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Abstract In this work, we develop a data-driven modelling framework to reproduce
the locomotion of fish in a confined environment. Specifically,we highlight the primary
characteristics of themotion of individual zebrafish (Danio rerio), and study how these
can be suitably encapsulatedwithin amathematical framework utilising a limited num-
ber of calibrated model parameters. Using data captured from individual zebrafish via
automated visual tracking, we develop a model using stochastic differential equations
and describe fish as a self propelled particle moving in a plane. Based on recent exper-
imental evidence of the importance of speed regulation in social behaviour, we extend
stochastic models of fish locomotion by introducing experimentally-derived processes
describing dynamic speed regulation. Salient metrics are defined which are then used
to calibrate key parameters of coupled stochastic differential equations, describing
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both speed and angular speed of swimming fish. The effects of external constraints
are also included, based on experimentally observed responses. Understanding the
spontaneous dynamics of zebrafish using a bottom-up, purely data-driven approach is
expected to yield a modelling framework for quantitative investigation of individual
behaviour in the presence of various external constraints or biological assays.

Keywords Fish locomotion · Computational biology · Stochastic models ·
Zebrafish · Ornstein–Uhlenbeck

Mathematics Subject Classification 37N25 · 46N60 · 97M60 · 60H10 · 91B70 ·
37B70

1 Introduction

The coordinated motion of groups of animals, and in particular of fish shoals, has
been widely studied both from experimental and theoretical perspectives (Partridge
1982; Huth and Wissel 1992; Camazine et al. 2001; Couzin et al. 2002; Krause and
Ruxton 2002; Buhl et al. 2006; Kolpas et al. 2007; Pillot et al. 2011; Moussaïd et
al. 2011; Gautrais et al. 2012; Vicsek and Zafeiris 2012). Numerous authors have
proposed a wide variety of theoretical models, for example the canonical Vicsek-type
models (Vicsek et al. 1995) along with those by Czirók et al. (1997, 1999) which
describe mobile agents as identical self-propelled particles with heading directions
updated via the integration of noisy local-neighbourhood interaction rules. More elab-
orate models of collective motion have also been proposed which may account for
repulsive and attractive forces between fish (or other animals), for example those by
Aoki (1982), Reynolds (1987), Huth andWissel (1992), Couzin et al. (2002), Grégoire
and Chaté (2004), Chaté et al. (2008), Kolpas et al. (2013). Within all of these models,
the dynamics of the group behaviour are dissected into individual rules from which
complex coordinated motions emerge. It is critical therefore to establish predictive
and tractable models for the behavioural response of isolated individuals, upon which
to study and construct models of sociality.

The degree to which individual behaviour modulates group dynamics, and cor-
respondingly, how interactions with conspecifics affects individual response, can be
tested with a modelling cycle driven by precise experimental data. The recent work
of Gautrais et al. serves as an important example of this process. Specifically, a data-
drivenmodel of spontaneous fishmovement was first derived by Gautrais et al. (2009).
Then, using a bottom-up methodology, a model of group motion from data gathered
at the level of the individual was developed by Gautrais et al. (2012). Unlike many
other models of collective motion, this approach enables all model parameters to be
estimated directly from experimental data. Based on evidence that the fish considered
(KuliaMugil) are best described in terms of their turning speed and its autocorrelation,
Gautrais et al. have developed a model referred to as a ‘Persistent Turning Walker’
(PTW). This model is based on an Ornstein–Uhlenbeck (O-U) stochastic differential
equation (SDE) governing the turning speed of an agent with a fixed forward speed.
In addition, the effects of environmental confinement were considered, providing a
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versatile methodology for incorporating fixed boundaries, obstacles and other fish,
within the same model framework.

Recent experimental studies, including those by Krause andWard (2005), Herbert-
Read and Perna (2011), Katz et al. (2011), Berdahl et al. (2013), Herbert-Read et al.
(2013), show that the speed response of fish play an important role in fish interaction.
For example, a comprehensive study byKatz et al. (2011) reveals the subtlemodulation
of turning and speeding responses of groups of golden shiners in relation to their con-
specifics. Important conclusions from this work include the observation that speed
regulation may be a dominant component of interaction, where subsequent alignment
between neighbouring fish emerges from the interplay between attraction and repul-
sion. With respect to this latter conclusion, some models including that of Strömbom
(2011), have demonstrated the characteristic hallmarks of collectivemotionwith a rich
diversity of dynamics such as swarming, and circular and directed milling, emerging
solely from inertial local attraction between individuals. The study by Katz et al. also
examined the importance of higher order interactions, namely a non-trivial 3-body
component which may contradict the pervasive assumption of models which exclu-
sively integrate pairwise interactions. Supporting experimental work by Herbert-Read
and Perna (2011) also suggested the absence of an empirically justifiable alignment
rule for schooling mosquitofish, suggesting that group polarisation is an emergent
property. In this study, speed regulation was again found to be a key reaction mech-
anism due to group interactions, especially repulsion from close neighbours, with
clearly defined zones of interaction.

Most commonly, models of schooling consider fish as agents with fixed forward
speed (Couzin et al. 2002; Gautrais et al. 2009, 2012), and thus prevent us from
exploring the role of speed regulation in collective dynamics. Existing models of
collective motion which do consider variable speed agents (Reynolds 1987; Huth and
Wissel 1994; Toner and Tu 1998; D‘Orsogna et al. 2006; Strefler et al. 2008; Ebeling
and Schimansky-Geier 2008; Abaid and Porfiri 2010; Strömbom 2011; Mishra et al.
2012) either describe self-propelled particles as a continuum dynamical system, or
rather consider the effects of noise on the absolute velocity. Thus far however, none
of these approaches have been fully validated against experimental data in terms of
their description of speed modulation.

