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Abstract Modeling host/pathogen interactions provides insight into immune defects
that allow bacteria to overwhelm the host, mechanisms that allow vaccine strategies to
be successful, and illusive interactions between immune components that govern the
immune response to a challenge. However, even simplified models require a fairly high
dimensional parameter space to be explored. Here we use global sensitivity analysis for
parameters in a simple model for biofilm infections in mice. The results indicate which
parameters are insignificant and are ‘frozen’ to yield a reduced model. The reduced
model replicates the full model with high accuracy, using approximately half of the
parameter space. We used the sensitivity to investigate the results of the combined
biological and mathematical experiments for osteomyelitis. We are able to identify
parts of the compartmentalized immune system that were responsible for each of the
experimental outcomes. This model is one example for a technique that can be used
generally.
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1 Introduction

Incorporating biological observations into mathematical models often requires high
dimensional parameter space, even if the mathematical model is merely a caricature
of the biological complexity. Typically there are three major approaches to explore a
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biological question: experimentation, theoretical design, and computational analysis.
In general, experimental results inspire mathematical models, which are subsequently
solved and analyzed. However, each step in any investigation contributes a certain
level of uncertainty in results and predictions due to approximations, assumptions,
error, lack of information, etc.

One biological issue that has gained recent notoriety for its impact on the med-
ical community is Staphylococcus aureus (S. aureus) which is presenting as MRSA
(methicillin-resistant S. aureus) with more regularity. Staphylococcus aureus infec-
tions and the subsequent immune responses have diverse and complex interactions.
To understand this type of infection, experiments are often very specific and require
many parameter estimates in order to capture the behavior in a mathematical model.
However, many of these parameters cannot be identified either because of the cost
of gathering data or because of the difficulty in experimental design. For exam-
ple, mice models are often used to study the immune response’s reaction to S.
aureus challenge, and gathering data requires the sacrifice of multiple hosts for each
data point. There are also various types of assays that can be used to characterize
immune components which can lead to conflicting data. This information gathered
for mouse experiments and parameters do not necessarily give insights into human
parameters.

There are many models that describe the immune system’s response to different
diseases and therapies. These models are all built with different levels of complex-
ity and detail. Detailed models either require a substantial number of variables and
assumptions, many of which cannot yet be completely characterized, or only focus
on the major players for the specific biological problem, ignoring/eliminating other
subtle interactions (Bianca and Pennisi 2012; Chow et al. 2005; Gammack et al. 2005;
Marino and Kirschner 2004; Marino et al. 2004; Wigginton and Kirschner 2001).
Many modelers choose to handle the complexity of the immune system by taking
a mechanistic approach combining parts of the immune response into generalized
compartments (Day et al. 2006; Herald 2010; Jarrett et al. 2014; Kumar et al. 2004;
Reynolds et al. 2006). Additionally, for some diseases, incorporation of a time-delay
is necessary to accurately describe the biology such as the time needed for the regen-
eration or recruitment of cells (Buric et al. 2001; Culshaw and Ruan 2000; Perelson
and Nelson 1999) but can introduce much more complexity to a model.

A very useful tool to help understand and ultimately deal with uncertainty in a
model’s results is sensitivity analysis (SA). SA is used to identify parameters that have
effects on the outputs of the system when they are varied. We discuss the usefulness
of this information in detail below, but SA is primarily used to identify parameters to
reduce the parameter space of a model as well as parameter targets for experimental
exploration. This analysis is computational, which is far less cumbersome from regular
trial and error exploration methods. Previously, different types of SA have been used for
biology motivated mathematical puzzles, but they are mostly local and limited to first
order interactions or regression methods (Arino et al. 2008; Bailey and Duppenthaler
1980; Banks and Bortz 2005; Lee et al. 2013; Neilan et al. 2010).

Here we present a more recently developed form of global SA (Liu 2013). We
present its results for a simple ordinary differential equation (ODE) model previously
created to understand the immune response to an S. aureus infection in mice (Jarrett
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et al. 2014). We also provide an interpretation of the results of the global SA and the
biological implications that the outcomes suggest.

This paper is an example of a collaboration that links mathematical analysis directly
with experimental results. This coupling allowed us to focus on parameters of pos-
sible biological importance which could have been easily passed over. Specifically,
our focus was to use global SA to characterize parameters previously linked to bio-
logical experiments to possibly simplify/reduce the model and better understand the
dominant parameters for each experiment. Exploring the sensitivity and uncertainty of
parameters in a model is an exercise that requires both experimental and mathematical
results. Without biological evidence, understanding the meaning of the sensitivity of
parameters is impossible. Likewise, without having a mechanism to identify parame-
ters that are significant, or, on the other hand, unimportant, model design and model
reduction can only proceed with intuition.

