To further support this assumption, we
consider a special case, where α(0) = 1 and α(a) = 0 for a > 0. This effectively
means that all treated individuals will develop drug-resistance before recovery. In this
case, α∗ = 0 and the total number of individuals infected with the sensitive strain
is given by γS ÎS . We note that RS

c is a decreasing function of η and therefore the
total number of new cases generated by an individual infected with the sensitive strain
decreases. Hence, increasing the treatment rate decelerates the spread of the sensitive
strain, and consequently the rate of decrease in the susceptible class. For this special
case, the first term in RS

c decreases as η increases. However, the second term in
the expression for RS

c increases as η increases, giving λ′(η) ≥ 0 for η ≥ 0. This
assumption is further illustrated by our examples in the model experiments.

With this assumption, we have the following result that describes the relation
between the treatment rate and the epidemic final size.

Theorem 1 Suppose λ′(η) ≥ 0.

1. If δR/γR ≤ δT /γT , then increasing treatment rate reduces the epidemic final size.
2. If δR/γR > δT /γT , then either the epidemic final size decreases as the treatment

rate increases for η ≥ 0; or there exists an η0 > 0 such that the epidemic final
size decreases in the interval of 0 ≤ η < η0, and has a local minimum at η0.

Proof Differentiating E(η) in (21) gives

E ′(η) = [1 + λ(η)] (R∗(η))′ + λ′(η)
[
RR − R∗(η)

]

(1 + λ(η))2
. (23)
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For case 1, we have limη→∞ R∗(η) ≥ RR , and therefore RR − R∗(η) ≤ 0 for
η ≥ 0. Since (R∗(η))′ < 0, the assumption λ′(η) ≥ 0 implies that E ′(η) < 0 for
η ≥ 0. From Lemma 1, it then follows that S′∞(η) ≥ 0. Hence, S∞(η) is an increasing
function of η, and the epidemic final size decreases as η increases.

For case 2, η∗ ≥ 0 if δR/γR ≤ 1/γS . SinceR
∗(η) ≥ RR for η ≤ η∗, it follows that

E ′(η) < 0 for 0 ≤ η ≤ η∗. For η > η∗, there are two possibilities: (1) E ′(η) < 0,
which leads to the same situation in case 1; (2) there exists at least one η0 > η∗ such
that E ′(η0) = 0, and E ′(η) changes the sign at η0. Considering η0 as the smallest
zero of E ′(η) greater than η∗, we have E ′(η) < 0 for 0 ≤ η < η0. Thus, Lemma 1
implies that S′∞(η) ≥ 0 for 0 ≤ η < η0, and changes the sign at η0. From a continuity
argument, it follows that S′∞(η0) = 0, and therefore S∞(η) exhibits a local maximum
at η0. This shows that the epidemic final size decreases for 0 ≤ η < η0, and has a
local minimum at η0.

For case 2, if δR/γR > 1/γS , then η∗ < 0 andR∗(η) < RR for η > 0. Hence both
possibilities exist for η > 0, and a similar argument applies. �	

As a consequence of Theorem 1, one can see that if δR/γR > δT /γT , then increasing
the treatment rate above a certain value can result in an increase in the epidemic final
size. This provides a theoretical foundation for previous work that has shown this
phenomena by numerical simulations.

Remark The effect of treatment can be included in the model as a reduction of disease
transmissibility from the start of treatment but no reduction in infectious period, or a
reduction in infectious period but no reduction in the transmissibility, or a combination
thereof. In a practical sense, the overall effect of treatment should match the reduction
in secondary attack rates observed in household studies (Halloran et al. 2006). When
the overall effect is included in the transmissibility, and infectious periods are the same,
the conditions in Theorem 1 become δR ≤ δT (for case 1), and δR > δT (for case 2).

5 Model experiments

In this section, we illustrate the theoretical findings for two special cases of the model
(2)−(5) using numerical simulations.

5.1 Exponential case of de novo resistance

Let α = e−κt , where κ represents the rate of de novo resistance in treated individuals.
In this case, α∗ = 1/(κ + γT ), and the model (2)−(5) reduces to a similar model
presented in Moghadas (2008):

S′ = −β
(
IS + δT IT + δR IR

)
S,

I ′
S

= β
(
IS + δT IT

)
S − (

γS + η
)
IS ,

I ′
T

= ηIS − (
κ + γT

)
IT ,

I ′
R

= βδR IR S + κ IT − γR IR .
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The reproduction number Rs
c is now given by

Rs
c =

(
γS

γS + η
+ δT ηγS(

γS + η
) (

κ + γT

)

)

R0 +
(

ηκ
(
γS + η

) (
κ + γT

)

)

RR .