The primary aim of this paper is to extend the approach by Gautrais et al. (2009)
to develop a data-driven modelling framework describing the individual locomotion
of zebrafish. Selected here primarily for their strong propensity to form social groups
(Miller and Gerlai 2008; Saverino and Gerlai 2008; Miller and Gerlai 2012), labo-
ratory studies with zebrafish also benefit from their short intergenerational time and
comparatively high reproductive rate. Yielding extensive genomic homologues with
both humans and rodents, zebrafish have emerged as one of the predominant species
for neurobiological, developmental and behavioural studies (Gerlai 2003; Kuo and
Eliasmith 2005; Miklósi and Andrew 2006; Lawrence 2007; Kalueff et al. 2014). In
this work, we find that modelling zebrafish motion requires an additional, experimen-
tally calibrated process governing the variation of swimming speed. In light of recent
studies such as those by Katz et al. (2011), Herbert-Read and Perna (2011), Berdahl et
al. (2013), indicating that speed regulation is a key response of similar fish to external
stimuli, this latter modification represents a shift away from many canonical models,
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which prescribe a constant speed, and provides the foundations for a novel modelling
approach for studying zebrafish social behaviour.

The modelling process addressed in this work employs a bottom-up approach,
using data analysed from experimentally observed zebrafish trajectories, primarily
in terms of position/velocity time-series data, to inform an empirical model of indi-
vidual swimming locomotion. Based on the direct analysis of experimental zebrafish
trajectory data obtained via automated computer vision techniques at the Dynamical
Systems Laboratory (New York University Polytechnic School of Engineering, NY,
USA), we clarify whether the stochastic PTW models of spontaneous fish motion,
developed by Gautrais et al. (2009), can be applied to suitably describe the locomo-
tion of zebrafish. We wish to emphasise that the modelling framework presented in
this paper can provide the foundation for future extensions which capture group level
dynamics of zebrafish shoals and their interaction with semi-autonomous artificial
stimuli (Aureli et al. 2012; Kopman et al. 2012; Aureli et al. 2010; Aureli and Porfiri
2010).

2 Materials and methods

2.1 Ethics statement

The experimental data for this analysis was provided by the Dynamic Systems Labo-
ratory, NewYork University Polytechnic School of Engineering, NY, USA. Trajectory
data for isolated fish analysed in this study are derived from source data published
in the recent work of Butail et al. (2014) (‘No Robot’ control condition). All exper-
iments were conducted following the protocols AWOC-2012-101 and AWOC-2013-
103 approved by theAnimalWelfareOversight Committee of theNewYorkUniversity
Polytechnic School of Engineering.

2.2 Animals and environment

Wild-type zebrafish (Danio rerio) were used in all experiments, acquired from an
online aquarium (LiveAquaria.com, Rhinelander, Wisconsin, USA). Subjects age was
between 6 to 8 months, inferred from their average body length (BL) of approximately
3cm. Fish were kept in 37.8 l (10US gallon) holding tanks with a maximum of 20
individuals in each. A photoperiod of 12h light / 12h dark was sustained prior to
experimentation as per Cahill (2002). Water temperature in the holding tanks was
maintained at 27±1 ◦Cwith a pH of 7.2. Fish were fed daily at 7pmwith commercial
flake food (HagenCorp./NutrafinMax,USA). Experimentswere started after a 10 days
acclimatization period.

2.3 Apparatus

The setup and apparatus for this study is described by Butail et al. (2014). Experimen-
tal subjects were monitored in a 120× 120× 20cm tank, supported on an aluminium
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Fig. 1 Schematic of experimental apparatus for observing, tracking and analysing free-swimmingzebrafish.
Fish are transferred to experimental tank (120 × 120 × 20 cm) with water level of 10cm, lit by overhead
fluorescent tubes and shielded by dark curtains. Overhead digital video-camera records motion of individual
zebrafish, with real-time object tracking at 5Hz achieved using a desktop computer running MATLAB.
Video frames and trajectory data are stored for subsequent analysis

frame, with a water depth of 10cm (see Fig.1). The side length of the tank was thus
approximately equal to 40BL. The surface of the tankwas coveredwith awhite contact
paper to enhance the contrast for automated tracking. Video recording was accom-
plished using a Microsoft LifeCam (USB interfaced) camera mounted 150cm above
the water surface, providing a single overhead video feed at a resolution of 640× 480
pixels at 5 fps. At this resolution, the location of a fish was represented by approxi-
mately 20–50 pixels of each frame. Illumination was provided by diffused overhead
lighting from four 25W fluorescent tubes (All-Glass Aquarium, preheat aquarium
lamp, UK). Video image analysis and real-time multi-target tracking was achieved
using software developed in MATLAB (R2011a, Mathworks), sampled at 5Hz on a
2.5GHz dual-core Intel desktop computer with 3Gb RAM (detailed description of
tracking presented by Butail et al. (2013).

Experimental data consisted of individual video frames and trajectories consisting
of two-dimensional position xt = [x, y]t , with the origin at the centre of the tank, using
a Cartesian coordinate system, and instantaneous velocity vt = [ẋ, ẏ]t computed
using a Kalman filter such that the mean square error is continuously minimised.
A full description of the Kalman filter and the associated measurement model used
for velocity estimation can be found in the supplementary material of Butail et al.
(2013). Fishwere thus tracked as pointmasses,with heading information reconstructed
from the velocity vectors. We expect analogous results to be obtained via the method
for heading reconstruction presented in Gautrais et al. (2009). Future work will be
performed using full shape tracking technique described in Bartolini et al. (2014) to
assess the accuracy of different approaches for heading estimation from velocity data.

