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Abstract According to the viewpoint of the optimal strategy theory, a tree is expected
to shed its leaves when they no longer contribute to maximisation of net carbon gain.
Several theoretical models have been proposed in which a tree was assumed to strate-
gically shed an old deteriorated leaf to develop a new leaf. We mathematically refined
an index used in a previous theoretical model [Kikuzawa (Am Nat 138:1250–1263,
1991)] so that the index is exactly proportional to a tree’s lifelong net carbon gain.
We also incorporated a tree’s strategy that determines the timing of leaf expansion,
and examined three kinds of strategies. Specifically, we assumed that a new leaf is
expanded (1) immediately after shedding of an old leaf, (2) only at the beginning of
spring, or (3) immediately after shedding of an old leaf if the shedding occurs during
a non-winter season and at the beginning of spring otherwise. We derived a measure
of optimal leaf longevity maximising the value of an appropriate index reflecting total
net carbon gain and show that use of this index yielded results that are qualitatively
consistent with empirical records. The model predicted that expanding a new leaf at
the beginning of spring than immediately after shedding usually yields higher carbon
gain, and combined strategy of the immediate replacement and the spring flushing
earned the highest gain. In addition, our numerical analyses suggested that multiple
flushing seen in a few species of subtropical zones can be explained in terms of carbon
economy.
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1 Introduction

Leaves are organs specialised for photosynthesis, and variation in leaf traits including
leaf longevity is considered to reflect adaptation to specific environmental features of
the habitat (Schoettle 1990; Ackerly and Bazzaz 1995; Wright et al. 2004). A tree is
expected to shed a leaf when that leaf no longer contributes to maximisation of photo-
synthetic output (Givnish 1978; Chapin 1980). Many studies have explored temporal
variation in shedding, and have described relationships among leaf habits such as pho-
tosynthetic rate, construction cost, and decrease in photosynthetic capacity with age
(Chabot and Hicks 1982; Coley 1980; Reich et al. 1992; Gower et al. 1993; Hikosaka
and Hirose 2000; Hiremath 2000). For example, photosynthetic rate is negatively cor-
related with leaf longevity, while the construction cost and the rate of decrease in
photosynthetic ability are positively correlated.

If variation in longevity is consequence of adaptation and caused by leaf habit
related to photosynthesis, what common currency connects such variation with the
observed variety of leaf habits? Chabot and Hicks (1982) identified that currency
as carbon, and named the economy as “carbon economy”. They sought to calculate
benefit and cost (including construction and maintenance cost) of fixed carbon, and to
explain the length of life of a leaf.

The concept of the carbon economy has stimulated the development of several
mathematical models that seek to derive optimal leaf longevity with which net carbon
gain is maximised (Harada and Takada 1988; Kikuzawa 1991; Takada et al. 2006).
Harada and Takada (1988) developed a cost-benefit model in which carbon gain and
loss associated with particular expansion and shedding intervals were calculated, and
identified durations of expansion and shedding that maximised net carbon gain. Under
the big-leaf assumption stating that all leaves of a tree are expanded at the same time
and share the same lifespan, they highlighted deciduous trees, and thus only derived
total net carbon gain in a year. Kikuzawa (1991) developed a new model allowing
consideration of the entire lifetime of a tree, so that trees with a leaf longevity of more
than one year (i.e. evergreen trees) could be studied. He first calculated total net gain
by a single big-leaf that is expanded at the beginning of a favourable period (at time
zero) for photosynthetic activity (i.e. spring) and shed after τ years, G(τ ), where τ is
a positive real number. Then an index, g(τ ) = G(τ )/τ , which is average increasing
rate of net carbon gain of a tree from time zero to time τ , was developed as a surrogate
measure of the total net gain of a tree. Finally, the leaf longevity (τ) maximising that
index was regarded as optimal strategy for a tree. The analysis of the model indicated
that evergreen life history is more likely to be an optimal strategy at low or high lat-
itudes than at intermediate latitudes. That prediction roughly coincides with the real
evergreen–deciduous tree distribution. In addition, the dependence of leaf longevity
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A general method for calculating the optimal leaf longevity 671

on three leaf parameters (the photosynthetic rate, the decrease in the photosynthetic
rate with age, and the construction cost) observed in the model outcomes was in line
with the results of earlier empirical studies (Bentley 1979; Chapin 1980; Chabot and
Hicks 1982; Kikuzawa 1984; Koike 1988). Therefore, the index has been viewed
as appropriate in the context of optimal strategy theory. Kikuzawa’s index (1991) is
currently repeatedly used. For example, Kikuzawa et al. (2013) calculated optimal
leaf longevity using the index to explain worldwide variety in leaf longevity from the
viewpoint of local adaptation. Advanced modelling studies also used the same index
(e.g. Takada et al. 2006). However, Kikuzawa’s index (G(τ )/τ) only represents aver-
age rate over life span of an individual leaf, not the lifelong average rate of a tree.
This is because the denominator (τ) only covers the time span during which a leaf
is retained and does not consider an interval during which a tree has no leaves. The
interval should be taken into account for an evaluation of the lifelong average rate,
which Kikuzawa (1991) intended to do. It is important to mathematically refine the
well-used index.

In the present study, we also loosen the assumption on the timing of leaf expansion
by considering a tree’s foliation strategy that determines the interval from shedding
of an existing leaf to expansion of a new leaf. Deciduous trees have a distinct interval
after shedding leaves, which is usually the whole period unfavourable for photosyn-
thesis, namely winter season, and expand new leaves at each favourable period. On the
other hand, some evergreen trees almost simultaneously shed old leaves and expand
new ones. Moreover, some subtropical evergreen trees such as Eurya japonica have
several phenophases of leaf fall and following leaf-flushing phenophases during a
year (Nitta and Ohsawa 1997). The point is that, when they shed a part of existing
leaves in winter, they do not immediately expand new ones and wait for the next
spring. To describe such a variety in the leafless periods, we define the following three
foliation rules: (1) the immediate replacement rule states that trees should expand a
new leaf immediately after shedding of an existing leaf, (2) the spring flushing rule
states that trees should expand a new leaf at the beginning of the next favourable
season, and (3) the combined expansion rule states that trees should expand a new
leaf immediately after shedding of an existing leaf if the shedding occurs within a
favourable season and at the beginning of the next favourable season otherwise, i.e.
if the shedding occurs within an unfavourable season. Kikuzawa (1991) implicitly
assumed the spring flushing rule without examining which rule was favoured under
a certain environmental setting. In the present study, we show that the combined
expansion rule provides the same or greater net carbon gain than the spring flushing
rule.

