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Received: 10 September 2013 / Revised: 28 April 2014 / Published online: 16 May 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract We consider an individual based model of phenotypic evolution in herma-
phroditic populations which includes random and assortative mating of individuals. By
increasing the number of individuals to infinity we obtain a nonlinear transport equa-
tion, which describes the evolution of phenotypic distribution. The main result of the
paper is a theorem on asymptotic stability of trait distribution. This theorem is applied
to models with the offspring trait distribution given by additive and multiplicative
random perturbations of the parental mean trait.
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1 Introduction

This paper studies the evolution of phenotypic traits in hermaphroditic populations,
i.e. populations where every individual has both male and female reproductive sys-
tem. A great part of these populations has formed various defense mechanisms against
self-fertilization (autogamy) to guarantee genetic diversification (e.g. a proper shape
of a flower can inhibit self-pollination in some species of plants). In that case, indi-
viduals can only mate with others to copulate and cross-fertilize. Nonetheless, cross-
fertilisation occurs in some hermaphroditic species. Hermaphroditic populations are
plentiful among both water and terrestrial animals as well as plants. Some of examples
include Sponge (Porifera), Turbelleria, Cestoda (Cestoidea), Lumbricidae, some of
mollusks such as sea slug Blue Dragon (Glaucus atlanticus) and various kinds of land
snails or majority of flowering plants (angiosperms).

A considerable amount of literature has been published on modelling asexual pop-
ulations by means of microscopic description of trait evolution. Macroscopic approx-
imations of that models were derived in the forms of deterministic processes or super-
processes (see Champagnat 2006; Champagnat et al. 2008; Fournier and Méléard
2004; Ferrière and Tran 2009; Méléard and Tran 2009). In this paper we formulate an
individual based model to describe the phenotypic evolution in hermaphroditic popula-
tions. We consider a large population of small individuals characterized by their traits.
The traits are assumed to be unchanged during lifetime, and their examples include
skin colour, the shape of a leaf and shell pattern. All the individuals are capable of
mating or self-fertilizing to give birth to an offspring.

We consider a general model of mating, which includes both random and assortative
mating. The first particular case is a semi-random mating model. This model is based
on the assumption that each individual has an initial capability of mating depending
on its trait. This mating model is similar to models describing aggregation processes
in phytoplankton dynamics (see Arino and Rudnicki 2004; Rudnicki and Wieczorek
2006a, b). The second particular case is an assortative mating model. In this model,
the individuals with similar traits mate more often than they would choose a partner
randomly. We adapt a model based on a preference function Doebeli et al. (2007),
Gavrilets and Boake (1998), Matessi et al. (2001), Polechová and Barton (2005),
Schneider and Bürger (2006), Schneider and Peischl (2011), usually used in two-sex
populations, to the hermaphrodites. The consequence of mating or self-fertilization is
a birth of a new individual. The trait of this individual is given by a random variable
that depends only on traits of the parents. Each individual can die naturally or when
competing with others. We consider a continuous time model, and we assume that all
above-mentioned events happen randomly.

The model presented in this paper is a hermaphroditic analogue of the asexual model
introduced by Bolker and Pacala (1997), Law and Dieckmann (2002) and studied by
Fournier and Méléard (2004). Despite the vast literature concerning individual based
models and their macroscopic approximations, only a few models involving mating
processes have appeared so far (Collet et al. 2013; Remenik 2009).

One of our aims is to study a macroscopic deterministic approximation of the model.
We obtain it by increasing the number of individuals in the population to infinity,
with simultaneous decrease in the mass of each individual. After suitable scaling of
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parameters, the limit passage leads to an integro-differential equation. Solutions of the
equation describe the evolution of trait distribution. We also study the existence and
uniqueness of the solutions. We investigate extinction and persistence of the population
and convergence of its size to some stable level.

The main aim of our paper is to prove asymptotic stability of trait distribution.
Asymptotic behavior of the solutions is characterized by conservation of mean phe-
notypic trait. We apply our main theorem to two specific models. In these models
the offspring trait is the parental mean trait randomly perturbed by some external
environmental effects or genetic mutations. In the first model, the noise is additive.
The property of additivity allows us to derive a formula for the stationary phenotypic
distribution. The second model contains multiplicative noise, and it includes, as a
special case, the Tjon–Wu version of the classic Boltzmann equation (see Bobylev
1976; Krook and Wu 1977; Tjon and Wu 1979). The Tjon–Wu equation describes
the distribution of energy of particles. As a by-product of our investigation we give a
simple proof of the theorem of Lasota and Traple (see Lasota 2002; Lasota and Traple
1999) concerning asymptotic stability of this equation. Addtionally, an example of
the trait reduction is given. In this case, in a long period of time, all traits reduce to a
particular one, which is the mean trait of the initial population.

The scheme of the paper is following. In Sect. 2 we collect all assumptions on the
dynamics of the population. In Sect. 3 we introduce a stochastic process corresponding
to our individual based model. Section 4 is devoted to the macroscopic approximation,
the limiting equation and its solutions. In particular, we give results about extinction
and persistence of the population and stabilization of its size. In Sect. 5 we formulate the
results concerning the asymptotic stability, and we give examples of their applications.
Finally, in the last section we discuss problems for future investigation concerning
assortative mating models.

2 Individual-based model

Let us fix a positive integer d. We assume that every individual is described by a
phenotypic trait x , which belongs to some closed and convex subset F of R

d , whose
interior is nonempty. The trait of an individual does not change during its lifetime.

2.1 Random mating

In sexually reproducing populations a mating process highly depends on a given
species. We will consider both random and assortative mating. In classical genet-
ics individuals mate randomly—the choice of partner is not influenced by the traits
(panmixia). Random mating occurs often in plants, but it is also observed in some her-
maphroditic animals (Baur 1992). We study a semi-random mating model in which
the mating rate depends on the trait. An individual described by the trait x is capable
of mating/self-fertilizing with rate p(x), where p is a positive function of the trait.

Consider a population which consists of n individuals with traits x1, . . . , xn . Since
two different individuals may have the same trait, it is useful to describe the state of
the population as the multiset
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1298 R. Rudnicki, P. Zwoleński

x = {x1, . . . , xn}.

We recall that a multiset (or bag) is a generalization of the notion of a set in which the
members are allowed to appear more than once. We suppose that any individual can
mate with an individual of trait x j with the following probability

p(x j )
∑n

l=1 p(xl)
.

