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Abstract A general theory is developed for the eigenvalue effective size (NeE ) of
structured populations in which a gene with two alleles segregates in discrete time.
Generalizing results of Ewens (Theor Popul Biol 21:373–378, 1982), we characterize
NeE in terms of the largest non-unit eigenvalue of the transition matrix of a Markov
chain of allele frequencies. We use Perron–Frobenius Theorem to prove that the same
eigenvalue appears in a linear recursion of predicted gene diversities between all
pairs of subpopulations. Coalescence theory is employed in order to characterize this
recursion, so that explicit novel expressions for NeE can be derived. We then study
NeE asymptotically, when either the inverse size and/or the overall migration rate
between subpopulations tend to zero. It is demonstrated that several previously known
results can be deduced as special cases. In particular when the coalescence effective
size NeC exists, it is an asymptotic version of NeE in the limit of large populations.

Keywords Eigenvalue effective size ·Coalescence theory ·Predicted gene diversity ·
Migration · Perron–Frobenius · Perturbation theory of eigenvalues

Mathematics Subject Classification 92D25 · 60F99

1 Introduction

The effective size Ne was introduced by Wright (1931, 1938) as the size of an ideal
homogeneous population with the same rate of loss of heterozygosity per genera-
tion as the studied population. It has become one of the most important parameters
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in population genetics and conservation biology, as reviewed for instance by Crow
and Denniston (1988), Orrive (1993), Caballero (1994), Wang and Caballero (1999),
Waples (2002) and Charlesworth (2009).

Several closely related variants of Ne exist, and Crow (1954) first distinguished
between the inbreeding effective size NeI , the quantity originally defined by Wright,
and the variance effective size NeV . He also introduced a random extinction parameter
that quantifies the long term rate at which genetic variants are lost. It is equivalent to
the eigenvalue effective size NeE , defined in terms of the largest non-unit eigenvalue
of a Markov chain of allele frequencies (Ewens 1982, 2004). The nucleotide diversity
or mutation effective size Neπ is essentially the expected coalescence time of a pair
of haploid individuals (Ewens 1989; Durrett 2008), whereas the coalescent effective
size NeC is defined for populations such that the ancestral tree of any finite number
of individuals converges to a Kingman coalescent in the limit of large populations
(Kingman 1982; Nordborg and Krone 2002; Sjödin et al. 2005;Wakeley and Sargsyan
2009; Hössjer 2011).

In this paper we provide a general theory of NeE for mutation free structured popu-
lations, in which a selectively neutral marker (referred to as a gene) with two variants
or alleles segregates. The population consists of s homogeneous subpopulations (geo-
graphic sites, age classes, sexes or combinations thereof) and evolves in discrete time,
with constant census sizes of all subpopulations.

Ewens (2004) reviewed results on NeE for homogeneous populations, showing that
it agrees with NeI and NeV for the Wright-Fisher model (Wright 1931; Fisher 1958),
Kimura’s multi-hypergeometric model (Kimura 1957), conditional branching process
models (Karlin and McGregor 1965) or more generally models in which offspring
numbers are exchangeable (Cannings 1974).

Results on NeE for structured populations are less complete. Ewens (1982) showed
that NeE may differ from NeI and NeV for two-sex models. Cabellero and Hill (1992)
and Nagylaki (1995) considered a number of diploid models and derived formulas for
an effective size based on the long term decay of heterozygosity. Chesser et al. (1993)
and Wang (1997a, b) analyzed the island model with two sexes. They derived linear
recursion formulas for the inbreeding coefficient and the coancestry of individuals from
the same and different subpopulations, and computed an effective size from the largest
eigenvalue of this recursion. Felsenstein (1971) computed the effective size for models
with s age classes, and found the effective size from the largest eigenvalue of a linear
recursion of s2 non-identity by descent probabilities of genes drawn with replacement
from all pairs of age groups. Maruyama (1970a) derived a similar effective number
for the circular stepping stone model under large population and small migration rate
limits. Tufto et al. (1996) and Tufto and Hindar (2003) defined the eigenvalue effective
size from a linear recursion of covariances between of all pairs of subpopulations.

All these notions of effective size are derived in terms the largest eigenvalue λ of
linear recursions of covariances or probabilities of identity by descent or state. Whit-
lock and Barton (1997) showed that these linear recursions are closely related. They
also argued briefly that the transition matrix of the Markov chain of allele frequencies
has its largest non-unit eigenvalue equal to λ, and therefore all effective sizes of the
previous paragraph agree with NeE .
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Motivated by the argument of Whitlock and Barton (1997), our main purpose in
this paper is to provide a general framework for exact and asymptotic computation
of NeE for a large class of structured populations with stochastic backward migration
and exchangeable reproduction within subpopulations. In Sect. 2 we introduce the
population genetic model and Ewens’ definition of NeE in terms of the rate at which
the Markov process of allele frequencies in all subpopulations reaches an absorbing
state, quantified by the largest non-unit eigenvalue λ of its transition matrix. In Sect. 3
we focus on gene diversities, i.e. probabilities of genes not being identical by state.
We introduce an s2-dimensional deterministic process of predicted gene diversities
and prove that whenever it is a linear recursion, λ also equals the largest eigenvalue
of the matrix A of this recursion. In Sect. 4 we show how the elements of A are
obtained from coalescence theory in new settings that generalize previous work, as
illustrated with several examples in Sect. 5. Asymptotic approximations of λ and NeE

are obtained from perturbation theory of eigenvalues of matrices in Sect. 6, when
either the population gets large and/or the migration rate gets small. This gives novel
asymptotic expressions for NeE that, for instance, in the limit of large populations
agrees with the coalescence effective size NeC when the latter exists. A discussion
follows in Sect. 7 and proofs are collected in the “Appendix”.

2 Model of reproduction, migration and allele frequency change

Consider a population of N individuals, divided into s subpopulations

I = {1, . . . , s} (1)

of constant sizes N1 = Nu1, . . . , Ns = Nus , with ui ≥ 0 and
∑

i∈I ui = 1. Each
individual carries two copies of a selectively neutral gene so that subpopulation i has
a total of 2Ni genes.

The population evolves in discrete time (not necessarily generations) t = 0, 1, . . .,
with the genes of each subpopulation k ∈ I at time t − 1 numbered g = 1, . . . , 2Nk ,
and νtkig referring to the number of offspring of gene g that migrate to subpopulation
i at time t . The total gene flow from k to i between t − 1 and t is summarized by the
backward migration rate

Btik = 1

2Ni

2Nk∑

g=1

νtkig, (2)

i.e. the fraction of genes a time t and subpopulation i that originate from k at time
t−1. ThematrixBt = (Bti j ) is referred to as the observed backwardmigrationmatrix
at time t . Since its row sums are one, it is the transition matrix of a Markov chain with
state space I.

Let νtkg = (νtk1g, . . . , νtksg) summarize the frequency distribution of the offspring

of gene g of subpopulation k at time t−1 in all subpopulations. Assume that {νtkg}2Nk
g=1

are exchangeable random vectors, conditionally on Bt , and that {Bt } are independent
and identically distributed random matrices with
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E(Bt ) = B, (3)

where B = (Bik), the expected backward migration matrix, is the transition matrix of
a Markov chain with state space I. We assume that the B is irreducible and aperiodic,
with a unique equilibrium distribution γ = (γ1, . . . , γs) satisfying γi ≥ 0,

∑s
i=1 γi =

1 and

γ = γ B. (4)

It follows from (2) that the observed forward migration rate between k and i , i.e. the
expected number of offspring of the genes in subpopulation k at time t −1 that at time
t end up in subpopulation i , is

Mtki := E(νtkig|Bt ) = uiBtik

uk
. (5)

In order to keep subpopulation sizes constant over time, the total contribution in (5)
from all parental populations k must be constant, i.e.

ui =
s∑

k=1

ukMtki . (6)

LetMt = (Mtki ) be the observed forwardmigrationmatrix of time t . It follows from
(3) and (5) that the corresponding expected forward migration matrix M = E(Mt )

has elements Mki = E(νtkig) related to those of B as

Bik = ukMki

ui
(7)

for 1 ≤ k, i ≤ s. Taking expectations on both sides of (6), we find that the vector
u = (u1, . . . , us) of relative subpopulation proportions satisfies

u = uM; (8)

a left eigenvector of M with eigenvalue 1. The two vectors u and γ are identical for
conservative migration (Nagylaki 1980), but in general they differ.

Consider a biallelic genetic marker, and let X t = (Xt1, . . . , Xts)
′ be a column

vector of (relative) frequencies of one of the two alleles in all subpopulations at time t ,
where prime denotes transposition. Since {νtkg}2Nk

g=1 are exchangeable, wemay number
the genes of subpopulation k and time t − 1 so that the first 2Nk Xt−1,k have the
specified allele. Then the allele frequency drift from one time point to the next can be
summarized as

Xti = 1

2Ni

s∑

k=1

2Nk Xt−1,k∑

g=1

νtkig. (9)

The following result is a simple consequence of (3), (5) and (9):
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On the eigenvalue effective size of structured populations 599

Proposition 1 Assume that Bt is independent of {Xs}s≤t−1. Then the sequence {X t }
of allele frequencies satisfies

E(X t |X t−1 = x) = Bx, (10)

where x is a column vector of allele frequencies of length s.

We can rephrase Proposition 1 as {X t } being a vector-valued autoregressive process
of order 1 (Brockwell and Davis 1991). This process will be heteroscedastic, since the
covariance matrix Var(X t |X t−1 = x) varies with x. The dynamics of {X t ; t ≥ 0} is
described more generally by means of a time homogeneous Markov chain with a state
space

X =
{

0,
1

2N1
,

2

2N1
, . . . , 1

}

× · · · ×
{

0,
1

2Ns
,

2

2Ns
, . . . , 1

}

of size |X | = ∏s
i=1(2Ni + 1), and a transition kernel P = (P(x, y)), with elements

P(x, y) = P(X t = y|X t−1 = x) for all x, y ∈ X . Since our model is free of
mutations and no subpopulation is isolated, sooner or later one of the two alleles will
be fixed in all subpopulations. This can be phrased as {X t } having two absorbing
states 0 = (0, . . . , 0) and 1 = (1, . . . , 1), so that P is reducible with two stationary
distributions π1(x) = 1{0}(x) and π2(x) = 1{1}(x), one for each of the absorbing
states, with 1Y (x) the indicator function of Y ⊂ X . Write π i = (πi (x); x ∈ X ) for
the corresponding two row vectors of length |X |. Since π i = π i P for i = 1, 2, they
are left eigenvectors of P with eigenvalue 1. We divideX = ∪n

i=1Xi into components
X1 = {0},X2 = {1},X3, . . . ,Xn that induce a block form

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 . . . 0
0 1 0 . . . 0
P31 P32 P33 . . . 0
...

. . .
...

Pn1 Pn2 Pn3 . . . Pnn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(11)

of the transition matrix, with zero blocks above the diagonal. For any function φ :
X → R, let φ = (φ(x); x ∈ X )′ be a column vector of function values. Then P acts
as an operator φ → Pφ on R

X , as

(Pφ)(x) =
∑

y∈X
P(x, y)φ( y) = Ex (φ(X1)) ,

where Ex denotes expectation conditionally on X0 = x, cf. e.g. Norris (2008). In
particular, the column vectors generated from

φ1(x) = 1 − γ x,

φ2(x) = γ x (12)
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are both right eigenvectors of P with eigenvalue 1, i.e. φi = Pφi for i = 1, 2. Indeed,
this follows from (4) and (10), since

(Pφ2)(x) = Ex(γ X1) = γ Ex(X1) = γ Bx = γ x = φ2(x),

and similarly for φ1.
In order to find the rate of fixation of one of the two alleles, we need to look at

P t for large t . We apply Markov chain theory and find this rate among all possibly
complex-valued eigenvalue of P , as the largest non-unit one. More specifically, in
the “Appendix” we use Perron–Frobenius Theorem (see for instance Cox and Miller
1965) as a main ingredient for establishing the following:

Theorem 1 Suppose the square submatrices P i i in (11) along the diagonal are irre-
ducible and aperiodic with at least one row sum less than one, for i = 3, . . . , n. Then
the eigenvalues λi = λi (P) of P (including multiplicity), can be ordered as

1 = λ1 = λ2 > λ3 ≥ |λ4| ≥ · · · ≥ |λ|X || ≥ 0, (13)

with

λ3 = max
3≤i≤n

λ max(P i i ). (14)

Moreover, if the maximum in (14) is attained uniquely for i = k, then

P t = φ1π1 + φ2π2 + λt3

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 . . . 0
0 0 0 . . . 0
R31 R32 R33 . . . 0
...

...
...

. . .
...

Rn1 Rn2 Rn3 . . . Rnn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+ o(λt3) (15)

as t → ∞, where Ri i = 0 for i 
= k, Rkk = φkqk , qk = (qk(x); x ∈ Xk) is a
row vector and φk = (φk(x); x ∈ Xk)

′ a column vector, both with strictly positive
elements, Ri j has non-negative elements for j ≥ 3, and the remainder term is a matrix
with all its |X |2 elements of smaller order than λt3.