We first derive a mathematically appropriate index proportional to lifelong net
carbon gain of a tree, and show that Kikuzawa’s index (1991) takes the same form
as our new index only under the special circumstance that there is no period that
is unfavourable for photosynthesis. We also consider the above three foliation rules,
and derive optimal leaf longevity in the circumstances in which each rule is applied.
We discuss how the duration of periods unfavourable for photosynthesis affects leaf
longevity and how our model can explain multiple leaf flushing within a single year.
Our new index enables evaluation of optimal leaf longevity in trees growing in com-
plex environments that vary seasonally in terms of temperature or rainfall. Therefore,
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the index will be useful to estimate the influence of global climate change on leaf
longevity and/or gross primary production.

2 Model

The present model is a generalised version of that of Kikuzawa (1991). For simplicity,
we consider an “ideal” tree that lives forever and has at most one leaf at a time (the
big-leaf model). In addition, two intervals that form part of the life history strategy
are considered. One is the interval from expansion of a leaf to the shedding thereof
(leaf longevity), denoted by τ . Suppose that an ideal tree temporally having no leaves
expands the i-th leaf at time σi . All leaves of that tree are assumed to exhibit the same
longevity, regardless of the values of i or σi , and the i-th leaf is thus shed at time σi +τ .
The other relevant interval is that from shedding of an existing leaf to expansion of
a new leaf, governed by the tree’s foliation rule (ϕ). A more strict definition of ϕ is
that the single value for σi is identified for any positive integer i if ϕ, τ , and θ(s) are
known, where θ(s) is a function describing seasonal variation in environmental state.
As an ideal tree is dealt, σi+1 ≥ σi +τ for any ϕ. A tree is regarded as deciduous if that
tree experiences a leafless period at least once every year, and as evergreen otherwise
(see Sect. 5 for more detail).

The age of the i-th leaf at time s is ti = s – σi (Fig. 1). Each leaf is expanded at time
σi at a cost of construction and photosynthesises until shed, incurring a maintenance
cost during this interval. The photosynthetic rate depends on the continuous age of the
leaf and the environmental state representing how much the weather is favourable for
photosynthesis. Therefore, the net gain earned by the i-th leaf, �(τ, σi ), is given by
the following equation:

Fig. 1 Reduction in
photosynthetic rate caused by
ageing and variation in the
seasonal environment. The age
of the i-th leaf at time s is
ti = s − σi . The potential
photosynthetic rate decreases
with age (broken line). In this
example, a = 20, b = 3, and
θ(s) = 1 for j < s < j + f and
θ(s) = 0 otherwise, where
f = 0.6. The actual
photosynthetic rate is decreased
to p(t)θ(s) (solid line). a σi = j
and b σi = j + 0.5. When
τ = 2.2, the gain (shaded area)
is 18.8 for a, and 15.6 for b
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A general method for calculating the optimal leaf longevity 673

� (τ, σi ) = −C +
∫ σi+τ

σi

(p(ti )θ(s) − m(ti )) ds

= −C +
∫ σi+τ

σi

(p(s − σi )θ(s) − m(s − σi )) ds, (1)

where C is the construction cost of a new leaf, p(t) is the potential photosynthetic
rate of a leaf of age t , and m(t) is the daily maintenance cost for that leaf. We assume
that θ(s) represents the seasonal state at time s(0 ≤ θ(s) ≤ 1), and that the actual
gross photosynthetic rate is decreased to p(t)θ(s) (the solid line in Fig. 1). We also
assume that θ(s) is a one-year periodic function, rendering it necessary to consider
within-year variation only, thus neglecting between-year variation or secular changes
in environmental factors. Following Kikuzawa (1991), we set σ1 = 0 and define G(τ )

as the net gain of the first leaf [i.e. G(τ ) = �(τ, 0)].
The objective function requiring maximisation is the net carbon gain of a tree after

a sufficiently long time. It is mathematically more convenient to analyse the time-
averaged index of this function, a long-term (i.e. over many leaf turnovers) net carbon
assimilation rate of a tree, γ (ϕ, τ ). Our goal is to identify a pair of strategies, {ϕ∗, τ ∗},
with which γ (ϕ, τ ) is maximised for a given set of parameters. It is possible to clearly
define the long-term rate mentioned above if and only if it is possible to evenly divide
a sequential set of leaves into subsets, each of which provides the same subtotal net
gain to the tree. In other words, we can formally obtain γ (ϕ, τ ) if and only if we can
find a positive integer N (ϕ, τ ) satisfying the following conditions for any positive
integer h (Fig. 2):

hN∑
i=(h−1)N+1

�(τ, σi ) =
N∑
i=1

�(τ, σi ), (2a)

Fig. 2 Sequential leaf expansion and shedding. The grey zone near the bottom line represents the leafless
period, determined by the foliation rule (ϕ). The period between 0 and σhN+1 is divided into h subsets so
that the subtotal net gain within any subset is the same
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σhN+1 = hσN+1. (2b)

The criterion γ (ϕ, τ ) is then given by

γ (ϕ, τ ) =
∑hN

i=(h−1)N+1 �(τ, σi )

σhN+1 − σ(h−1)N+1
≡

∑N
i=1 �(τ, σi )

σN+1
. (3)

Note that it is usually possible to define σN+1 as theminimum σi value that is a positive
integer, because the period length of seasonal change is unity and, thus, the (N + i)-th
leaf is expected to provide the same net gain as the i-th leaf.