2 Biological problem

Strains of resistant infectious bacteria are becoming more prevalent in medical facili-
ties every year. These strains are putting a costly burden on the health care system due to
the fact that their resistance often requires the complete removal of any surface harbor-
ing the bacteria when sanitation protocols fail including medical equipment/plumbing
from the facility or even the medical implants themselves from patients (Gould et
al. 2012). The most prevalent nosocomial infection for indwelling medical devices is
MRSA (Brady et al. 2006).

Standard treatment protocols often fail at preventing and removing resistant infec-
tions (Shirtliff et al. 2001). MRSA is the cause for infections of the skin, soft tissue,
pneumonia, musculoskeletal infections, and also the resulting infections of indwelling
medical devices such as intravenous catheters and prosthetic implants. MRSA has
many resistance mechanisms including enzymes that degrade, deactivate, or change
antibiotics.

Bacteria are able to attach to a surface and embed themselves in an extracellu-
lar hydrated slime matrix (derived from both the microbes themselves and the host)
to form what is called a biofilm. MRSA forms a protective biofilm structure, which
becomes a source of infection that resists clearance by the host immune response
and antimicrobial agents (Shirtliff et al. 2002). The biofilm structure provides pro-
tection for the microbes from antibiotics in many ways, including reduced antibiotic
penetration, low metabolic rate, and specialized phenotypic expression (Gilbert et al.
1990; Proctor et al. 1998; Stewart 2003; Stewart and Costerton 2001; Thien-Fah and
O’Toole 2001). There is also evidence that the protective biofilm increases the spread
of phenotypes that result in drug resistance (Cogan 2006). Due to these resistance
mechanisms, biofilm infections cannot usually be eliminated using only antibiotic
treatment. Additionally, only surgical removal of the biofilm can eliminate the infec-
tion if a mature biofilm is formed. This in itself causes significant morbidity, mortality,
and complications for the patient (Prabhakara et al. 2011b). This biological problem
has led to a massive research effort focusing on not only MRSA but also biofilms
in general. These efforts include, but are not limited to, antibiotic dosing strategies,
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pretreatment of surgical implants with antimicrobial agents, immunomodulation ther-
apies, and vaccines. Studies focusing on immunomodulation therapies and vaccine
development for MRSA are important due to the antibiotic resistance and ability to
form a biofilm. However, the nature of S. aureus presents major challenges to current
vaccine strategies (Harro et al. 2010).

The Shirtliff group at the University of Maryland has completed numerous exper-
iments to characterize this type of infection by identifying antigens associated with
its biofilm as well as documenting the host immune response in mice. These exper-
iments consist of creating a S. aureus biofilm infection on a medical pin, which is
then implanted in the tibia of different mouse strains and treated with several types of
immunomodulation therapies. At several time points, post infection, various cytokine
levels, amount of infection, and the morbidity of the infection were documented (Brady
et al. 2011; Prabhakara et al. 2011a, b; Shirtliff et al. 2012).

Eight experiments were designed to compare different immune defects and vac-
cine strategies. Three strains of mice with differing immune potentials were used
and treated with several immunomodulation therapies representing different immune-
compromised states and a normal/healthy immune response. These mice strains have
biased immune responses where one type has a dominant pro-inflammatory response
and another strain has a stronger anti-inflammatory response. Inflammation, in the
form of blood flow, and pro-inflammatory leukocytes move into areas of infection as
the primary component of the body to remove invading pathogens. However, if not
specific or overly activated, host tissue damage can result from uncontrolled inflam-
mation, whereas the anti-inflammatory responses reduce inflammation with chemical
signaling and specialized cells (Delves and Roitt 2000a).

The first of a series of experiments compared the immune responses of the dif-
ferent strains of mice, and they found that the infection was less severe in the anti-
inflammatory dominant strain versus the pro-inflammatory dominant strain (experi-
ments 1 and 2 below). They also compared the damage to the bone at the pin implant
site of these mouse strains caused by pro-inflammatory cells moving into the infected
area. They observed significant damage to the pro-inflammatory dominant mice, and
very little damage to the anti-inflammatory dominant mice (Prabhakara et al. 2011a).

After these initial experiments they performed several more experiments to deter-
mine the effects of particular parts of both the pro- and anti-inflammatory responses to
elucidate whether the anti-inflammatory response is a protective mechanism or if an
over active pro-inflammatory response simply can exacerbate infections (experiments
3–6 below) (Prabhakara et al. 2011b).