The requirement on P in Theorem 1 is very weak, essentially that X3, . . . ,Xn

contain transient states, so that no subpopulation is isolated and eventually one of
the two alleles will be fixed in all subpopulations. When m = 3 there is only one
component of transient states, and migration is then possible within a finite number of
time steps, back and forth between any pair of subpopulations. A recursive formula is
provided in the “Appendix” for all Ri j , and for Rkk we can normalize the two vectors
φk and qk so that

∑
x∈Xk

qk(x) = ∑
x∈Xk

φk(x)qk(x) = 1. Then qk is the quasi
equilibrium distribution

qk(x) = lim
t→∞ Pπ (X t = x|X t ′ ∈ Xk, t ′ = 0, 1, . . . , t − 1) > 0 (16)
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On the eigenvalue effective size of structured populations 601

of X t conditionally on starting and remaining inXk (Darroch and Seneta 1965; Collet
and Martinez 2013). The quasi equilibrium distributions for the other X3, . . . ,Xn are
part of the remainder term of (15).

The following important corollary of Theorem 1 deals with the asymptotic decay
rate of the expected value of φ(X t ) for a large class of functions:

Corollary 1 Let φ : X → R be a function satisfying

φ(x) = 0, x ∈ X1 ∪ X2
φ(x) ≥ 0, x ∈ X \ (X1 ∪ X2 ∪ Xk),

φ(x) > 0, x ∈ Xk,

(17)

where Xk is the component for which the maximum in (14) is attained. Then

lim
t→∞

Eπ (φ(X t ))

λt3
=

∑

x, y∈X
π(x)R(x, y)φ( y)

≥
∑

x∈Xk

π(x)φk(x) ·
∑

y∈Xk

qk( y)φ( y), (18)

where R = (Ri j ) = (R(x, y)) is the matrix in (15), and Eπ denotes expected value
conditional on Pπ (X0 = x) = π(x). In particular, the right hand side of (18) is
strictly positive if π(Xk) > 0.

Corollary 1 shows that the largest non-unit eigenvalue λ3 = λ3(P) determines
the rate of decrease of the expected value Eπ (φ(X t )) as t → ∞. Putting φ(x) =
1{x /∈X1∪X2}, we notice that the probability of non-fixation decreases with t at this rate,
so that λ3 is the rate of fixation and the eigenvalue of main interest. We will often
simplify notation and write

λ = λ3(P). (19)

The Wright-Fisher (WF) model is a homogeneous population (s = 1) of N diploid
individuals, with Xt |Xt−1 ∼ Bin(2N , Xt−1)/(2N ). Feller (1951) found all the eigen-
values of the transition matrix for the WF model, and in particular

λ3(PWF) = 1 − 1

2N
. (20)

For an allele frequency process {X t }with transitionmatrix P , we define the eigenvalue
effective size

NeE = 1

2(1 − λ)
= 1

2(1 − λ3(P))
(21)

as the size of a WF population for which the largest non-unit eigenvalue in (20) is the
same as for the studied population.
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3 Rate of decay of predicted gene diversities

Following Nei (1973, 1987), we define the gene diversity

Hti j = Xti (1 − Xt j ) + Xt j (1 − Xti ) (22)

between subpopulations i and j at time t as the probability that two randomly chosen
genes from i and j (picked with replacement if i = j) are different by state, i.e. have
different types of alleles. Regarding t = 0 as present and t > 0 as future, let

Hti j = Eπ (Hti j ) (23)

be the predicted gene diversity between i and j at time t , given an initial distribution
X0 ∼ π . We collect the predicted gene diversities between all pairs of subpopulations
into a column vector

H t = H t (π) = vec
(
(Hti j )

s
i, j=1

)
(24)

of length s2, where vec is the vectorization operator that converts a matrix into a
column vector by stacking its columns on top of each other. In order to compute
linear combinations of the elements of H t , we define weights Wi j for all pairs of
subpopulations, and prove the following:

Proposition 2 SupposeW = vec
(
(Wi j )

s
i, j=1

)′
is a row vector of length s2 with non-

negativeweightsWi j ≥ 0 satisfying the symmetry conditionWi j = Wji for all i, j , and
let φW (x) = 2

∑s
i, j=1 Wi j xi (1 − x j ) be a quadratic functional of x = (x1, . . . , xs)′.

Then

WH t =
s∑

i, j=1

Wi j Hti j = Eπ (φW (X t )) .

To see the importance of Proposition 2, we notice that a sufficient condition for φW
to satisfy (17) is that allWi j > 0. It therefore follows fromCorollary 1 that we can find
λ = λ3(P) and hence also NeE from the rate of decrease to 0 of linear combinations
of Hti j . It is therefore of interest to study the time dynamics of H t , and wewill assume
that a non-negative square matrix A of order s2 exists, so that H t satisfies the linear
recursion

H t = AH t−1 (25)

for t = 1, 2, . . .. It will be convenient to introduce

I2 = I × I, (26)
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On the eigenvalue effective size of structured populations 603

the set of all pairs of subpopulations (cf. (1)), and write the elements of A as

A = (Ai j,kl)i j∈I2,kl∈I2 , (27)

where i j and kl is short hand notation for the row and column numbers obtained
from the stacking procedure of the vec operation. We can always divide (26) into m
irreducible components I2 = C1∪· · ·∪Cm . After a possible reordering of the elements
of I2, this gives a corresponding block decomposition

A =

⎛

⎜
⎜
⎜
⎝

A11 0 . . . 0
A21 A22 . . . 0
...

. . .
...

Am1 Am2 . . . Amm

⎞

⎟
⎟
⎟
⎠

(28)

of (27), with Aaa = (Ai j,kl)i j,kl∈Ca irreducible for a = 1, . . . ,m. Typically, the pair
of ancestors of two genes, picked from any pair I2 of subpopulations, will ultimately
belong to C1, provided the ancestry is traced sufficiently far back in time. The following
fundamental result clarifies the importance of A:

Theorem 2 Let {X t } satisfy the conditions of Theorem 1, with λ = λ3(P) the largest
non-unit eigenvalue of its transition matrix P , defined in (19). Assume that (25) holds,
with A having non-negative elements. Then

λ = λ max(A) = max
1≤a≤m

λ max(Aaa), (29)

where Aaa are the diagonal matrices of (28). If the maximum in (29) is attained for a
unique 1 ≤ c ≤ m, then

At = λt rρ + o(λt ) as t → ∞, (30)

with ρ = vec
(
(ρi j )i j∈I2

)′
and r = vec

(
(ri j )i j∈I2

)
left and right eigenvectors

ρA = λρ,

Ar = λr (31)

of A with eigenvalue λ. Explicit expressions for ρ and r are provided in the “Appen-
dix”, and their components can be normalized so that ρi j , ri j > 0 for i j ∈ Cc,∑

i j∈Cc ρi j = ∑
i j∈Cc ρi j ri j = 1, ρi j = 0 for i j ∈ Cc+1 ∪ · · · ∪ Cm and ri j = 0 for

i j ∈ C1 ∪ · · · ∪ Cc−1.

The following key result follows from (21) and Theorems 1–2:

Corollary 2 Suppose {X t } satisfies the conditions of Theorem 1, with a linear recur-
sion (25) for predicted gene diversities in terms of a non-negative quadratic matrix
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604 O. Hössjer

A. Then the eigenvalue effective size is

NeE = 1

2(1 − λ max(A))
. (32)

4 Coalescence probabilities

In this section we derive a linear recursion (25) for the predicted gene diversity vector
H t , using probabilities that ancestral lineages of two genes coalesce. This enables us
to compute NeE from (32).

Many authors have derived linear recursions for identity by descent probabilities,
gene diversities, covariances or coalescence probabilities of subdivided populations
with spatial, age, sex or some other structure, with or without mutations. This includes
results in Malécot (1951), Hill (1972), Li (1976), Sawyer (1976), Felsenstein (1982),
Slatkin (1991), Nagylaki (2000), Ryman and Leimar (2008), Durrett (2008), Hössjer
and Ryman (2014), Hössjer et al. (2014) and other papers mentioned in the introduc-
tion. They utilize coalescence probabilities more or less explicitly. We will generalize
several of these results for constant subpopulation sizes, allowing backward migration
rates to be stochastic and reproduction within subpopulations to have a general form.

Consider a structured coalescent (Notohara 1990; Herbots 1997; Wakeley 1998)
for two genes, with coalescence events formulated hierarchically in two steps, first for
subpopulations and then for genes. We draw two different genes from the population
at time t and consider their joint ancestral subpopulation history (Iτ , Jτ )Tτ=0 at times
{t − τ }Tτ=0 until they find their most recent common ancestor at t − T , where T is the
coalescence time. Let

Qt,i j,kl = P ((I1, J1) = (k, l)|(I0, J0) = (i, j), T > 0,Bt ) (33)

be the probability that the parents of two genes drawn from subpopulations i and j
at time t have parents from subpopulations k and l, conditionally on Bt . Since there
are 2NuiBtik genes of subpopulation i at time that originate from subpopulation k, it
follows that

Qti j,kl =
⎧
⎨

⎩

BtikBt jl , i 
= j,
2NuiBtik(2NuiBtik − 1)/(2Nui (2Nui − 1)), i = j, k = l,
2NuiBtik · 2NuiBtil/(2Nui (2Nui − 1)), i = j, k 
= l.

(34)

We gather all these probabilities into an observed backward migration matrix Qt =
(Qt,i j,kl)i j∈I2,kl∈I2 of order s2 for pairs of subpopulations. By averaging with respect
to Bt , we then define the unconditional probabilities

Qi j,kl = E(Qt,i j,kl) = P ((I1, J1) = (k, l)|(I0, J0) = (i, j), T > 0) (35)

that the parents of two genes from i and j belong to k and l, and collect them into a
square matrix Q = (Qi j,kl)i j∈I2,kl∈I2 of order s2. The following result summarizes
the role of Qt and Q and is stated without proof:
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On the eigenvalue effective size of structured populations 605

Proposition 3 Suppose segregation is independent between generations and condi-
tion on that coalescence events do not take place. Then the joint subpopulation ancestry
{(Iτ , Jτ )}tτ=0 of a pair of different genes from time t back to time 0 is a Markov chain
with state space I2 that (a) conditionally on {Bt−τ ; τ ≥ 0} has time varying transition
matrices {Qt−τ }t−1

τ=0, (b) unconditionally has a time invariant transition matrix Q.

The next step is to incorporate coalescence events. To this end, let

Pt,i jk = P (T = 1|I0 = i, J0 = j, I1 = J1 = k,Bt , T > 0) (36)

be the probability that two genes from subpopulations i and j at time t have the same
parent, given that the parent belongs to k, and conditionally onBt . The corresponding
unconditional coalescence probability pi jk that two genes from i and j that both have
their parents in k, have the same parent, is

pi jk = P(T = 1|I0 = i, J0 = j, I1 = J1 = k, T > 0). (37)

It will be helpful to introduce the quantities

Vki j =
{
E(νtki1(νtki1 − 1)), if i = j,
E(νtki1νtk j1), if i 
= j,

(38)

in order to get a more explicit expression for pi jk , where νtkig in (2) is the number of
offspring of gene g in subpopulation k at time t − 1 that end up in i at time t . The
variables {Vki j }si, j=1 quantify the average variability of reproductive success among
individuals in subpopulation k, and the coalescence probabilities are closely related
to standardized versions of them:

Theorem 3 Suppose the backward subpopulation ancestry of two different genes
before coalescence is a Markov chain, with transition matrix Q = (Qi j,kl) as in
(35), and define coalescence probabilities pi jk as in (37). Then

pi jk =
(

1

1 − 1
2Nui

){i= j}
Vki j uk

2Nuiu j Qi j,kk
, (39)

with Vki j defined in (38), and the components (22) of the gene diversity vectorsHt =
vec

(
(Hti j )

s
i, j=1

)
form a multivariate autoregressive process

Hti j =
s∑

k,l=1

Ai j,klHt−1,kl + εti j (40)

of order one for t = 0, 1, . . ., with εti j satisfying E(εti j |X t−1) = 0, and

Ai j,kl =
(

1 − 1

2Nui

){i= j} (
1 − pi jk

1 − 1
2Nuk

){k=l}
Qi j,kl . (41)

The expected gene diversity H t satisfies (25), with A = (Ai j,kl) as in (41).
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It turns out that the right eigenvector of P corresponding to its third largest eigen-
value λ3 can be found explicitly, whenever (40) holds:

Corollary 3 Suppose the conditions of Theorems 1 and 2 hold, with a gene diversity
process Ht satisfying (40). Then the transition matrix P of the Markov chain X t

has a right eigenvector φ3 = (φ3(x); x ∈ X )′, corresponding to the third largest
eigenvalue λ = λ3(P), with

φ3(x) =
s∑

i, j=1

ρi j
(
xi (1 − x j ) + x j (1 − xi )

)
, (42)

where ρ = (ρi j ) is the left eigenvector (14) corresponding to the largest eigenvalue λ

of A = (Ai j,kl). Moreover,

φ3(x) =

⎧
⎪⎨

⎪⎩

0, x ∈ X1 ∪ · · · ∪ Xk−1,

> 0, x ∈ Xk,

≥ 0, x ∈ Xk+1 ∪ · · · ∪ Xn,

, (43)

where Xk is the component of X1 ∪ · · ·Xn for which the maximum in (14) is uniquely
attained. In particular, the restriction of φ3 to Xk agrees (up to a multiplicative con-
stant) with the function φk of Theorem 1.

