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Abstract Messenger RNAs (mRNAs) can be repressed and degraded by small non-
coding RNA molecules. In this paper, we formulate a coarsegrained Markov-chain
description of the post-transcriptional regulation of mRNAs by either small interfer-
ing RNAs (siRNAs) or microRNAs (miRNAs). We calculate the probability of an
mRNA escaping from its domain before it is repressed by siRNAs/miRNAs via cal-
culation of the mean time to threshold: when the number of bound siRNAs/miRNAs
exceeds a certain threshold value, the mRNA is irreversibly repressed. In some cases,
the analysis can be reduced to counting certain paths in a reduced Markov model.
We obtain explicit expressions when the small RNA bind irreversibly to the mRNA
and we also discuss the reversible binding case. We apply our models to the study
of RNA interference in the nucleus, examining the probability of mRNAs escaping
via small nuclear pores before being degraded by siRNAs. Using the same modelling
framework, we further investigate the effect of small, decoy RNAs (decoys) on the
process of post-transcriptional regulation, by studying regulation of the tumor sup-
pressor gene, PTEN: decoys are able to block binding sites on PTEN mRNAs, thereby
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reducing the number of sites available to siRNAs/miRNAs and helping to protect it
from repression. We calculate the probability of a cytoplasmic PTEN mRNA translo-
cating to the endoplasmic reticulum before being repressed by miRNAs. We support
our results with stochastic simulations.

Keywords Stochastic process · Markov chain · Gene expression · mean first passage
time · Fokker Planck equation · PTEN · mRNA
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1 Introduction

Gene expression is the process by which genes are transcribed into messenger RNA
(mRNA) molecules which are in turn translated into proteins. Gene regulatory net-
works consist of groups of genes whose functions can be positively or negatively
affected by various signals and/or molecular interactions, which promote or inhibit the
production of proteins (Alberts 1998). In this study, we focus on post-transcriptional
(or translational) regulation by small RNAs. Post-transcriptional regulation occurs
between the transcription and translation of a gene (Alberts 1998). There are many
types of post-transcriptional regulation, and nearly all genes can be controlled in
this way. We focus on two types of post-transcriptional regulation: RNA interference
(RNAi) (Alberts 1998), and post-transcriptional regulation of the tumour suppressor
gene, PTEN (Sumazin et al. 2011). In particular, the PTEN process was chosen because
of the important role PTEN plays in the prevention of tumourigenesis, as explained
in Sect. 1.2. As we shall see in Sect. 2.1, both processes can be modelled by the same
general framework, which we present in terms of the PTEN problem. Formulation of
the RNAi problem as a particular case of the general model is presented in Sect. 2.2.
We present the results of our stochastic simulations in Sect. 3, and conclude in Sect. 4
with a discussion of our results and ideas for future work. First, let us introduce the
biological motivation behind each problem.

1.1 RNA interference in the nucleus

In eukaryotes, mRNA transcription occurs within the nucleus. Once transcribed,
mRNAs form complexes with proteins, and are dispersed throughout the nucleus
as they move by Brownian motion (Vargas et al. 2005). They subsequently exit the
nucleus via small pores on the surface of the nucleus, roughly 120 nm in diameter, to
be translated into protein in the cytoplasm (Grunwald et al. 2010). RNA interference
(RNAi) is a biological process in which this gene expression is regulated via interac-
tions between small RNA molecules, known as small interfering RNA (siRNA), and
specific target mRNA molecules (Alberts 1998). The siRNAs are initially formed of
two ∼22-nucleotide strands of RNA, but are subsequently cleaved into two individual
strands, one of which is incorporated into the RNA-induced silencing complex (RISC).
Once an siRNA binds to an mRNA target, the mRNA is degraded by Argonaute (Ago),
the catalytic component of RISC.
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Post-transcriptional regulation in the nucleus and cytoplasm 807

A recent study by Robb et al. (2005) revealed a new role for RNAi in nuclear post-
transcriptional regulation, by demonstrating siRNA-induced, RNAi-mediated degra-
dation of target mRNAs in the nucleus of HeLa cells. This process results in down-
regulation of target genes, as the number of target transcripts that reach the transla-
tion machinery in the cytoplasm is reduced. Additionally, Paul et al. (2002) reported
the existence of nuclear post-transcriptional regulation, with results that support the
hypothesis of Robb et al. that certain siRNAs can suppress mRNAs before they are able
to exit the nucleus for translation in the cytoplasm (Robb et al. 2005; Paul et al. 2002).
We formulate this process in terms of a narrow escape problem, as an mRNA diffusing
in the nucleus, bounded by the nuclear membrane save for a few small nuclear pores,
and study the probability of an mRNA escaping into the cytoplasm via a nuclear pore
before it is bound to and degraded by siRNAs (Schuss et al. 2007).

1.2 Post-transcriptional regulation of PTEN in the cytoplasm

In addition to RNAi, we also study post-transcriptional control of the tumor suppres-
sor gene, PTEN. PTEN plays an important role in the prevention of tumor initiation
and progression by promoting apoptosis (Salmena and Carracedo 2008). Translation
of an mRNA begins in the cytoplasm via binding of “free” ribosomes to the mRNA.
When a protein is destined for cell secretion, its polypeptide chain contains a short
sequence of amino acids known as the endoplasmic reticulum (ER)-targeting signal
sequence (Alberts et al. 2008). If an ER-targeting signal sequence is read by a ribo-
some, it facilitates the transport of the mRNA, and the partially-translated protein, to
the rough ER, where translation of the protein continues. Once fully translated, the
protein is secreted to the recipient cell, while the mRNA remains bound to the ER
for further translation (Alberts et al. 2008). Putz et al. (2012) demonstrated that the
PTEN protein, commonly localised in the cytoplasm and nucleus of a cell, is also
secreted from the cell. From this, we assume in our models that if a PTEN mRNA
binds to a ribosome, it localizes to the ER and, once it is bound at the ER, it remains
bound.

By a similar mechanism to RNAi, PTEN is post-transcriptionally regulated via bind-
ing of small RNA molecules, known as microRNAs (miRNAs), to the 3′-untranslated
region (UTR) of its mRNA (Sumazin et al. 2011). In contrast to siRNA-mRNA bind-
ing, miRNA-mRNA binding is thought to primarily result in repression of mRNA
translation, although mRNA degradation has also been observed (Jackson and Stan-
dart 2007). In the model developed below we will assume that binding by an miRNA
results in permanent translational repression of the mRNA.