2.4 Experimental procedure

A total of ten experimental observations were used for this investigation, each track-
ing the free-swimming trajectories of a different, experimentally naive, individual
randomly selected from the population. Fish were removed from the holding tank
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using a small hand net and released into the experimental tank. Each observation was
preceded with ten minutes of habituation time allowing the fish to swim freely and
acclimatise to the novel environment of the experimental tank, as reported by Wong
et al. (2010). The motion of each fish was recorded for 5min (300s), sampled at 5Hz
producing 1,500 position and velocity data samples per individual. Automated track-
ing was performed on video frame data in real-time, with minor adjustments made
after each observation to repair missing trajectory points.

2.5 Data extraction and pre-processing

Data for each observation was stored both as a sequence of image frames and a unique
comma-separated data file containing the frame number and 2-dimensional position
xt and velocity data vt . The instantaneous speed ut at time t was calculated from the
vector norm of the velocity, with ut = ‖vt‖. The turning speed at a given time step
ωt is approximated using the (signed) angle turned between consecutive time steps
t → t + Δt , to calculate a forward (angle) difference as follows:

ωt = sgn
[
vt+Δt × vt

]
z

1

Δt
cos−1

(
vt+Δt · vt

‖vt+Δt‖‖vt‖
)

(1)

where [·]z denotes the z-component of the cross product whose sign provides the
turning direction (anti-clockwise positive). The time step Δt = 1/ fs is the reciprocal
of the sampling frequency ( fs = 5Hz). Note that this definition of ωt is consistent
with that in Gautrais et al. (2009), and associates fish turning speed with the rate of
change of the orientation of the velocity vector.

The model described in this paper is designed to study swimming zebrafish, as
opposed to additional locomotory patterns, such as freezing or thrashing near obstacles
(boundaries) as defined byBass andGerlai (2008). To obtain suitable data representing
swimming behaviour, we used a simplified version of a method described by Kopman
et al. (2012), pre-processing the ten raw observation data sets (denoted F1 . . . F10) to
extract data segments (60 s) of equal duration in the following way:

1. Raw (speed) data was initially smoothed with a moving average window of 3 sam-
ples, then segmented such that contiguous segments are isolated when fish is mov-
ing with a speed above the threshold umin = 1BLs−1. The original (unsmoothed)
data is subsequently used for the steps that follow.

2. If the duration between consecutive segments was less than a time threshold τs =
2 s, the two segments were joined so that fish were regarded as not swimming only
if the duration of the speed dropping below threshold, umin, exceeded τs .

3. Resulting data segmentswere subdivided into intervals of equal length τl represent-
ing a continuous time-series of swimming data from an individual fish. Segments
shorter than τl were discarded such that we obtain continues data segments of
equal duration.

The isolated swimming data segments are denoted S1 . . . Sn and provide the data
used for subsequentmodel development. Subsequent parameter estimationwas carried
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on individual segments with average parameter sets calculated for each individual fish
[F1 . . . F10] based on the swimming data isolated for each observation.

2.6 Numerical implementation

Although an exact solution to the generalised O-U equation we will use in (7) exists,
given by Gillespie (1996), nonlinearities in our model hamper its use. In order to
calculate discretised solutions to the model SDEs in (8), expressed in the form
dXt = a(Xt )dt + b(Xt )dWt , we therefore employed the Euler-Maruyama method,
approximating the true solution X with a Markov chain M where

Mt+Δt = Mt + α(Mt )Δt + β(Mt )ΔWt (2)

Here, Δt is the time step duration and ΔWt are i.i.d. normal random variables with
mean equal to zero and variance Δt (Kloeden and Platen 1992).

Simulated trajectories in this work were realised by iterating a randomwalker (RW)
path in the plane, using numerically computed values of speed Ut and turning speed
Ωt over the interval t = 0 → T in time steps of duration Δt . At each iteration t , the
current heading direction φt was updated according to the value of Ωt and the walker
moved forwards by a distance UtΔt . Specifically, heading directions were calculated
as follows:

φt = ((φt−Δt + π + ΩtΔt) mod 2π) − π (3)

where shifts by π and modulo operator ensure the heading angle varies smoothly
in [−π, π ]. The position xt was subsequently updated at each time-step using

xt = [x, y]t = [x, y]t−Δt + [cosφt , sin φt ]UtΔt (4)

and the corresponding velocity vt , computed by the backwards difference formula

vt = (xt − xt−Δt ) /Δt (5)

For all simulations, the initial positions of random walkers x0 were randomly distrib-
uted within the simulation arena with uniformly distributed heading angles [−π, π ]
and initial speed and turning speed U0 = μu , Ω0 = 0. The simulation time-step was
set equal to the experimental sample rate such that Δt = 0.2 s.

Following the calculation of both fW and fc at a given time step t (discussed in §4),
the updated values ofUt andΩt were found using the method in (2), with values ofΩt

restricted in the range ±15 rad s−1 in accordance to the observed maximum angular
speed.

3 Experiments

The swimming speedsu of 10 individualswere found to range fromextended stationary
periods, up tomaximumspeeds of approximately 31cms−1, corresponding to just over
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10body lengths (BL) per second (1BL ≈ 3cm). The average speed across the entire
populationwas 3.53BL.s−1 with a standard deviation of 2.48BLs−1. Fish trajectories,
shown in Fig. 2, were found to vary between individuals: some performed erratic,
tightly winding manoeuvres (e.g. F4); whilst others had more fluid trajectories which
explored an increased area of the tank (e.g. F1, F3, F5).Wealso found strong, persistent
wall-following behaviour (thigmotaxis) (e.g. F6, F7, F10) alongwith extended periods
of freezing or thrashing behaviour (e.g. F2, F8, F9).