The above method can be used for any forms of the functions p(t), m(t), and θ(s).
In this paper, we hereafter apply the same simple functional forms as what were used
inKikuzawa (1991) in order to examine the pure effect of renewedmethodology on the
model predictions. Referring to the empirical record indicating that net photosynthetic
rate of a leaf is a monotonic decreasing function of age of the leaf (Šesták et al. 1985),
Kikuzawa (1991) assumed the simplest linear functions:

p(t) = max

{
0, a

(
1 − t

b

)}
, (4a)

m(t) = max

{
0,m

(
1 − t

b

)}
, (4b)

where a = p(0), m = m(0) (a > m > 0), and b > 0. The parameter b can be
viewed as the potential maximum leaf longevity, and optimal leaf longevity should
not be greater than b. Kikuzawa (1991) also assumed a dichotomous variable reflecting
favourable and unfavourable situations for photosynthesis:

θ(s) =
{
1 for j ≤ s < j + f
0 for j + f ≤ s < j + 1

, (5)

where j is any non-negative integer and f is the length of a favourable period within
any year (0 < f ≤ 1). Note that when seasonal state is described in this manner,
an individual leaf exhibits the greatest net gain when that leaf is expanded at an
integer time point, thus at the beginning of a favourable period. Note also that non-
seasonal environments can be analysed by setting f = 1. Definitions of parameters
are summarised in Table 1.

Before we proceed, we can calculate G(τ ) as

G(τ ) =
⎧⎨
⎩

−C+(a − m) τ
(
1 − τ

2b

)−a (1− f ) �τ�
(
1− �τ�+f

2b

)
for j ≤ τ < j+ f

−C − mτ
(
1 − τ

2b

) + a f �τ	
(
1 − �τ�+ f

2b

)
for j + f ≤ τ < j + 1

.

(6)
where �� and �	 denote rounding down and up to the nearest integer, respectively
(see Appendix A for the derivation). Use of this equation often helps to reduce the
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Table 1 Parameter definition of the model

Parameter/function Definition

a Photosynthetic rate of a leaf of age zero

b Potential maximum leaf longevity

C Construction cost for a leaf

f Length of favourable period for photosynthetic activity in a year

G(τ ) Net carbon gain earned by the first leaf (expanded at time zero and shed at
time τ)

m Daily maintenance cost for a leaf of age zero

m(t) Daily maintenance cost for a leaf of age t

N (ϕ, τ ) Positive integer satisfying that the i-th leaf and the (N + i)-th leaf provide
the same net gain under foliation rule φ and leaf longevity τ

p(t) Photosynthetic rate of a leaf of age t

�(τ, σi ) Net carbon gain earned by the i-th leaf (expanded at time σi and shed at
time σi + τ)

γ (ϕ, τ ) Long-term net carbon assimilation rate of a tree

θ(s) Environmental state at time s

σi Time at which the i-th leaf is expanded

τ Leaf longevity

τ∗ Optimal leaf longevity

τX Leaf longevity optimal under foliation rule φX

ϕ Foliation rule

ϕ∗ Optimal foliation rule

ϕC Combined expansion rule

ϕI Immediate replacement rule

ϕS Spring flushing rule

computational effort required to obtain the value of τ by which the value of (3) is
maximised (see below).

We formulate the three basic foliation rules defined in a natural manner:

ϕI: The immediate replacement rule, under which a tree expands a new leaf imme-
diately after shedding of an existing leaf;
ϕS: The spring flushing rule, underwhich a tree expands a new leaf at the beginning
of the favourable period that follows the shedding of an existing leaf;
ϕC: The combined expansion rule, under which a tree expands a new leaf imme-
diately after shedding of an existing leaf if the period is favourable, and at the
beginning of the next favourable period otherwise.

Figure 3 contains graphical representations of these rules.

3 Non-seasonal environments

In a non-seasonal environment, i.e. when f = 1, we can simplify (1) by substituting
θ(s) = 1:
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Fig. 3 Graphical representation of the three foliation rules derived in the present study. We set f = 1/2
and τ = 4/3. The filled arrows indicate the leafless periods of each ideal tree, determined by the foliation
rule (ϕ). For each of the three rules, we show two ideal trees, which correspond to different parts of an actual
tree. One ideal tree expands its first leaf at time s = 0 and the other at time s = 1. a Under the immediate
replacement rule (ϕI), no leafless period exists. In total, 3 (k) leaves grow over 4 ( j) years. b Under the
spring flushing rule (ϕS), 4/3 years of leafiness alternate with 2/3 years of leaflessness. When an actual tree
consists of the two ideal trees plotted above, no overall leafless period is evident. c Under the combined
expansion rule (ϕC), 8/3 years of leafiness alternate with 1/3 years of leaflessness. Two leaves are present
during a leafy period. When an actual tree consists of the two shoot groups each of which corresponds to
an ideal tree plotted above, no overall leafless period is evident

�(τ, σi ) = −C +
∫ σi+τ

σi

(p(s − σi ) − m(s − σi )) ds = −C +
∫ τ

0
(p(t) − m(t)) dt .

(7)
Note that we have replaced s with σi + t . Now, �(τ, σi ) does not depend on σi or s,
that is, the timing of expansion does not affect the carbon gain and every leaf yields
the same net gain in non-seasonal environments. It is obvious that trees that do not
exhibit any interval between shedding and expansion have the highest net gain. The
immediate replacement rule, ϕI, yields

σi (ϕI, τ ) = (i − 1) τ (8)

for any positive integer i . It is easy to show that N (ϕI, τ ) = 1 fulfils condition (2)
when f = 1, and thus we obtain

γ (ϕI, τ ) = �(τ, σ1)

σ2
= G(τ )

τ
. (9)
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A general method for calculating the optimal leaf longevity 677

The term on the extreme right of (9) is exactly what was defined as g(τ ) by Kikuzawa
(1991) and has been used to estimate optimal leaf longevity in all environments in
terms of photosynthetic efficiency.

Obviously, γ (ϕI, τ ) ≥ γ (ϕ, τ ) for any τ and ϕ, (i.e. ϕ∗ = ϕI), and all that is
necessary is to calculate optimal leaf longevity, τ ∗. Substituting f = 1 into (6) yields

G(τ ) = −C + (a − m) τ
(
1 − τ

2b

)
. (10)

By solving dγ /dτ = 0 for τ , we formally obtain τ ∗ = t†, where

t† =
√

2bC

a − m
. (11)

This result is again the same as that derived by Kikuzawa (1991). The implication
that leaf longevity would be extended when b or C is larger and a − m smaller is
qualitatively consistent with empirical records not only from non-seasonal or tropical
environments but also from various ecosystems worldwide (reviewed in Kikuzawa et
al. 2013).