Thus the mating rate of individuals with traits xi and x j is given by

m(xi , x j ; x) = p(xi )p(x j )
∑n

l=1 p(xl)
. (1)

The figure m(xi , xi ; x) is a self-fertilization rate. In the case of populations without
self-fertilization we assume that

m(xi , x j ; x) = p(xi )p(x j )

2

(
1

∑
l �=i p(xl)

+ 1
∑

l �= j p(xl)

)

(2)

if i �= j and m(xi , xi ; x) = 0. Let us observe that in both cases the mating rate is a
symmetric function of xi and x j but only in the first case we have

∑n
j=1 m(xi , x j ; x) =

p(xi ). If we pass with the number of individuals to infinity, and replace the discrete
model by the infinitesimal model with trait distribution described by a continuous
measure μ, then the mating rate in both cases is given by

m(x, y;μ) = p(x)p(y)
∫

F p(z)μ(dz)
. (3)

2.2 Assortative mating

Now we consider models with assortative mating, i.e. when individuals of the similar
traits mate more often than they choose a partner randomly. Assortative mating can be
modelled in different ways. For example one can use matching theory, according to
that, each participant ranks all the potential partners according to its preferences, and
attempts to pair with the highest-ranking one (Almeida and de Abreu 2003; Puebla et
al. 2012). Such models are very interesting but difficult to analyze. The most popular
models of assortative mating are based on the assumption that a random encounter
between two individuals with traits x and y depends on a preference function a(x, y)
(Doebeli et al. 2007; Gavrilets and Boake 1998; Matessi et al. 2001; Polechová and
Barton 2005; Schneider and Bürger 2006; Schneider and Peischl 2011). We consider
only the case when all the individuals have the same initial capability of mating
p(x) = 1.
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Usually, it is assumed that a(x, y) = ϕ(‖x − y‖), where ϕ : [0,∞) → [0,∞)

is a continuous and decreasing function. It means that if the population consists of n
members with traits x1, . . . , xn , then individuals of traits xi , x j mate with rate

m(xi , x j ; x) = a(xi , x j )
∑n

l=1 a(xi , xl)
= ϕ(‖xi − x j‖)
∑n

l=1 ϕ(‖xi − xl‖) . (4)

Note that in general, the function m is not symmetric in xi and x j , and usually it
describes mating in two-sex populations. Then the first argument in m refers to a
female. Females are assumed to mate only once, whereas males may participate in
multiple matings. We have

∑n
j=1 m(xi , x j ; x) = 1 for each i , which means that all

females mate with the same rate. The mating rate in the infinitesimal model is of the
form

m(x, y;μ) = a(x, y)
∫

F a(x, z)μ(dz)
. (5)

While considering hermaphroditic populations, one can expect a model with a
symmetric mating rate. We obtain such a model assuming that the mating rate is of
the form

m(xi , x j ; x) = a(xi , x j )

2
∑n

l=1 a(xi , xl)
+ a(xi , x j )

2
∑n

l=1 a(x j , xl)
, (6)

where a(x, y) is a symmetric nonnegative preference function, e.g. a(x, y) = ϕ(‖x −
y‖) (in the case of populations without self-fertilization we eliminate the terms with
i = l and j = l from the denominators). The mating rate in the infinitesimal model is
now of the form

m(x, y;μ) = a(x, y)

2
∫

F a(x, z)μ(dz)
+ a(x, y)

2
∫

F a(y, z)μ(dz)
. (7)

In the rest of the paper we will assume that the mating rate m(xi , x j ; x) is of the
form (1) or (6).

2.3 Birth of a new individual

After mating/self-fertilization an offspring is born with probability 1. The trait of
the offspring is drawn from a distribution K (xi , x j , dz), where xi and x j are parental
traits. We suppose that for every x, y ∈ F the measure K (x, y, ·) is a Borel probability
measure with support contained in the set F , and assume that there exist positive
constants c1, c2, c3 such that

∫

F

|z|K (x, y, dz) ≤ c1 + c2|x | + c3|y|, (8)

and
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∫

F

zK (x, y, dz) = x + y

2
. (9)

The above condition has a simple biological interpretation, namely, the expected off-
spring’s trait is the parental mean trait. Moreover, we suppose that for every x, y ∈ F
and for every Borel set A ⊂ F

K (x, y, A) = K (y, x, A), (10)

and the function
(x, y) 	→ K (x, y, A) (11)

is measurable.

2.4 Competition and death rates

An individual from the population can die naturally or when competing with others.
Let us denote by I (xi ) the rate of interaction of the individual with trait xi . We assume
that I is a nonnegative function. For individuals with traits xi and x j we define a
competition kernel U (xi , x j ), which is assumed to be a nonnegative and symmetric
function. Competition always leads to death of one of the competitors. We assume that
the natural death rate of the individual with trait xi is expressed by a number D(xi ),
and suppose that D is a nonnegative function.

3 Stochastic process corresponding to the model

3.1 The dynamics of the population

We present the dynamics of the ecological system that we are interested in. The
process starts at time t = 0 from an initial distribution. Individuals with traits xi and
x j can mate at rate m(xi , x j ; x) of the form (1) or (6). After mating an offspring is
born with probability one. An individual with trait xi dies naturally at rate D(xi ) or
by competition at rate I (xi )

∑
j U (xi , X j (t)), where the sum extends over all living

individuals at time t , and X j (t) are their traits. We assume that all the events (mating,
natural death, competition) are independent.

3.2 The phase space

We denote by N the set of all positive integers, δx stands for the Dirac measure
concentrated at a point x, and 1A denotes the indicator function of a set A. We
consider the space M(F) of all finite positive Borel measures on F equipped with the
topology of weak convergence of measures. We introduce the set M ⊂ M(F) of the
form

123



Model of phenotypic evolution 1301

M =
{

n∑

i=1

δxi : n ∈ N, xi ∈ F

}

. (12)

For any measure μ ∈ M(F) and any measurable function f we define 〈μ, f 〉 =∫
F f dμ. In particular, 〈μ, f 〉 = ∑n

i=1 f (xi ) if μ = ∑n
i=1 δxi . We write

D([0,∞),M) for the Skorokhod space of all cad-lag functions from the inter-
val [0,∞) to the set M (see for details, e.g., Ethier and Kurtz 1986, Skorokhod
1956).

3.3 Generator of the process

We consider a continuous time M-valued stochastic process (νt )t≥0 with the infini-
tesimal generator L given for all bounded and measurable functions φ : M → R by
the formula

Lφ(ν) =
∫

F

∫

F

∫

F

[φ(ν + δz)− φ(ν)]m(x, y; ν)K (x, y, dz)ν(dx)ν(dy)

+
∫

F

[φ(ν − δx )− φ(ν)]
⎛

⎝D(x)+ I (x)
∫

F

U (x, y)ν(dy)

⎞

⎠ ν(dx).

(13)

The first term in the right-hand side describes the mating and birth processes with the
dispersal of traits. The second term stands for two kinds of death. The death part of the
generator was previously studied in Fournier and Méléard (2004). Notice that, on the
contrary to Fournier and Méléard (2004), the operator L has the first term nonlinear
with respect to ν.