3.1 Swimming trajectory analysis

Using the data segmentation process described earlier, we isolated 28 segments of
swimming data, each 1min in duration, representing 8 out of the 10 raw observations,
where F4 and F8 failed to produce data which met all filtering criteria for swimming.
The pre-processingmethodwas also found to eliminate periods of excessive thrashing,
characterised by large amplitudefluctuations inωt . Speed and turning speed time series
data ut for each segment, labelled consecutively from S1 to S28, are shown in-situ with
the corresponding raw data in supplementary Figs.S1 and S2.

Analysis of the 28min of data, isolated for active swimming behaviour for 8 fish,
yielded a (increased) combined mean swimming speed of 4.65BLs−1 with (reduced)
standard deviation of 2.01BLs−1; in good agreement with other studies e.g. Fuiman
and Webb (1988), Plaut (2000) which report the mean speed of zebrafish groups
to be ∼ 13 cm.s−1(4.3BLs−1). Mean turning speed was found to be −0.02 rad s−1

with a standard deviation of 1.30 rad s−1, indicating negligible turning direction pref-
erence, with the convention that positive turning speeds represent turns to the left,
negative to the right. Maximum and minimum values of turning speed were found
to be −14.73 and 14.28 rad s−1 respectively, suggesting a (global) absolute maxi-
mum turning speed max(|ω|) ≈ 15 rad s−1. Maximum turning speeds were found
to be close to the upper limit detectable between consecutive samples at frequency
fs , where ωmax = π fs = 5π ≈ 15.71 rad s−1. Such high speed turns however are
observed with very low frequency across filtered swimming segment data, with turns
faster than 5 rad s−1 accounting for less than 1% of all samples. Isolated swimming
trajectory portraits (Fig. 3) display the variety of different characteristic behaviours
described earlier. In particular, we observed strong wall-following behaviour which
leads to an individual bias of the turning speed in the direction of rotation around the
walls.

During active phases of swimming, the instantaneous speed ut of an individual
was found to have a well-defined mean, yet highly variable with rapid bursts of for-
ward thrust corresponding to the natural tail-beat frequency between 0.5 and 2Hz,
identified through spectrographic analysis of the time series data. Additionally, we
observed strong correlations between the time onset of bursts in turning speed with
those in instantaneous speed (Fig. 4a, b). Strong correlations were also found between
the magnitude of ut and the variance of ωt (Fig. 4c). This characteristic feature may
be associated with momentum conservation from tail-beating, which simultaneously
provides both axial force and torque, to produce forward and turning motion, respec-
tively (Sfakiotakis et al. 1999).
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Fig. 4 Example data from swimming segment S9. a andbTime series data for speed ut and turning speedωt
respectively, with associated relative frequency histograms and fitted normal distribution p.d.f (smooth red,
blue curves). Vertical delineations in time-series plots indicate minima in ut with a prescribed minimum
separation of 0.5 s (2Hz). Identical lines in ωt time-series highlight a temporal correlation where speed
minima are generally associated with peaks in |ωt | (thin blue trace). c Values of ωt against ut indicating a
correlation with increased probability of large turning speed ωt values as ut decreases

The distribution of instantaneous speed ut was found to be approximately normal
with a natural truncation at u = 0cms−1. Individually parameterisedGaussian density
functions therefore yield a good approximation to the distributions of ut (Fig. 4a).
Analysis of ωt (Fig. 4b) similarly indicated that a normal probability density function
provides reasonable approximations to experimental data, with a mean close to zero.
In general however, the distributions of ωt were found to be more sharply peaked than
a Gaussian, with heavy tails due to a low proportion of extreme values of turning, both
left (ω � 0) and right (ω � 0), resulting in larger estimates of the standard deviation
and flattening of the corresponding Gaussian probability distribution function (pdf).
As such, a normal distribution is found to be appropriate when the sample standard
deviation σ̂ω < 1.5 rad s−1.Above this value, a normal distribution fails to capture both
the sharp peak around the mean, and the finite probability of rapid changes in heading.
In the model we describe later in this section, the speed process ut is assumed to be a
stationary Gaussian process, whilst the turning speed ωt is assumed to be a Gaussian
process with varying variance. Additionally, these processes are coupled such that we
recover both the observed cross-correlation and a correction to the distribution of the
turning speed.

Autocorrelation functions (ACF) for both ut andωt were computed for all segments,
revealing consistent and well-defined properties. Both processes display a large pos-
itive correlation at short time-lags which decays with an approximately exponential
envelope with varying degrees of noisy oscillation. We quantified the decay rate of the
ACF by considering the lag-one autocorrelation coefficient r1 of discretely sampled
signal {Xk}Nk=1, given by

r1 =
∑N−1

k=1 (Xk − 	X)(Xk+1 − 	X)
∑N

k=1(Xk − 	X)2
(6)

where 	X is the sample mean.
We considered the associated correlation time τ for the ACFs, where τ =

−Δt/ln(r1) was used to parameterise an exponential function ACFest = exp(−t/τ)
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estimating the autocorrelation decay envelope. Across the majority of segments, a
exponential approximation provides a good estimate for both ACFu and ACFω (exam-
ple shown for segment S9 in Fig. 5). The average autocorrelation half-life (τ ln 2) for ut
and ωt across segments, were found to be approximately 1.37 and 0.28 s, respectively.