As reported by Sumazin et al. (2011), an assortment of modulation mechanisms can
affect this regulation of PTEN by miRNAs. One such mechanism occurs when binding
sites are blocked, preventing miRNAs from binding to their targets. In 2010, Eiring et
al. suggested that specific decoy RNAs (“decoys”) can achieve this by binding to the
same sites as miRNAs, thereby interfering with miRNA-mRNA interactions. If these
decoys block the binding sites of PTEN mRNAs, then PTEN will be up-regulated as
there will be fewer opportunities for miRNAs to bind and repress PTEN translation.
A schematic is shown in Fig. 1.
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Fig. 1 A schematic of the miRNA-PTEN post-transcriptional regulatory process, with miRNAs and decoys
competing for binding to PTEN mRNA

Again, we formulate this process in terms of a narrow escape problem (Schuss
et al. 2007; Holcman et al. 2004): an mRNA molecule is confined to the cytoplasm by
the cell membrane, save for a few small, stationary targets (ribosomes) via which the
particle can escape into the ER. In our model we assume that the time for translocation
of an mRNA to the ER is negligible, and that, if an mRNA comes into contact with a
ribosome before it is repressed, it is irreversibly removed from the system (representing
instantaneous and permanent removal to the ER). We also assume that ribosomal
diffusion is negligible compared to mRNA diffusion. We study the probability of an
mRNA binding to a ribosome, and subsequently translocating (escaping) to the ER,
before it is repressed by miRNAs.

1.3 Mean time to threshold

Cooperativity of siRNAs/miRNAs can be defined as the repression of a target as a
result of the positive interaction between two or more siRNAs/miRNAs in the same
3′UTR (Broderick et al. 2011). In particular, for the PTEN problem, a study by Xiao
et al. (2008) suggested a potential cooperativity between miR-17-5p and miR-19 in
the repression of PTEN (Xiao et al. 2008). Broderick et al. (2011) suggested at least
three distinct regulatory mechanisms (see Fig. 2) that could account for the increase in
target repression of mRNAs containing multiple binding sites (Broderick et al. 2011):

1. Cooperative binding—Binding of an siRNA/miRNA-Ago complex to a site
increases the affinity of a second complex to an adjacent site. Silencing of the
transcript may arise from interactions between adjacent Ago proteins.

2. Cooperative function—Multiple siRNA/miRNA-Ago complexes bind to a target
independently of one another, but the interaction of one complex could recruit
binding proteins that repress the target. Along with an increase in the number of
complexes bound, there would be also be an increase in the likelihood of repressive
factors being recruited to the mRNA.

3. Multiple, independent sites—Each siRNA/miRNA-Ago complex functions inde-
pendently, but as the number of binding sites increases, the probability of a complex
locating a site increases.
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Post-transcriptional regulation in the nucleus and cytoplasm 809

Fig. 2 Three potential regulatory mechanisms that could account for the increased repression activity
observed in target transcripts containing multiple siRNA/miRNA binding sites (see main text for details).
a Cooperative binding, b cooperative function, c multiple, independent sites (Broderick et al. 2011)

Using this idea of cooperativity, we analyse the probability of mRNA repression
by siRNAs/miRNAs by examining the mean time to threshold (MTT) of the number
of bound siRNAs/miRNAs.

2 Model formulation

In this section, we present a general framework to estimate the probability, Pa , of an
mRNA reaching a small target before it is repressed by miRNAs/siRNAs. We use a
stochastic modelling approach to account for the small number of mRNAs and binding
sites for siRNAs/miRNAs. In the case of RNAi in the nucleus, Pa represents the prob-
ability that the mRNA physically translocates outside the nucleus via a nuclear pore
before degradation. In the case of PTEN regulation in the cytoplasm, Pa corresponds
to binding of an mRNA to a ribosome for translocation to the ER before irreversible
translational repression.

In Sect. 2.1, we present the two-dimensional Markov Chain model for PTEN regula-
tion in the cytoplasm. In Sect. 2.2, we use Markov Chain analysis to explicitly compute
the escape probability for the one-dimensional model of RNAi in the nucleus.

2.1 General model framework for post-transcriptional regulation of PTEN

In this section, we formulate a model for the safe delivery of a PTEN mRNA to the
ER, via binding to a ribosome (represented by a small, stationary target within the
cytoplasm). We assume that mRNAs have binding sites which are complementary to
two types of small RNAs: miRNAs, s, that are capable of repressing the mRNA, and
decoys, d, that can protect the mRNA from repression by blocking the binding sites.
We assume that when a decoy is bound to a site, no miRNA can bind to that same site,
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and vice versa. In general, miRNAs and decoys compete for the same binding sites,
and we will consider both reversible and irreversible binding to these sites. When the
number of miRNAs bound to an mRNA exceeds a certain threshold, T , the mRNA is
considered to be irreversibly repressed.

In general, we consider that all small RNAs are freely diffusing, with diffusion
coefficient, Ds , in a confined domain, and are present in large proportion compared
to the number of mRNAs (Ragan et al. 2011). The mRNAs are modelled as diffusing
particles with a diffusion coefficient, Dm . The diffusion coefficient for the small RNAs
is such that Ds � Dm (Morozova et al. 2012). Each mRNA has a finite and small
number of binding sites, Nb (assumed to be in the range of 10–20). The PTEN model
assumes that these interactions between the mRNA, miRNA and decoys are taking
place in are taking place in the cytoplasm. The parameters for both this model and the
RNAi model are summarized below.

Parameter Description

τ Mean time of mRNA to a pore/target

k f Forward binding rate of small RNAs to an mRNA

ks
b Unbinding rate of siRNAs/miRNAs, s

kd
b Unbinding rate of decoys, d

Nb Total number of binding sites on a single mRNA

T Threshold number of bound miRNAs/siRNAs required for mRNA repression

The motion of an mRNA, x(t), in a confined domain, �, is described by the Brown-
ian dynamics

dx = √
2B(x) dw(t), (1)

where B(x) is a diffusion tensor, and w(t) is a vector of independent standard Brownian
motions (Holcman et al. 2012). The state of each mRNA can be described by the
probability density function

Pr{x(t) ∈ x + dx, s(t) = s, d(t) = d} = ps,d(x, t)dx, (2)

which represents the probability that an mRNA is found at position x at time t with
s miRNAs and d decoys bound. When the number of bound miRNAs, s, reaches
a threshold, T , the mRNA is repressed. For N small targets, of radius ε � 1, in
the interior the domain, the narrow escape problem can be formulated as a mixed
Dirichlet-Neumann boundary value problem (BVP) (Cheviakov et al. 2010), with
boundary conditions

ps,d(x, t) = 0 for x ∈ ∂�a (3)

∂ B BT (x)ps,d

∂n(x)
(x, t) = 0 for x ∈ ∂�r . (4)
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Post-transcriptional regulation in the nucleus and cytoplasm 811

where 0 ≤ s ≤ T, s + d ≤ Nb, and n(x) is the outward unit normal on x ∈ ∂�r .
Condition (3) states the assumption that, for j = 1, . . . , N , if an mRNA arrives at
the surface of the j-th target, ∂�ε j , where ∂�a = ∪N

j=1∂�ε j is the total surface area
occupied by all pores, then it will leave the domain almost surely, i.e., with probability
one. Condition (3) is the zero-flux boundary condition for the rest of the domain,
∂�r = ∂� − ∂�a .