We assume that there are positive constants a, a, D, I ,U such that for every
x, y ∈ F

a ≤ a(x, y) ≤ a, p(x) ≤ p, D(x) ≤ D, I (x) ≤ I , U (x, y) ≤ U . (14)

Under the above assumptions, if the initial measure ν0 ∈ M satisfies E
( 〈ν0, 1〉q

)
<

∞ for some number q ≥ 1, then

E

(

sup
0≤t≤T

〈νt , 1〉q

)

< ∞

for any T < ∞. Consequently, the standard approach of Fournier and Méléard can
be easily applied to prove the existence of the Markov process (νt )t≥0 with the infin-
itesimal generator given by formula (13) (see Fournier and Méléard 2004, Remenik
(2009) for detailed proofs).
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4 Macroscopic model

4.1 Macroscopic approximation

This section contains an approximation of the process which was introduced and
studied in the previous sections. The idea is to normalize the initial model and pass
with the number of individuals to infinity, assuming that the “mass” of each individual
becomes negligible. In this approximation mating and death rates remain unchanged.
Only the intensity of interaction is rescaled, and tends to 0 with an unbounded growth
of the population. This approach leads to a deterministic nonlinear integro-differential
equation whose solutions describe an evolution of trait distribution.

We consider a sequence of populations indexed by numbers N ∈ N. If the N th
population consists of individuals xN = {x N

1 , . . . , x N
n(N )}, then

(a) individuals with traits x N
i and x N

j can mate with rate m(x N
i , x N

j ; xN ) of the form
(1) or (6),

(b) a new offspring’s trait is drawn from a distribution K (x N
i , x N

j , dz), where x N
i , x N

j
are the traits of parents,

(c) an individual with trait x N
i can die with rate D(x N

i ),
(d) an individual with trait x N

i interacts with other individuals with intensity
I (x N

i )/N ,
(e) a competition kernel of individuals with traits x N

i , x N
j is a symmetric, nonnegative

function U (x N
i , x N

j ).

The N th population is described by a process (νN
t )t≥0 which is defined in the same

way as the process (νt )t≥0 but with the corresponding coefficients. We define the
MN -valued Markov process (μN

t )t≥0 by the formula μN
t = νN

t /N . The value space
for the process (μN

t )t≥0 is thus

MN =
{

1

N
ν : ν ∈ M

}

.

The generator L N of the process (μN
t )t≥0 is given by

L Nφ(ν) = N
∫

F

∫

F

∫

F

(

φ
(
ν + 1

N
δz

)
− φ(ν)

)

m(x, y; ν)K (x, y, dz) ν(dx) ν(dy)

+ N
∫

F

(

φ
(
ν − 1

N
δx

)
− φ(ν)

)(

D(x)+ I (x)
∫

F

U (x, y) ν(dy)

)

ν(dx).

for any measurable and bounded map φ : MN → R.

Theorem 1 We assume that condition (14) holds, and the functions a, p, k, D, I,U
are continuous. We suppose that E

( 〈
μN

0 , 1
〉q )

< ∞ for some q ≥ 2 and all N ∈ N,
and almost each sequence (μN

0 )N∈N converges weakly to a deterministic finite measure

123



Model of phenotypic evolution 1303

μ0, as N → ∞. Then for all T > 0 the sequence of processes (μN
t )N∈N converges

in distribution in D([0, T ],M(F)) to a deterministic and continuous measure-valued
function [0, T ]  t 	→ μt ∈ M(F), satisfying the following equation

〈μt , f 〉 = 〈μ0, f 〉 +
t∫

0

∫

F

∫

F

∫

F

f (z)m(x, y;μs)K (x, y, dz) μs(dx) μs(dy) ds

−
t∫

0

∫

F

f (x)
(

D(x)+ I (x)
∫

F

U (x, y) μs(dy)
)
μs(dx) ds (15)

for every bounded and measurable function f : F → R.

The standard proof of the above theorem is based on Ethier and Kurtz (1986)
Corollary 8.16, Chapter 4, and since mating is described by the Lipschitz continuous
operator on the space of positive and finite Borel measures with total variation norm,
it can be directly adapted for example, from Rudnicki and Wieczorek (2006a).

4.2 Strong solutions in the space of measures

According to Theorem 1 the solutions of (15) are continuous in the topology of weak
convergence of measures. In this part we show a stronger result that they are also
continuous in the total variation norm ‖ν‖T V = sup{| 〈ν, f 〉 | : f − measurable,
sup
x∈F

| f (x)| ≤ 1}. We use the following formal notation

d

dt
μt (dz) =

∫

F

∫

F

m(x, y;μt ) K (x, y, dz)μt (dx)μt (dy)

−
(

D(z)+ I (z)
∫

F

U (z, y)μt (dy)

)

μt (dz), (16)

of equation (15) in the space of positive, finite Borel measures M(F) on the set F
with the total variation norm.

Theorem 2 Assume that the functions a, p, D, I,U and (11) are measurable, and
condition (14) holds. Moreover, suppose that there exist positive constants p, I ,U
such that

p(x) ≥ p, I (x) ≥ I , U (x, y) ≥ U , (17)

for all x, y ∈ F. If μ0 ∈ M(F), then there exists a unique solution μt , t ≥ 0, of Eq.
(16) with the initial condition μ0. The function t 	→ μt is bounded and continuous in
the norm ‖ · ‖T V .

Proof Let us fix T ≥ 0, δ > 0 and consider the space CT = C([T, T + δ],M(F))
with the norm ‖μ·‖T = supt∈[T,T +δ] ‖μt‖T V . Define the operator � : CT → CT by
the formula
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(�μ·)(t)(dz) = μT (dz)+
t∫

T

∫

F

∫

F

m(x, y;μs)K (x, y, dz) μs(dx) μs(dy) ds

−
t∫

T

(

D(z)+ I (z)
∫

F

U (z, y)μs(dy)

)

μs(dz) ds,

where μT ∈ M(F) is some measure. Notice that from assumption (14) there are
constants m, m̂ depending on p in the case of semi-random mating, and on a, a in the
case of assortative mating, such that for any y ∈ F and measures μ, ν ∈ M(F)

∫

F

m(x, y; ν) ν(dx) ≤ m, (18)

and ∫

F

∫

F

|m(x, y;μ)− m(x, y; ν)|μ(dx) ν(dy) ≤ m̂‖μ− ν‖T V . (19)

Take functions μ·, ν· ∈ CT from the ball B(0, 2‖μT ‖T V ). Then

‖�μ·‖T ≤ ‖μT ‖T V + 2δ(m + D)‖μT ‖T V + 4δ IU‖μT ‖2
T V , (20)

and

‖�μ· −�ν·‖T ≤ δ
(
D + 2m + 4m̂‖μT ‖2

T V

)‖μ· − ν·‖T + 4δ IU‖μT ‖T V ‖μ· − ν·‖T .