4 Modelling

Our analysis of zebrafish trajectory data suggests that a model in which speed is
held constant may be insufficient to describe the individual and collective motion of
zebrafish and other similar species of small, schooling fish. Comparedwith the smooth,
continuous motion of larger fish, for example Kulia mugil (BL ≈ 20cm) modelled
by Gautrais et al. (2009), the variance in swimming speed for smaller zebrafish (BL
≈ 3cm) is large.Many factors influence the range and fluctuations of swimming speed,
with drag being the primary physical component, scaling with the square of the wetted
surface area. In the presence of viscous drag, with a flow regime dependent on the
specific Reynolds number, different aquatic species have evolved a range of swimming
styles as described by Sfakiotakis et al. (1999). Specifically for zebrafish, their small
size and tail morphology results in a burst-and-coast mode of locomotion, which has
been found to be more efficient than a continuous swimming style, as discussed by
Weihs (1972), Muller et al. (2000).

The key features of both signals considered independently, instantaneous speed ut
and turning speed ωt , are well approximated by stationary, Gaussian processes with
exponentially decaying autocorrelation functions. These observations lead us to adopt
the formalism of a continuous-time autoregressive system with two independently
parameterised Gaussian processes for ut and ωt . The basis of our model is thus an
extension of the PTW model presented by Gautrais et al. (2009) in which the turning
speedΩt of a simulated randomwalker is modelled by a signal St , a stochastic process
of the Ornstein–Uhlenbeck (O-U) family with the general form

dSt = θ(μ − St )dt + σdWt (7)

with equilibrium (relaxation) value μ, rate of mean-reversion θ , and variance σ of
the standard Wiener process Wt . As t → ∞ the stationary solution of this SDE
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has a Gaussian distribution with a mean and variance approaching μ and σ 2/2θ ,
respectively (Gardiner 2009).

In our extended model, we consider two coupled stochastic equations, describing
both the speed Ut and turning speed Ωt as follows:

dUt = θu(μu −Ut )dt + σudWt (8a)

dΩt = θω(μω + fW − Ωt )dt + fcdZt (8b)

where the SDEs for speed (8a) and turning speed (8b) have the same general form pre-
sented earlier in (7), describing randomprocesses exhibiting noisy relaxation to amean
μ and, importantly, with an exponentially decaying ACF with rate θ = 1/τ . Additive
noise is driven by the Wiener processes dW and dZ , with variances parameterised by
σ 2
u and f 2c , acting on the differentials of position and heading respectively.
In order to recover the observed correlation between the magnitude of ut and vari-

ance of ωt (e.g. Fig 4c), we introduce the function fc = fc(Ut , σω, σ0, μu), which
couples the two processes such that the variance of the random fluctuations of turning
speed Ωt depends on the speed Ut . Wall (boundary) avoidance is achieved by incor-
porating a second function fW = fW (φW , dW ) in (8b), which models the tendency
of fish to avoid collisions with the tank walls, where dW and φW are the distance and
angle of projected collision with a boundary, given the velocity at a given time step.
The features encapsulated by these two additional functions fW and fc, including the
estimation of all model parameters, are described in what follows.

4.1 Selection of wall avoidance function fW

Following the approach of Gautrais et al. 2009, the term fW is constructed to reflect the
observed turning speed distribution as a function of distance dW (Gautrais et al. 2009),
or time tW (Gautrais et al. 2012) with which a projected collision with the boundary
would occur given the current position and velocity of the fish. To quantify this effect,
we calculate the distribution of a ‘wall-corrected’ value of the turning speed ωc which
is positive when the direction of a turn is away from the collision boundary and vice
versa, such that

ωct =
{

|Ωt | if sgn(Ωt ) = sgn(φWt )

−|Ωt | otherwise
(9)

The direction of the induced turn characterised by fW is therefore prescribed by
calculating the (signed) angle φW between the current heading and the normal at the
point of collision. The plots in Figs. S3 and S4 display show ωc calculated from each
segment, as a function of dW and tW respectively.

Based on the fact that the turning dependence was very similar for both dW and tW ,
we choose the form

fW (φW , dW ) = sgn(φW )A exp(BdW ) (10)
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Retaining the formalism of the general O-U process (7), fW provides a smooth,
exponentially increasing bias to the equilibrium value of the Ω turning speed process,
in the directionwhich increases the projecteddistance (or time) to collision. Parameters
A and B control the strength and decay of the repulsion fW and are estimated from
experimental data as described in the following section (Parameter estimation). A
similar analysis on the effect of wall boundaries on speed regulation suggested that
speed is only marginally influenced by the wall distance (Fig. S5, S6). For this reason
we opted not to include a functional dependence on either dW or tW for the speed
process in (8a) as we have for turning speed.

As the repulsive turning effect supplied by fW does not implicitly prevent trajec-
tories from crossing the simulated boundaries, we also include an additional hard-
boundary condition. Our simple strategy is to model wall encountering events as fully
inelastic collisions, such that the speed Ut of a random walker passing through a
boundary at time t is set to zero, leaving its position unchanged from the previous
time step, so that xt ← xt−Δt .

In order to replicate experimental conditions, simulated trajectories were mod-
elled in a bounded, rectangular arena. However, a finite, rectangular simulation arena
presents discontinuous boundaries at each corner which must be smoothed to prevent
competing repulsion by perpendicular walls near the vertices from creating singulari-
ties for point-like randomwalkers. By rounding the edges of the simulation arena with
quarter-circles of radius Rc, we avoid unrealistic turning behaviour at the corners of
the tank, where a value of Rc = 10cm was found to sufficiently reduce undesirable
artefacts in these regions.

4.2 Selection of coupling function fc

The joint distribution of experimental data on ut and ωt was found to be highly
asymmetric, with a much larger proportion of faster turns occurring at low speeds. A
composite log-density plot of cross-correlated data is shown in Fig. 6a.