The Eq. (12) takes the form

N − S∞ =
[
(γS + η) − ηκ

κ + γT

]
ÎS + γR ÎR .

The expressions (14) and (15) for ÎS , ÎR are given by

(
R∗(η) − RR

)
ÎR = R∗(η)

γR

(N − S∞) − N

γR

log
S0
S∞

,

(
RR − R∗(η)

)
ÎS =

(
κ + γT

)
RR

γS

(
κ + γT

) + γT η
(N − S∞) −

(
κ + γT

)
N

γS

(
κ + γT

) + γT η
log

S0
S∞

,

where

R∗(η) = κ + γT + δT η

γS

(
κ + γT

) + γT η
βN .

The calculations in the model (2)−(5) following these equations do not contain α∗
and remain unchanged.

In order to show our findings for the final size as a function of η, we simulated
the model using parameter values for influenza infection published in the literature
(Lipsitch et al. 2007; Moghadas 2008). Figure 2a shows the optimal treatment rates at
which thefinal size isminimumfor twodifferent levels of drug-resistance transmission.
For a relatively low transmissibility of the resistant strain (δR = 0.65) above that of
the sensitive strain during treatment (δT = 0.4), we have δR/γR = 2.6 > 1.2 =
δT /γT , and the optimal rate is η0 = 0.336 (red curve). As the transmissibility of drug-
resistance increases, the optimal treatment rate decreases. This is shown in Fig. 2a
(black curve) for δR = 0.9 with η0 = 0.183. For a detailed discussion on the variation
of the optimal treatment rate, the reader may consult (Moghadas 2008). As illustrated
in Fig. 2b, E(η) undergoes a local minimum at η0 for the corresponding scenarios
simulated in Fig. 2a. For the scenarios simulated here, Fig. 3a, b show that λ′(η) > 0,
and E ′(η) has a unique zero at η0 at which the local minimum of the epidemic final
size occurs.

5.2 Delay case of de novo resistance

Let

α(t) =
{
1, t ≤ τ,

0, t > τ,
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Fig. 2 a Final size of the epidemic as a function of the treatment rate. Solid, dotted, and dashed curves
correspond to the total number of infections (final size), the total number of untreated and treated infections
with the sensitive strain, and the total number of infections with the resistant strain, respectively, for δR =
0.65 (red curves) and δR = 0.9 (black curves). b Local minimum of E(η) for δR = 0.65 (red curve)
and δR = 0.9 (black curve). Other parameter values are R0 = 1.8, γS = 1/4 day−1, γT = 1/3 day−1,

γR = 1/4 day−1, κ = 10−5 day−1, and δT = 0.4. Initial values of sub-populations are S0 = 104 − 1,
IS (0) = 1, and IT (0) = IR (0) = 0
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Fig. 3 a λ′(η) as a function ofη for the scenarios corresponding to those illustrated in Fig. 2awith δR = 0.65
(red curve) and δR = 0.9 (black curve). b E ′(η) as a function of η for the scenarios corresponding to those
illustrated in Fig. 2b with δR = 0.65 (red curve) and δR = 0.9 (black curve). Other parameter values are

R0 = 1.8, γS = 1/4 day−1, γT = 1/3 day−1, γR = 1/4 day−1, κ = 10−5 day−1, and δT = 0.4. Initial

values of sub-populations are S0 = 104 − 1, IS (0) = 1, and IT (0) = IR (0) = 0

where τ represents the average time to develop de novo resistance in treated individuals
(Kiso et al. 2004; Ward et al. 2005). In this case, α∗ = (1− e−γT τ )/γT , and the model
(2)−(5) reduces to the following delay differential equations