(21)
Taking δ > 0 sufficiently small, from (20) and (21) it follows that � transforms
the ball B(0, 2‖μT ‖T V ) into itself, and is Lipschitz continuous with some constant
L < 1. By the Banach fixed point theorem the operator � has a unique fixed point
and, consequently, (16) has a unique local solution.

In order to extend a local solution to the whole interval [0,∞) it is sufficient to
show that the solution is bounded. Notice that

d

dt
‖μt‖T V ≤ ‖μt‖T V

(
m − I U‖μt‖T V

)
, (22)

and consequently

‖μt‖T V ≤ max

{

‖μ0‖T V ,
m

I U

}

,

which completes the proof of the global existence and uniqueness.
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Eventually, we show that the measureμt is positive for t > 0. Indeed, for any Borel
set A we can write d

dtμt (A) ≥ −φ(t)μt (A), where φ(t) = (D + IUμt (F)
)
. Hence

μt (A) ≥ μ0(A) exp

⎧
⎨

⎩
−

t∫

0

φ(s) ds

⎫
⎬

⎭
≥ 0.

��
A straight-forward conclusion is the following statement about solutions in L1

space.

Corollary 1 Suppose that for each x, y ∈ F the measure K (x, y, dz) is absolutely
continuous with respect to the Lebesgue measure and

K (x, y, dz) = k(x, y, z) dz. (23)

Under the assumptions of Theorem 2, if μ0 has a density u0 ∈ L1 with respect to the
Lebesgue measure, then μt also has a density u(t, ·) ∈ L1 and u(t, z) is the unique
solution of the following equation

∂

∂t
u(t, z) =

∫

F

∫

F

m(x, y; u(t, ξ)dξ) k(x, y, z)u(t, x)u(t, y) dx dy

−
⎛

⎝D(z)+ I (z)
∫

F

U (z, y)u(t, y) dy

⎞

⎠ u(t, z), (24)

with the initial condition u(0, ·) = u0(·).
Proof Take a Borel set A with zero Lebesgue measure. Since the measure K (x, y, dz)
is absolute continuous with respect to the Lebesgue measure, K (x, y, A) = 0 for
every x, y ∈ F, and consequently d

dtμt (A) ≤ −D μt (A), and μ0(A) = 0. There-
fore μt (A) = 0 for all t > 0, and the statement comes from the Radon-Nikodym
theorem. ��

4.3 Boundedness, extinction and persistence

From the proof of Theorem 2 it follows that the function M(t) = μt (F) is upper-
bounded. Now we analyze further properties of M(t). Let us recall that a population
becomes extinct if limt→∞ M(t) = 0, and is persistent provided lim inf t→∞ M(t)
> 0.

Proposition 1 If inf z D(z) ≥ supz p(z) in the case of random mating and inf z D(z) ≥
1 in the case of assortative mating, then the population becomes extinct. If supz D(z) <
inf z p(z) in the case of random mating and supz D(z) < 1 in the case of assortative
mating, then the population is persistent.
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Proof In the case of random mating these properties follow simply from the inequal-
ities

M ′(t) ≤ M(t)
(

p̄ − D − I U M(t)
)

and

M ′(t) ≥ M(t)
(

p − D − I U M(t)
)
.

In the case of assortative mating we use similar inequalities with p̄ and p replaced
by 1. ��

4.4 Equation on a global attractor

In order to describe more precisely asymptotic behavior of M(t), we need to assume
that the functions p, D, I,U do not depend on x , and are positive. To avoid extinction
of the population, we additionally assume that D < p in the case of random mating
and D < 1 =: p in the case of assortative mating (see Proposition 1). Then M(t)
satisfies the following equation

M ′(t) = pM(t)− (D + IU M(t))M(t),

and M̄ = (p − D)/(IU ) is a stationary solution of this equation. Using basic facts
from the theory of differential equations, it is easy to see that

lim
t→∞ M(t) = M̄ . (25)

The number M̄ is an analogue of carrying capacity studied in Bolker and Pacala (1997)
and Fournier and Méléard (2004). In our case M̄ is a number of individuals per unit
of volume after long time.

From (25) it follows that all positive solutions converge to the set

A = {μ ∈ M(F) : μ(F) = M̄
}
,

which is invariant with respect to Eq. (16), i.e., if an initial condition μ0 belongs to A,
then μt ∈ A for t > 0. It means that A is a global attractor for Eq. (16). If μ0 ∈ A
then the function t 	→ μt satisfies the following equation

d

dt
μt (dz) =

∫

F

∫

F

m(x, y;μt ) K (x, y, dz) μt (dx) μt (dy)− pμt (dz). (26)

Let μt be a positive solution of (16). If we substitute μ̄t = M̄
M(t)μt , then the function

t 	→ μ̄t also satisfies (26). Therefore, the long-time behaviour of solutions of (26) is
completely characterized by the dynamics on the attractor A.
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Now we consider only solutions on the set A. If we replace μt (dx) by M̄μt (dx)
and t by pt in (26), then μt (dz) becomes a probability measure for all t ≥ 0. The
function t 	→ μt satisfies

d

dt
μt (dz)+ μt (dz) =

∫

F

∫

F

K (x, y, dz)μt (dx)μt (dy), (27)

in the case of random mating, and

d

dt
μt (dz)+ μt (dz) =

∫

F

∫

F

ψ(x, y;μt )K (x, y, dz)μt (dx)μt (dy), (28)

in the case of assortative mating, where

ψ(x, y;μ) = a(x, y)

2
∫

F a(x, r)μ(dr)
+ a(x, y)

2
∫

F a(y, r)μ(dr)
.

5 Asymptotic stability in the case of random mating

5.1 General remarks

In this section we study the convergence of solutions of Eq. (27) to some stationary
solutions. Equation (27) can be treated as an evolution equation

μ′
t = Pμt − μt , (29)

where the operator P acting on the space of all probability Borel measures on F is
given by the formula

(Pμ)(A) =
∫

F

∫

F

K (x, y, A) μ(dx) μ(dy). (30)

The solution of (29) with an initial measure μ0 is the deterministic process μt given
by Theorem 2. The set O(μ0) := {μt : t ≥ 0} is called the orbit of μ0.