Fast turning speeds are associated with lower forward speeds due to mechanics of
fish locomotion. To model this relationship we therefore require a coupling between
the two SDEs in (8a) and (8b), such that we obtain similar distributions of speed Ut

and turning speed Ωt to those observed in the experiments. Specifically, we substitute
the variance parameter σ in the general O-U process description in (7) with a function
fc in the form of an exponential decay with respect to the speedUt . Due to heavy-tails
of the observed turning speed distribution, calibration using a maximum likelihood
estimation (MLE) following the method described by van den Berg (2011) (assuming
a standard O-U process with a normal distribution) will tend to overestimate σ from
source dataωt and overly increase the variability of the simulated turning speed process
Ωt . We account for this by choosing fc such that

1. When Ut approaches zero, the function returns the upper bound, say σ0 on the
variance of the turning speed (to be estimated from the experimental observations),
or equivalently

lim
Ut→0

fc = σ0, σ0 > σω (11)

2. The function approaches zero as Ut goes to infinity.
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Ūt and Ω̄t on respective plots

3. The function returns a value dependent on the variance σω of the turning speed
when Ut is equal to the average speed μu , which will be estimated so as to better
capture the observed experimental distribution (see Fig. 6).

A simple exponential function fc, parameterised by the mean speed μu , variance
σω, and a fixed maximum value σ0 (see 4.3) satisfies all of these criteria, choosing

fc(Ut , σω, σ0, μu) = σ0

(
2σ0
σω

)− Ut
μu

(12)

As demonstrated in Fig 6b, this function allows to recover a distribution of Ut and
Ωt which are highly comparable with experimental data.
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4.3 Parameter estimation

The six parameters [μ, θ, σ ]u,ω for individual segments S1 . . . S28 were found using
MLE, following the method of van den Berg (2011), under the assumption that source
data ut and ωt both come from independent Gaussian processes described by (7).
Equivalent parameters corresponding to the individual fish F1, F2, F3, F5, F6, F7, F9,
F10 were subsequently calculated by averaging over the corresponding segments val-
ues extracted from each fish. The relationship between segments to parent observation
data and MLE calibrated parameter values are shown in Fig. 7, indicating generally
consistent parameters across individuals.We also calculated a global set of mean para-
meters [μ̃u, θ̃u, σ̃u] (speed) and [μ̃ω, θ̃ω, σ̃ω] (turning speed), computed by weighting
the individual means by the number of segments isolated for each fish, e.g.

μ̃u =
∑10

i=1 niμu[Fi ]
∑10

i=1 ni
(13)

where ni is the number of segments isolated for each fish Fi . The values calculated
in this way are found below, and also in Table 1 alongside parameter values for each
individual fish. They are:

μ̃u = 14.02 cms−1(4.67 BLs−1)

θ̃u = 4.21 s−1

σ̃u = 0.59 cms−1

μ̃ω = −0.02 rad s−1

θ̃ω = 2.74 s−1

σ̃ω = 2.85 rad s−1 (14)

The parameters A and B of the wall repulsion function fW in (10), specifying the
strength and range respectively, were found by calculating the distance dW which a
fish, at a given sample position, is projected to collide with the tank wall, given its cur-
rent velocity. For each data sample, we constructed the wall-corrected turning speed
ωc as described in (9) by modifying the sign of ωt to reflect turning either towards or
away from the boundary. By plotting sample values of ωc against the projected dis-
tance dW , or time tW to wall collision, we observe a distinct bias for turns which favour
impact avoidance (ωc > 0) as dW decreases. To approximate this bias, we used a non-
parametric locally weighted least squares (LOESS) model (Gijbels and Prosdocimi
2010), fitting the resulting interpolation with a parametric exponential function. Using
thismethod, averaging across swimming segments, we estimated the parameters A and
B in (10) determining the repulsive (turning) effect of the boundary on turning speed as
a function of dW . An example of the two-step interpolation for segment S27 is shown in
Fig. 8a. By considering only segments with which a reasonable fit could be obtained
[S2, S3, S4, S6−11, S13, S16, S17, S19, S20, S22, S23, S25−28], we found average para-
meter values A = 2.25 ± 0.70 rad s−1 and B = −0.11 ± 0.04cm. For completeness,
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Fig. 8 Effect of boundary on turning speed with respect to the projected distance and time to collision with
tankwall on segment S27 data. Non-parametric (LOESS) regression (black dashed lines) highlight increased
turning to avoid collisions (ωc > 0). a Wall corrected turning speed ωc is plotted as a function of the
projected distance dW to impactwith awall. Exponential functionωc = Ade

BddW (red curve) approximates
a ‘soft’ repulsion as a function of projected distance with fitted parameters Ad = 2.14 rad s−1,Bd =
−0.16cm. b wall-corrected turning speed ωc is plotted as a function of the projected time tW to impact
with a wall. Exponential function ωc = At eBt tW (red curve) approximates repulsion as a function of
projected distance with fitted parameters At = 3.00 rad s−1, Bt = −2.98s

we also calculated parameters values for A and B for a time-to-collision dependence
tW (see Fig. 8b), averaging over segments [S4, S7, S8−11, S13, S16, S18−28] to give
A = 2.25 ± 0.62 rad s−1 and B = −1.68 ± 0.53s. From our analysis we found no
compelling evidence supporting a stronger functional dependence of turning speed on
either dW or tW thus we proceeded with a wall-avoidance function dependent solely
on projected collision distance dW and the collision angle φW . Graphical depictions
of the dependence of ωc and ut on projected collision distance dW and time tW for all
segment data can be found in supplementary Figs. S3–S6.

Heuristically, we found that a magnified value of A was required to produce turn-
ing behaviour comparable to experimental observations. After many realisations of
random walkers with various calibrations, we chose to increase the above value of
A by a factor of 3 such that we simulate all random walkers with A = 6.75 rad s−1

and B = −0.11cm, calculating fW (dW , φW ) from Eq. (10). This discrepancy results
either from interpolating fW with an insufficient number of data points close to the
boundaries, or the compensation required to account for oversimplification of the wall
avoidance model.