5 Examples

The key formula (41) provides a general way to find A and hence also NeE through
(32). We study its two main ingredients; expected backward migration rates Qi j,kl

for pairs of genes in Subsect. 5.1, and coalescence probabilities pi jk in Subsect. 5.2.
Then we apply these findings to a number of models in Subsect. 5.3 in order to show
the generality of Theorem 3, explain how to apply it and as a preparation for the
asymptotics of Sect. 6.

5.1 Backward migration

Example 1 (Fixed backwardmigration).When the observed backwardmigration rates
are non-random, we must have

Bt = B (44)

in order to satisfy (3). It follows from (34), (35) and (44) that

Qi j,kl = Qti j,kl =

⎧
⎪⎨

⎪⎩

Bik B jl , i 
= j,

Bik(2Nui Bik − 1)/(2Nui − 1), i = j, k = l,

2Nui Bik Bil/(2Nui − 1), i = j, k 
= l.

(45)
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Following the nomenclature of Sved and Latter (Sved and Latter (1977)), we refer to
(44) as fixed migration rates. �

Example 2 (Dirichlet multinomial backward migration). Denote the i :th rows of B
and Bt by Bi = (Bi1, . . . , Bis) and Bti = (Bti1, . . . ,Btis) respectively. Specify
parameters 0 < αi < ∞, a random matrix B̌t with rows

B̌ti ∼ Dir(αi Bi ) (46)

that are independent for i = 1, . . . , s, and assume

Bti |B̌ti ∼ Mult(2Nui , B̌ti )

2Nui
(47)

are conditionally independent and multinomially distributed random vectors, given
all B̌ti . Combining (46) and (47), the rows of Bt are independent random vectors
with Dirichlet multinomial distributions. The parameters αi quantify the amount of
variability of the rows of B̌t . We will also extend (46) to αi ∈ {0,∞}, which in
conjunction with (47) gives two degenerate cases within the Dirichlet multinomial
family: When αi ≡ ∞, B̌t = Bt is fixed, and

Bti ∼ Mult(2Nui , Bi )

2Nui
, (48)

whereas if αi ≡ 0 we have

Bti = B̌ti ∼ Mult(1, Bi ), (49)

so that when time proceeds backwards, the ancestral history of all genes within a sub-
population will vary according to the same Markov chain with transition matrix B.
From a forward perspective, the latter system has s subpopulation, but the backwards
scenario will be identical to that of a single population whose size varies between
2Nu1, . . . , 2Nus , according to a Markov chain with transition kernel B, see for
instance Jagers and Sagitov (2004), Sampson (2006), Pollak (2010), Kaj and Krone
(2003) and Sano et al. (2004).

For any 0 ≤ α1, . . . , αs ≤ ∞, we notice that

E(Bt ) = E
(
E(Bt |B̌t )

)
= E(B̌t ) = B,

in accordance with (3). Since two genes of subpopulations i and j are drawn inde-
pendently with multinomial distributions from rows i and j of B̌t , it follows from

(34) that E
(
Qti j,kl |B̌t

)
= B̌tikB̌t jl . Since the rows of B̌t have independent Dirichlet

distributions (46);
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608 O. Hössjer

Qi j,kl = E
(
E(Qti j,kl |B̌t )

)

= E
(
B̌tikB̌t jl

)

= E(B̌tik)E(B̌t jl) + Cov(B̌tik, B̌t jl)

= Bik B jl + 1{i= j}
1{k=l}Bik − Bik B jl

αi + 1
, (50)

which simplifies to

Qi j,kl = Bik B jl (51)

when αi ≡ ∞ and the rows of Bt have multinomial distributions. �

5.2 Coalescence probabilities

Example 3 (Mixed multinomial reproduction). Coalescence probabilities require that
a reproduction scheme is specified. A fairly general scheme is defined by dividing the
time interval between t − 1 and t into three steps. In a first fertilization step, a gamete
pool of infinite size is created for each parental subpopulation k, to which the 2Nk

genes contribute in fractionsωtk1, . . . , ωtk,2Nk that are exchangeable randomvariables
summing to one. In a second migration migration step, the s gamete pools mix, so that
the infinitely sized post-migration gamete pool i is a mixture of pre-migration pools
1, . . . , s in proportions B̌ti1, . . . , B̌tis . In the final reproduction step, subpopulation k
at time t is formed by drawing 2Nk genes from post migration gamete pool k. Then
(47) holds, and regardless of the distribution of B̌tik ,

(νtki1, . . . , νtki,2Nk )|Bt ,ωtk ∼ Mult(2NiBtik,ωtk) (52)

independently between all pairs of parental and offspring subpopulations k and i ,
where ωtk = (ωtk1, . . . , ωtk,2Nk ).

When (52) holds, we evaluate the expected value in (38) by conditioning on Btik

and ωtk and then insert into (39). By second moment properties of the multinomial
distribution; this yields

pi jk = 2NkE(ω2
tk1)

= (2Nk)
−1 + 2NkVar(ωtk1)

=: (2NeI,k)
−1 (53)

and this can also (more easily) be obtained by a direct argument. The coalescence
probability pi jk = pk in (53) only depends on the parental subpopulation k, since ωtk

is the same, regardless of the offsprings’ subpopulations i and j . In the second step
of (53) we used E(ωtk1) = 1/(2Nk), since the components of ωtk are exchangeable.
We interpret NeI,k ≤ Nk as a local inbreeding effective size of subpopulation k, with
equality if and only if ωtk is non-random. �
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On the eigenvalue effective size of structured populations 609

Example 4 (Survival indicators). Consider the genes g = 1, . . . , Nk of subpopulation
k at time t − 1, and assume that transitions k → i from time t − 1 to a specific
subpopulation i at time t represent their survival, with νtkig ∈ {0, 1} an indicator for
gene g to be still alive at time t . Then

piik = 0 (54)

follows from (38) to (39). For all other subpopulations j 
= i we let νtk jg refer to the
number of offspring of g. Then Vki j = P(νtki1 = 1)E(νtk j1|νtki1 = 1) =: Mki Mk, j |i ,
where Mk, j |i is the expected number of offspring in j for a gene that survives, possibly
different from the expected number of offspringMkj = E(νtk j1)of anygene in k. Since
(34)–(35) imply Qi j,kk = Bik B jk , it follows from (7) and (39) that the coalescence
probability

pi jk = 1

2Nuk
· Mk, j |i

Mkj
(55)

is the inverse of the local census size of k times a correction factor that quantifies how
correlated survival is with number of progeny in j . �

5.3 Example models

Example 5 (Cannings models). For a homogeneous population (s = 1), we may drop
subpopulation index and write νt11g = νtg , with νt1, . . . , νt,2N exchangeable random
variables. Since subpopulation sizes and backward migration probabilities are trivial
(u1 = Q11,11 = 1), we only need to specify coalescence probabilities p = p111. It
follows from (38)–(39) that

p = E (νt1(νt1 − 1))

2N − 1
,

and A = A11,11 = 1 − p due to (41). Insertion into (32) yields

NeE = 1

2(1 − A)
= N − 1

2

E (νt1(νt1 − 1))
, (56)

in agreement with Section 3.7 of Ewens (2004). Notice that (56) implies NeE = N
for a Wright-Fisher model, since νt1 ∼ Bin(2N , 1/(2N )). �
Example 6 (Sink and source populations). This population has a source of size N1
and a sink of size N2. It is assumed that on average N emig individuals emigrate from 1
to 2 per generation. The migration scheme is degenerate in the sense that the expected
forward and backward migration matrices are both reducible;

M =
(
1 N emig/N1
0 (N2 − N emig)/N2

)

, B =
(

1 0
N emig/N2 (N2 − N emig)/N2

)

,
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610 O. Hössjer

although the equilibrium distribution γ = (1, 0) of B is still unique. We assume
multinomial backward migration (51), and reproduction where parents are drawn
uniformly and independently from the parental subpopulation, corresponding to
pi jk = 1/(2Nk) in (53). If subpopulations are ordered as I2 = {11, 12, 21, 22},
we find from (41) that

A =

⎛

⎜
⎜
⎜
⎜
⎝

1 − 1
2N1

0 0 0

B21 B22 0 0

B21 0 B22 0

(1 − 1
2N2

)B2
21 (1 − 1

2N2
)B21B22 (1 − 1

2N2
)B21B22 (1 − 1

2N2
)B2

22

⎞

⎟
⎟
⎟
⎟
⎠

.

It is evident that A has a block structure (28), with C1 = 11, C2 = 12, C3 = 21 and
C4 = 22. Combining the expression for A with (29) and (32), we obtain

NeE = 1

2(1 − max(1 − 1/(2N1), B22))
= max

(

N1,
N2

2N emig

)

.

For large enough migration rates N emig ≥ N2/(2N1), the source population will
determine the effective size, whereas for small migration rates N emig < N2/(2N1),
the two populations get increasingly isolated, and the effective size tends to infinity.
It turns out that Theorem 1 applies with n = 5 components, of which the three non-
absorbing ones are

X3 = {x = (x1, x2); x1 = 0, x2 
= 0},
X4 = {x = (x1, x2); x1 = 1, x2 
= 1},
X5 = {x = (x1, x2); 0 < x1, x2 < 1}.

For large migration rates, the eigenvalue λ of P and A is found within components
X5 and C1, and (42) simplifies to φ3(x) = ρ11x1(1 − x1). For small migration rates,
we find λ within X3,X4 and C2, C3 respectively. �

Example 7 (Combined age and spatial structure). Age structured models have been
studied by Felsenstein (1971), Hill (1972), Kaj et al. (2001), Sagitov and Jagers (2005)
and Hössjer (2011). Here we consider a population with s = 2z that has two demes
with z age classes each. Subpopulations are numbered so that i (z + i) corresponds
to age class i = 1, . . . , z of deme 1 (deme 2). The expected forward and backward
migration matrices

M =
(
M11 M12
M21 M22

)

, B =
(
B11 B12
B21 B22

)

, (57)
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have a block structure, with Mcd and Bcd describing migration between demes c and
d. All blocks of the forward matrix have the same form, e.g.

M11 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

M11 M12 0 . . . 0 0
M21 0 M2,3 . . . 0 0
...

...
...

. . .
...

...

Mz−1,1 0 0 . . . 0 Mz−1,z
Mz,1 0 0 . . . 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (58)

with a first column containing expected number of offspring in deme 1 of all age
classes in deme 1, and a superdiagonal with probabilities of surviving to the next
age class and not migrating to deme 2. The blocks of the backward matrix a similar
structure, for instance

B11 =

⎛

⎜
⎜
⎜
⎝

B11 . . . B1,z−1 B1z
B21 . . . 0 0
...

. . .
...

...

0 . . . Bz,z−1 0

⎞

⎟
⎟
⎟
⎠

, (59)

with probabilities in the first row that the parent of a newborn in deme 1 originates
from the various age classes in deme 1, and probabilities along the subdiagonal that
genes of the various adult age classes in deme 1 did not migrate during the last time
step. If parental subpopulations are chosen independently for all genes from B, it
follows that Qi j,kl is given by (51).

Coalescence probabilities

pi jk =

⎧
⎪⎪⎨

⎪⎪⎩

1/(2NeI,k), a(i) = a( j) = 1,
0, a(i) = a( j) = a(k) + 1,
1/(2Nk), a(i) = 1, a( j) = a(k) + 1 or

a(i) = a(k) + 1, a( j) = 1,

(60)

are obtained for all triples i jk of age classes for which Qi j,kk is nonzero, with a(i) =
i mod z the age class of subpopulation i , assuming in the first row that parents of
newborns in a particular deme are chosen from a mixed multinomial distribution, with
coalescence probabilities as in (53). For the second row we used that the coalescence
probability (54) for survival is zero, and in third row we assumed that survival is
independent of number of offspring, cf. (55).