The Shirtliff group was also able to develop different vaccines for MRSA caused
osteomyelitis in mice. Without vaccination, the pro-inflammatory dominant mice
would not have an anamnestic immune response to these antigens and would not
be able to prevent a biofilm matrix from forming. The first vaccine they created
provided partial protection against a S. aureus biofilm infection. The vaccine only
expressed biofilm-specific antigens, so adjunctive antibiotic therapy was required to
clear planktonic populations of the bacteria. A later vaccine consisted of the original
four-components of the earlier vaccine with one additional antigen. The planktonic
bacteria express the additional antigen in vivo during the infection. The five-component
vaccine provided complete protection and elimination of S. aureus populations in this
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Table 1 Comparison of mouse strains: their biological elements, basic results of experiments, and exper-
iment numbers used here and citations

Mouse
strain

Biological elements Basic results Experiments

BALB/c Th2 and Treg
(anti-inflammatory)
dominant immune
response

Able to clear infection,
but when treated with
antibodies against Treg
cells the mice lose their
ability to overcome the
infection

1, 4 (Prabhakara et al.
2011b)

C57BL/6 Th17 and Th1
(pro-inflammatory)
dominant immune
response

Unable to clear infection
unless treated with
antibodies that block
both the Th17 and Th1
responses or with a
vaccine

2, 5–8 (Brady et al.
2011; Prabhakara et
al. 2011b; Shirtliff
et al. 2012)

STAT6 KO
BALB/c

BALB/c mice with
Th2 response
removed

Unable to clear the
infection

3 (Prabhakara et al.
2011b)

particular mouse model (experiments 7 and 8 below) (Brady et al. 2011; Shirtliff et
al. 2012).

Specific and detailed data for these mouse experiments can be found in the papers
mentioned above, but we have included Table 1 for a brief description the mouse
strains, their biological elements, and the basic results of the experiments.

These experiments and their results inspired a mathematical model to predict other
experimental outcomes and possibly elucidate targets for immunotherapy and other
experiments which we briefly describe in the next section (Jarrett et al. 2014).

3 Mathematical model

This model consists of four nonlinear ODEs represented by the following equations:

dP

dt
= (α1 I + ρ1B)(1 − P) −

[
β1A + μ1

(
1 − B

KB

)]
P

dA

dt
= α2P −

[
β2 I + μ2

(
1 − B

KB

)]
A

d I

dt
= α3P + ρ2B − (β3A + μ3)I

dB

dt
=

[
g

(
1 − B

KB

)
+ α4 I − β4P

]
B + e−γ t (1)

Three of the components represent parts of the immune system, and the fourth
component represents the infection (B). The immune system components are the
pro-inflammatory response (P), anti-inflammatory response (A), and inflamma-
tion/damage (I ). This style of model has been developed previously, although in
a more generic form (Reynolds et al. 2006; Day et al. 2006). Specifically, previous
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models neglected the interaction between the bacterial dynamics and the inflammation
and focused on general outcomes (e.g. infection clearance). Whereas the components
of this system have been linked to the findings of the Shirtliff group pertaining to the
immune response to this type of biofilm infection as well as recent biological evidence.

The bacteria component (B) is treated as a growing population that benefits from
inflammation with rate α4 and is reduced by the pro-inflammatory response with rate
β4. Logistic-type growth is used since nutrient that the bacteria harvest from the body
is not accounted for, where g is the growth rate. A source term representing the initial
source of the biofilm infection was incorporated to better represent the slowly decaying
infection from the pin implant in the experiments.

The pro-inflammatory response is the combined efforts of the Th1 and Th17
responses of mice described by the Shirtliff group. This response depends on both
inflammation and the bacteria with rate α1 and ρ1 respectively. However, this recruit-
ment is not exponential but has a maximal, active capacity that depends on the amount
of the pro-inflammatory response present. The pro-inflammatory response is down
regulated by the anti-inflammatory response with rate β1, and it decays at a rate μ1.
In addition, the natural decay rate decreases when bacteria are present in the system,
agreeing with recent biological evidence (Coxon et al. 1999).

In the model, the anti-inflammatory response represents the effort of the Treg cells
and is recruited by the pro-inflammatory response at rate α2. This is a simplifica-
tion since the anti-inflammatory response is actually recruited by the inflammation.
The anti-inflammatory response should not be effective against the inflammation
until macrophages (part of the pro-inflammatory response) are activated, so this is
a reasonable simplifying assumption. This separate activation is the “reprogramming”
of already recruited macrophages. The anti-inflammatory response is decreased by
inflammation caused by platelet blockage with rate β2 (Moura and Tjwa 2010), which
is an interaction novel to this model. It also decreases by its natural decay rate μ2−
again, it was assumed that the natural decay rate also depends on the magnitude of the
infection (Coxon et al. 1999).

The inflammation component (I ) reflects the damage caused the pro-inflammatory
response and bacteria as well as increased blood flow bringing cells and platelets
to the area. It is reduced by the anti-inflammatory response and natural decay. The
pro-inflammatory response and bacteria cause the inflammation to increase with rate
α3 and ρ2 respectively. The inflammation is reduced by the immune system’s anti-
inflammatory response with rate β3 and by its natural decay rate represented by μ3.
The coupling between the pathogen and damage had not been incorporated in previous
models and plays a key role in the model’s results.

We note that the Th2 response is represented in the combination of both pro-
inflammatory and anti-inflammatory components due to the fact that these cells recruit
pro-inflammatory cells to attack the biofilm, and Th2 cells also produces cytokines
that down-regulate the pro-inflammatory Th1 and Th17 responses.