In addition, it is possible to show that t† < b is equivalent to G(b) > 0. The latter
inequality is a necessary condition for each leaf to contribute a positive net gain of
a tree. This means that, in non-seasonal environments, trees must shed their leaves
before those leaves lose all photosynthetic capacity.

4 Two-seasonal environments

In two-seasonal environments, trees exhibiting appropriate intervals between shedding
and flushing may attain a larger net carbon gain than do trees without such intervals
(ϕI). Here, we define a deciduous tree as a tree that has leafless periods at least once
a year, whereas all other trees are defined as evergreens (this concept is expanded in
Fig. 3 and the caption thereof). Thus, a tree with τ ≥ 1 is also evergreen regardless
of its foliation rule. On the other hand, a tree with τ < 1 is not always deciduous, in
which case interaction of the foliation rule and environmental parameter determines
whether that tree is deciduous or evergreen. For example, a tree with ϕC and τ = 1/2
is deciduous if f < 1/2 and evergreen otherwise.

For each of the three examined foliation rules, we derive the long-term increase
rates [γ (ϕI, τ ), γ (ϕS, τ ), and γ (ϕC, τ ); respectively] either analytically or numeri-
cally and determine the leaf longevity that maximises these increase rates (τI, τS, and
τC, respectively). Next we compare the values of γ (ϕI, τI), γ (ϕS, τS), and γ (ϕC, τC).
Note that, in two-seasonal environments, it is not generally the case that γ (ϕI, τ ) takes
the same form as derived by Kikuzawa (1991); thus, g(τ ) is not always in play. In
Appendix B, we describe the mathematical consequences of direct application of g(τ )

in two-seasonal environments.
To estimate optimal leaf longevity numerically, τX, under a particular foliation rule

ϕX and particular values of the parameters {C, a,m, b, f }, we ran numerical compu-
tations in the absence of rounding errors using Mathematica 8 (Wolfram Research,
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Inc.). Specifically, we calculated values of γ (ϕX, τ ) for various values of τ , ranging
from 	τ to b and uniformly distributed at intervals of 	τ (	τ equal to 1/300, thus
about a day). Of these τ values, that for which γ (ϕX, τ ) was largest was taken to be
τX.

4.1 The immediate replacement rule

Trees following the immediate replacement rule, ϕI (Fig. 3a), are always evergreen.
Although (8) holds for any f , (9) is not usually derived when f < 1 because different
leaves expanding in different seasons afford different net gains. Moreover, it is only
when f = 1 that we can define γ (ϕI, τ ) for irrational values of τ . On the other
hand, for any rational number τ = j/k, where j and k are positive integers, we have
N (ϕI, τ ) = k and σN+1 = j , and thus

γ (ϕI, τ ) =
∑k

i=1 �(τ, (i − 1) τ )

j
, (12)

which is the average rate of carbon gain by k leaves during j years. When a positive
integer is substituted into τ (thus j = τ and k = 1), (12) takes exactly the same form
as (9). In that case, we can derive an analytical expression by applying (6):

γ (ϕI, τ ∈ N) = −C

τ
+ (a f − m)

(
1 − τ

2b

)
+ a f (1 − f )

2b
. (13)

When a f −m < 0, (13) monotonically increases with increasing τ and takes a greater
value at τ = �b� than at other integer values of τ . Therefore, although τ = �b� may
or may not be the τI value, other integers are excluded as candidates for election as τI.
When a f − m > 0, (13) attains the maximum value at one or two integers satisfying

√(
t‡

)2 + 1

4
− 1

2
≤ τ ≤

√(
t‡

)2 + 1

4
+ 1

2
, (14)

where

t‡ =
√

2bC

a f − m
. (15)

See Appendix C for details. The τ values described abovemay be τI, and other integers
are excluded as candidates for τI. Note that t‡ = t† if f = 1 and that the dependencies
of t‡ on parameters other than f are identical to those of t†. In addition, t‡ monoton-
ically increases with a decrease in f . This reveals a monotonic trend to the effect that
the leaf longevity of evergreen trees is longer in colder zones (i.e. those with smaller
f values) than in warmer or more humid zones (i.e. with larger f values).
The results of our numerical simulations, shown in Fig. 4a, suggest that the function

γ (ϕI, τ ) exhibits spike-like peaks when k (the denominator of the rational number τ )
is small. This is because trees with smaller k values more frequently synchronise
flushing seasons with the beginning of a favourable period (note that a leaf provides
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Fig. 4 Examples of the
dependencies of long-term rates
of increase in net carbon gain of
trees subject to a the immediate
replacement rule, b the spring
flushing rule, and c the
combined expansion rule on τ .
Discrete points were obtained at
intervals of 	τ = 1/300 and
joined. Dotted lines in c are
duplications of a, b. The values
of the other relevant parameters
were C = 10.5, a = 60,
m = 10, b = 6.5, and f = 0.7

(a)

(b)

(c)
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20

1 2 3 4 5 6

5

10

15

20

τ

τ

τ

the largest net carbon gainwhen it is expanded at the beginning of a favourable period).
Consequently, τI has a small k value (τI = 2 yields k = 1 in the example of Fig. 4a).
Our comprehensive numerical simulations conductedwithin realistic parameter ranges
(i.e. 3 ≤ C ≤ 18, 20 ≤ a ≤ 100, 2 ≤ m ≤ 18, 1 ≤ b ≤ 12, and 0 < f < 1; the
same ranges as used by Kikuzawa (1991); carbon unit is arbitrary and time unit is
year) revealed that an integer τ(k = 1)was most frequently chosen as a component of
numerically estimated τI values, and no τI value was associated with a k value greater
than 4. In addition, τI monotonically decreased with increasing f when parameters
other than f were fixed, as suggested by (14) and (15). Moreover, our numerical
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Fig. 5 Examples of the
dependencies of locally optimal
leaf longevities of trees subject
to a the immediate replacement
rule, b the spring flushing rule,
and c the combined expansion
rule on f . Discrete points were
obtained from numerical
computations conducted at an
accuracy of 	τ = 1/300 and
joined. The dotted lines in c are
duplications of a, b. A large part
of the dotted line from b is
hidden behind the solid line,
meaning that the spring flushing
rule and the combined expansion
rule yield the same locally
optimal leaf longevity within
that range of f . The values of
the other relevant parameters
were C = 10.5, a = 60,
m = 10, and b = 6.5
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analysis suggests that the negative dependency of τI on f holds true even when the
set of τIs contains non-integer elements (e.g. τI shown in Fig. 5a is decreased from 2
to 5/3 as f is increased).