2.1.1 Master–Fokker–Planck equation

The joint probability density function (Jpdf) is the solution of a Master–Fokker–Planck
equation (Schuss 2010) that we shall formulate now. For 0 < s < T and 0 < d < Nb,
it is given by

∂

∂t
ps,d(x, t) = div(B BT (x)∇ ps,d(x, t)) − 2k f (Nb − s − d)ps,d(x, t)

− (ks
bs + kd

b d)ps,d(x, t) + ks
b(s + 1)ps+1,d(x, t).

+ kd
b (d + 1)ps,d+1(x, t) + k f (Nb − s − d + 1)ps−1,d(x, t)

+ k f (Nb − s − d + 1)ps,d−1(x, t). (5)

Here, we make the assumption that s and d are abundant in the cytoplasm, such that
binding does not affect their total amount in the cytoplasm (Ebert 2010). The Markov
Eq. (44) has been derived in the classical approximation where we considered that dur-
ing the time interval [t, t +�t], if there are already s and d bound miRNAs and decoys,
respectively, an miRNA or decoy can bind with rate k f (Nb − s − d)�t . A miRNA
(or decoy) can unbind with rate ks

bs�t (or kd
b d�t). A more detailed description of the

derivation of the Jpdf is given in Dao Duc and Holcman (2010). The mathematical
difficulty and novelty here is to examine the master equations at the reaction bound-
aries: when the number of bound miRNAs is equal to the threshold T , the mRNA is
repressed and we assume that the rate of return from the state s = T to any previous
state is zero. This is modeled as an absorbing boundary condition to repression: for
all time, t , and for all d, pT +1,d(t) = 0. Similarly, we assume there are no transitions
to or from negative states, i.e., ps,d = 0 for s < 0 or d < 0, and that the maximum
number of possible bindings is Nb, i.e., ps,d = 0 for s+d > Nb. The master equations
associated with these boundary conditions are detailed in Appendix A.

The transition diagram is summarized in Fig. 3. The general system of equations
cannot, in general, be solved analytically. However we can compute various quantitites
asymptotically or via the stochastic simulation algorithm (SSA) (Gillespie 1977).
Quantitites of interest include the probability that an mRNA escapges to the ER (by
locating a ribosome) before it is repressed (see Fig. 9a).

2.1.2 Reduction of the Master–Fokker–Planck to a Markov chain

To estimate the probability of an mRNA exiting the domain before repression, we
integrate the Master-Fokker-Planck equations over the domain, � (n.b. unless stated
otherwise, we assume that the subscript {s, d} represents that there are s miRNAs and

123



812 D. Holcman et al.

Fig. 3 Markov chain diagram for the mRNA state. The general transitions are represented in the inner
diagram, while we emphasize the boundary condition. The rectangle represents the state where the mRNA
is repressed (absorbing state). From each non absorbing state, there is also a probability to exit, represented
in the diagram as asterisk

d decoys bound to the mRNA, with s ∈ [|0, T |] and d ∈ [|0, Nb − s|]). The survival
probability of a particle at time t is given by

pS
s,d(t) =

∫

�

ps,d(x, t)dx, (6)

which is the probability of an mRNA being found intact within the domain at time t
given any initial position, x , in the domain, �. From this, we define the conditional
outflux probability as

Js,d(t) =
∮

∂�a

∂ B(x)BT (x)ps,d

∂n
(x, t)d Sx, (7)

which represents the instantaneous arrival rate of an mRNA to a target. Binding to
targets is rare as targets occupy only a small fraction of the domain. Therefore, the
flux can be approximated in the small hole limit as (Schuss et al. 2007)

Js,d(t) = 1

τ
pS

s,d(t), (8)

where τ is the mean arrival time of an mRNA to a target. This mean first passage time
(MFPT) does not depend on the number of bound miRNAs/decoys, but does depend on
the diffusion properties of the mRNA and the number of targets. For constant isotropic
diffusion, τ has been calculated for various geometries and binding site configurations.
The details of these formulas are recalled in Appendix B. The formulas are used below
where they are compared with stochastic simulations. The survival probability, given
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Post-transcriptional regulation in the nucleus and cytoplasm 813

by (6), of an mRNA being found intact in the domain at time t , satisfies the general
CME Dao Duc and Holcman (2010),

∂

∂t
pS

s,d(t) = − 1

τ
pS

s,d(t) − 2k f (Nb − s − d)pS
s,d(t) − (ks

bs + kd
b d)pS

s,d(t)

+ ks
b(s + 1)pS

s+1,d(t) + kd
b (d + 1)pS

s,d+1(t)

+ k f (Nb − s − d + 1)pS
s−1,d(t) + k f (Nb − s − d + 1)pS

s,d−1(t).

The boundary terms are obtained similarly to those derived in Appendix A, by inte-
grating over the domain, �.

The first time, τ̄ T , that the number of bound miRNAs reaches the threshold, T ,
is known as the “mean time to threshold” (MTT). It allows us to define the escape
probability Pa that the mRNA escapes before it is repressed. Similarly, we can define
the probability that an mRNA is repressed before it escapes as Pd . The probability that
an mRNA exits the domain before it is repressed is the sum over all probabilities that
there are s < T bound miRNAs when an mRNA reaches a target at time, t , that is,

Pa(t) =
T −1∑
s=0

1

τ
pS

s,d(t) +
Nb∑

d=Nb−T +1

Nb−d∑
s=0

pS
s,d(t). (9)

The overall exit probability for an intact mRNA is

Pa =
∞∫

0

Pa(t)dt. (10)

Similarly, the probability of an mRNA being repressed before it escapes can be defined
as

Pd =
Nb−T∑
k=0

Nb−T∑
d=0

pS
T,k(∞), (11)

where

pS
T,d(∞) = lim

t→∞ pS
T,d(t). (12)

Combining (9) and (10), and using the conservation of probability, we can re-formulate
this as

Pa =
T −1∑
s=0

Nb−T∑
d=0

∞∫

0

Js,d(r)dr +
Nb∑

d=Nb−T +1

Nb−d∑
s=0

∞∫

0

Js,d(r)dr. (13)

In the small hole approximation, the exit time is Poissonian (Schuss et al. 2007). To
estimate the survival probability, we integrate the Markov chain over the domain, �,
and simplify our results by defining
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as,d =
∞∫