Since the problem of the asymptotic stability of the solutions of Eq. (29) in an
arbitrary d-dimensional space seems to be quite difficult, we consider only the case
when d = 1 and F is a closed interval with nonempty interior. Generally, Eq. (29)
has a lot of different stationary measures and it is rather difficult to predict a limit of a
given solution. Assumption (9) allows us to omit this difficulty. Indeed, if a measure
μ has a finite first moment q, then according to (8) and (9) we have
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1308 R. Rudnicki, P. Zwoleński

∫

F

|z| (Pμ)(dz) =
∫

F

∫

F

∫

F

|z|K (x, y, dz) μ(dx) μ(dy)

≤
∫

F

∫

F

(c1 + c2|x | + c3|y|) μ(dx) μ(dy)

≤ c1 + (c2 + c3)

∫

F

|x |μ(dx) < ∞

and
∫

F

z (Pμ)(dz)=
∫

F

∫

F

∫

F

zK (x, y, dz) μ(dx) μ(dy)=
∫

F

∫

F

x + y

2
μ(dx) μ(dy)=q.

Therefore, any solution μt of Eq. (29) has the same first moment for all t ≥ 0. It
means that we can restrict our consideration only to probability Borel measures with
the same first moment.

The following example shows why we consider solutions of Eq. (29) with values in
the space of probability Borel measures instead of the space of probability densities.
In this example all the stationary solutions are the Dirac measures, and any solution
converges in the weak sense to some stationary measure.

Example 1 Let Z be a random variable with values in the interval [−1, 1] such that
EZ = 0 and |Z | �≡ 1. Assume that if x and y are parental traits, then the trait of an
offspring is given by

x + y

2
+ Z

|x − y|
2

,

i.e., the trait of an offspring is distributed between the traits of parents according to
the law of Z . For a random variable X we denote by m1(X) and m2(X) its first and
second moments and by D(X) its variance, i.e., D(X) = m2(X)− (m1(X))2. Let μt ,
t ≥ 0, be a solution of (29) with a finite second moment, and let Xt , t ≥ 0, be random
variables with distribution measures μt . Then x̄ := m1(Xt ) is a constant, and

d

dt
D(Xt ) = −1

2
(1 − D(Z))D(Xt ). (31)

Since D(Z) < 1, we have limt→∞ D(Xt ) = 0. Consequently, μt converges weakly
to δx̄ .

5.2 The Wasserstein distance

In order to investigate asymptotic properties of the solutions, we recall some basic
facts concerning the Wasserstein distance between measures. For α ≥ 1 we denote by
Mα the set of all probability Borel measuresμ on F such that

∫
F |z|α μ(dz) < ∞ and
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by Mα,q the subset of Mα which contains all the measures such that
∫

F z μ(dz) = q.
For any two measures μ, ν ∈ M1, we define the Wasserstein distance by the formula

d(μ, ν) = sup
f ∈Lip1

∫

F

f (z)(μ− ν)(dz), (32)

where Lip1 is the set of all continuous functions f : F → R such that for any x, y ∈ F

| f (x)− f (y)| ≤ |x − y|.

The following lemma is of a great importance in the subsequent part of the paper.

Lemma 1 The Wasserstein distance between measures μ, ν ∈ M1 can be computed
by the formula

d(μ, ν) =
∫

F

|�(x)| dx, (33)

where �(z) = (μ − ν) (F ∩ (−∞, z]) is the cumulative distribution function of the
signed measure μ− ν.

Proof Let�μ and�ν be the cumulative distribution functions of the measures μ and
ν. Since these measures have finite first absolute moments we have

lim
x→−∞ |x |�μ(x) = lim

x→−∞ |x |�ν(x) = 0

and

lim
x→∞ x(1 −�μ(x)) = lim

x→∞ x(1 −�ν(x)) = 0.

This gives

lim sup
x→±∞

| f (x)|�(x) ≤ lim
x→±∞ |x |�(x) = 0 for f ∈ Lip1

and if F is bounded from below or from above, then we have �(x) = 0 for x /∈ F .
Since f is a locally absolutely continuous function, integrating by parts leads to the
formula

d(μ, ν) = sup
f ∈Lip1

∫

F

f (z) d�(z) = sup
f ∈Lip1

−
∫

F

f ′(z)�(z) dz.

Clearly the supremum is taken when f ′(z) = − sgn�(z). ��
Consider probability measures μ and μn , n ∈ N, on the set F . We recall that the

sequence (μn) converges weakly (or in a weak sens) to μ, if for any continuous and
bounded function f : F → R
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1310 R. Rudnicki, P. Zwoleński

∫

F

f (x) μn(dx) →
∫

F

f (x) μ(dx),

as n → ∞. It is well-known that the convergence in the Wasserstein distance implies
the weak convergence of measures. Moreover, the space of probability Borel measures
on any complete metric space is also a complete metric space with the Wasserstein
distance (see e.g. Bolley 1934; Rachev 1991). The convergence of the sequence μn

to μ in the space M1,q is equivalent to the following condition (see Villani (2008),
Definition 6.7 and Theorem 6.8)

μn → μ weakly, as n → ∞ and lim
R→∞ lim sup

n→∞

∫

FR

|x |μn(dx) = 0, (C)

where FR := {x ∈ F : |x | ≥ R}. Fix q ∈ F , α > 1, and m > 0. Consider a set
M̃ ⊂ M1,q such that ∫

F

|x |αμ(dx) ≤ m (34)

for all μ ∈ M̃. Then the set M̃ is relatively compact in M1,q . Indeed, by Markov
inequality, μ({x : |x | ≤ R}) ≥ 1 − m/Rα for all μ ∈ M̃, what means that the set M̃
is tight, and thus M̃ is relatively compact in the topology of weak convergence (see
e.g. Billingsley (1995)). Moreover, for μ ∈ M̃ we have

∫

FR

|x |μk(dx) ≤ 1

Rα−1

∫

FR

|x |αμk(dx) ≤ m

Rα−1 ,

which implies the second condition in (C). Consequently, the set M̃ is relatively
compact in M1,q .

5.3 Theorems on asymptotic stability

We use the script letter K for the cumulative distribution function of the measure K ,
i.e.,

K(x, y, z) = K (x, y, F ∩ (−∞, z]).

The main result of this section is the following.

Theorem 3 Fix q ∈ F. Suppose that

(i) for all y, z ∈ F the function K(x, y, z) is absolutely continuous with respect to x
and for each a, b, y ∈ F we have

∫

F

∣
∣
∣
∂

∂x
K(a, y, z)− ∂

∂x
K(b, y, z)

∣
∣
∣ dz < 1, (35)

(ii) there are constants α > 1, L < 1, and C ≥ 0 such that for every μ ∈ Mα,q we
have
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∫

F

|x |αPμ(dx) ≤ C + L
∫

F

|x |αμ(dx). (36)

Then for every initial measure μ0 ∈ M1,q there exists a unique solution μt ,
t ≥ 0, of Eq. (27) with values in M1,q . Moreover, there exists a unique measure
μ∗ ∈ M1,q such that Pμ∗ = μ∗ and for every initial measure μ0 ∈ M1,q the
solution μt , t ≥ 0, of Eq. (27) converges to μ∗ in the space M1,q .