S′ = −β
(
IS + δT IT + δR IR

)
S,

I ′
S

= β
(
IS + δT IT

)
S − (

γS + η
)
IS ,

I ′
T

= ηIS − ηIS (t − τ)e−γT τ − γT IT ,

I ′
R

= δRβ IR S + ηIS (t − τ)e−γT τ − γR IR .
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Fig. 4 a Final size of the epidemic as a function of the treatment rate. Solid, dotted, and dashed curves
correspond to the total number of infections (final size), the total number of untreated and treated infections
with the sensitive strain, and the total number of infections with the resistant strain, respectively, for δR =
0.65 (red curves) and δR = 0.95 (black curves). b Behaviour of E(η) for δR = 0.65 (red curve) and
δR = 0.9 (black curve). Other parameter values are R0 = 1.8, γS = γT = γR = 1/4 day−1, τ = 3 days,

and δT = 0.4. Initial values of sub-populations are S0 = 104 − 1, IS (0) = 1, and IT (0) = IR (0) = 0

The reproduction number Rs
c for this model is given by

Rs
c =

(
γS

γS + η
+ δT γSη(1 − e−γT τ )

γS + η

)
R0 +

(
ηe−γT τ

γS + η

)
RR .

The expressions (14) and (15) for ÎS , ÎR become

(
R∗(η) − RR

)
ÎR = R∗(η)

γR

(N − S∞) − N

γR

log
S0
S∞

,

(
RR − R∗(η)

)
ÎS = RR

γS + η(1 − e−γT τ )
(N − S∞) − N

γS + η
(
1 − e−γT τ

) log
S0
S∞

,

where

R∗(η) = γT + δT η
(
1 − e−γT τ

)

γT

(
γS + η(1 − e−γT τ )

)βN ,

and the final size relation is given by (20).
We simulated the delay differential model to illustrate the effect of δR and τ on

the epidemic final size as the treatment rate changes. For a delay of τ = 3 days in
developing drug-resistance, Fig. 4a shows that for δR = 0.65 greater than δT = 0.4, the
epidemic final size decreases as the treatment rate increases (red curve). For a higher
transmissibility of the resistant strain (δR = 0.95) comparable to that of the sensitive
strain, we observed a local minimum for the epidemic final size at η0 = 0.084 (Fig.
4a, black curve). Since treated individuals stay for τ = 3 days (on average) in the
IT class, and therefore have a lower transmissibility compared to infected individuals
with the resistant strain, the spread of drug-resistance with δR = 0.65 is delayed and
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Fig. 5 a λ′(η) as a function ofη for the scenarios corresponding to those illustrated in Fig. 2awith δR = 0.65
(red curve) and δR = 0.9 (black curve). b E ′(η) as a function of η for the scenarios corresponding to those
illustrated in Fig. 2b with δR = 0.65 (red curve) and δR = 0.95 (black curve). Other parameter values are
R0 = 1.8, γS = γT = γR = 1/4 day−1, τ = 3 days, and δT = 0.4. Initial values of sub-populations are

S0 = 104 − 1, IS (0) = 1, and IT (0) = IR (0) = 0
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Fig. 6 a Final size of the epidemic as a function of the treatment rate for δR = 0.65 (red curve) and
δR = 0.98 (black curve). b Behaviour of E(η) for δR = 0.65 (red curve) and δR = 0.98 (black curve).
Other parameter values are R0 = 1.8, γS = γT = γR = 1/4 day−1, τ = 1.5 days, and δT = 0.4. Initial

values of sub-populations are S0 = 104 − 1, IS (0) = 1, and IT (0) = IR (0) = 0

requires higher treatment levels compared to δR = 0.95 (Fig. 4a, dashed curves).
The corresponding simulations for E(η) are shown in Fig. 4b, in which the optimal
treatment rate is identified at η = 0.084 when δR = 0.95. Figure 5a, b show the
behaviour of λ′(η) and E ′(η) for the corresponding scenarios with the range of η

simulated here.
When treated individuals develop drug-resistance within a shorter period of time

following the start of treatment (e.g., an average of τ = 1.5 days), then the resistance
spreads more rapidly, and the local minimum of the epidemic final size (when exists)
occurs at a lower treatment rate (Fig. 6a, black curve). However, for a sufficiently low
transmissibility of drug-resistance (δR = 0.65), the epidemic final size decreases as
the treatment rate increases (Fig. 6a, red curve). These observation can be described
by the fact that for low treatment rates, the sensitive strain has a large competitive
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advantage over the resistant strain. However, the presence of a large number of infected
individuals with the sensitive strain contributes to the generation of drug-resistance
during treatment, and therefore increases the final size of infected individuals with
the resistant strain. For high treatment rates, infection caused by the sensitive strain is
largely contained, which limits the generation of resistance. When the transmissibility
of the resistant strain is significantly lower than that of the sensitive strain, the final
size of infected individuals with the drug resistant strain is minimized, and the overall
epidemic size decreases. Figure 6b shows the corresponding simulations for E(η)with
τ = 1.5, where E ′(η) <0 for all η> 0 when δR = 0.65 (red curve), but has a unique
zero at η0 = 0.06 when δR = 0.98 (black curve).