4.2 The spring flushing rule

Trees subject to the spring flushing rule, ϕS (Fig. 3b), are regarded as deciduous if
τ < 1 and evergreen otherwise. When this rule applies, the following holds for any τ :

σi (ϕS, τ ) = (i − 1) �τ	 . (16)
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A general method for calculating the optimal leaf longevity 681

This rule seems to be what Kikuzawa (1991) had in mind. However, the value of
locally optimal leaf longevity, τS, appropriately derived using γ (ϕS, τ ), is sometimes
one-year longer than that derived using Kikuzawa’s (1991) index, g(τ ).

The criterion γ (ϕS, τ ) can be defined for any real number τ , where N (ϕS, τ ) = 1
and σ2 = �τ	:

γ (ϕS, τ ) = G(τ )

�τ	 . (17)

Because the denominator of the right-hand side of (17) does not change within the
range j < τ < j + 1, we can easily show that, with increasing τ, γ (ϕS, τ ) increases
within the ranges j < τ < j + f (during which interval a leaf produces more carbon
than that leaf consumes) and decreases within the ranges j + f < τ < j + 1 (during
which interval a leaf produces no carbon). Hence, γ (ϕS, τ ) has a local maximum at
τ = j + f for each j = 0, 1, 2, . . .. All that is required is to choose τS from the
candidates thus defined (and τ = b in the case of j < b < j + f ).

Substituting τ = j + f (≤ b) into (6) and (17) yields

γ (ϕS, j + f ) = − C

j + 1
+

(
1 − j + f

2b

) (
a f − j + f

j + 1
m

)
. (18)

Suppose, for a moment, that j is any real value between 0 and b − f . Then, (18) is
a continuous function of j . It is possible to show, by solving dγ (ϕS, j + f )/d j = 0,
that (18) is maximised at j = j†, where

j† = −1 +
√
2bC − (1 − f ) (2b + 1 − f )m

a f − m
, (19)

given that
2bC − (1 − f ) (2b + 1 − f )m ≥ a f − m > 0. (20)

Otherwise, γ (ϕS, j+ f ) is maximised either at j = 0 or at j = b− f . Considering the
case where (20) holds, it can be seen from (19) that the locally optimal leaf longevity,
τS, which is either � j†�+ f or � j†	+ f , increases discretely with increasing values of
C and b, and decreases as a increases. The effect of m on (19) depends on the values
of the other parameters.

Figures 4b and 5b show the results of numerical computations. The figures illustrate
the dependencies of γ (ϕS, τ ) on τ , and τS on f , respectively. The former dependency
yields the analytical result that γ (ϕS, τ ) has peaks at τ = j + f . The latter example
shows that the dependency of τS on f is twofold. On a local scale, τS continuously
increases with increasing f . On a global scale, however, τS discretely decreases with
increasing f because of a decrease in j†.

4.3 The combined expansion rule

The combined expansion rule, ϕC (Fig. 3c), is a combination of ϕI and ϕS. The rule is
identical to ϕI when f = 1. Meanwhile, if longevity satisfying j + f ≤ τ ≤ j + 1 is
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given, trees subject to this rule exhibit exactly the same behaviour as do trees operating
under rule ϕS. In the other cases, however, this rule leads to a unique life history. For
any real positive τ, n is defined as the smallest integer satisfying

�nτ	 − nτ ≤ 1 − f, (21)

and we have

N (ϕC, τ ) = n, (22a)

σhn+l(ϕC, τ ) = h �nτ	 + (l − 1) τ, (22b)

for any non-negative integers h and l. Trees subject to this rule are regarded as decid-
uous if nτ < 1 and evergreen otherwise.

Substituting (22) into (3), we obtain

γ (ϕC, τ ) =
∑n

i=1 �(τ, (i − 1) τ )

�nτ	 . (23)

For deciduous trees subject to ϕC (i.e. nτ < 1), the analytical results described in
Appendix D can be derived. In short, the only candidate for τC among the possible τ

values is τ = f/Q†, where Q† is an integer satisfying

√(
f

t†

)2

+ 1

4
− 1

2
≤ Q† ≤

√(
f

t†

)2

+ 1

4
+ 1

2
. (24)

In other words, a deciduous tree subject to this foliation rule maximises its long-term
carbon gain when it uses up Q† leaves during each favourable season. Using (24), we
can show that the dependencies of the candidate for τC, f/Q†, on parameters other
than f are the same as those of t†.

Figures 4c and 5c show the dependency of γ (ϕC, τ ) on τ and the dependency
of τC on f , respectively, obtained by numerical simulations. In our comprehensive
numerical analyses, τC always took the form τC = ( j + f )/k, where j was a non-
negative integer and k a positive integer not larger than 3. Instances where k = 1 were
most frequently observed. The outcome of the above analytical work, τ = f/Q†, is a
special form of ( j+ f )/k. Indeed, when j = 0 was selected in our numerical analysis,
k was always equal to Q†.

See also the dotted lines in Figs. 4c and 5c, which are copies of the outcomes when
the ϕI or ϕS rules are applied, as plotted in Figs. 4a, b and 5a, b. The figures show that,
when f < 1, the following relationships hold for any non-negative integer j :

γ (ϕI, j + 1)=γ (ϕS, j + 1)=γ (ϕC, j + 1)<γ (ϕS, j + f )=γ (ϕC, j + f ). (25)

These relationships can be easily derived analytically upon consideration of the defin-
itions of the foliation rules. Specifically, it is obvious that trees operating under ϕI, ϕS,
andϕC constraints exhibit exactly the same behaviour for any integer τ . In other words,
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such trees shed an existing leaf and expand a new leaf at the beginning of a favourable
season when the leaf longevity value is an integer. In addition, trees operating under
ϕS and ϕC rules exhibit exactly the same behaviour for τ = j + f , waiting for the
beginning of a favourable season to expand a new leaf after shedding an existing leaf
at the end of the previous favourable season.