We split the proof of Theorem 3 into a sequence of lemmas. Denote by Fq the set of
all cumulative distribution functions of the signed measures of the form μ− ν, where
μ, ν ∈ M1,q .

Lemma 2 Suppose that for all y ∈ F and � ∈ Fq , � �≡ 0, we have

2
∫

F

∣
∣
∣
∣
∣
∣

∫

F

K(x, y, z)�(dx)

∣
∣
∣
∣
∣
∣

dz <
∫

F

|�(x)| dx . (37)

Then

d(Pμ,Pν) < d(μ, ν) (38)

for μ, ν ∈ M1,q , μ �= ν. In particular, for every initial measure μ0 ∈ M1,q there
exists a unique solution μt , t ≥ 0, of Eq. (27) with values in M1,q . ��
Proof Since K (x, y, ·) = K (y, x, ·), we can write

Pμ− Pν = 2
∫

F

∫

F

K (x, y, ·) (μ− ν)(dx) μ̄(dy),

where μ̄ = (μ+ ν)/2. If �(x) is the cumulative distribution function of μ− ν, then
the signed measure Pμ− Pν has the cumulative distribution function of the form

2
∫

F

∫

F

K(x, y, z)�(dx) μ̄(dy).

Hence

d(Pμ,Pν) = 2
∫

F

∣
∣
∣
∣
∣
∣

∫

F

∫

F

K(x, y, z)�(dx) μ̄(dy)

∣
∣
∣
∣
∣
∣
dz

≤ 2
∫

F

∫

F

∣
∣
∣
∣
∣
∣

∫

F

K(x, y, z)�(dx)

∣
∣
∣
∣
∣
∣

dz μ̄(dy)

<

∫

F

∫

F

|�(x)| dx μ̄(dy) =
∫

F

|�(x)| dx = d(μ, ν).

��
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1312 R. Rudnicki, P. Zwoleński

Lemma 3 Suppose that condition (i) of Theorem 3 is fulfilled. Then condition (37)
holds.

Proof Take a � ∈ Fq and denote �+(x) = max{0,�(x)} and �−(x) =
max{0,−�(x)}. Since � is the cumulative distribution function of μ − ν, where
μ, ν ∈ M1,q , we have

∫

F

�(x) dx = −
∫

F

x �(dx) =
∫

F

x �ν(dx)−
∫

F

x �μ(dx) = 0,

and, consequently,

∫

F

�+(x) dx =
∫

F
�−(x) dx = 1

2

∫

F

|�(x)| dx . (39)

Since �+ and �− are nonnegative functions and have the same integral, condition
(35) implies

∫

F

∣
∣
∣

∫

F

∂

∂x
K(x, y, z)�+(x) dx −

∫

F

∂

∂x
K(x, y, z)�−(x) dx

∣
∣
∣ dz <

∫

F

�+(x) dx .

(40)
Integrating

∫
F K(x, y, z)�(dx) by parts we obtain

∫

F

K(x, y, z)�(dx) = −
∫

F

∂

∂x
K(x, y, z)�(x) dx . (41)

From (40) and (41) it follows

2
∫

F

∣
∣
∣
∣
∣
∣

∫

F

K(x, y, z)�(dx)

∣
∣
∣
∣
∣
∣

dz < 2
∫

F

�+(x) dx =
∫

F

|�(x)| dx .

��
Lemma 4 Assume that d(Pμ,Pν) < d(μ, ν) for all μ, ν ∈ M1,q , μ �= ν. Let
μ0, ν0 ∈ M1,q and denote by μt and νt , respectively, the solutions of Eq. (29) in
the space of probability Borel measures on F. Then μt , νt ∈ M1,q for t ≥ 0 and
d(μt , νt ) < d(μr , νr ) for 0 ≤ r < t ≤ T provided that μT �= νT .

Proof Since P(M1,q) ⊂ M1,q every solution of (29) with an initial value from the set
M1,q remains in this set for all t ≥ 0. Any solution μt of (29) satisfies the following
integral equation

μt = er−tμr +
t∫

r

es−tPμs ds. (42)
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Let μt and νt be solutions of (29) with values in M1,q and such that μT �= νT . Then
μt �= νt for t ≤ T and from (42) it follows that

d(μt , νt ) ≤ er−t d(μr , νr )+
t∫

r

es−t d(Pμs,Pνs) ds

< er−t d(μr , νr )+
t∫

r

es−t d(μs, νs) ds

for 0 ≤ r < t ≤ T . Let α(s) = esd(μs, νs). Then

α(t) < α(r)+
t∫

r

α(s) ds

and from Gronwall’s lemma it follows that α(t) < α(r)et−r , which gives d(μt , νt ) <

d(μr , νr ). ��
Lemma 5 Assume that condition (ii) of Theorem 3 is fulfilled. Then for every initial
measureμ0 ∈ Mα,q its orbit O(μ0) is a relatively compact subset of M1,q . Moreover,
cl O(μ0) ⊂ Mα,q , where cl O(μ0) denotes the closure of O(μ0) in (M1,q , d).

Proof Take a μ0 ∈ Mα,q and let μt be a solution of (29) with the initial condition
μ0. Let m0 = C/(1 − L), mα = ∫F |x |α μ0(dx), and m = max{m0,mα}. We check
that μt ∈ Mα,q for t ≥ 0 and

∫

F

|x |α μt (dx) ≤ m for t ≥ 0. (43)

To see this, we define the set

Mα,q,m =
⎧
⎨

⎩
μ ∈ M1,q :

∫

F

|x |α μ(dx) ≤ m

⎫
⎬

⎭
.

Then Mα,q,m is a closed and convex subset of M1,q . Hence C([0, T ],Mα,q,m) is a
closed subset of C([0, T ],M1,q). For a sufficiently small T > 0, the map

(�μ)t = e−tμ0 +
t∫

0

es−tPμs ds

is a contraction on the space C([0, T ],M1,q) and the function t 	→ μt , 0 ≤ t ≤ T ,
is its fixed point. In order to prove that μt ∈ Mα,q for t ≥ 0 and that (43) holds,

123



1314 R. Rudnicki, P. Zwoleński

it is sufficient to check that the set C([0, T ],Mα,q,m) is invariant with respect to �.
Indeed, since C + Lm ≤ m we have

∫

F

|x |α (�μ)t (dx) = e−t
∫

F

|x |α μ0(dx)+
t∫

0

es−t
∫

F

|x |α Pμs(dx) ds

≤ e−t
∫

F

|x |α μ0(dx)+
t∫

0

es−t
(

C + L
∫

F

|x |α μs(dx)

)

ds

≤ e−t m +
t∫

0

es−t (C + Lm) ds ≤ m.