This simple model is capable of representing the qualitative results for all eight
of the major experimental results gathered by the Shirtliff lab, and it also includes
a healthy state represented by an all-positive equilibrium for the immune response
components and the infection component equal to zero. This represents the basal level
of the host immune response (Delves and Roitt 2000b), not previously seen by simple,
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compartmental modeling efforts for the immune system responding to infection. See
Table 2 for a brief comparison of each of the experiments to the outcomes of the model
including steady-states, eigenvalues, and the biological references. For further details
about this model and comparison to the biological data and all experimental outcomes
see (Jarrett et al. 2014).

4 Uncertainty and sensitivity analysis

Each stage of mathematical modeling introduces uncertainty that can be categorized
into non-reducible and reducible uncertainty. Non-reducible uncertainty stems from
parameters and conditions for the system of equations being analyzed. This type of
uncertainty implies that the biological process has variability that affects the model
predictions. Reducible uncertainty stems from a lack of information about a particular
aspect of the system. By collaborating with experimentalists data can be gathered
specific to reducing the uncertainty of parameters and the interaction of variables.

SA refers to a broad group of methods that ranks parameters by their effect on output
variables, which has several roles to play in investigations. One role is to describe the
effects of both non-reducible and reducible uncertainty. A second role that SA plays
is in model reduction. Model results can depend heavily on particular parameters, but
other parameters may be essentially irrelevant to the overall results. Identifying and
‘freezing’ these parameters can reveal simpler models for the same complex biological
system.

Uncertainty and sensitivity are terms that are sometimes used interchangeably,
especially when referring to parameter analysis. However, uncertainty analysis almost
always refers to a lack of knowledge regarding the value of the parameter, whereas
sensitivity refers to how much the outcome depends on variations in the parameters.
There may be parameters that the model is not sensitive to, but are highly uncertain, that
have negligible effect on the predictions. Likewise, a model that has a highly sensitive
parameter requires some level of certainty in order to make robust predictions.

There are many methods used to understand sensitivity and uncertainty such as
differential SA, sampling methods, and segmented input distribution. These tools
include those that investigate the parameters one at a time; those that sample all of
parameter space; and those that partition parameter space, based on output analysis.

5 Global sensitivity analysis

SA is generally classified into two types: local SA and global SA. Local SA, usually
described by the partial derivatives or gradients of the output response with respect
to input parameters, only considers the impact on the output of the variation of a
given input variable around a certain value while the other inputs are kept constant
at their nominal values. Global SA, on the other hand, considers variations of all
input parameters simultaneously over the whole space. As a result, interactions among
different inputs can be detected. Another advantage of global SA is that type II errors
(failure to identify a significant parameter) can be avoided with a higher probability
(Saltelli 2002).
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Table 2 Summary of the model results compared to experimental evidence (Jarrett et al. 2014)

Experiment description Model results Corresponding biological results

1. BALB/c tibia implanted
with S. aureus coated pin

Clearance of infection and return
to basal/healthy equilibrium.
The stable equilibrium (basal
level) is (P̄, Ā, Ī , B̄) ≈
(0.82, 0.20, 2.10, 0) with
eigenvalues λ ≈
−0.06,−0.17,−0.44,−0.95

After 21 days, 41.67 % of mice
infected and after 49 days, 25 %
infected with decreasing CFU
amounts; no biofilm formation;
lack of neutrophil infiltration to
bone (Prabhakara et al. 2011b)

2. C57BL/6 tibia implanted
with S. aureus coated pin

Infection persists and bacteria
positive equilibrium is stable
which has a higher
inflammation/damage value.
The stable equilibrium is
(P̄, Ā, Ī , B̄) ≈
(0.94, 0.22, 2.69, 0.54) with
eigenvalues λ ≈ −0.07 +
0.33i,−1.04 + 0.33i,−1.04 −
0.33i,−0.07 − 0.33i

At all time points 100 % of mice
infected; definite biofilm
formation; large numbers of
neutrophil infiltration to bone
(Prabhakara et al. 2011b)

3. STAT6 KO BALB/c (no
Th2 response) tibia
implanted with S. aureus
coated pin

Infection persists and bacteria
positive equilibrium is stable.
However, it has a lower
inflammation/damage value.
The stable equilibrium is
(P̄, Ā, Ī , B̄) ≈
(0.91, 0.38, 1.56, 0.57) with
eigenvalues λ ≈ −0.08 +
0.39i,−0.64,−1.33,−0.08 −
0.39i

After 21 days, 100 % of mice still
infected but with CFU amounts
comparable to BALB/c mice
still infected at 21 days
(Prabhakara et al. 2011b)