6 Concluding remarks

In this study, we have focused on determining a final size relation for an epidemic
model with two strains of a pathogen. Our theoretical findings demonstrate that if
the transmissibility of the resistant strain is sufficiently high, it is possible to have an
optimal treatment rate at which the epidemic final size undergoes a local minimum.
However, as simulations in the model with delay rate of de novo resistance illustrate,
a high transmissibility of the resistance strain is not a sufficient condition for the
existence of an optimal treatment rate. We have not been able to show the uniqueness
of this optimal rate; however, basedon simulation results presentedhere and in previous
work (Lipsitch et al. 2007; Moghadas 2008; Moghadas et al. 2008), we conjecture that
the optimal treatment rate is unique.

Based on the findings of this study, the question “Can treatment increase the epi-
demic size?” may be addressed in two different contexts. Compared to the scenario in
which treatment is absent, any level of treatment is useful and will result in a lower
epidemic size. This is due to the fact that the transmissibility of the resistant strain
cannot exceed that of the sensitive strain, and therefore the disease will be less trans-
missible even if all treated cases develop drug-resistance. However, comparison of the
epidemic sizes for two different treatment rates depends on several parameters includ-
ing δR , δT , γT , and γR as discussed in Theorem 1. While we attempted to address
the relation between the treatment rate and the epidemic final size, some questions
remain to be addressed. As our simulations show, the optimal treatment rate depends
not only on the transmissibility of the resistant strain, but also on the functional form
of α(a), representing the probability of developing drug-resistance at time a after the
start of treatment. The functional form of α will affect the treatment rate η∗, at which
R∗(η∗) = RR and the final size relation (19) holds.

Determining the optimal treatment rate in an analytical form based on the model
parameters is a difficult task, and would require additional information about λ(η).
We have, however, considered the scenario in which λ(η̄) = 1, for some η̄ > 0. When
δR/γR > δT /γT , if η̄ exists, then from (20) and (21), it follows that

log
S0

S∞(η̄)
= R∗(η̄) + RR

2

(
1 − S∞(η̄)

N

)
.
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This final size relation holds at the treatment rate at which the total number of infected
individuals with the sensitive strain (untreated and treated) is the same as the total
number of infected individuals with the resistant strain. This equality shows that at η̄,
the final size relation is derived from averaging the upper and lower bounds in (18).
This relation for averaging the two bounds also holds at η∗ at which R∗(η∗) = RR .

Remark The rate η̄ provides a threshold above which the final size of infected individ-
uals with the resistant strain dominates that of infected individuals with the sensitive
strain. This treatment rate corresponds to the crossing point of dashed and dotted
curves of the same color in Figs. 2a and 4a.

Themodel presented in this work provides a simplified framework for the dynamics
of drug-resistance emergence (which depends on time since the onset of treatment)
and spread in the population. For epidemics with relatively short duration, such as
seasonal or pandemic influenza, this framework could be useful without considering
the effect of demographics. Models in which demographics are added to the structure
considered here may be analyzed using different methods. For such models, the effect
of increasing treatment rate on the epidemic final size may depend on additional
demographic parameters. Further study of this type of models is proceeding.

In the present study, we have not explicitly modelled the emergence of drug-
resistance, which is a complex process and relies on an error-prone replication
mechanism. Although treatment can induce a massive selection presure which favours
the growth of the resistant strain (Domingo and Holland 1997; Miller 2011), it is not
the sole factor determining the evolution and persistence of drug-resistance (Simon-
sen et al. 2007). While emergence of drug-resistance poses a significant challenge
in the control of several diseases, recent studies suggest important implications for
disease control. For example, resistance to mosquito larvicides could benefit malaria
control as a result of reduced mosquito adult lifespan, which reduces the chance for
the malaria parasite having enough time to complete its development cycle (Liu and
Gourley 2012). These considerations suggest that depending on the biological context,
treatment and emergence of resistance may have different outcomes.
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