Thus, there exists m > 0 depending on μ0 and α > 1 such that (43) holds. Con-
sequently, the orbit is a relatively compact subset of M1,q and cl O(μ0) ⊂ Mα,q .

��
Let {S(t)}t≥0 be a family of transformations of M1,q defined by S(t)μ0 = μt ,

where μt is the solution of (29) with the initial condition μ0. For μ ∈ M1,q we define
the ω-limit set by

ω(μ) = {ν : ν = lim
n→∞μtn for a sequence (tn)n∈N with lim

n→∞ tn = ∞}.

Proof of Theorem 3 Take a measureμ ∈ Mα,q . According to Lemma 5 the orbit ofμ
is a relatively compact subset of M1,q . From this it follows that ω(μ) is a nonempty
compact set and for t > 0 we have S(t)(ω(μ)) = ω(μ). First we check that ω(μ) is
a singleton. Indeed, if ω(μ) has more than one element, then since ω(μ) is a compact
set, we can find two elements ν1 and ν2 in ω(μ) with maximum distance d(ν1, ν2).
But since S(t)(ω(μ)) = ω(μ), then for given t > 0 there exist ν̄1 and ν̄2 in ω(μ) such
that S(t)ν̄1 = ν1 and S(t)ν̄2 = ν2. Now from condition (i) and Lemmas 2, 3, and 4 it
follows that

d(ν1, ν2) = d(S(t)ν̄1, S(t)ν̄2) < d(ν̄1, ν̄2),

which contradicts the definition of ν1 and ν2. Letω(μ) = {μ∗}. Then S(t)μ∗ = μ∗ for
t ≥ 0 and, consequently, Pμ∗ = μ∗. Since the orbit O(μ) is relatively compact, we
have limt→∞ S(t)μ = μ∗. According to Lemmas 2 and 3 the operator P has only one
fixed point what means that the limit limt→∞ S(t)μ does not depend on μ ∈ Mα,q .
Now, we consider a measure μ ∈ M1,q . The set Mα,q is dense in the space M1,q .
Thus, for every ε > 0 we can find μ̄ ∈ Mα,q such that d(μ, μ̄) < ε. Moreover,
since limt→∞ S(t)μ̄ = μ∗ we find tε such that d(S(t)μ̄, μ∗) < ε for t ≥ tε. As the
operators S(t) are contractions we have

d(S(t)μ,μ∗) ≤ d(S(t)μ, S(t)μ̄)+ d(S(t)μ̄, μ∗) < 2ε

for t ≥ tε, which completes the proof. ��
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We can strengthen the thesis of Theorem 3, if we additionally assume that for all
x, y ∈ F the measure K (x, y, dz) has a density k(x, y, z) and k is a bounded and
continuous function.

Theorem 4 Assume that k is a bounded and continuous function, and k satisfies
assumptions of Theorem 3. Then the stationary measure μ∗ is absolutely continuous
with respect to the Lebesgue measure and has a continuous and bounded density u∗(x).
Moreover, for every μ0 ∈ M1,q the solution μt of Eq. (27) can be written in the form
μt = e−tμ0 + νt , where νt are absolutely continuous measures, have continuous and
bounded densities vt (x), which converge uniformly to u∗(x).

Proof Since k is a continuous and bounded function and μ∗ is a probability measure,

u∗(z) :=
∫

F

∫

F

k(x, y, z) μ∗(dx) μ∗(dy)

is a continuous bounded function and u∗ is a density of μ∗ because μ∗ is a fixed point
of the operator P . For any initial measure μ0 ∈ M1,q the solution μt of (27) satisfies
the equation

μt = e−tμ0 +
t∫

0

es−tPμs ds.

For each s ≥ 0 the measure Pμs has a continuous and bounded density ūs(x). Since the
functionϕ : [0,∞) → M1,q given byϕ(s) = μs is continuous and lims→∞ μs = μ∗,
the functionψ : [0,∞) → Cb(F)given byψ(s) = ūs is continuous and lims→∞ ūs =
u∗. Thus the measures νt = ∫ t

0 es−tPμs ds have continuous and bounded densities
vt (x) and vt converges uniformly to u∗ as t → ∞. ��

5.4 Examples

Now, we study two biologically reasonable forms of K , which satisfy conditions (i)
and (ii) of Theorem 3.

Example 2 We suppose that if x and y are parental traits, then the trait of the offspring
is of the form

x + y

2
+ Z ,

where Z is a 0-mean random variable, EZ2 < ∞ and Z has a positive density h. Then

k(x, y, z) = h
(
z − x+y

2

)
(44)

and

∂

∂x
K(x, y, z) = −1

2
h
(
z − x+y

2

)
.
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The condition (i) is equivalent to the inequality

∞∫

−∞
|h(z − α)− h(z − β)| dz < 2

for all α, β ∈ R, which is a simple consequence of the assumption that h is a positive
density. Now we check that condition (ii) holds with α = 2. We have

∞∫

−∞
z2(Pμ)(dz) ≤

∞∫

−∞

∞∫

−∞

∞∫

−∞

(
(z − x+y

2 )2 + (z − x+y
2 )(x + y)+ (x+y)2

4

)

× h
(
z − x+y

2

)
dz μ(dx)μ(dy)

≤ EZ2 +
∞∫

−∞

∞∫

−∞

(x+y)2

4 μ(dx)μ(dy)

≤ EZ2 + 1

2
q2 + 1

2

∞∫

−∞
x2 μ(dx).

If we additionally assume that the density h is a continuous function, then according
to Theorem 4 the limit measure μ∗ has a continuous and bounded density u∗, μt =
e−tμ0 + vt (x) dx , and vt converges uniformly to u∗.

Now we determine the limiting distribution μ∗. Densities of the measures μ∗ and
μ0 have the same first moment q and u∗ satisfies the equation

u∗(z) =
∫

R

∫

R

h
(

z − x + y

2

)
u∗(x) u∗(y) dx dy. (45)

Observe that if a probability density f satisfies (45) and
∫
R

x f (x) dx = 0, then
f (x − q) also satisfies (45) and has the first moment q. Since u∗ is a unique solution
of (45) with the first moment q we have u∗(x) = f (x − q) for x ∈ R. Now we
construct the density f . Consider an infinite sequence of i.i.d. random variables

Z01, Z11, Z12, Z21, . . . , Z24, Z31, . . . , Z38, . . .

with density h and define the random variable

Y = Z01 + Z11 + Z12

2
+ Z21 + · · · + Z24

4
+ Z31 + · · · + Z38

8
+ . . . .