4. BALB/c tibia implanted
with S. aureus coated pin
and treated with Treg
antibodies (anti-CD25)

Infection persists and bacteria
positive equilibrium is stable.
The stable equilibrium is
(P̄, Ā, Ī , B̄) ≈
(0.96, 0.28, 3.03, 0.70) with
eigenvalues λ ≈ −0.06 +
0.36i,−1.16 + 0.43i,−1.16 −
0.43i,−0.06 − 0.36i

After 21 days, infected mice
increased to 87.5 %
(Prabhakara et al. 2011b)

5. C57BL/6 tibia implanted
with S. aureus coated pin
and treated with Th17
antibodies (anti-IL-6)

Infection persists and bacteria
positive equilibrium is stable
but with a lower level of
infection. The stable
equilibrium is (P̄, Ā, Ī , B̄) ≈
(0.84, 0.18, 2.17, 0.18) with
eigenvalues λ ≈ −0.09 +
0.18i,−0.62,−0.80,−0.09 −
0.18i

After 21 days, infected mice
decreased slightly to 85.7 %
(Prabhakara et al. 2011b)

6. C57BL/6 tibia implanted
with S. aureus coated pin
and treated with Th17 and
Th1 antibodies (anti-IL-6,
anti-IL-12p40)

Small changes in the specific
parameters for experiments 5 and 6
result in either persistence of
infection or clearance. The stable
equilibrium (healthy) is
((P̄, Ā, Ī , B̄) ≈
(0.68, 0.16, 1.46, 0) with
eigenvalues λ ≈ −0.16,−0.19 +
0.08i,−0.72,−0.19 − 0.08i

After 21 days, infected mice
decreased to 62.5 %
(Prabhakara et al. 2011b)
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Table 2 continued

Experiment description Model results Corresponding biological results

7. C57BL/6 tibia implanted
with S. aureus coated pin
and treated with
quadrivalent vaccine and
antibiotics

Infection persists and bacteria
positive equilibrium is stable
unless antibiotic treatment is
incorporated which gives
stability to the healthy/basal
equilibrium. The stable
equilibrium (without
antibiotics) is (P̄, Ā, Ī , B̄) ≈
(0.91, 0.15, 3.08, 0.07) with
eigenvalues λ ≈ −0.07 +
0.07i,−0.78,−1.25,−0.07 −
0.07i

After previous vaccination,
14 days after implantation of
infection 50 % of mice
remained infected (Shirtliff et
al. 2012) and in rabbits 66 %
remained infected (Brady et al.
2011), but combined with
antibiotics there was a 99.9 %
reduction in bacterial
population for rabbits (Shirtliff
et al. 2012)

8. C57BL/6 tibia implanted
with S. aureus coated pin
and treated with pentavalent
vaccine

Clearance of infection and return
to basal/healthy equilibrium.
The stable equilibrium is
(P̄, Ā, Ī , B̄) ≈
(0.90, 0.15, 3.06, 0) with
eigenvalues λ ≈
−0.82,−0.11,−0.68,−1.30

After 21 days, there was 100 %
clearance in all mice (Shirtliff
et al. 2012)

One simple global method is calculating the partial rank correlation coefficient
(PRCC) while utilizing Latin Hypercube Sampling (LHS) which has been applied to
many biological models (Bianca et al. 2012; Blower and Dowlatabadi 1994; Jarrett et
al. 2014; Marino et al. 2008). Sobol’ sensitivity measures (Sobol’ 1993, 2001; Saltelli
2002; Liu and Owen 2006) that utilize the analysis of variance (ANOVA) of the model
output are among the most widely used global SA methods. There are alternative
methods to Sobol’ sensitivity indices such as Fourier amplitude sensitivity test (FAST)
method (Cukier et al. 1973) and its extended version (eFAST) which are variance-based
methods. A clear comparison of these methods is provided by Saltelli and Bolado
(Saltelli and Bolado 1998). Currently we are focusing on improving the efficiency of
computing the high-dimensional integrals in the Sobol’ method (Liu 2013).

Consider a mathematical model represented by a square integrable function f (x),
where f (x) can be a system of algebraic, integral or differential equations, and x =
(x1, x2, . . . , xd) are d uncertain input parameters of the model. In the present work,
f (x) denotes the ODE system (1), and x denote the set of input parameters associated
with it. Without loss of generality, the model f (x) is defined on the d-dimensional
unit hypercube. The ANOVA decomposition of f (x) is defined as

f (x) = f∅ +
∑
i

f{i}(xi ) +
∑
i< j

f{i, j}(xi , x j )

+
∑

i1<···<ir

f{i1,...,ir }(xi1 , . . . , xir ) + f{1,2,...,d}(x1, x2, . . . , xd) (2)

where f{i1,...,ir }(xi1 , . . . , xir ) is a function that only depends on r variables xi1 , . . . , xir ,
and f∅ is a constant independent of all x = (x1, . . . , xd) ∈ [0, 1]d . Let u ⊆ {1, . . . , d}

123



160 A. M. Jarrett et al.

be an index set and xu denote the |u|-dimensional vector with elements x j for j ∈ u.
Then Eq. (2) can be rewritten as

f (x) =
∑

u⊆{1,...,d}
fu(xu). (3)

The functions on the right hand side (RHS) of Eq. (3) are obtained recursively by

f∅ =
∫

[0,1]d
f (x) dx

and

fu(xu) =
∫

[0,1]|−u|
f (x) dx−u −

∑
v�u

fv(xv)

where −u denotes the complement set of u. The following orthogonality is obvious:

∫
[0,1]d

fu(xu) fv(xv) dx = 0, for u �= v. (4)

Variances are then defined as

σ 2
u =

∫
[0,1]|u|

fu(xu)2 dxu, σ 2 =
∫

[0,1]d
f (x)2 dx − f 2

∅ .