We finally obtain NeE by inserting (57) and (59) into (51), and then (51) and (60)
into (41) and (32). �
Example 8 (Extended Moran model). Eldon and Wakeley (2006, 2009) extended the
Moran model to allow for more skewed offspring distributions, for a homogeneous
population and for the island model. Here generalize their model to populations with
conservative migration. The reproduction cycle between time points t − 1 and t is
divided into twoparts. In thefirst reproduction step one genewithin each subpopulation

123



612 O. Hössjer

k at time t − 1 is chosen randomly to have Yt−1,k = Yk offspring, including itself,
where 2 ≤ Yk ≤ 2Nk . Then Yk − 1 other, randomly chosen genes from the same
subpopulation die. In the second migration step we assume that (44) holds, so that the
forward and backward migration rates are non-random and fixed. The conservative
migration assumption implies that exactly 2Nk genes from subpopulation k migrate
in (randomly chosen) groups of sizes 2N1B1k, . . . 2Ns Bsk to subpopulations 1, . . . , s.
The coalescence probability for any triple i, j, k of subpopulations is

pi jk = pk =
2Nk∑

y=2

P(Yk = y)

(y
2

)(2Nk−y
0

)

(2Nk
2

) = E (Yk(Yk − 1))

2Nk(2Nk − 1)
, (61)

as shown either by a direct argument, or from (38), (39) and (45). We finally obtain
NeE by inserting (45) and (61) into (41) and (32). �
Example 9 (Dioecious population). Consider a population with Nm males, N f =
N − Nm females and sex ratio ξ = Nm/N . Inheritance at an autosomal locus
is modeled with s = 4 subpopulations; gametes within males inherited from the
father (i = 1) and mother (i = 2), and gametes within females inherited from
the father (i = 3) and mother (i = 4), so that the relative subpopulation sizes are
u = (ξ/2, ξ/2, (1 − ξ)/2, (1 − ξ)/2). According to Mendelian laws, each gamete is
inherited, with equal probability 0.5, either from a grandpaternal or a grandmaternal
gamete within the father or mother. This gives an observed backward migration matrix
Bt with amultinomial distribution (48). In view of (7), the expected backward/forward
migration matrices are

B =

⎛

⎜
⎜
⎝

1
2

1
2 0 0

0 0 1
2

1
2

1
2

1
2 0 0

0 0 1
2

1
2

⎞

⎟
⎟
⎠ , M =

⎛

⎜
⎜
⎜
⎝

1
2 0 1−ξ

2ξ 0
1
2 0 1−ξ

2ξ 0

0 ξ
2(1−ξ)

0 1
2

0 ξ
2(1−ξ)

0 1
2

⎞

⎟
⎟
⎟
⎠

, (62)

and γ = (1/4, 1/4, 1/4, 1/4) follows from (4). Pairwise backward migration proba-
bilities Qi j,kl are given by (51), and in order to find the coalescence probabilities pi jk ,
we follow the notation of Hill (1979) and letm and f represent male and female sexes,
write τ 2rs for the variance of the number of children of sex s of an individual of sex r ,
and τrr,rs for the covariance of the number of children of sex r and s of an individual of
sex r . It is shown in the “Appendix” that the nonzero coalescence probabilities when
k = 1 are

p111 = τ 2mm

2Nu1 − 1
, (63)

p331 =
1 + ξ2

(1−ξ)2

(
τ 2m f − 1−ξ

ξ

)

2Nu1 − ξ/(1 − ξ)
, (64)

p131 = 1 + ξ
1−ξ

τmm,m f

2Nu1
, (65)
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and analogous formulas hold for k = 2, 3, 4. In particular, if a sperm or ova gamete
chooses its parent randomly among all Nm or N f parental genes, the number of
male and female offspring of a male are two independent binomial random vari-
ables Bin(2Nu1, (2Nu1)−1) and Bin(2Nu3, (2Nu1)−1), with variances τ 2mm and τ 2m f
respectively, and covariance τmm,m f = 0. It is easily seen that in this case, all three
probabilities in (63)–(65) equal 1/(2Nu1). We finally obtain NeE by inserting (62)
into (51), and then (51), (63)–(65) and the analogous coalescence probabilities for
k = 2, 3, 4 into (41) and (32). �

6 Asymptotics

According to (32), we find NeE from the largest eigenvalue λ of A, for which we
derived very explicit expressions in Sect. 4. Here will use this approach and give
asymptotic formulas for NeE when

A = A(ε) = (
Ai j,kl(ε)

)
i j,kl∈I2 (66)

depends on a positive parameter ε → 0, with a Taylor expansion

A(ε) = A(0) + Ȧε + o(ε) as ε → 0, (67)

and Ȧ = ( Ȧi j,kl)i j∈I2,kl∈I2 a matrix of order s2. For each fixed ε > 0, A(ε) satisfies
the conditions of Theorem 2, so that in particular its unique largest eigenvalue is
λ = λ(ε). The limiting matrix A(0) is assumed to have a largest, not necessarily
unique, eigenvalue λ(0) = 1. As in Maruyama (1970a) and Nagylaki (1980, 1995),
we use perturbation theory of matrices (Horn and Johnson 1985; Friswell 1996), in
order to deduce

λ(ε) = 1 + λ̇ε + o(ε) as ε → 0, (68)

for some negative constant λ̇ < 0. Inserting (68) into (21), we find the asymptotic rate

NeE (ε) = 1

−2λ̇ε
+ o(ε−1) as ε → 0 (69)

by which the eigenvalue effective size tends to infinity. The following result gives a
very explicit formula for λ̇, see for instance Aa et al. (2007) and references therein for
a proof:

Theorem 4 Suppose the above conditions hold, with A(0) having a largest eigenvalue
λ(0) = 1 of multiplicity 1 ≤ v ≤ s2, with corresponding left and right eigenvectors
ρ1(0), . . . , ρv(0) and r1(0), . . . , rv(0). If also the perturbed left eigenvectors ρα(ε)

and eigenvalues λα(ε) are differentiable functions of ε at 0 for α = 1, . . . , v, it holds
that λ(ε) = maxα=1,...,v λα(ε) for small enough ε > 0, and (68) is satisfied, with

λ̇ = λ max(�̇) (70)
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and �̇ = (�̇αβ) a v × v matrix with entries

�̇αβ = ρα(0) Ȧrβ(0). (71)

In particular, suppose A(0) is the transition matrix of a Markov chain with a
unique equilibrium distribution ρ(0) = (ρi j (0)), the left eigenvector corresponding
to λ(0) = 1, and a right eigenvector r(0) = 1. Then v = 1 and

λ̇ =
∑

i j,kl

ρi j (0) Ȧi j,kl . (72)

In the following three subsections, the small perturbation parameter ε will either
correspond to an inverse population size, a migration rate or both. We will use (41)
and establish a Taylor expansion (67) for each case based on

Ai j,kl(ε) =
(

1 − 1

2Ni (ε)

){i= j} (
1 − pi jk(ε)

1 − 1
2Nk (ε)

){k=l}
Qi j,kl(ε), (73)

when population sizes Ni (ε) = N (ε)ui (ε), backward migration rates Qi j,kl(ε) and/or
coalescence probabilities pi jk(ε) depend on the perturbation parameter ε → 0. The
asymptotic expression for NeE is then obtained from (69) and (70).

6.1 Large populations

We assume that the population size N tends to infinity, while the relative subpopu-
lations sizes u, forward and backward migration matrices M and B are kept fixed.
Introduce

ε = 1

2Nβ
(74)

as a perturbation parameter, with 0 < β ≤ 1 a fixed constant. In order to verify a Taylor
expansion of A(ε) in (73), we first consider the backward migration matrix Q(ε) =
(Qi j,kl(ε)) = E(Qt (ε)) for pairs of genes. It does not depend on ε for Dirichlet
multinomial backward migration in (50), whereas for fixed backward migration (45)
it does. In order to keep generality we assume that Q(ε) may depend on ε, with a
Taylor expansion

Q(ε) = Q(0) + Q̇ε + o(ε) as ε → 0 (75)

for some matrix Q̇ = (Q̇i j,kl). It will be seen though that Q̇ does not influence the
asymptotic behavior of NeE . In contrast, the asymptotic behavior of the coalescence
probabilities pi jk = pi jk(ε) is crucial and depends on how variable reproductive

123



On the eigenvalue effective size of structured populations 615

success is between individuals that migrate from one subpopulation (k) to other pairs
of subpopulations (i, j). The limits

σi jk = lim
N→∞

Vki j u2k
(Nuk)1−βuiu j Qi j,kk(0)

(76)

are assumed to exist for all triples i jk, with Vki j defined in (38). It follows from (39),
(74) and (76) that the coalescence probabilities admit Taylor expansions

pi jk(ε) = σi jk

uβ
k

ε + o(ε) := ṗi jkε + o(ε) as ε → 0 (77)

for all i, j, k. We refer to ṗi jk as the coalescence rate when two lines from i and j
are merged into k and time is measured in units of ε−1 = 2Nβ generations. The
coalescence rate σi jk takes the size of the parental subpopulation k into account and
measures time in units of 2(Nuk)β instead. Taking the ε → 0 limit in (73), it follows
from (75) and (77) that

A(0) = Q(0). (78)

We assume that Q(0) is the transition kernel of a Markov chain that is not necessarily
irreducible (it may contain some transient states), but has a unique equilibrium distri-
bution ρ(0) = (ρi j (0)), which is also the left eigenvector of Q(0) corresponding to
its unique largest eigenvalue λ(0) = 1. Hence formula (72) of Theorem 4 applies, and
we obtain the following:

Theorem 5 Define ε and A = A(ε) as in (73)–(74). Assume the population size
N → ∞ so that (75) holds and the limits in (76) exist for some 0 < β ≤ 1. Then A(ε)

satisfies Taylor expansion (67), with A(0) as in (78) and

Ȧi j,kl = −1{k=l}
σi jk Qi j,kk(0)

uβ
k

+ Q̇i j,kl

+1{β=1}
(

1{k=l}
Qi j,kk(0)

uk
− 1{i= j}

Qii,kl(0)

ui

)

. (79)

If the differentiability conditions on λ(·) and ρ(·) in Theorem 4 hold, then

NeE = Nβ

C
+ o(Nβ) as N → ∞, (80)

with

C =
∑

i jk

ρi j (0)σi jk Qi jkk(0)

uβ
k

. (81)
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Suppose I = Iτ and J = Jτ are the subpopulations of the ancestors, taken from
the same generation t − τ of two genes sampled at a fixed time t . Let K = Iτ+1
and L = Jτ+1 refer to the subpopulations of their two parents. Arguing as in Möhle
(1998a), it will take many generations before coalescence in a large population, so that
(I, J, K , L) will first attain its equilibrium distribution ρi j (0)Qi j,kl(0). Therefore,
(81) can be interpreted as a coalescence rate

C = E
(
1{K=L} ṗI J K

) = E

(

1{K=L}
σI J K

uβ
K

)

(82)

at equilibrium if time is counted in units of 2Nβ . In view of this, we may expect that
for large populations, NeE is asymptotically equivalent to the coalescence effective
size NeC whenever the latter exists. In a number of examples below, we will indeed
verify that

NeC = Nβ

C
, (83)

with C the same constant as in (81). To this end, we first need the following:

Corollary 4 Suppose the conditions of Theorem 5 hold. Then asymptotically as N →
∞, NeE is given by (80)–(81), with

Qi j,kl(0) = Bik B jl , (84)

for fixed backward migration (44), and

Qi j,kl(0) = Bik B jl + 1{i= j}
1{k=l}Bik − Bik B jl

αi + 1
, (85)

for Dirichlet multinomial backward migration (46)–(47).

Theorem 2 and (85) imply that A has m = 1 irreducible component C1 = I2
for Dirichlet multinomial backward migration when B is irreducible and at least one
αi > 0, whereas A has m = 2 components C1 = {(i, i); i = 1, . . . , s} and C2 =
{(i, i); i 
= j} when αi ≡ 0. Then the joint ancestry of two genes are confined to lie
in the same subpopulation after a few generations, once their ancestral subpopulation
lineages merge for the first time, although they may not yet have coalesced at the gene
level.

Corollary 5 Assume the conditions of Theorem 5 hold, with Dirichlet multinomial
backward migration and αi ≡ 0. Then the equilibrium distribution ρ(0) = (ρi j (0))
of Q(0) is supported on the diagonal of I2, with elements

ρi j (0) = 1{i= j}γi . (86)
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Moreover, NeE is asymptotically given by (80), with

C =
∑

ik

γiσi ik Bik

uβ
k

, (87)

σi ik = lim
N→∞

V̄kii u2k
(Nuk)1−βu2i

, (88)

V̄kii = E (νtki1(νtki1 − 1)|Kti = k) and Kti the subpopulation to which all parents
of the genes in i at time t belong.

Jagers and Sagitov (2004) and Pollak (2010) studied populations with rapidly vary-
ing sizes, which can be viewed as a special case of the Dirichlet multinomial backward
distribution with αi ≡ 0 (see Example 2). They showed that NeC satisfies (83), with
β = 1 and C as in (87).

It is also possible to get explicit expressions for C when backward migration is
fixed or multinomial:

Corollary 6 Assume the conditions of Theorem 5 hold, with fixed or multinomial
(αi ≡ ∞) backward migration. Then Qi j,kl(0) = Bik B jl follows from (84) and (85)
with αi ≡ ∞ respectively, and the equilibrium distribution ρ(0) = (ρi j (0)) has
elements

ρi j (0) = γiγ j . (89)

Moreover, NeE is asymptotically given by (80)–(81), with

C =
∑

i jk

γiγ jσi jk Bik B jk

uβ
k

, (90)

σi jk = lim
N→∞

Vki j
(Nuk)1−βMki Mkj

, (91)

and Vki j as defined in (38).

Felsenstein (1971) seems to have been first to use (89) for weighting pairs of
subpopulations. Hössjer (2011) studied models with fixed backward migration, and
showed that NeC satisfies (83) when β = 1, with C as in (90).