In light of the above results, the followings hold:

1. Neither τS nor τC can be an integer;
2. When τI takes an integer value, (ϕI, τI) is not the optimal strategy because it is

always inferior (in terms of carbon economy) to (ϕS, τS) and (ϕC, τC),
3. When τS takes the form j + f , (ϕC, τC) is not inferior to (ϕS, τS), and,
4. When τS = b, (ϕS, τS) may or may not be superior to (ϕC, τC).

Furthermore, the numerical results that we obtained indicate that τI is very likely to
be an integer value (Fig. 5a) and τS is rarely equal to b because it occurs only when
γ (ϕS, �b�−1+ f ) < γ (ϕS, b). Summarising the above results, we can usually expect
(ϕC, τC) to be the optimal strategy.

5 Discussions

In this paper, we show that use of the index proposed byKikuzawa (1991) does not pro-
vide the maximum achievable lifelong net carbon gain when the period unfavourable
for photosynthesis is encountered by a tree during a year. We have derived a math-
ematically rigorous and more general method that allows calculation of optimal leaf
longevity for an ideal tree, and next applied simple linear and step functions to cal-
culate leaf productivity and seasonal state, respectively, following Kikuzawa (1991).
The model outcomes are in good agreement with the results of empirical studies. For
example, the model predicted that each leaf lives longer if leaf construction cost is
high and shorter if the initial photosynthetic rate is high, which is indeed observed
empirically. In addition, our newmethodology allowed comparison among life history
strategies for foliation timing, which Kikuzawa (1991) did not considered. Results of
our analyses suggested that life history of expanding new leaves at the beginning of
spring yields higher carbon gain than life history of replacing discarded leaves by new
leaves immediately.

The most contentious feature of the present study may be the use of an ideal tree,
which is assumed to retain at most one leaf at a time. This one leaf is the so-called big-
leaf and may be interpreted as an aggregate of all leaves on the tree. Then, one may be
of the view that the big-leaf assumption is an acceptable simplification of a deciduous
tree showing flush-type leaf-emergence but not an evergreen tree because the latter
tree has leaves of different ages present at any one time. In some cases, however, we
may regard a real individual tree as an aggregate of multiple shoot groups in each of
which only the uppermost shoot has leaves of the same age and lower shoots have
no leaves. A newly-emerged shoot can join the group as the new uppermost shoot, in
which case the previous uppermost shoot will sooner shed its leaves due to avoidance
of self-shading and may transport its resources to the uppermost shoot of the same or
another group. An ideal tree and the big-leaf in the present model then correspond to
each one of the shoot groups and an aggregate of leaves of the single leafy shoot of
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Fig. 6 Illustration of multiple flushing in Eurya japonica. We chose an f value of 0.78, estimated from
the data of Nitta and Ohsawa (1997), and set τ = (7 + f )/3 = 2.59. Under the combined expansion rule
(ϕC), and given that an actual tree consists of three shoot groups each of which corresponds to an ideal tree
that expand their first leaves at s = 0, 2, and 5, an actual tree expands three leaves at different times during
the 10th year

each group, respectively. It follows that an evergreen tree consisting of x shoot groups
can retain up to x leafy shoot of different age classes (Figs. 3, 6).

The effect of the length of a favourable period, during which leaves are assumed
to photosynthesise, on optimal leaf longevity depends on the foliation strategy of
the tree. When discarded leaves are replaced immediately by new leaves, the results
of analytical and numerical computations suggest that the optimal leaf longevity is
shorter when the period favourable for photosynthesis is longer. When new leaves are
expanded only at the beginning of a favourable period, optimal leaf longevity also
becomes shorter if the favourable period lengthens greatly (as in a comparison of
subtropical and subarctic species). However, it becomes longer when the favourable
period lengthens slightly (as in a comparison of species of the same climatic zone)
because a tree benefits from retention of existing leaves at the end of the current
favourable season. It follows that the leaf longevity of deciduous trees following the
spring flushing rule increases with increasing length of the favourable period. The
result agrees with those of Kikuzawa et al. (2013), who showed, by reference to
empirical records, that the leaf longevities of deciduous and evergreen trees become
longer and shorter, respectively, as the favourable period becomes longer (see also
Xiao 2003; Reich 2014).

We also tested a more sophisticated yet surely possible foliation rule: new leaves
are expanded immediately after existing leaves are shed if shedding occurs within a
favourable period and at the beginning of the next favourable season otherwise. Under
this rule, trees may expand their leaves more than once a year (Fig. 3c), which is
more likely to be possible when the favourable period is longer (Fig. 5c). That may
explain the multiple (three times a year) flushing of evergreen Eurya japonica trees
found in subtropical zones (Nitta and Ohsawa 1997). Such a life history is shown in
Fig. 6, within the framework of the present model. Numerical analysis revealed that
application of this combined expansion rule usually yielded the highest net carbon gain
of a tree’s lifetime. However, when f was not very large, the combined expansion rule
yielded exactly the same life history as what the spring-flushing rule yielded (Fig. 5).
Therefore, themodel predicts thatmultipleflushingoccurs only in the restricted regions
in subtropical zones. This may be the cause of non-prevalence of multiple-flushing life
history.Useof theoriginalmodel ofKikuzawa (1991) never yielded this typeof optimal
solution under seasonal environments. This is becauseKikuzawa’s (1991) optimisation
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method itself implicitly assumes that trees operate under the spring flushing rule in
two-seasonal environments. The present study clarifies the importance of considering
leaf longevity as part of the complex lifetime of a plant, thus also emphasising the
necessity of choosing an appropriate foliation rule.

We have developed, in the first part of the present analyses, the general method for
obtaining optimal leaf longevity. Using the same method, we can further analyse new
problems detected in the latter part of our analyses because most of those problems
are attributed to application of the simplest linear and binary functions proposed by
Kikuzawa (1991) to physiological and environmental, respectively, states [Eqs. (4) and
(5), respectively; but see also Kitajima et al. 1997]. One of the problems is that we have
not found the parameter rangewithinwhich a tree subject to the immediate replacement
rule earns a larger carbon gain than does a tree subject to the spring flushing rule. It
follows that, from the viewpoint of the carbon economy, no species should adopt
the immediate replacement rule, but the rule is in fact adopted by many non-tropical
broadleaf evergreen species. Obviously, this situation arises because we used a binary
function to represent seasonal state, assuming that trees do not photosynthesise at all
during an unfavourable season. If we alternatively assume a slowly varying periodic
function to represent the seasonal state, the immediate replacement rulemay be the best
strategy to be employed under certain circumstances. For example, Takada et al. (2006)
applied a temperature-dependent periodic function to explore how leaf longevity is
affected by average air temperature and annual amplitude of temperature. Reanalysing
Takada et al. (2006) by the present general method allows us to obtain optimal leaf
longevity in more realistic environments, with consideration of climatic features such
as temperature or rainfall.