ANOVA decomposition (3) and the orthogonality property (4) imply

σ 2 =
∑

u⊆{1,...,d}
σ 2
u .

Sobol’ (1993) introduced two types of global sensitivity indices (GSI)

Su = 1

σ 2

∑
v⊆u

σ 2
v , Su = 1

σ 2

∑
v∩u �=∅

σ 2
v .

Su sums all the normalized variances whose index sets are subsets of u, and Su sums
all those whose index sets have non-empty intersections with u. It is obvious that
Su ≤ Su , and hence they can be used as the lower and upper bounds, respectively,
of the sensitivity measures on the parameters xu . Sobol’ (1993) first proposed Monte
Carlo algorithms to compute GSI and Saltelli (2002) further improved the efficiency of
the algorithms. In the literature, typically the indices with respect to a single parameter
xi , S{i} (first order indices or main effects) and S{i} (total indices or total effects)

for i ∈ {1, . . . , d}, are computed. If S{i} is relatively small, then the corresponding
parameter can be frozen at its nominal value without losing much uncertainty in the
model output.
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6 Results

The mean values of the sixteen model parameters are given in Table 3. We assume
each parameter satisfies a uniform distribution with a coefficient of variation (CV)
10 %. The CV can be different for different parameters. The CV could be 100 %,
but one should ensure sampling does not produce a negative value for the relevant
parameter. In practice, if the sample value of the parameter is negative, it is ignored.
However, the assumption of uniform distribution, particularly with a large variance,
could sometimes lead to non-intuitive results.

The evolution of the model outputs at the mean parameter values is shown in Fig. 1.
The model solutions are integrated to t = 500 h (about 21 days) and reach steady
states. The steady state solutions are used as the model outputs. All the ODEs were
solved using implementations of MATLABs ODE45; Sobol’s algorithm was executed
in Fortan 90.

Figures 2 and 3 plot the main effects and total effects respectively. A direct compar-
ison of the main and total effects indicates that noticeable secondary interactions exist
among parameters for outputs A and B, while for outputs P and I the higher interac-
tions are very weak. Based on the total sensitivity indices S̄i , we have the following
observations:

Table 3 Parameter mean values
for the immune response model
for the healthy state (BALB/c
mouse)

All parameters have units h−1

except for the following:
β1, β2, β3, β4, and α4 have
units of (amount × h)−1; KB
has units of relative amount

Parameters Values References

α1 0.27 Estimated

ρ1 0.2 Estimated (Reynolds et al.
2006)

β1 0.01 Estimated

μ1 0.12 Coxon et al. (1999)

α2 0.11 Estimated

β2 0.1 Moura and Tjwa (2010)

μ2 0.25 Huhn et al. (1997), Coxon
et al. (1999)

α3 1.05 Estimated

ρ2 0.45 Estimated

β3 2 Brandwood et al. (1992),
Edelson et al. (1975),
Matsui and Ito (1983)

μ3 0.0174 Reynolds et al. (2006)

g 0.9 Spector (1956)

KB 1 Assumed

α4 1.5 Estimated

β4 5 Brandwood et al. (1992),
Edelson et al. (1975),
Matsui and Ito (1983)

γ 0.01 Estimated
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Fig. 1 Evolution of model
outputs at parameter mean
values representing the healthy
state removal of infection
(BALB/c mouse). The final time
t = 500 h
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Fig. 2 Sensitivity analysis on the IRM model-main effects. Sensitivity analysis is run under the assumption
that all parameters are uniformly distributed with CoV = 10 %. The sample size for MC simulations is
50,000. The four subplots correspond to the four outputs, P, A, I and B, with final time set to 500 h
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Fig. 3 Sensitivity analysis on IRM model-total effects. Sensitivity analysis is run under the assumption
that all parameters are uniformly distributed with CoV = 10 %. The sample size for MC simulations is
50,000. The four subplots corresponds to the four outputs, P, A, I and B, with final time set to 500 h

– For output P , parameters α1, ρ1, β1, μ1, ρ2, μ3, g, KB, α4, β4, γ can be
labeled as insignificant (here parameters with total index values less than 0.03
are considered insignificant).