Example 10 (Local subpopulation sizes).When the coalescence probability pi jk(ε) =
pk(ε) only depends on the parental subpopulation k for all ε > 0, the size standardized
coalescence rate (76) satisfies

σi jk = σk, (92)

as for the mixed multinomial reproduction scheme of Example 3. We deduce from
(53) that pk ≥ 1/(2Nuk), and

σi jk = σk = 1{β=1} + 4 lim
N→∞

(
(Nuk)

1+βVar(ωtk1)
)

, (93)
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with C larger and NeE smaller the more variable the gene weights ωtkg are. When
(92) and Theorem 5 hold, it follows that NeE is given by (80), with

C =
∑

k

σk

uβ
k

∑

i j

ρi j (0)Qi jkk(0)

=
s∑

k=1

σkρkk(0)

uβ
k

, (94)

using
∑

i j ρi j (0)Qi j,kl(0) = ρkl(0) in the last step, since ρ(0) is the left eigenvector
of Q(0) with eigenvalue 1. In particular, if all genes within each subpopulation have
parents from the same subpopulation, (86) implies

C =
s∑

k=1

σkγk

uβ
k

, (95)

whereas for fixed or multinomial backward migration, we deduce

C =
s∑

k=1

σkγ
2
k

uβ
k

(96)

from (89). In particular, if offspring pick their parents uniformly and independently
within the parental subpopulation k, we have pi jk = pk = 1/(2Nk), so that the local
inbreeding effective size NeI,k in (53) equals the local census size Nk . Asymptotically,
this corresponds to having β = 1 in (74) and σk = 1 in (92). For fixed backward
migration, we can therefore use (80) and (96), and deduce NeE = N/C + o(N ) as
N → ∞, with

C =
s∑

k=1

γ 2
k

uk
. (97)

Notohara (1993) andNordborg andKrone (2002) showed that the coalescence effective
size satisfies NeC = N/C , with C as in (97). Whenever NeI,k = Nk ,

s∑

k=1

γk

uk
= C(αi ≡ 0) ≥

s∑

k=1

γ 2
k

uk
= C(αi ≡ ∞) ≥

1 = C(αi ≡ ∞; γk = uk). (98)

The first inequality of (98) shows how much stochastically varying migration low-
ers NeE at most. Then Cauchy-Schwarz inequality shows how much a variable long
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term reproductivity γk/uk between subpopulations lowers NeE , with equality for con-
servative migration γk = uk (Nagylaki 1980). The circular stepping stone model
has conservative migration with uniform population sizes uk = 1/s, and Maruyama
(1970a) found that NeE/N → 1 as N → ∞, in agreement with the right hand side
of (98). �
Example 11 (Multiple mergers). Other limiting ancestral processes with multiple
mergers (Pitman 1999; Sagitov 1999) are possible. Let p(3)

i jh,k be the probability that
three genes from subpopulations i, j, h that all have their parents in subpopulation k,
have the same parent. We will only consider models for which the pairwise and triple
coalescence probabilities pi jk = pk and p(3)

i jh,k = p(3)
k only depend on the source

population. Then we must have

p(3)
k (ε)

pk(ε)
→ 0 as ε → 0 (99)

in order for the limiting process to beKingman’s coalescent, see Theorem3.2 ofMöhle
(2000). It is not possible to violate (99) in Example 3. Indeed,

p(3)
k

pk
= 2Nuk E(ω3

tk1)

2Nuk E(ω2
tk1)

= E(ω3
tk1)

E(ω2
tk1)

→ 0,

as N → ∞, since ωtk1 is bounded by 1 and tends to zero in probability. On the other
hand, the Moran model of Example 8 allows for multiple mergers for an appropriate
choice of the offspring size Yt−1,k = Yk of the reproducing gene of subpopulation k.
As in Eldon and Wakeley (2006), we let

P(Yk = y) =
⎧
⎨

⎩

1 − (2Nk)
−β, y = 2,

(2Nk)
−β, y = 2Nkψ,

0, otherwise,

for some 0 < ψ ≤ 1 and β > 0. Then one shows

p(3)
k = E (Yk(Yk − 1)(Yk − 2))

2Nk(2Nk − 1)(2Nk − 2)

analogously as in (61). Since

E (Yk(Yk − 1)) ∼ ψ2(2Nk)
2−β + 2,

E (Yk(Yk − 1)(Yk − 2)) ∼ ψ3(2Nk)
3−β,

as N → ∞, it follows from (61) and the last two displayed equations that we can
violate (99) when 0 < β ≤ 1, with σi jk = σk = ψ221−β . Since the extended Moran
model has fixed backward migration and conservative migration γk = uk , it follows
that NeE satisfies (96) with
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C = 21−βψ2
s∑

k=1

u2−β
k .

Notice that this expression equals 1 when β = ψ = 1, since then the coalescence
probability is asymptotically equivalent to 1/(2Nk). �

Other applications of Theorem 5 with β = 1 includes a single deme with s age
classes. Explicit formulas for the constant C in NeE = N/C + o(N ) can be found
under general assumptions on how reproductivity varies randomly between and within
age classes, thereby extending results of Felsenstein (1971), Sagitov and Jagers (2005)
and Hössjer (2011).

For dioecious models, Hill (1979) found that NeE = N/C + o(N ), with

C = 1

16ξ

(

2 + τ 2mm + 2
ξ

1 − ξ
τmm,m f +

(
ξ

1 − ξ

)2

τ 2m f

)

+ 1

16(1 − ξ)

(

2 + τ 2f f + 2
1 − ξ

ξ
τ f f, f m +

(
1 − ξ

ξ

)2

τ 2f m

)

, (100)

which also follows from (51), (62), (63)–(65) and (90). Other effective size expressions
of a diploid population can be found in Crow and Denniston (1988), Caballero (1995)
and Nagylaki (1995). The latter two authors also treat inheritance at sex-linked loci.
The expression forC is then somewhat different, since males only have one copy of an
X -chromosome, and only s = 3 subpopulations are needed. Overlapping generations
within a dioecious population (Pollak 2011) requires s = 4z (s = 3z) subpopulations
for inheritance at an autosomal (X-linked) locus with z age classes. See also Möhle
(1998b), for coalescence theory of two-sex models.

6.2 Small migration rates

Assume that the subpopulations in (1) divide into m ≤ s demes

I = I(1) ∪ · · · ∪ I(m), (101)

with deme d containing the subpopulations of I(d). We will introduce a migration
parameter ε → 0 that quantifies the amount of migration between the demes (not
within them) while the total population size N is kept fixed. In order to obtain an
expression for NeE as ε → 0, the crucial part is to find how all Qi j,kl(ε) in (73) depend
on ε. Although the relative subpopulation sizes ui (ε) and coalescence probabilities
pi jk(ε) may vary with ε to some extent, this will have no asymptotic impact on NeE

as ε → 0.
We will assume that the backward migration matrix

B(ε) = B(0) + ε Ḃ (102)
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depends on 0 ≤ ε ≤ ε max, where ε max is chosen to guarantee that B(ε) remains a
non-negativematrix. The demes are isolatedwhen ε = 0, so that B(0) has a block diag-
onal structure B(0) = diag(B11(0), . . . , Bmm(0)), with Bdd(0) = (Bik(0))i,k∈I(d)

describing backward migration within deme d. Since B(ε) is a transition matrix of a
Markov chain for all ε, the row sums of Ḃ must be zero, and this holds, for instance,
if

Ḃik = 1{k /∈I(d)} Ḃik − 1{k∈I(d)}Bik(0)
∑

l /∈I(d)

Ḃil (103)

for all i ∈ I(d) and d = 1, . . . ,m. If M(ε) and u(ε) are computed for each ε > 0
from (7) and (8), it follows from (102) that

M(ε) = εṀ + o(ε), (104)

if all ui (ε) are differentiable at 0, with Ṁ = (Ṁki ) having elements

Ṁki = ui (0)Ḃik/uk(0), when k ∈ I(a) 
= I(b) � i. (105)

The migration parameter ε is such B(ε) = Ḃε + o(ε) and M(ε) = Ṁε + o(ε) as
ε → 0 for some positive constants Ḃ and Ṁ , where

B(ε) =
m∑

d=1

∑

i∈I(d)

γi (ε)
∑

k;k 
=I(d)

Bik(ε), (106)

is the backward migration rate between demes, i.e. the average number of parents of
ancestors far back in time that originate from another deme than their children, and

M(ε) =
m∑

d=1

∑

k∈I(d)

uk(ε)
∑

i;i 
=I(d)

Mki (ε), (107)

is the forwardmigration rate, i.e. the fraction of all offspring todaywhose parents reside
in another deme.Backwardmigration B(ε) is somewhat easier to analyze theoretically,
but often M(ε) is of more interest in applications.

In order to find explicit expressions for Ḃ and Ṁ , we introduce γ d = (γdi )i∈I(d) as
the equilibrium distribution of Bdd(0), and the matrix G = (Gab)

m
a,b=1 with elements

Gab =
∑

i∈I(a)

γai
∑

k∈I(b)

Ḃik . (108)
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It is the infinitesimal generator of a continuous time Markov process with state space
{1, . . . ,m} and an equilibrium distribution θ = (θ1, . . . , θm) satisfying

θG = 0,
m∑

d=1

θd = 1. (109)

In the next lemmawe assume ε is small, so that migration is faster within than between
demes, and subpopulations within a deme form a macro state. The backward ancestry
of a gene then attains its equilibrium distribution within a deme before any transitions
between demes occur, and then the backward deme ancestry is a continuous time
Markov process with generator G:

Lemma 1 Suppose ε → 0. Then the equilibrium distribution γ (ε) corresponding to
(102) satisfies

γi (ε) = 1{i∈I(d)}θdγdi + o(1), (110)

for i = 1, . . . , s, and the backward migration rate (106)

B(ε) = −ε

m∑

d=1

∑

i,k∈I(d)

γi (0)Ḃik + o(ε), (111)

where γi (0) is the limit of the right hand side of (110). If all ui (ε) are differentiable
at 0, the forward rate (107) has a similar expansion

M(ε) = ε

m∑

d=1

∑

k∈I(d)

uk(0)
∑

i /∈I(d)

Ṁki + o(ε). (112)

In order to find the asymptotic behaviour of NeE as ε → 0 by means of (69) and
Theorem 4, we derive an expression for A(ε) in (73), find Ȧ, show that A(0) has a
largest eigenvalue λ(0) = 1, find its multiplicity v and corresponding left and right
eigenvectors. Because all demes are isolated when ε = 0, it is easy to see that the
ancestors of i ∈ I(a) and j ∈ I(b)must belong to k ∈ I(a) and l ∈ I(b) respectively.
Therefore Q(0) has a block diagonal structure

Q(0) = diag
(
Qab(0); 1 ≤ a, b ≤ m

)
(113)

with Qab(0) = (
Qi j,kl

)
i,k∈I(a), j,l∈I(b) a square matrix of order |I(a)||I(b)| contain-

ing all backward transitions when one gene and its parent are from deme a and the
other gene and its parent are from deme b. It follows from (73) that A(0) has a block
diagonal structure

A(0) = diag (Aab(0); 1 ≤ a, b ≤ m) (114)
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as well, with Aab(ε) = (
Ai j,kl(ε)

)
i,k∈I(a), j,l∈I(b) having elements

Ai j,kl(ε) = Qi j,kl(ε)

= Bik(ε)Bjl(ε), i, k ∈ I(a), j, l ∈ I(b), a 
= b, (115)

for any ε because of (73), for subpopulations i and j that reside in different demes.
In particular, Aab(0) = Qab(0) has a unique largest eigenvalue 1 when a 
= b, and
associated left and right eigenvectors ρab(0) = vec

(
(ρab,i j (0))i j∈I2

)′ and rab(0) =
vec

(
(rab,i j (0))i j∈I2

)
with components

ρab,i j (0) = γaiγbj1{i∈I(a), j∈I(b)},
rab,i j (0) = 1{i∈I(a), j∈I(b)}. (116)

Since coalescence events are possible within each deme, even when ε = 0, it follows
that Add(0) differs from Qdd(0), with a largest eigenvalue strictly smaller than one.
Therefore, the largest eigenvalue 1 of A(0) has multiplicity

v = |{α = (a, b); 1 ≤ a 
= b ≤ m}| = m(m − 1).

In order to apply Theorem 4 we must also find the entries of the matrix �̇ =
(�̇α,β)vα,β=1, where α = (a, b), β = (c, d), a 
= b and c 
= d. Suppose i ∈ I(a),
j ∈ I(b), k ∈ I(c) and l ∈ I(d), then

Ȧi j,kl = Q̇i j,kl =

⎧
⎪⎪⎨

⎪⎪⎩

Bik(0)Ḃ jl + Ḃik B jl(0), c = a 
= b = d,

Bik(0)Ḃ jl , c = a 
= b 
= d,

Ḃik B jl(0), c 
= a 
= b = d,

0, c 
= a 
= b 
= d

(117)

follows from (114) anddifferentiation of (115)with respect to ε. Invoking the definition
of �̇ in (71), we find that

�̇ab,cd = ρab(0) Ȧrcd

=
∑

i, j∈I(a)×I(b)
k,l∈I(c)×I(d)

ρab,i j (0) Ȧi j,kl

=
∑

i, j∈I(a)×I(b)
k,l∈I(c)×I(d)

γaiγbj Ȧi j,kl . (118)

Then we insert (117) into (118), make use of (108) and obtain

�̇ab,cd =

⎧
⎪⎪⎨

⎪⎪⎩

Gaa + Gbb, c = a 
= b = d,

Gbd , c = a 
= b 
= d,

Gac, c 
= a 
= b = d,

0, c 
= a 
= b 
= d.

(119)
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In particular, when each subpopulation is a deme, m = s and I(d) = {d} for d =
1, . . . , s, so that (108) implies G = Ḃ, and �̇ = (�̇i j,kl)1≤i 
= j≤s,1≤k 
=l≤s is of order
v = s(s − 1), with elements

�̇i j,kl =

⎧
⎪⎪⎨

⎪⎪⎩

Ḃii + Ḃ j j , k = i 
= j = l,
Ḃ jl , k = i 
= j 
= l,
Ḃik, k 
= i 
= j = l,
0, otherwise.