Finally, we estimated the saturation parameter σ0 in (12) so as to obtain a similar
correlation between simulated values of Ut and Ωt , with consideration given to the
range and distribution of observed turning speeds. Although the absolute maximum
value was found to be≈ 15 rad s−1, the distribution of experimental ωt is heavy-tailed
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Table 2 Global simulation parameters

Parameter description Symbol Unit Value

Simulation time step Δt s 0.2

Simulated tank (square) side length L cm 120

Rounded edge circle radius rc cm 10

Maximum turning speed variance σ0 rad s−1 12

Max. turning speed (cut-off) n/a rad s−1 15

Wall avoidance function amplitude A rad s−1 6.75

Wall avoidance function decay B cm –0.11

such that values of |ω| > 10 rad s−1 account for less than 0.2% of recorded samples.
We therefore prescribed a reasonable upper bound to the function fc by finding σ0
such that the probability of generating turning speed values Ωt from (8b) below a
speed of approximately 10 rad s−1, is within the 2-sigma (∼ 95%) confidence interval
i.e. 2σ̂ ≈ 10 rad s−1, where σ̂ is the long term variance of the output process. The
variance σ̂ 2 of Ωt was estimated by assuming a general O-U process where, for the
saturation variance σ0 we have σ̂ 2 = σ 2

0 /2θ̃ω (Gardiner 2009). Using the maximum
ωt as an estimate of two standard deviations (2σ̂ ), we obtain the formula

σ0 = max(ωt )
√
2θ̃ω

2
(15)

Using the values max(ωt ) = 10 rad s−1 and θ̃ω = 2.81 s−1, the global average value
from (14), we obtain themaximumvariance parameter value σ0 ≈ 12 rad s−1. Accord-
ingly, the resulting composite distribution of simulated values of Ut and Ωt for all
segment calibrations, shown in Fig. 6b, indicates a good approximation to the experi-
mental distribution in Fig. 6a.

4.4 Model consistency

Initial validation of themodel was conducted by comparing the trajectories, and under-
lying metrics, of individual swimming segments to those of simulated random walk-
ers with SDE parameters calibrated from the corresponding experimental segments.
The remaining parameters were fixed globally across all segments using the values
described earlier in this section, summarised in Table 2. A square simulation arenawith
side length L = 120cm was also defined to match the dimensions of the experimental
tank.

Data simulated across a range of sample generation frequencies, 1000–5Hz (Δt =
0.001–0.2 s) using identical stochastic processes dWt and dZt , indicated that trajecto-
ries and their underlying statistics (distributions, ACFs etc.) were sufficiently robust
to increasing values of Δt over three orders of magnitude (see Fig. S7). Using a value
Δt = 0.2 s was therefore found to provide a good compromise between numerical
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Fig. 9 Comparison between simulated random walker for S17 and experimental segment data. Data high-
lights the key metrics to compare swimming segment S17 (blue) against those of a random walker (red),
with parameters calibrated directly on the experimental segment. a Time series and distribution for speed
data Ut . b Time series and distribution for turning speed data Ωt . c Cross-correlation between Ut and Ωt .
d Autocorrelation function ACFu . e Autocorrelation function ACFω . f Trajectory vector comparison

accuracy and computational efficiency1, with a corresponding sample generation rate
of 5Hz matching that of the experimental acquisition frequency.

An example simulation, calibrated on segment S17, is shown in Fig. 9, compared
with the experimental data for both speed and turning speed. Simulated speed data
(shown in red) yields a normal distribution which corresponded well with the experi-
mental data (Fig. 9a). The speed autocorrelation function ACFu (Fig. 9d) was also in
good agreement with that of the experimental source data, in particular capturing the
initial decay prior to the zero crossing. Simulated turning speed data (blue), generated
by a modified (coupled) O-U type process, was found to have a distribution which is
more sharply peaked than a Gaussian process, and in good agreement with source data
Ωt (Fig. 9b). Here, we note an additional effect of the SDE coupling, where fc restricts
the probability of high speed turning to periods of reduced forward speed. A direct
result of this is to produce a turning speed distribution with a sharper peak around
the mean (μω ≈ 0), and with heavier tails such that extreme values of Ω are found
with low probability, but more often than would be produced by a normally distributed
(unmodified) O-U process. The joint distribution of speed and turning speed (Fig. 9c)
also presents a successful recovery of the experimental distribution, characterised by
a narrowing of the turning speed distribution as speed increases. By appropriately
coupling the SDEs via fc we therefore achieve both recovery of the cross-correlation
between ut and ωt , and a favourable modification to the distribution of ωt to match
those observed experimentally. Similarly, for the corresponding autocorrelation ACFω

(Fig. 9e), we are able to capture the characteristic exponential decay, with a rate very
similar to the experimentally observed value. A final comparison is made in Fig. 9f,
showing the resulting 60s RW trajectory portrait and velocity vector plot, overlaid on
the experimental source data.