– For output A, parameters α1, ρ1, β1, μ1, β2, ρ2, μ3, g, KB, γ , can be labeled
as insignificant.

– For output I , parameters α1, ρ1, β1, μ1, ρ2, μ3, g, KB, γ can be labeled as
insignificant.

– For output B, parameters α1, ρ1, β1, μ1, ρ2, μ3, g, γ can be labeled as insignif-
icant.

The threshold of the total index values is chosen subjectively. In our simulation,
we have used relatively large samples to compute those sensitivity indices to ensure
that the indices are relatively accurate. Additionally, the total indices converge much
faster than the first order indices, which can be negative when their true values are
close to 0.
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As a whole, we can see that α1, ρ1, β1, μ1, ρ2, μ3, g and γ are insignificant for
all output variables, while α2, β2, μ2, α3, β3, KB, α4 and β4 are significant for at
least one variable. Therefore, we will keep the eight insignificant parameters fixed at
their mean values. The resulting model has only eight uncertain parameters, and we
call it the “reduced model”.

Table 4 displays the first and second moments for all outputs estimated with Monte
Carlo sampling. The moments estimated for the two models agree very well. The
estimated first moments of the reduced model have two-digit accuracy compared to
the estimates of the full model. The estimated second moments of the reduced model
are 94.1–99.5 % of those of the full model.

Figure 4 compares the histograms of the full and reduced models. For each output,
the histogram of the reduced model is in good agreement with that of the full model,
indicating that the uncertainty in the reduced model is preserved. Note that the dimen-
sion of the stochastic space of the full model is only half of that of the full model. The
95 % confidence intervals for the Monte Carlo estimates of the first moments with
sample size 32,000 are given in Table 5.

7 Discussion and conclusion

This work identified several parameters as significant for different outputs. For the pro-
inflammatory component significant parameters are: α2, α3, β2, β3, and μ2. For the
anti-inflammatory component significant parameters are: α2, α3, α4, β3, β4, and μ2.
For the inflammation component significant parameters are: α2, α3, α4, β2, β3, β4,
and μ2. Finally, for the infection component of the model significant parameters are:
α2, α3, α4, β2, β3, β4, μ2, and KB . This is summarized in Table 6.

The parameters that are significant for all four components are: α2, α3, β3, and
μ2. α2 is the anti-inflammatory recruitment rate from the pro-inflammatory response;
α3 is the inflammation production rate from the pro-inflammatory response; β3 is the
rate the anti-inflammatory response reduces inflammation, and μ2 is the natural decay
rate of the anti-inflammatory response. Table 7 lists the significant parameters by the
number of outputs they affect. There are three other parameters that were significant

Table 4 First and second
moments for the (original)
model and the reduced model

The moments are estimated
using Monte Carlo method with
sample size 32,000

Moment Full model Reduced model

E[f] P 0.8465 0.8469

I 0.2304 0.2300

B 2.1133 2.1181

A 0.2090 0.2071

V[f] P 5.2144E−3 4.9074E−3

I 1.3810E−3 1.3517E−3

B 0.3345 0.3334

A 7.4324E−2 7.3938E−2
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Fig. 4 Comparison of full model and reduced model
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Table 5 95 % confidence
intervals for the Monte Carlo
estimates of the first moments

The sample size is 32,000

Model output Full model Reduced model

P [0.8457 0.8473] [0.8461 0.8476]
I [0.2300 0.2308] [0.2295 0.2303]
B [2.1070 2.1196] [2.1118 2.1244]
A [0.2060 0.2120] [0.2041 0.2100]

for three components (α4, β2, and β4) while only one parameter was significant for
one component (KB). The parameters α4, β2, μ2, and KB were not changed for any
of the experiments. Therefore we chose to ignore them for this particular exploration.

After we identified these parameters, we compared them to the different parameter
sets used for the biological experiments described in (Jarrett et al. 2014). By calculating
the local stability of the healthy versus unhealthy states of the model system, we were
able to identify the specific parameters that controlled the outcome of each experiment
(even though for each experiment several parameters were changed to fully capture
the immunomodulation implemented).

The most interesting cases involve α3 and β4. The α3 parameter was changed for
experiments involving immunomodulation of the pro-inflammatory dominant mouse
strain. These mice were given antibodies against different pro-inflammatory cells to
determine if the over active pro-inflammatory response was only making the infec-
tion worse due to host tissue damage. In the biological experiments, as the pro-
inflammatory response was reduced, more of the mice were able to clear the infection
and become healthy. For this particular parameter set, two parameters considered sen-
sitive (α2 and β4) were at values that would normally force the healthy state of the
system to be unstable. However, the parameter α3 dominated this particular parame-
ter set, allowing the healthy state to become stable (all negative eigenvalues). Note
that parameter β3 was not changed for these particular experiments, but its value was
considered an addition to stability for the healthy state.