(120)

Combining (111), (112) and (119) with Theorem 4, we obtain the following:

Theorem 6 Suppose subpopulations are divided into m demes, as in (101), whose
isolation is quantified by the matrix Ḃ = (Ḃik) in (102). Then

NeE =
∑m

d=1
∑

i,k∈I(d) γi (0)Ḃik

2λ max(�̇)
· 1

B
+ o(B−1) as B → 0, (121)

with B = B(ε) the backward migration rate between demes in (106), and �̇ =
(�̇ab,cd) the matrix in (119), which simplifies to (120) when m = s. If all uk(ε) are
differentiable at ε = 0 as well, then

NeE = −
∑m

d=1
∑

k∈I(d) uk(0)
∑

i /∈I(d) Ṁki

2λ max(�̇)
· 1

M
+ o(M−1) as M → 0, (122)

with M = M(ε) the forward migration rate in (107) and Ṁki defined in (105).

Example 12 (Island model). The island model (Wright 1943; Maruyama 1970b) is
the most well known example of a population with spatial substructure, havingm = s
demes, and a forward migration matrix

M(ε) = (1 − ε)I + ε

s − 1
(11′ − I), (123)

where 1 is a column vector of s ones. Migration is symmetric, so that the migration
rate Mki = ε/(s − 1) from each k to any other deme i 
= k is the same. It follows by
symmetry from (4), (7) and (8) that B = M, M = B = ε and uk(ε) = γk(ε) = 1/s.
This implies in particular that

Ḃik = Ṁki =
{−1, k = i,
1/(s − 1), k 
= i.

(124)

Insertion of (124) into (120) yields

�̇i j,kl =

⎧
⎪⎪⎨

⎪⎪⎩

−2, k = i 
= j = l,
1/(s − 1), k = i 
= j 
= l,
1/(s − 1), k 
= i 
= j = l,
0, otherwise,
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Fig. 1 Plots of NeE M versus
the migration rate M for the
island model, with s = 4 (lower
curves) and s = 9 (upper
curves), when the local census
size N/s equals 20 (solid), 200
(dashed) or 2,000 (dotted). The
upper curves converge to
(9 − 1)/4 = 2 and the lower
curves to (4 − 1)/4 = 3/4 as
M → 0, in accordance with
(125)
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so that by symmetry, the largest eigenvalue of �̇ corresponds to an eigenvector 1v =
(1, . . . , 1)′ that is a column vector with v = s(s − 1) ones. Hence we find, from any
of the row sums of �̇, that

λ max(�̇) = −2 + (s − 2) · 1

s − 1
+ (s − 2) · 1

s − 1
= − 2

s − 1
.

We finally apply (122) and arrive at

NeE =
1
s

∑s
i=1(−1)

2(− 2
s−1 )

· 1

M
+ o(M−1)

= s − 1

4
· 1

M
+ o(M−1) (125)

as M → 0. The accuracy of this formula is illustrated in Fig. 1. �

Example 13 (Circular stepping stone model). The circular stepping stone model
(Kimura 1953; Kimura and Weiss 1964; Maruyama 1970a) is a spatial model with
m = s demes located along the perimeter of a circle, where migration from any deme
is only possible to one of its two nearest neighbors. The elements of the expected
forward migration matrix are

Mki (ε) =
⎧
⎨

⎩

1 − ε, if k = i,
ε/2, if δ(k, i) = 1,
0, otherwise,

(126)

where δ(i, j) is the shortest distance between demes i and j along the circle perimeter,
when the distance between two neighboring demes is normalized to 1. It follows from
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Table 1 Comparison between
the multiplicative constants
NeE = C/M + o(M−1) in
(127), and the approximative
multiplicative constant
NeE ≈ C appr/M + o(M−1) in
(128), for a circular stepping
stone model with s
subpopulations with migration
rate M → 0

s C C appr

2 0.2500 0.2026

3 0.5000 0.4559

4 0.8536 0.8106

5 1.3090 1.2665

6 1.8660 1.8238

7 2.5245 2.4824

8 3.2843 3.2423

9 4.1454 4.1035

10 5.1079 5.0661

(4), (7) and (8) that M = B, M = B = ε and uk(ε) = γk(ε) = 1/s. Hence

Ṁki = Ḃik =
⎧
⎨

⎩

−1, k = i,
1/2, δ(k, i) = 1,
0, otherwise,

and from (120) we find that the matrix �̇ = (�̇i j,kl) has elements

�̇i j,kl =

⎧
⎪⎪⎨

⎪⎪⎩

−2, k = i 
= j = l,
1/2, k = i 
= j, δ( j, l) = 1,
1/2, δ(k, i) = 1, i 
= j = l,
0, otherwise.

Since
∑s

k=1 uk(0)
∑

i;i 
=k Ṁki = 1, we finally deduce from (122) that

NeE = 1

−2λ max(�̇)
· 1

M
+ o(M−1) as M → 0. (127)

It seems difficult to obtain an explicit expression for the multiplicative constant in
(127), although Maruyama (1970a) derived an approximation

NeE ≈ s2

2π2 · 1

M
+ o(M−1) (128)

for even s. In Table 1 we compare (127) and (128) for different s and find a very good
agreement. �

Example 14 (System with five subpopulations). A system with five subpopulations of
varying size is shown in Fig. 2, with number of migrants in each generation depicted
next to the arrows. The forward migration matrix is
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Subpop 1
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Subpop 3
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Fig. 2 Left System with five subpopulations of sizes Ni = Nui and, shown next to the arrows, the number
ofmigrants NkMki between different pairs k, i of subpopulations.RightPlots of NeE M versus themigration
rate M (solid curve) and the asymptotic limit C = 1.419 (dashed line), calculated from the formula on the
line below (131)

M =

⎛

⎜
⎜
⎜
⎜
⎝

0.94 0.025 0 0.01 0
0.025 0.9825 0.0125 0 0
0 0.04 0.82 0.06 0
0.005 0 0.01 0.9875 0.0125
0 0 0 0 0.95

⎞

⎟
⎟
⎟
⎟
⎠

,

and the relative subpopulation size vector u = (2, 4, 0.5, 4, 1)/11.5. We let the for-
ward migration rates depend on a perturbation parameter ε according to

Mki (ε) =
{

εMki , i 
= k,
1 + ε(Mii − 1), i = k,

(129)

so that u = u(ε)does not dependon ε, whereas the forwardmigration rateM(ε) = εM
is proportional to ε. It follows from (105) that

Ḃik =
{ uk

ui
Mki , k 
= i,

(Mii − 1), k = i.
(130)

Combining (122) and (129), we find that

NeE = C

M
+ o(M−1) as M → 0, (131)

with C = (1 − ∑
k ukMkk)/(−2λ max(�̇)) and �̇ derived from (120) and (130). The

numerically computed value C = 1.419 is justified in Fig. 2. �
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Example 15 (Combined spatial and age structure). ContinuingExample 7,we assume
that the forward migration matrix depends on ε as

M(ε) = M(0) + εṀ =
(
M11(0) − εṀ12 εṀ12

εṀ21 M22(0) − εṀ21

)

,

so that the two demes are isolated when ε = 0. For brevity, write Mki = Mki (0). The
nonzero elements of the two off-diagonal blocks of Ṁ are

Ṁk,z+1 = c1Mk1uz+1, k = 1, . . . , s,
Ṁz+k,1 = c1Mz+k,z+1u1, k = 1, . . . , s,
Ṁk,z+k+1 = ck+1Mk,k+1uz+k+1, k = 1, . . . , s − 1,
Ṁz+k,k+1 = ck+1Mz+k,z+k+1uk+1, k = 1, . . . , s − 1,

(132)

where c1, . . . , cz are non-negative constants, of which at least one is strictly positive.
The migration rates in (132) are chosen so that uk = uk(ε) does not depend on ε.
Intuitively, a fraction εc1uz+1 of all offspring in deme 1 end up in deme 2, and a
fraction εck+1uz+k+1 of all genes of age class k of deme 1 that survive, migrate to
deme 2, and similarly for the other two equations of (132). In the “Appendix” we
verify that

NeE =
∑z

i=1 ci ui uz+i
∑z

i=1 ci (γ1i uz+i + γ2i ui )
· 1

M
+ o(M−1) (133)

asM → 0.When ci increases with i , older individuals will migrate more, and this will
increase NeE if older individuals are less reproductive, and decrease NeE if they repro-
duce more. Conservative migration is the intermediate case when all age groups are
equally reproductive, with γ1i = ui/U (1), γ2i = uz+i/U (2) andU (d) = ∑

i∈I(d) ui
the relative size of deme d. Insertion into (133) gives

NeE = U (1)U (2)

M
+ o(M−1)

as M → 0 for conservative migration, independently of the age dependency of the
migration pattern. In particular, if both demes are equally large, we get the same
multiplicative constant C = U (1)U (2) = (1/2)2 = 1/4 as for an island model (125)
with s = 2. �

6.3 Large populations and small migration rates

We let the inverse population size and the backward migration rate both tend to zero
at the same speed, so that

B(ε) = B(0) + ε Ḃ,

4Nε = c, (134)
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with ε → 0 and c a constant. This can be viewed as an asymptotic scenario intermediate
between (74) (with β = 1) and (102).

The asymptotic expression for NeE is derived similarly as in the previous subsection,
so we only highlight the differences. Since the population size tends to infinity, the
coalescence probabilities pi jk will tend to zero, as described in (77), and this modifies
(73) to

Ai j,kl(ε) =
(

1 − 2ε

cui

){i= j}
⎛

⎝
1 − 2σi jkε

cuk

1 − 2ε
cuk

⎞

⎠

{k=l}
Qi j,kl(ε) + o(ε), (135)

where σi jk is the size standardized coalescence rate in (77). Consequently,

A(0) = Q(0) = diag (Aab(0); 1 ≤ a, b ≤ m)

is a block diagonal matrix with blocks Aab(0) given by (115) when ε = 0 for all
1 ≤ a, b ≤ m. These blocks have a unique largest eigenvalue 1, and

v = |{α = (a, b); 1 ≤ a, b ≤ m}| = m2.

When a 
= b, the left and right eigenvectors of Aab(0) are as in (116). The same is true
when a = b if we add the assumption of fixed or multinomial backward migration
proportions. Differentiating (135) with respect to ε we find that

Ȧi j,kl = Q̇i j,kl − 2

c

(

1{k=l}
σi jk − 1

uk
+ 1{i= j}

ui

)

Qi j,kl(0), (136)

with Q̇i j,kl as in (117), but without the restriction a 
= b. Therefore, inserting (116)
and (136) into the definition of �̇ = (�̇ab,cd)1≤a,b≤m,1≤c,d≤m in (71), we find, after
some computations, that this matrix has elements

�̇ab,cd =

⎧
⎪⎪⎨

⎪⎪⎩

Gaa + Gbb − 1{a=b}2Ca/c, c = a, d = b,
Gbd , c = a, d 
= b,
Gac, c 
= a, d = b,
0, c 
= a, d 
= b,

(137)

with Gab as in (108) and

Ca =
∑

i, j,k∈I(a)

γaiγajσi jk Bik(0)Bjk(0)

uk

is a coalescence rate between the lines of deme a that can be interpreted as a local
version of (90). In particular, when each subpopulation i is a deme, Gik = Ḃik , and
(137) reduces to
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�̇i j,kl =

⎧
⎪⎪⎨

⎪⎪⎩

Ḃii + Ḃ j j − 1{i= j}2σi i i/(cui ), k = i, l = j,
Ḃ jl , k = i, l 
= j,
Ḃik, k 
= i, l = j,
0, k 
= i, l 
= j.

(138)

Equipped with (137) and (138), we apply (69) and Theorem 4, and deduce:

Proposition 4 Suppose the migration rate between demes and the inverse population
size tend to zero simultaneously as in (134) when ε → 0, with a backward migration
that is either fixed (44) or multinomial (48). The eigenvalue effective size then has an
asymptotic expansion

NeE = − 1

2λ max(�̇)ε
+ o(ε−1), (139)

with the elements of �̇ as in (137), or (138) when each deme contains one single
subpopulation.

Example 16 (Island model.) We will assume that

σi i i = σ for i = 1, . . . , s, (140)

where σ = (N/s)/NeI can be interpreted as a ratio between the (constant) local census
and effective size of each deme. This local inbreeding effective size NeI = NeI,i is
similar to (53), although we only consider triplets i = j = k of demes here. It follows
from (124), (138) and (140) that

�̇i j,kl =

⎧
⎪⎪⎨

⎪⎪⎩

−2 − 1{i= j}2sσ/c, k = i, l = j,
1

s−1 , k = i, l 
= j,
1

s−1 , k 
= i, l = j,
0, k 
= i, l 
= j.