0

pS
s,d(t)dt, (14)

which represents the probability of an mRNA being found intact within the domain at
any time. From this, (13) can be written as

Pa = 1

τ

T −1∑
s=0

Nb−T∑
d=0

as,d + 1

τ

Nb∑
d=Nb−T +1

Nb−d∑
s=0

as,d . (15)

The probability as,d satisfies

0 = − 1

τ
as,d − 2k f (Nb − s − d)as,d − (ks

bs + kd
b d)as,d

+ ks
b(s + 1)as+1,d + kd

b (d + 1)as,d+1

+ k f (Nb − s − d + 1)as−1,d + k f (Nb − s − d + 1)as,d−1, (16)

for 0 < s < T and 0 < d < Nb − T . This results from

lim
t→∞ pS

s,d(t) = 0, for s 
= T, (17)

in that, the probability to find the mRNA inside the cytoplasm is zero except in the
following cases:

pT,d(∞) = k f (Nb − T − d + 1)aT −1,d , where Nb − T > d ≥ 0

pT,Nb−T (∞) = k f aT −1,Nb−T ,

which corresponds to the probability of mRNA repression at t = ∞. For s = 0 and
d = 0, we further obtain the boundary conditions,

− 1 = − 1

τ
a0,0 − 2k f Nba0,0 + ks

ba1,0 + kd
b a0,1 (18)

0 = − 1

τ
a0,Nb − kd

b Nba0,Nb + k f a0,Nb−1, (19)

using (17) and the initial condition,

p0,0(0) = 1.

Thus we have the following set of conditions. For Nb > d > 0,

0 = − 1

τ
a0,d − 2k f (Nb − d)a0,d − kd

b da0,d + ks
ba1,d

+ kd
b (d + 1)a0,d+1 + k f (Nb − d + 1)a0,d−1.
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For T −1 > s > 0,

0 = − 1

τ
as,0 − 2k f (Nb − s)as,0 − ks

bsas,0 + ks
b(s + 1)as+1,0

+ kd
b as,1 + k f (Nb − s + 1)as−1,0.

For s = T − 1, Nb − T > d > 0,

0 = − 1

τ
aT −1,d − 2k f (Nb − T + 1 − d)aT −1,d

− (ks
b(T − 1) + kd

b d)aT −1,d + kd
b (d + 1)aT −1,d+1

+ k f (Nb − T − d + 2)aT −2,d + k f (Nb − T − d + 2)aT −1,d−1.

For T > s > 0, Nb − s = d,

0 = − 1

τ
as,Nb−s − (ks

bs + (Nb − s)kd
b )as,Nb−s + k f as−1,Nb−s

+ k f as,Nb−s−1.

Using the stochastic simulation algorithm, we simulate the number of bound decoys
and miRNAs on a single mRNA (Fig. 6), for particular values of the reversible and
irreversible binding rates.

2.1.3 Computing the escape probability Pa

Irreversible binding ks
b = kd

b = 0

In the irreversible case (ks
b = kd

b = 0), we can compute the survival probability using
the method of DaoDuc and Holcman (2010), namely by summing probabilities over
all trajectories starting from (0,0) and leading to the repression state (T,m). We start
by considering the path σ with n bindings (T ≤ n ≤ Nb) for which the associated
probability is

P(σ ) =
(

1

2

)n n−1∏
i=0

k f (Nb − i)

k f (Nb − i) + 2/τ
. (20)

The number of these paths of length n is then
(n−1

T −1

)
, since there are T bindings with

miRNAs including the last one. Thus, the probability of repression before exit, Pd , is
given by

Pd =
Nb∑

k=T

(
k − 1

T − 1

) (
1

2

)k k−1∏
i=0

k f (Nb − i)

k f (Nb − i) + 2/τ
. (21)

We use Formula (21) in Fig. 7 to plot and compare Pa as a function of T with stochastic
simulations and observe good agreement for different values of τk f . When the exit
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time is large compared with the binding time (τ � 1/k f ), we can approximate
k f (Nb−i)

k f (Nb−i)+2/τ
= 1

1+2/(τk f (Nb−i)) ≈ 1 in (21) and thus obtain

Pd ≈
Nb∑

k=T

(
k − 1

T − 1

)
1

2k
, (22)

which can indeed be interpreted in the following way: neglecting the probability to exit
(as τ the mean time to exit is large compared to the mean binding time 1/(k f (Nb − i))
to either a decoy or miRNA), the Markov chain converges to a steady state distribution
where the number of bound decoys is binomial with parameters (Nb, 1/2). Thus, the
probability of repression is given by (22).

Reversible binding

In general, when there are both miRNAs and decoys with reversible binding, the escape
probability cannot be resolved analytically. However, using the stochastic simulation
algorithm, we obtain the escape probability, as shown in Fig. 9. The simulation in
Fig. 9 reveals that the formula obtained in the irreversible case (red line) can be used
to approximate the escape probability for small values of τ (until τk f = 1).

Now that we have presented the two-dimensional model forPTEN post-
transcriptional regulation, let us introduce the one-dimensional model for RNAi in
the cytoplasm.

2.2 The RNAi model (d = kd
b = 0)

We consider the case that there are no decoys in the system, which we study via the
process of RNAi in the nucleus.

2.2.1 Re-formulation of the probability density function

We present a model for the escape of an mRNA from the nucleus via small nuclear
pores before being degraded by siRNAs. The model accounts for multiple siRNA
binding sites on the mRNA. When the number of siRNAs, S, bound to an mRNA
exceeds a given threshold, T , the mRNA is considered to be degraded. When an
siRNA occupies a site, no other siRNA can bind. We assume that siRNAs are freely
diffusing in the nucleus and that siRNA-mRNA binding is irreversible. We compute
the escape probability, Pa , that an mRNA exits the nucleus intact, that is, it escapes
through a nuclear pore before there are T siRNAs bound. We characterize the mRNA
by (2), with survival probability (6) satisfying the Markov chain (see Fig. 4)

d

dt
pS

s (t) = − 1

τ
pS

s (t) − (N0 − s)k f pS
s (t) − ks

bspS
s (t) + k f (N0 − s + 1)pS

s−1(t)

+ ks
b(s + 1)pS

s+1(t),
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Post-transcriptional regulation in the nucleus and cytoplasm 817

Fig. 4 Markov chain diagram for the mRNA state (no decoys)

with boundary conditions

d

dt
pS

T −1(t) = − 1

τ
pS

T −1(t) − ks
b(T − 1)pS

T −1(t) − k f (N0 − T + 1)pS
T −1(t)

+ k f (N0 − T + 2)pS
T −2(t)

d

dt
pS

0 (t) = − 1

τ
pS

0 (t) − k f N0 pS
0 (t) + ks

b pS
1 (t)

d

dt
pS

T (t) = k f (N0 − T + 1)pS
T −1(t),

using the fact that the transition rate from state T to T − 1 is zero.