Of the parameters changed for the vaccination experiments, β4 is significant. For
these parameter sets, α2 was at a value that normally would make the healthy state
unstable. Recall that α2 was considered significant for all four components. The para-
meter β4 was significant for only three components, but this parameter was increased
enough to create stability for the healthy state (all negative eigenvalues). Again, β3 was
not changed for these particular experiments, but its value was considered an addition
to stability for the healthy state.

These results have several possible biological implications. The fact that α3 is the
rate inflammation is produced by the pro-inflammatory response and the fact that
it is able to overcome two other significant parameters for experiments involving
the reduction of the pro-inflammatory response, suggest that a serious effect on the
system is damage caused by the pro-inflammatory response on the host tissue. This
effect should be vigorously explored for the treatment of biofilm infections.

We mentioned above that β4 is able to overcome a parameter that is sensi-
tive for all four components whereas this parameter is only sensitive for three, the
anti-inflammatory, inflammation, and infection components. β4 is the rate the pro-
inflammatory response removes the infection, so it is perhaps obvious this rate would
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Table 6 Outputs paired with
their respective sensitive
parameters

Model output Sensitive parameters

P α2, α3, β2, β3, μ2

A α2, α3, α4, β3, β4, μ2

I α2, α3, α4, β2, β3, β4, μ2

B α2, α3, α4, β2, β3, β4, μ2, KB

Table 7 Sensitive parameters
organized by the number of
output variables they affect

Number of outputs
affected

Corresponding sensitive
parameters

4 α2, α3, β3, μ2

3 α4, β2, β4

1 KB

be significant to the bacteria and even the inflammation components of the model.
However, it is mysterious how this also affects the anti-inflammatory response. In what
way is effectiveness of the pro-inflammatory response against infection changing the
anti-inflammatory response’s behavior? This is also the only parameter implicated in
the success for vaccination experiments.

Finally, the parameters α4, β2, μ2, and KB were ignored here because they did
not necessarily apply to the parameter sets for the eight experiments explored. It is
worth mentioning, however, that α4 and β2 are significant for three out of the four
components like β4 mentioned above, and they could lead to significant changes in
the system if manipulated. Further experiments need to be carried out to characterize
the effects of these four parameters especially α4 and β2 (the rate the bacteria benefits
from inflammation and the rate the anti-inflammatory response is blocked by the
inflammation/damage) which are interactions not seen before this particular model.
These additional interactions can now be considered necessary and significant for this
particular system. See Table 8 for a summary of the experiments and their significant
parameters.

Here we presented a global sensitivity analysis for a simple ODE model used to
describe specific experiments for characterizing osteomyelitis in mice. The results of
this sensitivity analysis identified eight important parameters and eight insignificant
parameters. The analysis also indicated that there are no overall noticeable secondary
interactions between parameters, further validating the model structure.

By freezing the eight unimportant parameters we have a reduced model. This
reduced model was shown to agree with the full model. The reduced model can be
used with very good accuracy to estimate the outputs compared to the full model.
With only half the parameters of the original, the reduced model can still capture the
necessary behaviors to describe these biological experiments. This narrows the scope
of analysis for the system simplifying the mathematical work significantly. It is also
clear which parameters are of particular importance for good estimations.

Finally, we used the sensitivity results to investigate combined biological and math-
ematical experiments. This knowledge of sensitive parameters was used to identify
parts of the system responsible for the experimental outcomes. We were able to iden-
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Table 8 List of parameters, their values, and outcomes for each specific experiment

Experiment Sensitive
parameters

Value Effective change to
healthy equilibrium

Healthy state
stability

1 α2 0.11 Stable as α2 increases Stable

α3 1.05 Stable as α3 decreases

α4 1.5 Remains unchanged

β2 0.1 Remains unchanged

β3 2 Stable as β3 increases

β4 5 Stable as β4 increases

μ2 0.25 Remains unchanged

KB 1 Remains unchanged

2 α2 0.9 Instability Unstable

β4 4.75 Instability

3 β4 3 Instability Unstable

4 β3 1.5 Instability Unstable

5 and 6 α2 0.09 Instability Stable

α3 0.7 Stability

β4 4.75 Instability

7 and 8 α2 0.09 Instability Stable

β4 7 Stability

For all the experiments after the first, we only list the sensitive parameters that change for the experimental
set. The first set can be considered a reference or basis set

tify the dominant parameters for each experiment based upon the parameters varied,
the sensitive parameters identified, and stability of the healthy steady-state. This infor-
mation is of great importance to the biological investigations—especially with regard
to the successful vaccination experiments. We may not be able to identify the actual
mechanism for the change in stability, but we can identify the particular element of
the system that is necessary for the desired result. It is important to note that none
of these conclusions were by intuition or by process of elimination but came directly
from mathematical results and logic—a repeatable process.

Our future endeavors are to improve the mathematical model synergistically involv-
ing biological experiments and sensitivity analysis, and also to improve sensitivity
analysis tools by making them more efficient, thereby enabling them to be applied to
complex and computation-intensive models.
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