(141)

Let λ̇ = λ max(�̇) be the largest eigenvalue of �̇, with x = vec
(
(xi j )si, j=1

)
the

corresponding right eigenvector satisfying �̇x = λ̇x. By symmetry we must have
xi j = y when i = j and xi j = z when i 
= j , and a 2 × 2 system

{
λ̇y = (�̇x)i i = 2(z − y) − 2sσ

c y

λ̇z
i 
= j= (�̇x)i j = 2

s−1 (y − z)
(142)

of equations for y and z. It will be convenient to introduce the parameter κ = c/(sσ) =
4NM/(sσ) =: 4NeI M . Then we apply (139) and find that

NeE = 1

−2λ̇(κ)M
+ o(M−1) (143)

123



On the eigenvalue effective size of structured populations 631

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

49
6

49
8

50
0

50
2

50
4

log10(M)

N
e
E
M

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

17
0

17
2

17
4

17
6

17
8

18
0

log10(M)

N
e
E
M

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

22
48

22
50

22
52

22
54

22
56

log10(M)

N
e
E
M

Fig. 3 Plots of NeE M versus M for the island model, when Nel = N/s and κ = 4(N/s)M is kept
constant, with s = 4 and κ = 500 (upper left), s = 7 and κ = 100 (upper right) and s = 9 and κ = 1, 000
(lower left). The horisontal lines are the limits 1/(−2λ̇(κ)) of NeE M in (143) as M → 0

as M → 0, where

λ̇(κ) = −
(

s

s − 1
+ 1

κ

)
⎛

⎜
⎝1 −

√
√
√
√1 − 4κ

(s − 1)
(

sκ
s−1 + 1

)2

⎞

⎟
⎠

is the largest root of the (quadratic) characteristic equation in λ̇ obtained from (142).
Figure 3 verifies numerically fast convergence in (143), for three combinations of s and
κ (notice the narrow scales of the y-axes).We have that limκ→0(−2λ̇(κ)) = 4/(s−1),
in agreement with (125). On the other hand,

NeE = N

C(κ)
+ o(N−1),
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where

C(κ) = σ ·
(

s2κ

2(s − 1)
+ s

2

)
⎛

⎜
⎝1 −

√
√
√
√1 − 4κ

(s − 1)
(

sκ
s−1 + 1

)2

⎞

⎟
⎠ ,

and when the migration rate dominates the inverse population size, we get
limκ→∞ C(κ) = σ for σk = σ and γk = uk = 1/s, in agreement with (96). �

7 Discussion

In this paper we developed a general theory which enables computation of the eigen-
value effective size NeE for a large class of structured populations with stochastic
backward migration and exchangeable reproduction within subpopulations, exactly or
asymptotically when either the inverse population size and/or migration rates between
subpopulations tend to zero.

Our work can be extended in several ways. First, subpopulation sizes could be time
varying. Existence of λ then requires extra conditions, e.g. sizes that either vary as a
Markov chain or cyclically. Several authors have studied this problem for homoge-
neous or age structured models, see Karlin (1968), Jagers and Sagitov (2004), Pollak
(1980, 2002) andWang and Pollak (2000a, b). For cyclically varying populations with
period τ , the matrix A = At of the predicted gene diversity recursion will depend
cyclically on time. Whitlock and Barton (1997) argued that this deterministic process
tends to zero at a rate

λ = λ max (Aτ · . . . · A1)
1/τ , (144)

as formally proved in Hössjer et al. (2014). It is straightforward to extend Theorem 1
bymeasuring time in units of τ , so that the allele frequencyMarkov process has kernel
P1 · . . . · Pτ . Then (144) equals the rate of fixation λ = λ3 (P1 · . . . · Pτ )

1/τ of alleles
in units of time step one.

Second, we have included two-sex models, defining subpopulations in terms of
male and female gametes. It would also be of interest to define subpopulations in
terms of individuals, as for an island model with diploid monoecious or dioecious
individuals (Chesser et al. 1993; Wang 1997a, b). This would require some changes
in the way the elements of A are characterized in terms of coalescence probabilities,
requiring modifications of (34) and Theorem 3.
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8 Appendix

Proof of Theorem 1 Formula (14) follows from the lower block diagonal decompo-
sition (13) of P , which implies that the spectrum of eigenvalues of P is the union
of the spectrum of eigenvalues of all P i i . Moreover, for each i ≥ 3 we have that
λ max(P i i ) < 1, since P i i has non-negative elements, row sums less or equal to one,
with at least one row sum strictly less than one. In conjunction with (14), this implies
λ3 < 1.

In order to prove (15), we recall from (12) that φ2(x) = γ x. It follows from (10)
that {φ2(X t )} is a martingale.With τ = min{t; X t ∈ X1∪X2} a stopping time, we can
use the Optional Stopping Theorem (cf. Chapter 7 of Grimmett and Stirzaker 2001)
to deduce

lim
t→∞ P t (x, 1) = Px(Xτ = 1)

= Ex(φ2(Xτ ))

= Ex(φ2(X0))

= φ2(x), (145)

and similarly P t (x, 0) → 1 − φ2(x) = φ1(x), for any x ∈ X . This establishes the
leading two terms on the right hand side of (15). In ordermotivate the next termof order
λt3, we notice that Pkk is non-negative, irreducible and aperiodic, and therefore has a
unique largest eigenvalue λ3. But since the maximum in (14) is attained uniquely for
i = k, λ3 must also be a simple eigenvalue for P , so that |λi | < λ3 for i = 4, . . . , |X |.
In conjunction with (145), this implies

P t = φ1π1 + φ2π2 + λt R + o(λt ), (146)

for some matrix R as t → ∞. Since P has a lower triangular block decomposi-
tion by (11), so has P t = (P (t)

i j ) and R = (Ri j ). Moreover, P t has non-negative
elements and φ1π1 + φ2π2 has all but its first two columns equal to zero, and
therefore each Ri j with j ≥ 3 is non-negative. Apply Perron-Frobenius Theo-
rem to the non-negative, irreducible and aperiodic matrix Pkk in order to deduce
P (t)
kk = λt3φkqk + o(λt3), with φk and qk the right and left eigenvectors for the lead-

ing eigenvalue λ3 with strictly positive components, normalized for instance so that∑
x∈Xk

qk(x) = ∑
x∈Xk

φk(x)qk(x) = 1. This proves that Rk = φkqk , and since all
other block diagonal P i i have leading eigenvalues smaller than λ3, the corresponding
matrices Ri i must be zero.

The remaining submatrices Ri j of R (i > j ≥ 1, i ≥ 3) can be computed as

follows. We use (15) and the two recursions P (t+1)
i j = ∑i

l= j P il P
(t)
l j and P (t+1)

i j =
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∑i
l= j P

(t)
il P l j and let t → ∞. After some computations this leads to

Ri j = (λ3 I |Xi | − P i i )
−1 ∑i−1

l=max( j,3) P il Rl j , i = j + 1, . . . , n,

Ri j = ∑i
l=max( j+1,3) Ril P l j (λ3 I |X j | − P j j )

−1, j = i − 1, . . . , 1,
(147)

with I p an identity matrix of order p. The upper and lower recursions of (147) is
applicable for i 
= k and j 
= k, and all Ri j can be found from them. �
Proof of Corollary 1 It follows from (15) and (17) that

Eπ (φ(Xt )) = π P tφ

= (πφ1)(π1φ) + (πφ2)(π2φ) + λt3πRφ + o(λt3)

= λt3

∑

x, y∈X
π(x)R(x, y)φ( y) + o(λt3)

= λt3

∑

x∈X , y∈X \(X1∪X2)

π(x)R(x, y)φ( y) + o(λt3)

≥ λt3

∑

x, y∈Xk

π(x)R(x, y)φ( y) + o(λt3)

= λt3

∑

x, y∈Xk

π(x)φk(x)qk( y)φ( y) + o(λt3)

= λt3

∑

x∈Xk

π(x)φk(x)
∑

y∈Xk

qk( y)φ( y) + o(λt3)

> 0,

where the last inequality holds if π(Xk) > 0, since qk , φk and φ are strictly positive
functions on Xk . �
Proof of Proposition 2 The proposition follows from

E (φW (X t )) = 2
s∑

i, j=1

Wi j Eπ

(
Xti (1 − Xt j )

)

=
s∑

i, j=1

Wi j
(
Eπ

(
Xti (1 − Xt j )

) + Eπ

(
Xt j (1 − Xti )

))

=
s∑

i, j=1

Wi j Hti j ,

where in the second step we used the symmetry condition Wi j = Wji , and in the last
step the definition of Hti j in (23). �
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Proof of Theorem 2 Assume that all elements Wi j of W are strictly positive, and that
the symmetry conditionWji = Wi j holds. Then φW satisfies (17), and it follows from
(18) and Proposition 2 that

WH t = Cλt + o(λt ) as t → ∞, (148)

with C > 0. On the other hand we can use (25) repeatedly t times to deduce

WH t = WAtH0. (149)

The block decomposition (28) implies that λ max(A) = maxa=1,...,m λ max(Aaa), and
since (148)–(149) hold for any vector W with non-negative components and any
admissible H0, (29) follows. In the sequel, we therefore write λ = λ max(A).

If the maximum in (29) is attained for a unique 1 ≤ c ≤ m, we lump I2 = C̄1 ∪
C̄2 ∪ C̄3 into (at most) three components C̄1 = ∪c−1

a=1Ca , C̄2 = Cc and C̄3 = ∪m
a=c+1Ca .

In particular, we put C̄1 = ∅ if c = 1, and C̄3 = ∅ if c = m. The corresponding block
decomposition of A is

A =
⎛

⎝
Ā11 0 0
Ā21 Ā22 0
Ā31 Ā32 Ā33

⎞

⎠ . (150)

It can be shown that matrices Cab exist for 1 ≤ b ≤ a ≤ 3 such that

At =
⎛

⎜
⎝

Ā
(t)
11 0 0

Ā
(t)
21 Ā

(t)
22 0

Ā
(t)
31 Ā

(t)
32 Ā

(t)
33

⎞

⎟
⎠ = λt

⎛

⎝
C11 0 0
C21 C22 0
C31 C32 C33

⎞

⎠ + o(λt ) (151)

as t → ∞. We will identify the components of C = (Cab), and in this process find
the right and left eigenvectors r and ρ of A.

Starting with the diagonal submatrices of C, it follows that C11 = C33 = 0, since
λ max( Āaa) < λ for a = 1, 3. On the other hand, since Ā22 = Acc is irreducible
with λ max( Āaa) = λ, Perron–Frobenius Theorem and (149) imply that λ is a simple
eigenvalue of Ā22 with periodicity 1. Thus we can find a right eigenvector r2 =
(
r2i j ; i j ∈ C̄2

)′
, and a left eigenvector ρ2 = (

ρ2i j ; i j ∈ C̄2
)
of Ā22 with strictly

positive components, normalized so that
∑

i j∈C̄2 ρ2i j = ∑
i j∈C̄2 r2i jρ2i j = 1, with

C22 = r2ρ2. (152)

For the non-diagonal elements of C we use the three recursions

Ā
(t+1)
21 = Ā

(t)
21 Ā11 + Ā

(t)
22 Ā21,

Ā
(t+1)
32 = Ā32 Ā

(t)
22 + Ā33 Ā

(t)
32 ,

Ā
(t+1)
31 = Ā32 Ā

(t)
21 + Ā33 Ā

(t)
31 + o(λt ), (153)
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insert (151) into (153), divide both sides of all three equations in (153) by λt and let
t → ∞. After some computations, this yields

C21 = C22 Ā21(λI |C̄1| − Ā11)
−1,

C32 = (λI |C̄3| − Ā33)
−1 Ā32C22,

C31 = (λI |C̄3| − Ā33)
−1 Ā32C22 Ā21(λI |C̄1| − Ā11)

−1, (154)

with I p an identity matrix of order p. Finally, inserting (152) into (154), we find that
C = rρ = (0′, r ′

2, r
′
3)

′(ρ1, ρ2, 0), with

ρ1 = ρ2 Ā21(λI |C1| − Ā11)
−1,

r3 = (λI |C3| − Ā33)
−1 Ā32r2. (155)

Both r3 and ρ1 must have non-negative elements, since r2 and ρ2 have strictly positive
elements, all Āab are non-negative and Ā11, Ā33 have all their eigenvalues less than
λ. Finally, since r2 and ρ2 are right and left eigenvectors of Ā22 with eigenvalue λ, it
follows after some computations from (155) and the block decomposition (150) of A,
that r and ρ are right and left eigenvectors of A with eigenvalue λ. �

Proof of Theorem 3 Recall thatHti j in (22) is the probability that two genes at time t
have different types of alleles when picked independently from subpopulations i and
j , with replacement if i = j . Conditionally onBt and X t−1, we compute the expected
value of this probability by conditioning on the parental subpopulations k and l of i
and j , and then take into account whether the two parental genes are identical or not.
We find that

E(Hti j |Bt , X t−1) =
(

1 − 1

2Nui

){i= j} ∑

k,l

Qti j,klHt−1,kl

(
1 − Pti jk

1 − 1
2Nuk

){k=l}
,

(156)

since the probability of picking two different genes at time t is 1 − 1/(2Nui ) when
i = j and 1 when i 
= j . Then the probability that the two parental genes from
subpopulations k and l are different is 1 when k 
= l and 1 − Pti jk when k = l. In
the former k 
= l case, the probability is Ht−1,kl that the parental genes are different
by state, and when k = l, the probability is Ht−1,kk/(1 − (2Nuk)−1) that the two
parental genes are different by state.
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We can express the coalescence probability pi jk in (37) in terms of Pti jk as

pi jk = P(T = 1|I0 = i, J0 = j, I1 = J1 = k, T > 0)

= P(T = 1, I1 = J1 = k|I0 = i, J0 = j, T > 0)

/P(I1 = J1 = k|I0 = i, J0 = j, T > 0)