A clear shortage of the present model is that effect of competition among trees has
not been incorporated into it. The theory of an evolutionarily stable strategy (ESS;
Maynard Smith and Price 1973) considers that natural selection does not always max-
imise individual fitness and that an evolutionarily converged strategy depends on the
individual strategies of mutants that may possibly invade populations (Anten 2002). In
terms of the carbon economy, trees are thought to compete for sunlight. Evolutionarily
stable leaf longevity would be affected by shading effect of neighbouring trees (Sakai
1992; see also Givnish 2002). Further works considering the effect of the competition
are required.

In short, we extended the mathematical model derived by Kikuzawa (1991) and
developed a new approach using both the timing of leaf expansion and shedding to
derive an appropriate measure of optimal leaf longevity. The outcomes of our model
aremore in linewith empirical records than outcomes derived usingKikuzawa’smodel
(1991).
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Appendix A: Derivation of net gain afforded by the first leaf

The gain afforded by the first leaf, the continuous age of which is equal to the absolute
time, is

G(τ ) = −C +
∫ τ

0
(p(s)θ(s) − m(s)) ds. (26)

Substituting (4) into (26) and applying (5), we obtain

G(τ ) = −C + (a − m) τ
(
1 − τ

2b

)
− a

∫ τ

0
(1 − θ(s))

(
1 − s

b

)
ds. (27)

Note that the third (negative) term on the right-hand side of (27), which we henceforth
describe as the loss term, represents the carbon gain that the first leaf would have
earned if no unfavourable period existed.

If j ≤ τ < j + f , where j is any non-negative integer and thus j = �τ�, the first
leaf experiences a total of �τ� unfavourable intervals. Except the case of 0 ≤ τ < f
and thus j = 0, the loss term is calculated as

a
�τ�∑
i=1

[∫ i

i−1+ f

(
1 − s

b

)
ds

]
= a (1 − f )

�τ�∑
i=1

(
1 + 1 − f

2b
− i

b

)

= a (1 − f ) �τ�
(
1 − �τ� + f

2b

)
. (28)

If 0 ≤ τ < f , the loss term is obviously zero, and thus the term on the extreme right
of (28) holds for this case. Consequently, we have

G(τ ) = −C + (a − m) τ
(
1 − τ

2b

)
− a (1 − f ) �τ�

(
1 − �τ� + f

2b

)
. (29)

If j + f ≤ τ < j + 1, where j is any non-negative integer, the first leaf further
experiences a part of an unfavourable period at the end of its life (i.e. from j + f to
τ ). The carbon gain that the first leaf earns during this period is

a
∫ τ

�τ�+ f

(
1 − s

b

)
ds = a

[
τ

(
1 − τ

2b

)
− (�τ� + f )

(
1 − �τ� + f

2b

)]
. (30)

As the loss term can be calculated as the sum of (28) and (30), we may show (29)
minus (30) as

G(τ ) = −C − mτ
(
1 − τ

2b

)
+ a f (�τ� + 1)

(
1 − �τ� + f

2b

)

= −C − mτ
(
1 − τ

2b

)
+ a f �τ	

(
1 − �τ� + f

2b

)
. (31)
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Appendix B: Analytical results for Kikuzawa’s criterion

It can be shown, by substituting (6) into g(τ ), that if g(τ ) has at least one positive
part, the parameter attains a maximum value at either one of the following two forms
of τ : τ = j + f and τ = t∗ ( j ≤ t∗ < j + f ), where j represents a non-negative
integer and

t∗ =
√

2b

a − m

[
C + a (1 − f ) j

(
1 − j + f

2b

)]
. (32)

To obtain (32), we use �τ� = j and dg(τ )/dt = 0. Note that 1 − ( j + f )/(2b) in
(32) is always positive because 2b > j + f . Kikuzawa (1991) argued that, when g(τ )

is maximised at a point other than τ = j + f , which we have shown is definitely
τ = t∗, the truly optimal leaf longevity would be located near that point. For example,
if t∗ is close to j + f , the ultimate leaf longevity would be j + f and the tree
should expand the second leaf at the beginning of the next favourable season (i.e. at
s = j + 1). In other words, Kikuzawa (1991) indeed noted that it was not always
possible to measure the optimal leaf longevity in a two-seasonal environment by
simply maximising the criterion g(τ ). We have shown that this statement holds true
even when g(τ ) is maximised at τ = j + f .

Appendix C: Locally optimal leaf longevity of trees that replace leaves
at the beginning of a favourable season

In this appendix, we obtain an integer by use of which the discrete function (13) is
maximised when af−m > 0. Let us first consider (13) to be a continuous function of
the real number τ . By solving dγ (ϕI, τ )/dτ = 0 for τ , we can show that the continuous
function attains a maximum point at τ = t‡, where t‡ is defined as (15). It follows
that the original discrete function (13) assumes a maximum value at either τ = �t‡�
or τ = �t‡	. When t‡ ≥ 1, we can simplify the condition γ (ϕI, �t‡�) ≥ γ (ϕI, �t‡	)
as

γ
(
ϕI,

⌊
t‡

⌋)
≥ γ

(
ϕI,

⌈
t‡

⌉)
⇔ − C⌊

t‡
⌋ + (a f − m)

⌊
t‡

⌋
2b

≥ − C⌈
t‡

⌉ + (a f − m)
⌈
t‡

⌉
2b

⇔ t‡ ≤
√⌊

t‡
⌋ ⌈

t‡
⌉
, (33)

and vice versa.
In conclusion, the optimal integer leaf longevity for trees subject to the immediate

replacement rule (ϕI) is �t‡� if (33) holds and �t‡	 otherwise, which can be also
expressed as (14).
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Appendix D: Locally optimal leaf longevity of deciduous trees subject
to the combined expansion rule

This appendix focuses on deciduous trees subject to the combined expansion rule (ϕC),
and our argument has two parts. First, we show that leaf longevity written as τ = f/Q
yields the largest total net gain within the range of

f

Q
≤ τ < min

{
f

Q − 1
,
1

Q

}
. (34)

for any positive integer Q. In the second part, we identify the value of Q by which
the total net gain is maximised. In this two-step manner, we obtain a locally optimal
leaf longevity for a deciduous tree subject to the ϕC rule. We exclude other values of
τ associated with a deciduous character from consideration as the chosen value of τC.