2.2.2 Computing the escape probability, Pa

Irreversible binding

In the irreversible case, ks
b = 0, defining the probability of an mRNA with s siRNAs

bound being found intact within the domain at any time, t , as

as =
∞∫

0

pS
s (t)dt, (23)

the Markov chain simplifies to, for 0 < s < T − 1,

0 = − 1

τ
as − k f (N0 − s)as + k f (N0 − s + 1)as−1, (24)

with aT = 0 and the boundary conditions given by

− 1 = − 1

τ
a0 − k f N0a0 (25)

0 = − 1

τ
aT −1 − k f (N0 − T + 1)aT −1 + k f (N0 − T + 2)aT −2 (26)

pS
T (∞) = k f (N0 − T + 1)aT −1.

Initially the mRNA is not bound by any siRNAs so pV
s (0) = δs . The escape probability

is given by

Pa = 1

τ

T −1∑
k=0

as, (27)
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while the conservation of probability leads to the relation

Pa + pS
T (∞) = 1. (28)

A direct solution of (24) and (25) gives, for s < T ,

as = k f (Nb − s + 1)

1/τ + k f (Nb − s)
as−1, (29)

where a0 = τ

1 + k f Nbτ
. Thus,

as = kk
f

(Nb)!
(Nb − s)!

s∏
j=0

1

1/τ + k f (Nb − j)
. (30)

Using (27) and (30), the probability that the mRNA escapes the domain intact is given
by

Pa(T, Nb, x) =
T −1∑
s=0

xs Nb!
(Nb − s)!

s∏
j=0

1

1 + (Nb − j)x
, (31)

where x = τk f . In Fig. 5, we plot the analytical solution of (31) and compare it to
simulations obtained with the SSA, for varying values of the parameter x = τk f and
the threshold, T. The excellent agreement supports the accuracy of the models and
analysis.

(a) (b)

Fig. 5 Escape probability as a function of the threshold T (bound miRNAs) for the RNAi problem (no
decoys). a Comparison between stochastic simulations (square) and analytical Formula (31) (dotted line)
in the irreversible binding case for different values of x = τ = 0.1, 1, 10. b Same as in a but with reversible
binding case and a comparison with analytical formula (38). For each value of T , we perform 1,000 SSA
simulations with Nb = 20 and ks

b = k f = 1
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Reversible binding

In the reversible case, the Markov chain is given by

0 = − 1

τ
as − k f (Nb − s)as − ks

bsas

+ ks
b(s + 1)as+1 + k f (Nb − s + 1)as−1, (32)

with boundary conditions given by

− 1 = − 1

τ
a0 − k f Nba0 + ks

ba1 (33)

0 = − 1

τ
aT −1 − k f (Nb − T + 1)aT −1 − ks

b(T − 1)aT −1

+ k f (Nb − T + 2)aT −2 (34)

pS
T (∞) = k f (Nb − T + 1)aT −1.

We note that (32) can be written as a tridiagonal matrix equation

M

⎛
⎜⎜⎜⎝

a0
a1
...

aT −1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−1
0
...

0

⎞
⎟⎟⎟⎠ , (35)

where M is the tridiagonal matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0 β1 0 . . . 0
γ1 α1 β2 0 (0)

0
. . .

. . .
. . .

. . .
...

. . .
. . .

. . .
. . . 0

... (0)
. . .

. . .
. . . βT −1

0 . . . 0 γT −1 αT −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (36)

with

βi = ks
bi

γi = (Nb − i + 1)k f (37)

αi = −
(

1

τ
+ βi + γi+1

)
.

Thus, the probability to reach the threshold, T , is given by

PT = k f (Nb − T + 1)aT −1 = −k f (Nb − T + 1)m−1
T 1, (38)
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where m−1
i j = (M−1)i j for 1 ≤ i, j ≤ T . A direct computation gives

m−1
T 1 = (−1)T +1 ∏T −1

k=1 γk

θT
, (39)

where (θn)n∈N is a sequence satisfying a second order induction relation with poly-
nomial coefficients given by

θi = αi−1θi−1 − βi−1γi−1θi−2, (40)

with θ0 = 1 and θ1 = α0 (Usmani 1994). Using the expressions for αi , βi and γi , we
obtain

PT (∞) = kT
f Nb!

(Nb − T )!uT
, (41)

where the sequence un satisfies, for i > 1,

ui+1 =
(

1

τ
+ ks

bi + k f (Nb − (i + 1) + 1)

)
ui + ks

bk f i(Nb − i + 1)ui−1,

with u0 = −1 and u1 = 1
τ

+ k f Nb. However, the series un cannot be obtained
explicitly in a simple closed form. As a particular example, T = 3 gives

PT (∞) = k̄ f
3
Nb(Nb − 1)(Nb − 2)

Q(k̄ f , k̄s
b Nb)

, (42)

where

Q(k̄ f , k̄s
b, Nb) = 1 + k̄ f

∑
0≤i≤2

(Nb − i) + k̄ f
2 ∑

0≤i 
= j≤2

(Nb − i)(Nb − j)

+ k̄s
b[3 + 2k̄s

b + k̄ f (2N 2
b + 2k̄ f Nb(Nb − 1) + 5Nb − 6)]

+ k̄ f
3
N (Nb − 1)(Nb − 2),

and

k̄ f = k f τ and k̄s
b = ks

bτ. (43)

3 Results for RNAi and PTEN dynamics

3.1 RNAi

Figure 5b shows the good agreement between the analytical expression (38) and the
results of the SSA. Compared with irreversible binding (ks

b = 0), the survival prob-
ability is relatively insensitive to the values of the escape time, τ , when τ is small
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(a) (b)

Fig. 6 Stochastic simulation of the dynamics of binding and unbinding to mRNA, for Nb = 20, τ = 50s,
k f = 0.05s−1 and T = 10. a Irreversible case. b Reversible case with ks

b = kd
b = 0.5s−1

Fig. 7 Escape probability as a
function of the threshold T in the
irreversible case (ks

b = kd
b = 0):

Formula (21) and the SSA
(square) agree for several values
of τk f . For each value of T , we
perform 1,000 SSA simulations,
Nb = 20 and k f = 1

compared to the chemical times 1
ks

b
and 1

k f
(Fig. 5a, b for τk f = 0.1). Indeed, when

the escape time is short compared to the binding and unbinding times, the miRNAs
generally have no time to unbind before the mRNA exits. However, as the escape time,
τ , increases, the number of bound miRNAs increases and thus unbinding affects the
probability of absorption (Fig. 5a, b for τ = 1 and 10). These changes become apparent
for a high threshold value. Thus unbinding can delay the time to reach the threshold,
enabling the mRNA to escape with higher probability than in the irreversible case.