Then EY = 0. If Y1 and Y2 are two independent copies of Y and Z is a random variable
with density h independent of Y1 and Y2, then
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Y
d= Z + Y1 + Y2

2
. (46)

It means that the density f of Y satisfies (45). Let hn(x) = 2nh(2n x) for n ≥ 0 and
x ∈ R. From the definition of the random variable Y it follows that

f = h0 ∗ h∗2
1 ∗ h∗4

2 ∗ h∗8
3 ∗ . . . ,

where f ∗ g denotes the convolution of f and g.
From (46) it follows immediately that EY 2 = 2EZ2. For instance, if Z has a

normal distribution with zero mean and standard deviation σ , then Y has also a normal
distribution with zero mean and standard deviation

√
2σ .

Example 3 As in Example 2 we suppose that if x and y are parental traits, then the
trait of the offspring is of the form

(x + y)Z ,

where Z is a random variable with values in the interval [0, 1], and has a density h
such that ∞∫

0

xh(x) dx = 1

2
. (47)

Then F = [0,∞) and the function k is of the form

k(x, y, z) = 1

x + y
h

(
z

x + y

)

(48)

for z ∈ [0, x + y] and k(x, y, z) = 0 otherwise. Equation (29) with kernel k given
by (48) is known as the general version of Tjon–Wu equation. If h = 1[0,1], then
this equation is the Tjon–Wu version of the Boltzmann equation (see Bobylev 1976;
Krook and Wu 1977; Tjon and Wu 1979). The asymptotic stability of the classical
Tjon–Wu equation in L1 space was proven by Kiełek (see Kiełek 1990). Lasota and
Traple (see Lasota 2002; Lasota and Traple 1999) proved stability in the general case
but in the sense of the weak convergence of measures. If we assume additionally that
the support of h contains an interval (0, ε), ε > 0, then this result follows immediately
from Theorem 3. Indeed, in that case one can easily compute

∂

∂x
K(x, y, z) = −h

(
z

x + y

)
z

(x + y)2
.

Now, condition (35) is equivalent to the inequality

∞∫

0

∣
∣h( z

α
) z
α2 − h( z

β
) z
β2

∣
∣ dz < 1 (49)
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for all α, β > 0. This inequality is a simple consequence of positivity of h on the
interval (0, ε) and of the following condition

∞∫

0

h( z
α
) z
α2 dz =

∞∫

0

h(x)x dx = 1
2 .

Now we check that the condition (ii) holds with α = 2. We have

∞∫

0

z2(Pμ)(dz) ≤
∞∫

0

∞∫

0

∞∫

0

z2

x + y
h

(
z

x + y

)

dz μ(dx)μ(dy)

≤ EZ2

∞∫

0

∞∫

0

(x + y)2 μ(dx)μ(dy)

≤ EZ2
(

2q2 + 2

∞∫

0

y2 μ(dy)
)

≤ 2q2
EZ2 + L

∞∫

0

y2 μ(dy),

where L = 2EZ2. Since 0 ≤ Z ≤ 1, we have L = 2EZ2 < 2EZ = 1.

Remark 1 The kernel k in Example 3 is not a continuous function even if the density h
is a continuous and we cannot apply directly Theorem 4 in this case. But it not difficult
to check that if q > 0 then μ∗({0}) = 0 and to prove that the invariant measure μ∗
has a density u∗, and u∗ is a continuous function on the interval (0,∞). Moreover,
repeating the proof of Theorem 4 one can check that μt = e−tμ0 + vt (x) dx , and
vt converges uniformly to u∗ on the sets [ε,∞), ε > 0. In particular, if we consider
Eq. (29) on the space of probability densities, then every solution converges to u∗ in
L1[0,∞).

6 Conclusion

In the paper we presented some phenotype structured population models with a sexual
reproduction. We consider both random and assortative mating. Our starting point
is the individual-based model which clearly explains all interactions between indi-
viduals. The limit passage with the number of individuals to infinity leads to the
macroscopic model which is a nonlinear evolution equation. We give some conditions
which guarantee the global existence of solutions, persistence of the population and
convergence of its size to some stable level. Next, we consider only a population with
random mating and under suitable assumptions we prove that a phenotypic profile of
the population converges to a stationary profile.

It would be interesting to study analytically long-time behavior of a phenotypic
profile of population with assortative mating. Some numerical results presented in the
paper Doebeli et al. (2007) suggest that also in this case one can expect convergence
of a phenotypic profile to multimodal limit distributions. This result suggests that
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assortative mating can lead to a polymorphic population and adaptive speciation. We
hope that our methods invented to asymptotic analysis of populations with random
mating will be also useful in the case of assortative mating. In order to do it, we probably
need to modify the model of assortative mating (7) presented in Sect. 2, because it has
a disadvantage that the mating rate does not satisfy the condition

∑n
j=1 m(xi , x j ) = 1

for all i . We can construct a new model which corresponds to the same preference
function a(x, y) with a symmetric mating rate m which has the above property. In
order to do this we look for constants c1, . . . , cn depending on the state of population
such that

m(xi , x j ; x) = (ci + c j )a(xi , x j ) (50)

and
∑n

j=1 m(xi , x j ; x) = 1 for all i . In this way we obtain a system of linear equations
for c1, . . . , cn :

n∑

j=1

bi j c j = 1, for i = 1, . . . , n, (51)

where bi j = a(xi , x j ) for i �= j and bii = a(xi , xi )+∑n
l=1 a(xi , xl). Since the matrix

[bi j ] has positive entries and the dominated main diagonal, system (51) has a unique
and positive solution. The passage with the number of individuals to infinity leads to
the following mating rate

m(x, y;μ) = (c(x;μ)+ c(y;μ))a(x, y), (52)

where the function c(x;μ) depends on a phenotypic distribution μ, and satisfies the
following Fredholm equation of the second kind

c(x;μ)
∫

F

a(x, y) μ(dy)+
∫

F

c(y;μ)a(x, y) μ(dy) = 1. (53)

One can introduce a general model which covers both semi-random and assortative
mating. Let p(x) be the initial capability of mating of an individual with trait x
and a(x, y) be a symmetric nonnegative preference function. Now we can define a
cumulative preference function by ā(x, y) = a(x, y)p(x)p(y). The mating rate m
is a symmetric function given by (50) with a replaced by ā and we assume that∑n

j=1 m(xi , x j ; x) = p(xi ) for each i, j . The mating rate in an infinitesimal model is
of the form

m(x, y;μ) = (c(x;μ)+ c(y;μ))a(x, y)p(x)p(y), (54)

where the function c(x;μ) satisfies the following equation

c(x;μ)
∫

F

a(x, y)p(y) μ(dy)+
∫

F

c(y;μ)a(x, y)p(y) μ(dy) = 1. (55)

In particular, in the semi-random case we have a ≡ 1 and c ≡ 1/
∫

F 2p(y)u(y) μ(dy)
and the mating rate is given by (3). Let us recall that in the general case c is not only
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a function of x but it is also depends on μ and therefore, the proofs of results from
Sects. 3 and 4 cannot be automatically adopted to these models.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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