Consider a tree expanding Q leaves during a favourable period and shedding the
Q-th leaf at a certain time during the following unfavourable period. In other words,
consider a τ value satisfying (Q−1) τ < f ≤ Qτ < 1, which is identical to (34). By
definition, the tree is deciduous, and N (ϕC, τ ) = Q holds true. Using (23), γ (ϕC, τ )

within the range (34) is calculated as

γ (ϕC, τ ) = −QC + (Q − 1)
∫ τ

0
(a − m)

(
1 − t

b

)
dt

+
∫ f−(Q−1)τ

0
a

(
1 − t

b

)
dt −

∫ τ

0
m

(
1 − t

b

)
dt . (35)

The first term on the right-hand side of (35) represents construction cost of Q leaves.
The second term represents the net gain earned by the first Q − 1 leaves. The third
and fourth terms represent the gain by the Q-th leaf during the remaining favourable
period and the maintenance cost of the Q-th leaf, respectively. Differentiating (35)
with respect to τ yields

d

dτ
γ (ϕC, τ ) = − (Q − 1) (Qτ − f )

a

b
− Qm

(
1 − τ

b

)
. (36)

As (36) is always non-positive, (35) is maximised at τ = f/Q.
Substituting τ = f/Q into (35) yields

γ

(
ϕC,

f

Q

)
= −QC + (a − m) f

(
1 − f

2bQ

)
. (37)
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Next, let us replace Q of (37) with a continuous variable, q, and differentiate it with
respect to q:

d

dq

[
−qC + (a − m) f

(
1 − f

2bq

)]
= −C + (a − m) f 2

2bq2

= − C

q2

(
q + q†

) (
q − q†

)
, (38)

where q† is defined as

t† = f

q†
⇔ q† = f

t†
= f

√
a − m

2bC
. (39)

Therefore, the continuous function of q attains a maximum value at q = q†. It follows
that the original discrete function (37) takes a maximum value either at Q = �q†�
or at Q = �q†	. When q† ≥ 1, we can simplify the condition γ (ϕC, f/�q†�) ≥
γ (ϕC, f/�q†	) to

q† ≤
√⌊

q†
⌋ ⌈

q†
⌉
, (40)

and vice versa.
In conclusion, the optimal leaf longevity for deciduous trees subject to ϕC is f/Q†,

where Q† = �q†� if (40) holds and Q† = �q†	 otherwise, as shown in (24).

References

Ackerly DD, Bazzaz FA (1995) Leaf dynamics, self-shading and carbon gain in seedlings of a tropical
pioneer tree. Oecol 101:289–298

Anten NPR (2002) Evolutionarily stable leaf area production in plant populations. J Theor Biol 217:15–32
Bentley BL (1979) Longevity of individual leaves in a tropical rainforest under-story. Ann Bot 43:119–121
Coley PD (1980) Effects of leaf age and plant life history patterns on herbivory. Nature 284:545–546
Chabot BF, Hicks DJ (1982) The ecology of leaf life spans. Annu Rev Ecol Systemat 13:229–259
Chapin FS-III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260
Givnish TJ (1978) On the adaptive significance of compound leaves, with particular reference tropical trees.

In: Tomlinson PB, Zimmermann MH (eds) Tropical trees as living systems. Cambridge University
Press, Cambridge, pp 351–380

Givnish TJ (2002) Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva
Fenn 36:703–743

Gower ST, Reich PB, Son Y (1993) Canopy dynamics and aboveground production of five tree species with
different leaf longevities. Tree Physiol 12:327–345

Harada Y, Takada T (1988) Optimal timing of leaf expansion and shedding in a seasonally varying envi-
ronment. Plant Spec Biol 3:89–97

Hikosaka K, Hirose T (2000) Photosynthetic nitrogen-use efficiency in evergreen broad-leaved woody
species coexisting in a warm-temperate forest. Tree Physiol 20:1249–1254

Hiremath AJ (2000) Photosynthetic nutrient-use efficiency in three fast-growing tropical trees with differing
leaf longevities. Tree Physiol 20:937–944

Kikuzawa K (1984) Leaf survival of woody plants in deciduous broad-leaved forests. II. Small trees and
shrubs. Can J Bot 62:2551–2556

123



690 M. Seki et al.

Kikuzawa K (1991) A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical
pattern. Am Nat 138:1250–1263

Kikuzawa K, Onoda Y, Wright IJ, Reich PB (2013) Mechanisms underlying global temperature-related
patterns in leaf longevity. Glob Ecol Biogeogr 22:982–993

Kitajima K, Mulkey SS, Wright SJ (1997) Decline of photosynthetic capacity with leaf age in relation to
leaf longevities for five tropical canopy tree species. Am J Bot 84:702–708

Koike T (1988) Leaf structure and photosynthetic performance as related to the forest succession of decid-
uous broad-leaved trees. Plant Spec Biol 3:77–87

Maynard Smith J, Price GR (1973) The logic of animal conflict. Nature 246:15–18
Nitta I, Ohsawa M (1997) Leaf dynamics and shoot phenology of eleven warm-temperate evergreen broad-

leaved trees near their northern limit in central Japan. Plant Ecol 130:71–88
Reich PB (2014) The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J Ecol 102:275–

301
Reich PB,WaltersMB, EllsworthDS (1992) Leaf life-span in relation to leaf, plant, and stand characteristics

among diverse ecosystems. Ecol Monogr 62:365–392
Sakai S (1992)Asynchronous leaf expansion and shedding in a seasonal environment: result of a competitive

game. J Theor Biol 154:77–90
Schoettle AW (1990) The interaction between leaf longevity and shoot growth and foliar biomass per shoot

in Pinus contorta at two elevations. Tree Physiol 7:209–214
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