3.2 PTEN

In Fig. 6, we use the stochastic simulation algorithm to simulate the number of bound
decoys and miRNAs on a single mRNA for varying reversible and irreversible binding
rates.

In Fig. 7, we compare Pa(T ) obtained from Formula (21) with stochastic simula-
tions. We obtain very good agreement for different values of τk f .

Figure 8a, c are repetitions of Figs. 5b and 7, respectively, for larger values of the
escape time, τ . They show the escape probability as a function of the threshold T
(bound miRNAs) for the reversible RNAi problem (no decoys) and the irreversible
PTEN problem (miRNAs and decoys).

Figure 8b, d show the threshold value, T , as a function of the escape time, τ , for
the escape probabilties Pa = 0.25, 0.5, 0.75 and 0.95. The red dotted line shows
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(a) (c)

(b) (d)

Fig. 8 a RNAi reversible, b RNAi reversible, c PTEN irreversible, d left column escape probability, Pa ,
as a function of the threshold, T , for a variety of escape times, τ . Right column threshold as a function of
escape time for a variety of escape probabilities (solid lines), and the change in threshold value, �T , from
Pa = 0.25 to Pa = 0.95 (red dotted line) (color figure online)

the difference in the threshold required to observe a 95 % probability of escape
before repression, i.e., Pa = 0.95, compared to the threshold required to observe
a 25 % probability of escape before repression, i.e., Pa = 0.25, represented by
�T = T (Pa = 0.95) − T (Pa = 0.25). This threshold difference is a measure of
the steepness of the switch between Pa ≈ 0 and Pa ≈ 1 in Fig. 8a, c. A small value
of �T is representative of an abrupt switch, in which the threshold values for almost
certain escape and almost certain repression differ by very little, such that the escape
probability depends strongly on the threshold value. A large value of �T represents a
gradual switch between almost certain escape and almost certain repression, such that
the threshold value does not much affect the probability of an mRNA escaping before
repression.

In Fig. 8b, when the escape time, τ , is small compared to the forward and backward
binding reaction times, 1

ks
b

and 1
k f

, respectively, �T is small. This supports the idea

that when the escape time is short compared to the forward and backward binding
reaction times, the threshold value has almost no effect of the probability of escape,
as the miRNAs have generally no time to unbind before the mRNA exits, regardless
of the threshold number of miRNA bindings needed for repression. �T increases
until a maximum at τ = 1, when the escape time and the binding reaction times are
equal. This is due to an increase in the number of miRNAs that can bind to an mRNA
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before it escapes, as the time spent inside the domain, τ , increases. Thus the threshold
number of bound miRNAs needed for repression begins to affect the probability of
escape. �T then decreases slowly for large τ such that the effect of T on Pa is lessened
as the escape time becomes large compared with the binding reaction times. This is
because the threshold value is more and more likely to be reached before the mRNA
can escape, the longer it remains within the domain. We can see this in Fig. 8a as the
switch between Pa = 0.25 and Pa = 0.95 becomes gradually sharper, meaning that,
conversely to τ < 1, the mRNA has a very high probability of being degraded for all
but the highest threshold values.

Figure 8d reveals that this effect is also present in the case of decoys with irre-
versible binding, but to a lesser extent. We see a lower maximum �T at τ = 1 and
a more gradual decline for τ > 1. This shows that the threshold value has a greater
effect on the probability of escape for large τ than for the case of irreversible binding
with miRNAs alone. This is most likely due to the introduction of decoys into the
system which can block the binding sites of mRNA and are unable to unbind from
these sites, making the threshold value harder to reach, even when the mRNA remains
in the domain for longer due to a reduced escape time, τ .

The results reported above support those obtained for the case of both decoys and
reversible binding, shown in Fig. 9a. For increasing escape time, τ , unbinding events
decrease the probability of escape (for intermediate values of T ). Dramatic differences
appear for a threshold of T = 11 and Nb = 20 (Fig. 9) leading to a two-fold increase
in the probability of escape for the irreversible case (≈0.6) compared to the reversible
case (≈0.3). Unbinding of decoys increases the likelihood of the threshold value being
reached, and so we observe a decrease in the probability of escape. This effect is hard
to predict as both decoys and miRNAs can unbind. Irreversible binding reduces the
effect of decoys on the escape probability, and so we see an increase in the effect
of T on Pa , similar to that which is observed in the case of reversible binding alone
(Fig. 8b). The histogram of the number of bound miRNAs before the mRNA exits is
given in Fig. 9b for different values of T .

(a) (b)

Fig. 9 a The escape probability as a function of the threshold, T , of bound miRNAs. Probability of escape
(squares) for different values of τ in the reversible PTEN case, compared to the probability of escape in the
irreversible PTEN case (red) for Nb = 20 and k f = 1. b Histograms of the number of miRNAs bound to
an mRNA before exit for different values of the threshold, T . For each value of T , we perform 1,000 SSA
simulations for Nb = 20, k f = 1, ks

b = kd
b = 0.5 (color figure online)
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4 Conclusions

We have presented a mathematical framework for studying the stochastic repression
of mRNA by siRNAs/miRNAs as a function of elementary parameters such as the
threshold to repression, T , the number of binding sites, Nb, and the various kinetics
parameters. When the siRNA/miRNA bind reversibly, we found that the probability
of escape is decreased compared to irreversible binding. The present approach can
be used to obtain precise estimates for the number of siRNAs/miRNAs needed for
specific genetic regulation.

By studying the post-transcriptional regulation of PTEN, we have also shown that
this behaviour persists when decoys are present. There is, however, another type of
molecule that is known to play a role in post-transcriptional regulation of PTEN,
known as competing endogenous RNA (ceRNA), or ‘sponges’. It has been proposed
in several studies (e.g., Ebert et al. 2007; Poliseno et al. 2010), and experimentally
validated in several others (e.g., Sumazin 2011; Tay et al. 2011), that RNAs that
share miRNA binding sites may compete for a shared pool of miRNA. This group
of sponge modulators act by soaking up miRNAs, leaving fewer miRNAs to bind to
their intended target mRNA. This causes an up-regulation in translation of the target
gene, as translational repression is down-regulated. One confirmed sponge, discovered
by Poliseno et al. in (2010), is the PTEN pseudogene, PTENP1. Inclusion of sponge
modulation is just one possible extension of the current model that we will explore in
future work.