= E (P(T = 1, I1 = J1 = k|I0 = i, J0 = j, T > 0,Bt )) /Qi j,kk

= E (P(T = 1|I1 = J1 = k, I0 = i, J0 = j, T > 0,Bt )

· P(I1 = J1 = k|I0 = i, J0 = j, T > 0,Bt )) /Qi j,kk

= E
(Pti jkQti j,kk

)
/Qi j,kk . (157)

Then average with respect to Bt on the left and right hand sides of (156), use inde-
pendence between Bt and X t−1, invoke (35), (41) and (157), to find that

E(Hti j |X t−1) =
(

1 − 1

2Nui

){i= j} ∑

k,l

Qi j,klHt−1,kl

(
1 − pi jk

1 − 1
2Nuk

){k=l}

=
∑

k,l

Ai j,klHt−1,kl , (158)

in accordance with (40). As a next step we average both sides of (158) with respect to
X t−1, using starting distribution π for X0, and get

Hti j = Eπ

(
E(Hti j |X t−1)

)

=
∑

k,l

Ai j,kl Eπ (Ht−1,kl)

=
∑

k,l

Ai j,kl Ht−1,kl , (159)

which is equivalent to (25). To verify (39), we first compute

P
(
T = 1|I0 = i, J0 = j, I1 = J1 = k, T > 0,Bt , {νtkg}2Nuk

g=1

)

=
2Nuk∑

g=1

νtkig(νtk jg − 1{i= j})/
(
2NuiBtik(2Nu jBt jk − 1{i= j})

)
(160)

and introduce the variables

Vtki j =
{
E(νtki1(νtki1 − 1)|Bt ), if i = j,
E(νtki1νtk j1|Bt ), if i 
= j,

(161)
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which are conditional versions of Vki j in (38). Then average with respect to the

exchangeable random vectors {νtkg}2Nuk
g=1 in (160) to deduce that

Pti jk = P(T = 1|I0 = i, J0 = j, I1 = J1 = k, T > 0,Bt )

= 2NukVtki j/
(
2NuiBtik · (

2Nu jBt jk − 1{i= j}
))

= ukVtki j/
(
2NuiBtiku jBt jk

(
1 − 1{i= j}(2NuiBtik)

−1
))

. (162)

We can rewrite (34) as

Qti j,kl = BtikBt jl

(

1 − 1

2NuiBtik

){i= j,k=l} (
1

1 − 1
2Nui

){i= j}
,

and taking the product of the last two displayed equations, we find that

Pti jkQti j,kk =
(

1

1 − 1
2Nui

){i= j} Vtki j uk
2Nuiu j

, (163)

Formula (39) then follows from (157) by averaging with respect to Bt in (163), using
that E(Vtki j ) = Vki j , and finally dividing by Qi j,kk . �

Proof of Corollary 3 Define φ3 as in (42), and the gene diversity vector H(x) =
vec

(
(xi (1 − x j ) + x j (1 − xi ))si, j=1

)′
of length s2 obtained from an allele frequency

vector x of length s. Then

(Pφ3)(x) =
∑

y

P(x, y)φ3( y)

=
∑

y

P(x, y)
∑

i j

ρi j
(
yi (1 − y j ) + y j (1 − yi )

)

=
∑

i j

ρi j
∑

y

P(x, y)
(
yi (1 − y j ) + y j (1 − yi )

)

=
∑

i j

ρi j E(Hti j |X t−1 = x)

=
∑

i j

ρi j (AH(x))i j

= ρAH(x)

= λρH(x)

= λ
∑

i j

ρi j
(
xi (1 − x j ) + x j (1 − xi )

)

= λφ3(x).
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In the fifth step we used (40), and in the seventh step that ρ is a left eigenvector of A
with eigenvalue λ. Formula (43) is proved in the same way as the corresponding result
for the right eigenvector r of A in Theorem 2. �

Verifying (63), (64) and (65) We first insert (7) and the expression for Qi j,kl in
(51) into (39), and find that pi jk = [

Vki j/(Mki Mkj )
]
/(2Nuk − 1{i= j}uk/ui ). Since

E(νtki1) = Mki , it follows from (38) that

pi jk =
{[

1 + (Var(νtki1) − Mki )/M2
ki

]
/(2Nuk − uk/ui ), i = j,[

1 + Cov(νtki1, νtk j1)/(Mki Mkj )
]
/(2Nuk), i 
= j.

(164)

In order to compute Var(νtki1) and Cov(νtki1, νtk j1) for k = 1, the subpopulation of
grandpaternally inherited alleles of the fathers of time t −1, let ζtmmg = νt11g +νt21g′
and ζtm f g = νt13g + νt23g′ be the total number of children that are males and females
respectively, of the male in time t−1 whose paternally and maternally inherited genes
have been assigned number g and g′ = g′(g) from 1, . . . , Nm = 2Nu1. (Due to the
convention (9) that the first 2Nuk Xt−1,k genes of subpopulation k have the specified
allele, we cannot assume g′ = g.) Due to exchangeability, τ 2mm = Var(ζtmm1), τ 2m f =
Var(ζtm f 1) and τmm,m f = Cov(ζtmm1, ζtm f 1).

It follows fromMendel’s law of inheritance that either the paternally or maternally
inherited gamete is passed on to the offspring, with equal probability 0.5, indepen-
dently between matings. Hence νt11g|ζtmmg ∼ Bin(ζtmmg, 0.5) and νt13g|ζtm f g ∼
Bin(ζtm f g, 0.5), which implies

Var(νt11g) = Var(E(νt11g|ζtmmg)) + E(Var(νt11g|ζtmmg))

= Var(
1

2
ζtmmg) + E(

1

4
ζtmmg)

= 1

4
Var(ζtmmg) + 1

2
E(νt11g)

= 1

4
τ 2mm + 1

2
M11,

and analogously Var(νt13g) = τ 2m f /4 + M13/2 and Cov(νt11g, νt13g) = τmm,m f /4.
Inserting the last three formulas and (62) into (164), we see that p111, p331 and p131
simplify to (63), (64) and (65) respectively. �

Proof of Theorem 5 Formulas (78) and (79) follow easily from a first order Taylor
expansion of (73) with respect to ε at 0, making use of (75) and (77). Next we apply
Theorem 4. We want to show that (80) follows from (69), with ε as in (74) and that

123



640 O. Hössjer

(81) is obtained by inserting (79) into (72). Indeed,

C =
∑

i jk

ρi j (0)
σi jk Qi j,kk(0)

uβ
k

−
∑

i jkl

ρi j (0)Q̇i j,kl

+1{β=1}

⎛

⎝
∑

ikl

ρi i (0)
Qii,kl(0)

ui
−

∑

i jk

ρi j (0)
Qi j,kk(0)

uk

⎞

⎠

=
∑

i jk

ρi j (0)
σi jk Qi j,kk(0)

uβ
k

,

where in the last step we employed that ρ(0) is a left eigenvector of Q(0) with
eigenvalue 1, and moreover that

∑
kl Qi j,kl(ε) = 1 for all ε ≥ 0, which implies∑

kl Qi j,kl(0) = 1 and
∑

kl Q̇i j,kl = 0. �
Proof of Corollary 5 and 6 Corollary 4 implies that Qi j,kl(0) = Bik B jl in Corol-
lary 6, so that

∑

i j

γiγ j Qi j,kl(0) =
∑

i j

γiγ j Bik B jl =
∑

i

γi Bik
∑

j

γ j Bil = γkγl

follows from (4), and γ ⊗ γ = (γiγ j ) is a left eigenvector of Q(0) with eigenvalue 1.
This proves (89), and insertion into (81) yields (90). We then use (7) and (76) in order
to prove (91), since

σi jk = lim
N→∞

Vki j u2k
(Nuk)1−βuiu j (Mkiuk/ui )(Mkjuk/u j )

.

In Corollary 5, it follows from Corollary 4 that Qii,kl(0) = 1{k=l}Bik , and

∑

i j

γi1{i= j}Qi j,kl(0) =
∑

i

γi1{k=l}Bik = 1{k=l}γk,

because of (4). This proves (86), which inserted into (81) yields (87). Since

Vkii = E (νtki1(νtki1 − 1))

= P(Kti = k)E (νtki1(νtki1 − 1)|Kti = k)

= Bik V̄kii

and Qii,kk(0) = Bik , we get σi ik = limN→∞
(
Bik V̄kii u2k

)
/
(
(Nuk)1−βu2i Bik

)
from

(76), thereby proving (88). �
Motivation of Lemma 1. We first sketch a proof of (110), using similar calculations
as in Möhle (1998a). By the definition of an equilibrium distribution of a Markov
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chain, B(ε)t → 1γ (ε) as t → ∞, where 1 is a column vector of ones of length s.
Hence we will study B(ε)t for large t and use the approximation

B(ε)t = (
B(0) + ε Ḃ

)t ≈
t∑

r=0

(
t

r

)

εr
(
B(0)∞ ḂB(0)∞

)r
, (165)

which can be shown to be accurate in the limit ε → 0, with

B(0)∞ =
⎛

⎜
⎝

B11(0)∞ . . . 0
. . .

0 . . . Bmm(0)∞

⎞

⎟
⎠ =

⎛

⎜
⎝

11γ 1 . . . 0
. . .

0 . . . 1mγm

⎞

⎟
⎠

a block diagonalmatrix and 1d = (1, . . . , 1)′ a column vector of |I(d)| ones. It follows
from (108) and γ d = γ dBdd(0), that

(
B(0)∞ ḂB(0)∞

)r =
⎛

⎜
⎝

G(r)
11 11γ 1 . . . G(r)

1m11γm
...

...

G(r)
m11mγ 1 . . . G(r)

mm1mγm

⎞

⎟
⎠ ,

where Gr = (G(r)
ab ). Putting t = x/ε in (165), we notice that

B(ε)x/ε ≈
⎛

⎜
⎝

exp(xG)1111γ 1 . . . exp(xG)1m11γm
...

...

exp(xG)m11mγ 1 . . . exp(xG)mm1mγm,

⎞

⎟
⎠

where

exp(xG) =
∞∑

r=0

xr

r ! G
r x→∞→

⎛

⎜
⎝

θ1 . . . θm
...

...

θ1 . . . θm

⎞

⎟
⎠ ,

since θ = (θ1, . . . , θm) is an equilibrium distribution of the continuous time Markov
process with infinitesimal generator G. Combining the last two displayed equations,
we find for large x and small ε that

B(ε)x/ε ≈
⎛

⎜
⎝

θ111γ 1 . . . θm11γm
...

...

θ11mγ 1 . . . θm1mγm

⎞

⎟
⎠ = 1γ (0),
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where γ (0) = (γi (0)). We use (106), (108) and (110) to prove (111);

B(ε) =
m∑

d=1

∑

i∈I(d)

γi (ε)
∑

k /∈I(d)

Bik(ε)

= ε

m∑

d=1

∑

i∈I(d)

γi (ε)
∑

k /∈I(d)

Ḃik

= ε

m∑

d=1

∑

i∈I(d)

γi (0)
∑

k /∈I(d)

Ḃik + o(ε)

= −ε

m∑

d=1

∑

i,k∈I(d)

γi (0)Ḃik + o(ε),

since the row sums of Ḃ are zero. Finally, (112) follows from (105), since

M(ε) =
m∑

d=1

∑

k∈I(d)

uk(ε)
∑

i /∈I(d)

Mki (ε)

= ε

m∑

d=1

∑

k∈I(d)

uk(0)
∑

i /∈I(d)

Ṁki + o(ε).

�
Proving (133). By (105) and (132), the off-diagonal block elements of Ḃ are

Ḃ1,z+k = c1Bz+1,z+k(0)uz+1, k = 1, . . . , z,
Ḃk+1,z+k = ck+1uz+k+1, k = 1, . . . , z − 1,
Ḃz+1,k = c1B1k(0)u1, k = 1, . . . , z,
Ḃz+k+1,k = ck+1uk+1, k = 1, . . . , z − 1.

where B1k(0) is the probability that the parent of a newborn in deme 1 originates from
age class k of that deme when there is no migration, and similarly Bz+1,z+k(0) is the
probability that the parent of a newborn in deme 2 has a parent from age class k of
that deme. Invoking (108), the elements of G are

G12 = −G11 =
z∑

i=1

γ1i

z∑

k=1

Ḃi,z+k =
z∑

i=1

γ1i ci uz+i ,

G21 = −G22 =
z∑

i=1

γ2i

z∑

k=1

Ḃz+i,k =
z∑

i=1

γ2i ci ui .
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Use (119) to deduce that �̇ = (�̇α,β)α,β=12,21 is a diagonal matrix of order v =
2(2 − 1) = 2, with both diagonal elements equal to G11 + G22. Therefore

λ max(�̇) = G11 + G22 = −
z∑

i=1

ci (γ1i uz+i + γ2i ui ). (166)

Because of (8) and (132), the numerator of (122) equals

z∑

k=1

uk

z∑

i=1

Ṁk,z+i +
z∑

k=1

uz+k

z∑

i=1

Ṁz+k,i

=
z∑

k=1

uk
(
c1Mk1uz+1 + ck+1Mk,k+1uz+k+11{k<z}

)

+
z∑

k=1

uz+k
(
c1Mz+k,z+1u1 + ck+1Mz+k,z+k+1uk+11{k<z}

)

= 2
z∑

k=1

ckukuz+k . (167)

Inserting (166) and (167) into (122), we arrive at (133). �
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