To support the inclusion of the coupling function fc in our proposed model, we
simulated comparable trajectories in the absence of coupling (fixed σω). Simulated

1 Random walk trajectories with a duration of 60 s are computed in approximately 0.2 s in the current
implementation with Δt = 0.2 s
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Fig. 10 Comparing experimental and simulated trajectories of individual swimming zebrafish. Unique
parameters sets are found for each fish (F1, F2, F3, F5, F6, F7, F9, F10) by averaging values calibrated
for associated swimming segments. Experimentally observed swimming trajectories of zebrafish (blue) are
plotted as composites of (disjoint) segment data. Simulated trajectories (red) are calculated and plotted
for an equal duration to the underlying experimental data. O-U parameters for each fish can be found in
Table 1 (trajectories for F4 and F8 not calculated due to lack of suitable swimming data). All randomwalker
trajectories were computed with the global simulation parameters given in Table 2

realisations for representative experimental segments S3 and S17 are shown in Fig. S14,
both with and without the coupling between Ut and turning speed variance σω. In the
uncoupled trials, we clearly fail to capture a reasonable estimate for the joint distribu-
tion of speed and turning speed (see column B in Fig. S14). Without fc to restrict the
turning speed variance at high speeds, we find a more normal spread ofΩt which fails
to capture the sharp peaks of the experimental distributions (column D). The one-way
coupling between two processes should have no effect on the distribution and auto-
correlation of speed data (columns B and E), however we also note that we do not
find significant effects on the turning speed ACF (column F). Importantly, we find that
trajectories produced by the coupled model appear to be qualitatively more consistent
with experimental segment trajectories (column A). We note a higher propensity to
enter longer lasting/long path length spiralling when the process are uncoupled, fea-
tures which are reduced by the coupling as large turning speed variance (increased
range in either direction) is reduced at high speeds—and therefore only available to
the random walker at lower speeds where less distance will be covered during such a
turn. We also note that decoupling the processes reduces the propensity to elicit wall-
following behaviour when calibrated on segments exhibiting these phenomena (again
due to the increase range of turning speeds when decoupled or conversely because,
when coupled, the turning speed distribution is more sharply peaked around zero).

Plots for all segments (coupled model), comparing a single random walker real-
isation to experimental source data, can be found in the supplementary information
(Figs. S8–S13). We also refer again to plots depicting the dependence of speed and
wall-corrected turning speed on projected distance and time to boundary collision in
supplementary Figs. S3–S6.
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Further tests of model consistency are provided by comparing eight randomwalker
trajectories, simulated using the averaged parameter values for individual fish F1, F2,
F3, F5, F6, F7, F9 and F10 found in Table 1, to composite zebrafish trajectories from
the corresponding experimental segments S1 . . . S28. Single random walker realisa-
tions, calibrated for each fish are shown in Fig. 10, simulated for a time T = 60ns
where ns is the number of segments isolated for each fish. We observe that broadly
similar qualitative turning characteristics of each zebrafish are recovered, including
the propensity for wall-following behaviour. From these simulations, we find that
the model is able to effectively extract and reproduce trajectory data which closely
approximates the swimming motion, and subtleties of individual fish, and also how
the underlying statistics may be used to predict a form of ‘passive’ thigmotactic-like
behaviour2. Specifically, the approximate ratio σω/θω is found to provide a good pre-
dictor of the observed thigmotactic-like behaviour that is well captured by the model.
In order of increasing ratio, fish F6, F7 and F10 exhibit the most consistent wall-
following behaviour, with values of σω/θω < 1. Consequently, fish which are found
to spend a larger fraction of time away from the walls, for example F2, F5, F1, in order
of decreasing ratio, are found to have σω/θω > 1.

Our final observation was a comparison between the trajectories of the eight indi-
vidually calibrated random walks described above, to the trajectory of a single ran-
dom walker, parameterised with the weighted-average values given in (14). The
plots in Fig. 11a–c) indicate, respectively, the relative density of positions in the
tank/simulation area for experimental swimming trajectories, composite density of
the eight individually calibrated random walkers, and the trajectory density of a sin-
gle random walker simulated with the parameter set defined in (14), computed for
an equivalent duration (28 × 60 = 1,680 s). Trajectories in Fig. 11a indicate a clear
preference of zebrafish to swim in close proximity to the tank walls with minimal
departures into the centre of the tank. In comparison, the density plot for the individu-

2 We denote ‘passive’ thigmotactic-like behaviour as occurrences of wall-following which is not driven by
explicit modelling of psychological effects, for example in seeking protections from predators
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ally calibrated simulations (Fig. 11b) indicated increased variation in the area explored
by randomwalkers, with more activity in the central region. By performing a weighted
average across all available swimming data (Fig. 11c), specifying a set of appropriate
mean-model parameters, we found that a single (1,680s duration) realisation of the
model reproduced a comparable density structure to that of the composite individuals,
with significant wall-following behaviour and only a slightly increased frequency of
departures toward the centre.

5 Conclusions

A model of spontaneous zebrafish motion has been presented which captures the
approximate distribution of speed and angular speed of swimming fish, accounting
for both the autocorrelation and interdependence of these processes. Analysis of sim-
ulated trajectories suggests that our model describes many of the salient features of
zebrafish locomotion, including the emergence of a thigmotactic-like (wall-following)
behaviour when model parameters are calibrated on fish exhibiting similar patterns of
motion. Specifically we find that this ‘passive’ wall-following behaviour results from
a model in which only repulsion from the wall is present. The novel feature of this
model, extending the ‘Persistent Turning Walker’ model due to Gautrais et al., is to
capture the intrinsic speed variation of zebrafish and other small fish.

Importantly, by allowing speed to vary in our model, further progress can be made
in the development of group models which can address the most recent experimental
findings for similar fish species. We refer specifically to the findings of Katz et al.
(2011) and Herbert-Read and Perna (2011), which report that speed regulation is the
primary response governing the interaction between conspecifics and their environ-
ment.

Further development of these models, informed directly from experimental data,
represents a significant departure from some canonical approacheswhere fish aremod-
elled with constant speed and conspecific interactions result in changes only to their
heading direction, or angular speed. Direct calibration of the model to experimentally
observed fish trajectories results in a purely data-driven model and provides the neces-
sary foundations for the future objective of understanding modelling the dynamics of
multi-fish shoals. The results of the model are encouraging and provide a solid basis
for future investigations into fish social response.
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