Finally, it is well known that the behaviour of molecules in a cell depends not only on
the number of molecules present, but also on the distribution of these molecules within
the cell and how they move and interact with each other (Alberts 1998). Processes such
as target binding by an siRNA/miRNA may be spatially-dependent; an siRNA/miRNA
may find its target site faster, or slower, depending on its initial distance from the target
and the mechanism by which it moves through the cell. We are currently developing a
spatial model of the system, and will use this to study how subcellular heterogeneity
affects the probability of mRNA escape before repression by direct comparison with
the models developed in this study.

Appendix A

We shall present here the two-dimensional chemical Markov equations (CME) in the
variables s and d introduced in Sect. 2.1. We need to examine carefully the expressions
at the boundary of two-dimensional state space around s = T and s = 0 to incorporate
the appropriate modifications in the transition rates.

The CME for no bound miRNAs or decoys (s = d = 0)

As there are no transitions from negative states, the CME is

∂

∂t
p0,0(x, t) = div(B BT (x)∇ p0,0(x, t))−2k f Nb p0,0(x, t) + ks

b p1,0(x, t)

+ kd
b p0,1(x, t).
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The CME for either no bound miRNAs or no bound decoys (s = 0 or d = 0)

When there are no miRNAs bound, that is, s = 0 and Nb > d > 0, we have

∂

∂t
p0,d(x, t) = div(B BT (x)∇ p0,d(x, t)) − 2k f (Nb − d)p0,d(x, t)

− kd
b dp0,d(x, t) + ks

b p1,d(x, t) + kd
b (d + 1)p0,d+1(x, t)

+ k f (Nb − d + 1)p0,d−1(x, t).

Similarly, for T − 1 > s > 0 and d = 0 (no decoys bound),

∂

∂t
ps,0(x, t) = div(B BT (x)∇ ps,0(x, t)) − 2k f (Nb − s)ps,0(x, t) − ks

bsps,0(x, t)

+ ks
b(s + 1)ps+1,0(x, t) + kd

b ps,1(x, t)

+ k f (Nb − s + 1)ps−1,0(x, t).

The CME near the threshold number of bound miRNAs (s = T − 1)

For s = T − 1, d = 0 (no transition rate from PT,0), then

∂

∂t
pT −1,0(x, t) = div(B BT (x)∇ pT −1,0(x, t) − 2k f (Nb − T + 1)pT −1,0(x, t)

− ks
b(T − 1)pT −1,0(x, t) + kd

b pT −1,1(x, t)

+ k f (Nb − T + 2)pT −2,0(x, t).

For s = T − 1 and Nb − T > d > 0, (no transition rate from PT,d ), then

∂

∂t
pT −1,d(x, t) = div(B BT (x)∇ pT −1,d(x, t)) − 2k f (Nb − T + 1 − d)pT −1,d

− (ks
b(T − 1) + kd

b d)pT −1,d(x, t) + kd
b (d + 1)pT −1,d+1(x, t)

+ k f (Nb − T − d + 2)pT −2,d(x, t)

+k f (Nb − T − d + 2)pT −1,d−1(x, t).

The CME at the threshold number of bound miRNAs (s = T )

For s = T and Nb − T > d > 0 (the only transition occurs from the state T − 1), then

∂

∂t
pT,d(x, t) = k f (Nb − T − d + 1)pT −1,d(x, t).
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The CME at the limit of a filled mRNA (s + d = Nb)

For T > s > 0 and Nb − s = d (there are no transition rates from any state (s, d)

such that s + d > Nb), then

∂

∂t
ps,Nb−s(x, t) = div(B BT (x)∇ ps,Nb−s(x, t)) − (ks

bs + kd
b (Nb − s))ps,Nb−s(x, t)

+ k f ps−1,Nb−s(x, t) + k f ps,Nb−s−1(x, t).

For s = T, Nb − T = d, then

∂

∂t
pT,Nb−T (x, t) = k f pT −1,Nb−T (x, t).

Finally, for d = Nb, s = 0 (the mRNA is filled with decoys), then

∂

∂t
p0,Nb (x, t) = div(B BT (x)∇ p0,Nb (x, t)) − kd

b dp0,Nb + k f p0,Nb−1(x, t).

Appendix B

MFPT to a small pore on the domain boundary

For the RNAi model, the general approximation of the MFPT, τ , of a Brownian mRNA
particle initially located at the center of a spherical domain, of radius R, moving with
diffusion coefficient, D, to hit one of N � 1 identical, circular pores, of radius ε, on
the surface of the domain, is given in Singer et al. (2008) by

τ ∼ |�|
4εDN

[
1 − ε

π
log ε + εN

π

(
1

5
+ 4b1√

N

)]
+ R2

6D
. (44)

The coefficient b1 ≈ −0.5668 is calculated by Cheviakov et al. (2010) by minimising
the energy, H, of the arrangement of the N traps across the surface of a unit sphere
(i.e., R = 1). In (44), R2

6D represents the MFPT of a particle, initially located at the
center of the spherical domain, to reach the surface. If Nε � 1, the time taken for a
particle to locate a pore on the surface of the domain, i.e., the first term, will dominate
over the time taken for the particle to reach the surface, i.e., the second term, which
leads us to the approximation

τ ∼ |�|
4εDN

[
1 − ε

π
log ε + εN

π

(
1

5
+ 4b1√

N

)]
. (45)

MFPT to a small target within domain

We similarly compute the mean time for an mRNA to locate a ribosome in the PTEN
problem as follows (Cheviakov et al. 2010, 2013) in the case of many traps: for N
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uniformly distributed traps of radius ε � 1 in the interior of the spherical domain,
�, of unit radius, R, with reflecting boundary, the MFPT, τ , of a Brownian particle
uniformly distributed in the domain, moving with diffusion coefficient D, to a trap is
given by

τ ∼ |�|
D

[
1

4πεNc
+ 1

N 2

(Hball

4π
− 7N 2

10π

)]
. (46)

Here, Hball (similar to H declared in the previous section) is defined as the energy
function for optimising the spatial arrangement of the N traps within the spherical
domain (typical values for varying N in a unit sphere are given in Table 2 of Cheviakov
et al. 2011); and c is the normalized capacitance of each trap (c = 1 for a disk), assumed
here to be the same for all traps (typical values for varying trap shapes are given in Table
1 of Cheviakov et al. 2011). For example, assuming there are N = 10 spherical traps
of radius ε, we have Hball = 243.37 and c = 1. The narrow escape approximation is
equivalent to replacing escape by a Poissonian event of rate 1

τ
.

Forward binding rate of small RNA to a binding site on mRNA

The binding rate, k f , of a diffusing particle to one of the Nb binding sites on an mRNA
is the reciprocal of the MFPT to a site. When the sites, of size a, are located on a sphere
of radius r , this MFPT is given in Cheviakov et al. (2010) as

τN = 1

k f
= |�|

D

(
1

4πr
+ 1

4Nba

)
. (47)

References

Alberts B (1998) Essential cell biology: an introduction to the molecular biology of the cell. Garland
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008) Molecular biology of the cell, 5th edn.

Garland Science, New York
Broderick JA, Salomon WE, Ryder SP, Aronin N, Zamore PD (2011) Argonaute protein identity and pairing

geometry determine cooperativity in mammalian rna silencing. RNA 17(10):1858–1869
Cheviakov AF, Ward MJ, Straube R (2010) An asymptotic analysis of the mean first passage time for narrow

escape problems: part ii: the sphere. Multiscale Model Simul 8(3):836–870
Cheviakov AF, Ward MJ (2011) Optimizing the principal eigenvalue of the laplacian in a sphere with interior

traps. Math Comput Model 53(7–8):1394–1409
Cheviakov AF, Zawada D (2013) Narrow-escape problem for the unit sphere: homogenization limit, optimal

arrangements of large numbers of traps, and the n2 conjecture. Phys Rev E 87(4):042118
Dao Duc K, Holcman D (2010) Threshold activation for stochastic chemical reactions in microdomains.

Phys Rev E 81(4 Pt 1):041107
Ebert MS (2010) Molecular titration by microRNAs and target mimic inhibitors. Ph.D. thesis, Massachusetts

Institute of Technology
Ebert MS, Neilson JR, Sharp PA (2007) Microrna sponges : competitive inhibitors of small rnas in mam-

malian cells. Nat Methods 4(9):721–726
Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, Liu S, Schwind S, Santhanam R, Hickey CJ,

Becker H, Chandler JC, Andino R, Cortes J, Hokland P, Huettner CS, Bhatia R, Roy DC, Liebhaber SA,
Caligiuri MA, Marcucci G, Garzon R, Croce CM, Calin GA, Perrotti D (2010) Mir-328 functions as an
rna decoy to modulate hnrnp e2 regulation of mrna translation in leukemic blasts. Cell 140(5):652–665

123



828 D. Holcman et al.

Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–
2361

Grünwald D, Singer RH (2010) In vivo imaging of labelled endogenous β-actin mrna during nucleocyto-
plasmic transport. Nature 467(7315):604–607

Holcman D, Schuss Z (2004) Escape through a small opening: receptor trafficking in a synaptic membrane.
J Stat Phys 117, 5/6(41):91–230

Holcman D, Schuss Z (2012) Brownian needle in dire straits: stochastic motion of a rod in very confined
narrow domains. Phys Rev E 85:010103

Jackson R, Standart N (2007) How do micrornas regulate gene expression? Sci STKE 2007 367:re1
Morozova N, Zinovyev A, Nonne N, Pritchard LL, Gorban AN, Harel-Bellan A (2012) Kinetic signatures

of microrna modes of action. RNA 18(9):1635–1655
Paul CP, Good PD, Winer I, Engelke DR (2002) Effective expression of small interfering rna in human

cells. Nat Biotechnol 20(5):505–508
Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP (2010) A coding-independent function

of gene and pseudogene mrnas regulates tumour biology. Nature 465(7301):1033–1038
Putz U, Howitt J, Doan A, Goh CP, Low LH, Silke J, Tan SS (2012) The tumor suppressor pten is exported

in exosomes and has phosphatase activity in recipient cells. Sci Signal 5(243):ra70–ra70
Ragan C, Zuker M, Ragan MA (2011) Quantitative prediction of mirna-mrna interaction based on equilib-

rium concentrations. PLoS Comput Biol 7(2):e1001090
Robb GB, Brown KM, Khurana J, Rana TM (2005) Specific and potent rnai in the nucleus of human cells.

Nat Struct Mol Biol 12(2):133–137
Salmena L, Carracedo A, Pandolfi PP (2008) Tenets of pten tumor suppression. Cell 133(3):403–414
Schuss Z, Singer A, Holcman D (2007) The narrow escape problem for diffusion in cellular microdomains.

Proc Natl Acad Sci 104(41):16098–16103
Schuss Z (2010) Diffusion and stochastic processes: an analytical approach. Springer series on applied

mathematical sciences, 170. Springer, New York
Singer A, Schuss Z, Holcman D (2008) Narrow escape and leakage of brownian particles. Phys Rev E

78(5):051111
Sumazin P, Yang X, Chiu HS, Chung WJ, Iyer A, Llobet-Navas D, Rajbhandari P, Bansal M, Guarnieri P,

Silva J, Califano A (2011) An extensive microrna-mediated network of rna-rna interactions regulates
established oncogenic pathways in glioblastoma. Cell 147(2):370–381

Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, Karreth F, Poliseno L, Provero P, Di Cunto F,
Lieberman J, Rigoutsos I, Pandolfi PP (2011) Coding-independent regulation of the tumor suppressor
pten by competing endogenous mrnas. Cell 147(2):344–357

Usmani RA (1994) Inversion of a tridiagonal jacobi matrix. Linear Algebra Appl 212–213:413–414
Vargas DY, Raj A, Marras SAE, Kramer FR, Tyagi S (2005) Mechanism of mrna transport in the nucleus.

Proc Natl Acad Sci 102(47):17008–17013
Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J, Henderson JM, Kutok JL, Rajewsky K

(2008) Lymphoproliferative disease and autoimmunity in mice with increased mir-17-92 expression in
lymphocytes. Nat Immunol 9(4):405–414

123


	Post-transcriptional regulation in the nucleus and cytoplasm: study of mean time to threshold (MTT)  and narrow escape problem
	Abstract
	1 Introduction
	1.1 RNA interference in the nucleus
	1.2 Post-transcriptional regulation of PTEN in the cytoplasm
	1.3 Mean time to threshold

	2 Model formulation
	2.1 General model framework for post-transcriptional regulation of PTEN
	2.1.1 Master--Fokker--Planck equation
	2.1.2 Reduction of the Master--Fokker--Planck to a Markov chain
	2.1.3 Computing the escape probability Pa
	Irreversible binding kbs=kbd=0
	Reversible binding

	2.2 The RNAi model (d=kbd=0)
	2.2.1 Re-formulation of the probability density function
	2.2.2 Computing the escape probability, Pa
	Irreversible binding
	Reversible binding


	3 Results for RNAi and PTEN dynamics
	3.1 RNAi
	3.2 PTEN

	4 Conclusions
	Appendix A
	The CME for no bound miRNAs or decoys (s=d=0)
	The CME for either no bound miRNAs or no bound decoys (s=0 or d=0)
	The CME near the threshold number of bound miRNAs (s=T-1)
	The CME at the threshold number of bound miRNAs (s=T)
	The CME at the limit of a filled mRNA (s+d=Nb)

	Appendix B
	MFPT to a small pore on the domain boundary
	MFPT to a small target within domain
	Forward binding rate of small RNA to a binding site on mRNA

	References


